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ABSTRACT

In this paper a novel method for human movement rep-
resentation and recognition is proposed. A movement is
regarded as a sequence of basic movement patterns, the
so-called dynemes. Initially, the fuzzy c-mean (FCM)
algorithm is used to identify the dynemes in the input
space, and then principal component analysis plus lin-
ear discriminant analysis (PCA plus LDA) is employed
to project the postures of a movement to the identified
dynemes. In this space, the posture representations of
the movement are combined to represent the movement
in terms of its comprising dynemes. This representation
allows for efficient Mahalanobis or cosine-based nearest
centroid classification of variable length movements.

1. INTRODUCTION

Human motion encompasses several levels of complex-
ity. In this context, [4], proposed a three level taxon-
omy. In the lower level, a dyneme, is described as the
most constructive unit of motion, while one level above,
movement, is conceived as a sequence of dynemes, with
clearly defined temporal boundaries as well as clear con-
ceptual interpretation, e.g., one period of walk. In this
paper, we adopt the above taxonomy, and in particu-
lar, we identify the dynemes in the input space by FCM
clustering [1], and then express the comprising postures
of a movement in terms of these dynemes using PCA
plus LDA [5]. In the projection space the postures are
combined to represent a movent with a single movement
vector and allow simple Mahalanobis- or cosine-based
nearest-centroid movement classification.

Different movements comprise a different number of
postures. Moreover, the same movement is executed dif-
ferently when performed from different people, or even
from the same person more than one times. Most re-
searchers in the field represent a movement as a manifold
in some space and exploit an expensive similarity met-
ric, e.g., Hausdorff distance, in order to compare move-
ments of different length and account for internal speed
variations. In contrary, with the proposed method, a
movement is represented as a single vector in terms of
the comprising dynemes, which implicitly takes into ac-
count internal speed variations, and allows for efficient
comparison of variable length movements. This charac-
teristic makes the method attractive for real time move-
ment recognition applications.

2. PRIOR WORK

There is a bulk of human motion analysis literature.
A general review can be found in [3]. An important
question in human movement recognition is what kind
of information should be exploited in order to represent
a movement. Methods in the literature mostly exploit
the dynamic local or global motion information within a
sequence of posture images to represent motion. There
have been also proposed methods that combine both
local and global motion cues as well as methods that
exploit static posture information alone.

Local motion information is derived by observing the
spatial variation of points in the human body over time.
Point correspondences are acquired either by feature
tracking or optical flow, e.g., [4, 10]. Then position and
velocity of these points is used to represent the motion
in the input space.

Global motion refers to the shape configurations that
the human body receives through the course of a move-
ment, without considering any point correspondences
between the images. Consequently, a movement is rep-
resented by a sequence of posture images extracted from
the original video, e.g., [6–9]. In this paper, we represent
a movement with a sequence of silhouettes, i.e., global
motion information is exploited.

From the classification point of view, most meth-
ods mainly fall within two categories, template matching
and statistical techniques. In [6], a subspace technique
is used to represent a movement manifold in the feature
space. A novel manifold is classified with its nearest
neighbor, using median Hausdorff distance or normal-
ized spatiotemporal correlation. In [7], a movement is
represented by a sequence of space-time shape features
using the Poison equation, and a novel space-time tem-
plate is recognized using the nearest neighbor classifier.
A clustering, Dominant Sets-based method is proposed
in [8], to represent a movement with a sequence of fre-
quency vectors, and classify a novel movement in real
time.

In [4], tracking information is exploited to form mo-
tion vectors for each frame and a number of HMMs are
trained to recognize a variety of movements. In [10], mo-
tion information from major body parts provided from
tracking is used to form feature vectors, and an exhaus-
tive Mahalanobis-based majority voting criterion is used
to classify a novel movement.



3. PROPOSED METHOD

A movement is represented as a discrete spatiotempo-
ral sequence of posture images. The posture image is
scanned column-wise to form the so-called posture vec-
tor x ∈ <F and, thus, represent the movement with a
spatiotemporal trajectory in the input space {x`}`=1:L.

Movement classes highly overlap, and therefore do
not express the actual structure of the input space <F .
An example of such overlap is shown in Fig. 1, where
a naive observer may mistakenly perceive the sequence
of ”skip” postures with ”run”. One way to counteract
this problem is to represent movements as manifolds in
some space. Depending on the nature of the embedded
space, linear or non-linear subspace techniques can be
used to learn the manifolds, e.g., as it is done in [6].
The disadvantage of these approaches is that matching
manifolds usually requires an expensive similarity met-
ric, e.g., Hausdorff distance [6–8], in order to account
for time shifts and internal speed variations when com-
paring two movements.

(a)

(b)

Figure 1: (a) Two postures of ”skip” which can be easily
confused with postures of ”run”. (b) Two postures of
”run”.

In this paper, in order to recognize K different
movement classes, we assume that there are C posture
classes in the input space, where C > K. The posture
classes are identified by unsupervised clustering and rep-
resented by their centroid, the so-called dyneme posture
(for instance, three dyneme postures can be seen in Fig.
2). Although the C dyneme postures may belong to
more than one movement classes, when combined ap-
propriately can uniquely characterize the K different
movements. Based on this assumption, we apply the
FCM algorithm to discover the dynemes, and then PCA
plus LDA to project the individual postures to the iden-
tified dyneme classes. In this space movement parts can
be represented by the arithmetic mean of the compris-
ing postures and uniquely characterize each movement
type.

3.1 FCM to discover input space structure

We assume that the number of dynemes in the input
space is C > K. Considering unlabelled posture data
{x1, . . . ,xN}, we apply the FCM algorithm [1] to dis-
cover the intrinsic structure of the input space. The
FCM algorithm is based on the minimization of the fol-
lowing objective function:

JFCM (Φ,V) =
C∑

c=1

N∑
ı=1

(φc,ı)m(‖ xı − vc ‖2)2 , (1)

where, N , C are the number of samples and centroids
respectively, xı ∈ <F is the ı-th sample in the training
data set, V = [v,c] = [v1, . . . ,vC ] ∈ <F×C is the matrix
of cluster prototypes, in our case the dyneme represen-
tations, Φ = [φc,ı] ∈ <C×N is the partition matrix with
φc,ı ∈ [0, 1] the degree that the ı-th sample belongs to
the c-th cluster, m > 1 is the fuzzification parameter
and ‖ · ‖2 is is the euclidian vector norm. The FCM
criterion (1) is subjected on producing non-degenerate
fuzzy partition of the training data at each iteration
of the optimization, {Φ ∈ <C×N | ∀c, ı :

∑C
c=1 φc,ı =

1; 0 <
∑N

ı=1 φc,ı < N ; 0 ≤ φc,ı ≤ 1}.
The computation of the cluster centers and partition

matrix is carried out through iterative optimization of
(1), with the update of membership matrix and cluster
centers at each step given by:

φc,ı =
(‖ xı − vc ‖2)−2(m−1)−1

∑N
=1(‖ x − vc ‖2))−2(m−1)−1

, (2)

vc =
∑N

ı=1 φm
c,ıxı∑N

ı=1 φm
c,ı

. (3)

The iteration is initialized with an initial estimate of
matrix V or Φ and terminates when the difference of
the estimated matrix between two iterations is smaller
than a specified tolerance ε.

3.2 Projecting to dyeneme classes with PCA
plus LDA

FCM algorithm will assign posture vector xı to a
dyneme class c = 1, . . . , C with membership degree, φc,ı.
Based on the clustering results we label each posture xı

according to the cluster it is assigned with the largest
membership degree, and weigh it with the corresponding
membership degree

o = argmax
c∈[1,...,C]

(φc,ı) , (4)

z(o)
ı = φo,ıxı , (5)

to produce a set of labelled data
{z(1)

1 , . . . , z(1)
N1

, . . . , z(C)
NC
}, where Nc is the number

of postures belonging to the c-th dyneme class.
Conventional LDA assumes that the number of

training samples N is adequately larger than the di-
mensionality of the input space, F , which is rarely the
case. One way counteracting the problem is to first ap-
ply PCA to reduce the dimensionality of the data and



optimally preserve representational information in the
least square sense, as proposed in [5]. PCA considers un-
labelled data and seeks for the projection Wpca ∈ <F×D

that maximizes the determinant of the total scatter ma-
trix St

St =
N∑

ı=1

(zı − ρ)(zı − ρ)T , (6)

Wpca = argmax
W

| WT StW | , (7)

where ρ is the total mean of the weighted posture vec-
tors, and T denotes matrix transposition. Therefore,
the data are projected to yield a set of posture vectors
in the projection space, {s(1)

1 , . . . , s(1)
N1

, . . . , s(C)
NC
}, where

s = WT
pcaz.

The dimension of the projection space D is selected
to retain most of the energy of the posture set in the in-
put space. In the same time, assuming that D < N−C,
LDA can be used to further project the posture vectors.
The conventional LDA algorithm [2] seeks for the linear
projection Wlda ∈ <D×C−1 that maximizes the ratio of
the between- and within-class scatter represented with
the respective scatter matrices Sb, Sw as outlined bellow

Sb =
C∑

c=1

Nc(µ(c) − µ)(µ(c) − µ)T , (8)

Sw =
C∑

c=1

Nc∑
n=1

(s(c)
n − µ(c))(s(c)

n − µ(c))T , (9)

Wlda = argmax
W

| WT SbW |
| WT SwW | , (10)

where µ(c) is the mean of the vectors in the c-th posture
class and µ is the total mean. The rank of Sw ∈ <D×D

is at most N − C, and thus, is invertible if D has been
adequately chosen. In this case, Wlda is formed from the
generalized eigenvectors of S−1

w Sb, and a vector s ∈ <D

is transformed using p = WT
ldas . Therefore, the final

representation of a posture vector x in the feature space
is given by

p = WT
optx , (11)

where Wopt = WpcaWlda.

3.3 Movement representation and classification

Let U be database of M movement sequences, where
each sequence belongs to one of K different movement
classes. A movement sequence of length L is projected
to the dyneme classes using (11) to yield a sequence of
posture vectors {p`}`=1:L. Then, the sequence is parti-
tioned to R parts of equal length, and the linear mean
for each part is taken to represent the specific part

p1, . . . ,pL1︸ ︷︷ ︸
q1

, . . . ,pLR−1+1, . . . ,pLR︸ ︷︷ ︸
qR

, (12)

where qr = 1
Lr

∑Lr

=Lr−1+1 p, and L0 = 0, LR = L.
The resulted vectors are concatenated to represent the

specific movement with the so-called movement vector
y ∈ <RC

y = [q1
T , . . . ,qR

T ]T . (13)

Therefore the ı-th movement sequence of the k-th move-
ment class in the database is represented by the re-
spective vector y(k)

ı , yielding a set of movement vectors
in the database {y(1)

1 , . . . ,y(1)
M1

, . . . ,y(K)
MK

}, where, Mk is
the number of movements in the k-th class. Note that
LDA can again applied to project the movement vectors
in <K−1 and further enhance class discrimination and
compactness of representation.

Assuming that the movement classes are derived
from unimodal gaussian distributions with the same
covariance matrix Σ but different means η(k), k =
1, . . . ,K, we can use the maximum likelihood technique
to estimate them

η(k) =
1

Mk

Mk∑
ı=1

y(k)
ı , k = 1, . . . , K , (14)

Σ =
1
M

M∑
ı=1

(yı − η)(yı − η)T , (15)

where η is the total mean (η = 1
M

∑M
ı=1 yı).

A novel movement sequence is projected with (11)
and represented with a movement vector e(b) ∈ <RC

using (12),(13). Assuming equiprobable priors, the class
label b of the novel movement is given by:

b = argmin
k∈[1,...,K]

( gk(e) ) , (16)

where gk, k = 1, . . . , K, are the discriminant functions

gk(e) = (e− η(k))T Σ−1(e− η(k)) (17)

Alternatively, the maximum cosine distance can be used
to classify the novel movement

gk(e) =
− eT η(k)

‖ e ‖‖ η(k) ‖ . (18)

3.4 Multiview movement recognition

The proposed method can be extended for view indepen-
dent human movement recognition, exploiting a multi-
camera infrastructure during the training stage, simi-
lar to [11]. That is, assuming P cameras, a movement
model, η(k,p), is build for each movement k and each
viewing angle p, i.e., η(k,p), k = 1, . . . ,K, p = 1, . . . , P ,
and the respective discriminant function gk,p(·) is used,
as described in the previous section. Then a novel move-
ment vector e(b), captured from an arbitrary view, is
classified according to the label of the closest movement
model.

4. EXPERIMENTAL RESULTS

The classification database reported in [7] is used to as-
sess the performance of the method. This database con-
tains nine persons performing ten movements, namely,



”walking” (wk), ”running” (rn), ”skipping” (sk), ”gal-
loping sideways” (sd), ”jumping jack” (jk), ”jumping”
(jp), ”jumping in place” (pj), ”bending” (bd), ”wave
with one hand” (wo) and ”wave with two hands” (wt).
The database contains in total 93 videos (3 persons per-
form the same movement 2 times). The proposed al-
gorithm assumes that each video contains only a single
instance of a movement. In contrary, some videos show
a person executing several cycles of a periodic move-
ment. We brake such videos to their constituting single
movements, and thus, we produce a database of 230
movement instances. The movement videos comprise
variable inter- and intra-class length, for instance, the
smallest movement of ”run” consists of 9 frames, while
the largest video of ”bend”, consists of 66 frames respec-
tively.

Next, we transform movement sequences to show
persons moving in the same direction, either left or right.
This is done by first deciding the direction, and then
mirroring the frames of the movement videos that show
a person moving to an opposite direction from the one
decided. Movement direction detection is done auto-
matically by observing the displacement of the mask on
the x frame axis over a few frames in time.

In our computations, the associated binary masks
of the classification database are employed. From each
binary mask, the rectangular region containing the sil-
houette is extracted, to form a silhouette image. All
silhouette images along a movement video are centered
according to the center of mass of the silhouette at each
image. Then, each silhouette image is transformed to
the same size, here 64 × 48, with bicubic interpolation
(as in [6]), to represent a movement video with a se-
quence of posture images. (For instance, two foreground
posture images of ”skip” and two of ”run” are depicted
in Fig. 1. Here we use the respective binary masks.)
The resulted images are then scanned column-wise to
form 3072-dimensional posture vectors.

The leave-one-out-cross-validation (LOOCV) proce-
dure is used to assess the performance of the algorithm.
At each validation cycle all the movement sequences re-
ferring to a specific person performing a specific move-
ment are extracted to form the test set. The remain-
ing movement sequences are used as a training sequence
to compute the movement prototypes as described in
section 3.3. The number of corrected classified move-
ment sequences at each cycle are summed to compute
the classification rate. Extensive experiments have been

3314 17

Figure 2: Three dynemes identified with the proposed
method. Dyneme 14 resembles a posture of ”bend”, while
dyneme 33 and 17 a posture of ”walk” and ”wave with
two hands” respectively. Dyneme 33 could as well rep-
resent a posture of ”run”.

performed to identify the number of clusters C, fuzzi-
fication parameter m, and movement partition number

R. For C = 43, m = 1.14 and R = 2 a recognition rate
of 90.4% was achieved, i.e., only 22 out of 230 move-
ment sequences were misclassified. Some of the identi-
fied dynemes clearly characterize the movements, while
other are confused between two or more movements. For
instance, in Fig. 2, dyneme 13 clearly characterize the
movement of bend, while dyneme 33 is confused between
the posture of walk and run. The confusion matrix for
these settings is shown in Table 1. In this table we see

bd jk jp pj rn sd sp wk wo wt
bd 9
jk 17 1
jp 20 1 1 3 4
pj 25
rn 27 1
sd 1 18 1 2
sp 2 27
wk 42
wo 1 13
wt 4 10

Table 1: Confusion between movements. A row rep-
resents the actual movement and the column the name
of the movement recognized by the algorithm during the
LOOCV procedure.

that ”jump” is the movement that confused mostly. On
the other hand, ”bend”, ”jumping in place” and ”walk”
are well recognized by the proposed algorithm.

The recognition rate achieved here is better than the
rate attained with the real time Dominant sets-based
method reported in [8]. In this work, the number of
clusters are identified using Dominant Sets. Although
the clusters identified there may well represent the in-
trinsic structure of the input space, it is not guaranteed
that they provide the dyneme that optimally discrimi-
nate different movements, as we pursue in our method.

Apart from Dominant Sets, FCM as well as other
clustering algorithms were also applied in [8], to repre-
sent each movement class with a cluster centroid, and
recognize a novel movement according to nearest cen-
troid distance. The attained classification results of this
approach were not satisfying. In our method, FCM is
explicitly used to identify the dyneme classes, which
uniquely characterize different movements, and express
movements upon dynemes. Thus, classification accuracy
is considerable improved.

The Carnegie Mellon University motion capture
database [12] contains motion capture data of several
persons performing several different movements. We
used this database to synthesize artificial multiview bi-
nary mask sequences and test the applicability of the
algorithm within a multiview scenario. Initial results
on this direction are promising, showing that the pro-
posed method can be used for multiview human move-
ment recognition.

5. CONCLUSION

A novel human movement representation and recogni-
tion method has been proposed. A movement of any
length is compactly expressed in terms of its compris-



ing dynemes, as a single vector in a low dimensional
space. This representation allows simple cosine- or
Mahalanobis-comparison of different movements, avoid-
ing expensive comparison metrics, and thus, offering
higher speed and storage efficiency from prevailed meth-
ods in the field, e.g., [6], [7], [10]. Moreover, the recogni-
tion rate achieved here (90.4%) on a publicly available
database, outperforms rates reported in other real-time
methods in the same database, e.g., [8].

A possible extension of the method for multiview hu-
man movement recognition has also be presented. Initial
experimental results on this direction were promising
and will be reported in a future publication.
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