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Human neocortical expansion involves 
glutamatergic neuron diversification

The neocortex is disproportionately expanded in human compared with mouse1,2, 

both in its total volume relative to subcortical structures and in the proportion 

occupied by supragranular layers composed of neurons that selectively make 

connections within the neocortex and with other telencephalic structures. Single-cell 

transcriptomic analyses of human and mouse neocortex show an increased diversity 

of glutamatergic neuron types in supragranular layers in human neocortex and 

pronounced gradients as a function of cortical depth3. Here, to probe the functional 

and anatomical correlates of this transcriptomic diversity, we developed a robust 

platform combining patch clamp recording, biocytin staining and single-cell 

RNA-sequencing (Patch-seq) to examine neurosurgically resected human tissues. We 

demonstrate a strong correspondence between morphological, physiological and 

transcriptomic phenotypes of �ve human glutamatergic supragranular neuron types. 

These were enriched in but not restricted to layers, with one type varying 

continuously in all phenotypes across layers 2 and 3. The deep portion of layer 3 

contained highly distinctive cell types, two of which express a neuro�lament protein 

that labels long-range projection neurons in primates that are selectively depleted in 

Alzheimer’s disease4,5. Together, these results demonstrate the explanatory power of 

transcriptomic cell-type classi�cation, provide a structural underpinning for 

increased complexity of cortical function in humans, and implicate discrete 

transcriptomic neuron types as selectively vulnerable in disease.

The neocortex is responsible for many aspects of cognitive function and 

is affected in numerous neurological and neuropsychiatric diseases. A 

prominent feature of the neocortex is its disproportionate expansion 

in surface area, volume and neuron number in large-brained mammals 

when compared to the expansion measured in subcortical structures1,2. 

Primate neocortex shows an increase in upper or supragranular layers6, 

whose glutamatergic (excitatory pyramidal) neurons make connections 

to other neocortical and telencephalic brain regions7.

This supragranular expansion, driven primarily by changes in gene 

regulation8, includes increased cellular diversity. In rodents the pyram-

idal neurons of the supragranular neocortex (called layer 2/3 or L2/3 

owing to lack of distinguishing boundaries) are relatively homogeneous 

within L2/37,9,10 and between cortical regions7 (although there is varia-

tion in intracortical projection targets11,12). By contrast, primates show 

clear heterogeneity in layers 2 and 3 (L2 and L3) neurons in density, size, 

morphology, and electrophysiology as a function of cortical depth and 

projection target1,13–20. For example, h-channel (also called HCN channel) 

function shows marked variation by cortical depth, probably facilitating 

faithful transmission of signals for neurons with long apical dendrites16. 

Very large neurons in deeper L3 of non-human primates that express the 

non-phosphorylated form of heavy chain neurofilament protein and 

are immunoreactive to the antibody SMI-32 (SMI-32ir) preferentially 

send long-range corticocortical projections21.  Macaque L3 neuron size, 

dendritic arborization, input resistance and firing patterns vary substan-

tially by cortical region11,22. Two main human L3 pyramidal neuron types 

have been described that differ in dendritic morphology (slim- versus 

profuse-tufted17),  and the basal dendritic arbor size of human neocorti-

cal pyramidal neurons increases from caudal to rostral neocortex23,24. 

Finally, the SMI-32ir neurons in deep L3 are preferentially vulnerable to 

early degeneration and are dramatically reduced in late-stage Alzheimer’s 

disease4,5.

Single-cell or single-nucleus RNA sequencing (RNA-seq) provides a 

powerful strategy to quantitatively define neuronal diversity and com-

pare cells across species3,25–30, and demonstrates an increased diversity 

of supragranular glutamatergic intratelencephalic-projecting (IT) 

neurons in human compared to mouse3. Human L2 and L3 contain three 

abundant transcriptomic types (t-types), which map to the three t-types 

found in mouse L2/33, plus additional glutamatergic neuron types in 

deep L3 not found in mouse supragranular neocortex. We developed 

a robust Patch-seq31,32 platform for human neocortical tissues from 90 

neurosurgical resections to directly characterize the physiological and 

morphological properties of supragranular neurons and test whether 

the increased transcriptomic diversity of human glutamatergic IT types 

is mirrored in other cellular properties.

Results
Greater neuronal diversity in human neocortex

We used histology to compare the density and size of neurons from the 

human middle temporal gyrus (MTG), the most accessible region from 

neurosurgery, with two neocortical areas in mouse: the extensively 

characterized primary visual cortex (VISp)25,26 and the temporal asso-

ciation area (TEa), which is often used as a comparator for MTG16,19,33.  

Human L2 and L3 exhibited significant differences in the size and den-

sity of neurons as a function of cortical depth compared with L2/3 

in both mouse regions (Fig. 1a). The density of human neurons was 

graded (Fig. 1b, left), with the highest density in L2, decreasing by half 

to a minimum in mid L3 (Fig. 1b, right).  By contrast, supragranular 
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layers of both mouse regions showed sixfold higher neuronal density 

than in the human regions, with homogeneous distribution by depth.  

Similarly, the average cross-sectional area of neuron somata doubled 

from L2 to deep L3 in human (with the largest exceeding 850 µm2) but 

was uniform in mouse L2/3 (Fig. 1c, left).  Furthermore, variation in 

deep L3 soma size was fourfold higher in human versus mouse (Fig. 1c, 

right), which was clearly visible in human histological sections with 

large and small neurons comingling (Fig. 1a).

In a previous RNA-seq study3, molecularly-defined glutamatergic 

t-types were also found to be more diverse, with five t-types in human 

supragranular MTG (with LTK, GLP2R, FREM3, CARM1P1 and COL22A1 

types) versus three t-types each in mouse VISp and ALM.  As reported3, 

the predominant human t-type FREM3 showed an extended gradient 

that, with more lenient clustering criteria, could be divided into sub-

types that varied by depth (Extended Data Fig. 1a), whereas other t-types 

in human and mouse showed tighter clustering (Fig. 1d–f). Within-type 

heterogeneity was high in FREM3, and to a lesser extent in the CARM1P1 

type, with greater homogeneity seen for all other mouse and human 

t-types (Fig. 1g).  The distinctness between clusters, measured as the 

number of differentially expressed genes between pairs of types, was 

highest for the deep L3 CARM1P1 and COL22A1 types (Fig. 1h). While these 

species differences may be partially owing to areal variation, at mini-

mum, they are consistent across two very different mouse brain areas.

Patch-seq on human neurosurgical tissues

Previous studies16,18,19,34–36 have shown that neurosurgically excised 

human neocortical tissues can be used for slice patch clamp stud-

ies within about 12 h of resection (and later37), and that human MTG 

t-types are consistently identified by single-nucleus RNA sequencing 

(snRNA-seq) in post mortem and living resected tissue.  Building on this, 

we developed a robust technology platform for Patch-seq31,32,38 on acute 

slice preparations from human neurosurgically resected neocortical 

tissues (Extended Data Fig. 1, Supplementary Table 1) to characterize 

the electrophysiological, morphological and transcriptomic proper-

ties of living human L2-3 neurons using standardized stimuli, biocytin 

filling and RNA-seq analysis.

To determine whether resected tissues are inherently pathologi-

cal, we quantified trends in neuronal properties for six histological 

markers of pathology (Methods). Surprisingly, on a scale of 0 (neuro-

typical) to 3 (most pathological), most cases had average scores below 
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Fig. 1 | Comparison of human versus mouse supragranular neurons. a, NeuN 

labelling of neurons in human MTG (left), mouse VISp (center), and mouse TEa 

(right).  Higher magnification insets spanning L2 and L3. WM, white matter.  

b, Left, neuron density through L2 and L3. Tick marks show individual 

donors. Right, Normalized histogram of neuron density in mouse VISp (red), 

mouse TEa (grey) and human (green) L2-3. Normalized L2/3 depth is defined as 

distance from L1–L2 boundary to soma/(L2/3 thickness). c, Mean (left) and 

standard deviation (right) of soma area. Green tick marks indicate border 

between L2 and L3 for each human sample.  Data in b, c, are mean ± s.d. of 

metrics across donors.  d, UMAP of 2,948 dissociated human nuclei 

collected3 from five glutamatergic t-types in L2 and L3 of human MTG using the 

2,000 most binary genes.  Cells are colour-coded by t-type. e, f, Comparable 

UMAP of 981 mouse cells26 mapping to three glutamatergic L2/3 neuron types 

in VISp (e) and 313 cells mapping to ALM (f).  g, Average variance explained by 

principal component 1 (PC1) across 100 subsets of actual versus permuted data 

(Methods).  Error bars show s.d. h, Average number of differentially expressed 

genes between indicated cluster and other homologous t-types. i, Comparison 

of calculated electrophysiological features ( y-axis) between recorded neurons 

in low (0–1) versus high (2–3) score bins for GFAP and IBA1, with and without 

including cell depth as a regressor (x-axis). *P < 0.05 (FDR-corrected). AHP, 

after hyperpolarization; AP, action potential features: down, downstroke 

velocity; thresh, voltage threshold; trough, nadir following action potential; 

up, upstroke velocity; RMP, resting membrane potential; Rinput, input 

resistance; adaptation, spike frequency adaptation ratio; f–I slope, slope  

of the firing rate versus current curve; rate, firing rate; latency, delay between 

stimulus onset and first AP; tau, time constant (details in Methods 

‘Electrophysiology feature analysis’). j, UMAP of 385 glutamatergic Patch-seq 

neurons from supragranular cortex in human MTG, colour-coded by mapped 

t-type and plotted as in d. k, Depth of human Patch-seq neurons, by t-type.  

l, Location of t-types within the neocortex (red dots) demonstrated using 

mFISH. Black lines delineate layer boundaries. t-Type is indicated as in k.
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1.0 (Extended Data Fig. 1c).  These markers had very low correlation 

with each other, with only Ki-67 (dividing cells) and Nissl (cellularity) 

being modestly correlated (Extended Data Fig. 1d). Among 18 features 

compared between low (0–1) and high (2–3) scored cases for GFAP and 

IBA1 (the only markers not skewed heavily towards 0, Extended Data 

Fig. 1c), only resting membrane potential (P = 0.041) and first-spike 

latency (P = 0.042) differed between IBA1 groups (Fig. 1i). However, 

no effects of pathology were significant when including neuron depth 

as a factor (P > 0.17 for all features), indicating that these differences 

can be explained by imbalanced sampling across cortical depth for 

the few cases marked as overtly pathological by IBA1.  We also did not 

observe obvious relationships between electrophysiological features 

and pathology, age or sex (Extended Data Fig. 2).

Human Patch-seq cells were mapped to the MTG reference clas-

sification3 and assigned t-types using the integration and label 

transfer classification workflow in Seurat (V3) (Methods)39,40.  After 

alignment, Patch-seq cells intermixed with dissociated cells and nuclei 

in a low-dimensional uniform manifold approximation and projection 

(UMAP) space (Fig. 1j), and cells assigned to different t-types were gen-

erally colocalized in distinct locations in this space, indicating good 

agreement between platforms.  T-types showed discrete sub-laminar 

distributions that were consistent between Patch-seq biocytin stain-

ing and cellular marker distributions by multiplex fluorescence in situ 

hybridization (mFISH) (Fig. 1k, l). These results indicate that Patch-seq 

data are consistent with reference transcriptomic classifications from 

dissociated nuclei, and that mapping is robust despite many potential 

sources of technical noise and uncontrolled variation in the human 

tissue samples.

A total of 385 neurons that passed transcriptomic data quality con-

trol mapped with higher confidence to the five supragranular human 

glutamatergic t-types than to any other neuron types.  Most neurons 

in the dataset preserved sufficient labelling to determine the relative 

depth of the soma with respect to the pia and the border between L2 and 

L3. A majority of neurons (n = 283) also produced sufficiently complete 

recordings to calculate electrophysiological features. The subset of 

neurons (n = 109) with sufficient biocytin fills and intact apical den-

drites were imaged at high resolution, then subsequently manually 

reconstructed.

Diversity of human excitatory t-types

In the aggregate, properties of human t-types sampled by Patch-seq 

were consistent with previous reports of slice physiology record-

ings from L2-3 pyramidal neurons16,17.  However, with the transcrip-

tome as the basis for classification, t-types showed clear qualitative 

morphoelectric differences (Fig. 2, Supplementary Note). One of 

the most obvious differences between human t-types was dendrite 

size, which varied markedly across the large thickness of human 

supragranular neocortex for t-types found in different layers with 

apical dendrites that extend to L1 (Fig. 2a, Extended Data Fig. 4). 

T-types also varied in their relative apical versus basal lengths as 

well as both passive, single action potential and sustained firing 

properties (Fig. 2a, b, Supplementary Note), as visualized by UMAP 

projections of electrophysiological and morphological data (Fig. 2c, 

d). The COL22A1 type shows strong separation, whereas the other 

types vary more continuously with some overlap. In particular, the 

morphoelectric properties of the FREM3 type span the range of, 

and partially overlap with, LTK, GLP2R and CARM1P1 types. A sparse 

principal component analysis (SPCA) projection of electrophysi-

ological features (Fig. 2c, right) shows small groups of features that 

determine the two axes of greatest variability. The first (x) axis) is 

dominated by features related to passive membrane properties, 

including membrane time constant, input resistance and rheobase. 

Variability along the second (y) axis) shows differences in action 

potential shape. Similarly, an SPCA projection of morphological 

features (Fig. 2d, right) shows that features related to the total size of 

the dendrites (length, volume and surface area) are most prominent 

(x-axis), whereas additional features of the apical dendrites (vertical 

extent and bias) further capture the distinctness of the COL22A1 type 

and the continuum within the FREM3 type (y-axis). Box plots of indi-

vidual features from the SPCA space emphasize that most, but not 

all, pairs of t-types differ significantly (P < 0.05, false discovery rate 

(FDR)-corrected Mann–Whitney test).

Although comparisons of morphoelectric neuronal properties 

between human MTG and mouse neocortex are problematic given the 

difficulties in identifying homologous regions and the high variance 

of these properties across regions, it is nevertheless valuable to assess 

whether the homologous mouse t-types are similarly phenotypically 

differentiated from one another in any cortical region. We analysed L2/3 

pyramidal neurons from mouse VISp using the same Patch-seq plat-

form41. Included were 120 neurons with high-quality electrophysiology 

and transcriptome data mapping to the three mouse L2/3 glutamatergic 

t-types, and 60 neurons with data in all three modalities—these neurons 

had heterogeneous electrophysiological and morphological proper-

ties but were more like one another than the human t-types (Extended 

Data Figs. 5, 6, Supplementary Note).

Variation of the FREM3 type by depth

Graded change in properties by depth is a prominent organizational 

principle for the FREM3 t-type3 (Fig. 1d), where a transcriptomic UMAP 

projection shows a strong relationship between soma depth and gene 

expression (Fig. 3a).  Similarly, multiple electrophysiological and mor-

phological features (apical and basal dendrites) vary continuously 

with depth (Fig. 3b, c) in agreement with other studies16,17,19. FREM3 

neurons span the full depth of L2-3 and send apical dendrites more 

than 1 mm to L1 (Fig. 1l, 3b). Although features such as apical dendrite 

height necessarily correlate with the distance from the soma to L1, 

many independent features were also strongly correlated, including the 

maximum length of basal dendrites (Fig. 3b) and soma radius (Extended 

Data Fig. 7), with 37 of 58 morphological features correlated overall 

(FDR < 0.05; Supplementary Table 2). Graded electrophysiological 

properties also exist (Fig. 3c), with 9 of 18 measured features signifi-

cantly correlated with depth (FDR < 0.05; Supplementary Table 2). 

The strongest correlations were observed for an increase in sag and 

action potential upstroke/downstroke ratio with depth and a decrease 

in action potential latency at rheobase (Fig. 3c). We found that the 

expression of 790 genes was correlated with depth (FDR < 0.05). Gene 

ontology (GO) enrichment analysis on this gene set (Fig. 3d, Supple-

mentary Table 2) predicts functional variation across graded neuronal 

phenotypes based on enrichment of genes associated with synaptic 

transmission, projection morphogenesis and cell migration (P = 3.14 

× 10−13, 7.54 × 10−12, 5.9 × 10−9).

Deep t-types are phenotypically distinct

Deep L3 consists of a highly diverse set of putative IT projection types, 

including CARM1P1, COL22A1, and deep FREM3 (defined by the neu-

ronal density minimum in L2-3) (Fig. 1b). Compared with superficial 

types, deep neurons have larger apical dendrites, reflecting deeper 

soma locations, but a surprising lack of apical dendrite in L1 (Fig. 4a, 

bottom). Their axons also innervate L4 to a greater extent than super-

ficial t-types (Extended Data Fig. 8). They differ electrophysiologically 

from superficial types with higher sag, action potential upstroke/

downstroke ratio and initial instantaneous firing rate. This latter fea-

ture, reflecting a vigorous response to the onset of stimulation with 

a burst of action potentials followed by strong firing rate adaptation, 

may correspond to bursting phenotypes observed in L3 neurons in 

non-human primates22.

The increased transcriptomic distinctness of deep types (Fig. 1h) is 

also reflected in their electrophysiology and morphological features. 

While every feature that differentiates between superficial neuron 

types also differentiates between deep types, several features uniquely 
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distinguish among deep types, including resting membrane potential, 

membrane time constant and action potential upstroke, as well as the 

width and complexity (for example, maximum branch order) of the basal 

dendrites (Extended Data Fig. 9). This distinctiveness is also seen in the 

performance of a logistic regression classifier trained to predict t-type 

from electrophysiological features (Fig. 4b): superficial and deep types 

group separately, with higher discriminability among the deep types and 

the FREM3 type forming an intermediate with similarity to both groups.
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Fig. 2 | Human L2 and L3 glutamatergic t-types show strong morphological 

and electrophysiological differentiation by t-type. a, Morphology 

descriptions of the three prominent superficial (top row) and deep (bottom 

row) human L2 and L3 glutamatergic neuron t-types. For each t-type: left, 

representative examples of morphological reconstructions (scale bar, 

250 µm); right, histogram of the average apical dendrite branch length by 

cortical depth and layer for all reconstructed cells from each t-type.  b, Intrinsic 

electrophysiology responses by t-type. Coloured lines are individual neurons, 

solid black line represents the mean of all neurons in that t-type, dashed grey 

line is a global mean of the other t-types. Top row: left, responses to −70 and 

−30 pA current injections (scale bars, 10 mV, 1.0 s); right, responses to 

normalized to peak deflection to reveal voltage sag (scale bar, 0.5 s). Second 

row: left, first action potential during rheobase current injection (scale bar, 

25 mV, 1.0 ms); right, corresponding phase plot (x-axis, mV; y-axis, mV ms−1). 

Third row: left, representative suprathreshold spiking response (scale bars, 

20 mV, 0.5 s); right, normalized instantaneous firing rates for a suprathreshold 

pulse, demonstrating adaptation of firing rate (scale bar, 0.5 s). Bottom row: 

histogram of rheobase currents (left axis) and mean frequency to current 

curves (dots, right axis; currents normalized to the mean rheobase current 

before averaging).  c, d, UMAP representation of electrophysiology (c) and 

morphology (d) space (left), and the same feature space projected onto sparse 

PCs (SPCA, right), with contributing features listed on each axis.  e, f,  Box plots 

showing feature distributions by t-type for illustrative features from each axis 

of SPCA space. Bars indicate significant pairwise comparisons (P < 0.05, 

FDR-corrected Mann–Whitney test).  Boxes show median (centre line) and 

quartiles (top and bottom), whiskers show trimmed range bounded at 

1.5× interquartile range beyond quartiles.
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To understand transcriptional differences that may be predic-

tive of phenotypic differences between CARM1P1, COL22A1 and 

deep FREM3 types, we used genesorteR42 with slightly relaxed param-

eters (quant = 0.7) to identify genes selective for one or two of these 

three t-types and found 219 such marker genes (Extended Data Fig. 10).  

Differences in morphoelectric properties of the three deep L3 t-types 

were reflected in genes enriched for GO terms associated with neu-

ronal connectivity, structure and synaptic signaling, including axon 

(P = 3.5 × 10−6; Bonferroni corrected), synapse (P = 5.3 × 10−5), cal-

cium ion binding (P = 0.008) and extracellular matrix organization 

(P = 0.00002).  Numerous genes involved in neuronal structure and 

function show specific expression in one or more deep types (Fig 4d), 

including those involved in dendritic branching (COBLL143), neu-

ron excitability (KCNK244), long-term potentiation (PHLDB245), and  

cannabinoid signaling (CNR1).

SMI-32 (encoded by the NEFH gene21)-immunolabeled neurons 

preferentially make long-range ipsilateral projections21 in L3 of the 

macaque temporal neocortex, and show selective vulnerability in Alz-

heimer’s disease4,5. NEFH showed increased expression in deep FREM3 

and CARM1P1 types relative to COL22A1 and more superficial t-types 

(Fig. 4d).  Similarly, combined SMI-32 immunoreactivity and mFISH for 

cellular markers showed that the large FREM3 and CARM1P1 neurons 

were SMI-32-immunoreactive, whereas COL22A1 neurons were not 

(Fig. 4e).  This finding creates a putative link between transcriptomi-

cally-defined cell types, long-range projection target specificity and 

vulnerable neuron populations in Alzheimer’s disease.

Discussion

Human neocortical cellular diversity has been difficult to define quan-

titatively in part owing to underpowered analyses with low-throughput 

techniques because of limited tissue access, high variation across indi-

viduals and the absence of cell-type-selective tools.  snRNA-seq can be 

applied to any species including human, where it forms the basis of a 

quantitative hierarchical cellular taxonomy that mirrors many aspects 

of cellular cytoarchitecture, function and developmental origins.  Here 

we demonstrate using triple-modality Patch-seq analysis of human 

cortical neurosurgical resections that this transcriptomic classifica-

tion is a Rosetta stone—that is, it is predictive of the morphological and 

electrophysiological diversity of supragranular neocortical neurons 
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shown at right. b, Top, these FREM3 neurons exhibit a range of morphologies 
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shown are significant at FDR < 10−7. c, Top row, electrophysiology data traces 

coloured on the basis of each neuron’s relative position within L2-3 (scale at 

right). Top left, hyperpolarizing pulses normalized to their peak deflection to 

allow for a sag comparison (n = 124). Top centre, overlaid first action potential 

during a rheobase current injection (scale bars, 25 mV, 1.0 ms; traces aligned to 
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Fig. 4 | Human deep L3 glutamatergic t-types are morphologically and 

electrophysiologically distinct. a, Top, example reconstructions and 

associated maximum-intensity projection images of deep L3 t-types, 

deep FREM3, CARM1P1 and COL22A1 (scale bars, 200 µm). Bottom, histograms 

of the average apical and basal dendrite branch length (normalized to the 

maximum value for each t-type) by cortical depth and layer for all 

reconstructed cells from each t-type. Open circles indicate soma location. 

b, A logistic regression classifier predicts t-types on the basis of 

electrophysiological properties with 66% class-balanced accuracy for deep 

t-types, compared with 49% for superficial (sup.) t-types (overall 58% accuracy). 

c, Box plots of electrophysiology and morphology features that discriminate 

the three deep t-types from superficial t-types (LTK, GLP2R and superficial 

FREM3) and each other. Features shown selected from significant analysis of 

variance (ANOVA) results (FDR < 10−7 for electrophysiology, FDR < 10−2 for 

morphology). Bars indicate significant pairwise comparisons (P < 0.05, 

FDR-corrected Mann–Whitney test). Boxes show median (centre line) and 

quartiles (top and bottom), whiskers show trimmed range bounded at 

1.5× interquartile range beyond quartiles. Apical Hist PC0 is the first principal 

component of apical dendrite distribution with respect to cortical layer 

depths, representing a preference for apical found in L1 over deeper 

layers. d, A selection of eight marker genes that are differentially expressed in 

the deep L3 human t-types. Colour bars show normalized expression. The top 

left UMAP is identical to the one in Fig 1d. e, Left, MTG tissue immunostained 

for SMI-32. FREM3 and CARM1P1 neurons that are SMI-32 immunoreactive are 

indicated by cyan dots and those that are not are indicated by pink dots. Layer 

boundaries indicated at left of image, Scale bar, 100 µm. Representative  

SMI-32 immunoreactivity photomicrographs, along with mFISH for t-type 

specific genes shown for FREM3 (top) and CARM1P1 (middle) types.  

Right, representative mFISH composite images showing labelling for DAPI, 

NEFH, RORB and FREM3 (top) or CARTPT (middle) in the same cell. The dashed 

box indicates the region of image shown on the right, where RORB and FREM3 

(top) or CARTPT (middle) are shown separately and then combined. Bottom, 

mFISH composite images with labelling for DAPI, neurofilament H, and  

t-type-specific genes for  LTK (LAMP5 and LTK), GLP2R (CUX2 and GLP2R) 

and COL22A1 (COL22A1 and RORB) t-type. Scale bars, 10 µm. Marker gene 

expression is shown in Extended Data Fig. 3.
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both for discrete and for continuous features.  Specifically, we find 

the five glutamatergic t-types are distinct from one another, while 

the prominent transcriptomic gradient in the FREM3 type is reflected 

in morphoelectric properties.  Consistent with other studies using 

tissues distal to sites of obvious pathology, we find little evidence for 

disease- or pathology-related effects on electrophysiology or cell classi-

fication. This stands in contrast to studies that have used human tissues 

from pathological foci to characterize disease-related phenomena46,47. 

Remarkably, the stereotypy reported here holds true across 90 tissue 

donors, despite many uncontrolled axes of variation, indicating that 

the cellular blueprint is highly robust across individuals even in the 

context of disease.

Comparative analyses of transcriptome data from mouse, marmoset 

monkey and human strongly predicts that the human supragranular glu-

tamatergic t-types belong to the IT subclass3,28, and that the more superfi-

cially located LTK, GLP2R and FREM3 types are homologous to the mouse 

supragranular IT types.  By contrast, CARM1P1 and COL22A1 types do not 

have homologous types in mouse supragranular neocortex; rather, they 

are transcriptomically most like infragranular mouse IT types. Nota-

bly, the COL22A1 type shares physiological (high input resistance and 

increased excitability) and morphological (simple, less branched den-

drites including apical dendrites that often terminate before reaching 

L1) features with human L5 IT neurons48. This could reflect species differ-

ences in cell migration, or, more probably, an evolutionary co-option of a 

pre-existing IT transcriptional program and an extended developmental 

program.  In either scenario, the outcome is increased neuronal diversity 

in human deep L3 that may have important functional implications.  The 

enormous CARM1P1 and deep FREM3 neurons appear specialized for 

integration of local inputs.  They both have complex, extensive (>0.5 mm) 

basal dendrites that are likely to integrate information across multiple 

adjacent minicolumns; by contrast, their apical dendrites sparsely enter 

layer 1, where feedback information is received from other cortical areas.  

Of note, the basal dendrites of these neurons undergo a substantial 

period of growth in early childhood when environmental factors have a 

crucial role in brain development49. CARM1P1 and deep FREM3 neurons 

are SMI-32-immunoreactive and NEFH-expressing, unlike COL22A1 neu-

rons, indicating that as in non-human primate they make long-range, 

predominantly ipsilateral projections compared with more locally 

projecting neurons.  Increased local integration of deep L3 neurons 

supports an emerging hypothesis that in primates, superficial and deep 

parts of supragranular neocortex comprise functionally independent 

information streams, with feedforward projections originating in deep 

L3 neurons, whereas superficial neurons receive feedback information50. 

Finally, most deep L3 cells exhibit burst firing, a feature that optimizes 

information transfer51. Therefore, the increased cellular diversity in deep 

L3 may enhance efficiency of feedforward signal processing connecting 

distant regions of the expanded primate neocortex.

Finally, this cell classification may have potential for understanding 

the cellular locus of disease. SMI-32-immunoreative L3 magnopyrami-

dal neurons are depleted in Alzheimer’s disease progression4,5, indicat-

ing selective vulnerability of the largest long-range association neurons 

and consequent disruption of cortical networks.  Our results show 

that SMI-32 labelling maps onto the transcriptomic, morphological 

and physiological classification, labelling some large deep L3 types 

but not others.  This refined morpho-electro-transcriptomic cellular 

framework may serve as a new roadmap for future studies investigating 

selective neuron disease vulnerability and resistance.
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Methods

Detailed descriptions of all experimental data collection methods in the 

form of technical white papers can also be found under ‘Documenta-

tion’ at http://celltypes.brain-map.org.

Human tissue acquisition

Surgical specimens were obtained from local hospitals (Harborview 

Medical Center, Swedish Medical Center and University of Washington 

Medical Center) in collaboration with local neurosurgeons. All patients 

(Supplementary Table 1) provided informed consent and experimen-

tal procedures were approved by hospital institute review boards 

before commencing the study. Tissue was placed in slicing artificial 

cerebral spinal fluid (ACSF) as soon as possible following resection. 

Slicing ACSF comprised52 (in mM): 92 N-methyl-D-glucamine chloride 

(NMDG-Cl), 2.5 KCl, 1.2 NaH2PO4, 30 NaHCO3, 20 4-(2-hydroxyethyl)-

1-piperazineethanesulfonic acid (HEPES), 25 D-glucose, 2 thio-

urea, 5 sodium-L-ascorbate, 3 sodium pyruvate, 0.5 CaCl2.4H2O and 

10 MgSO4.7H2O. Before use, the solution was equilibrated with 95% O2, 

5% CO2 and the pH was adjusted to 7.3 by addition of 5N HCl solution.  

Osmolality was verified to be between 295–305 mOsm kg−1.  Human 

surgical tissue specimens were immediately transported (15–35 min) 

from the hospital site to the laboratory for futher processing.

Mouse breeding and husbandry

All procedures were carried out in accordance with the Institutional 

Animal Care and Use Committee at the Allen Institute for Brain Science. 

Animals (<5 mice per cage) were provided food and water ad libitum 

and were maintained on a regular 12-h light:dark cycle; rooms were kept 

at 21.1 °C and 45–70% humidity. Mice were maintained on the C57BL/6J 

background, and newly received or generated transgenic lines were 

backcrossed to C57BL/6J. Experimental animals were heterozygous 

for the recombinase transgenes and the reporter transgenes.

Tissue processing

For mouse experiments, male and females were used between the ages 

of postnatal day (P)45 and P70 were anaesthetized with 5% isoflurane 

and intracardially perfused with 25 or 50 ml of 0–4 °C slicing ACSF. 

Human or mouse acute brain slices (350 µm) were prepared with a 

Compresstome VF-300 (Precisionary Instruments) or VT1200S (Leica 

Biosystems) vibrating microtome modified for block-face image acqui-

sition (Mako G125B PoE camera with custom integrated software) 

before each section to aid in registration to the common reference 

atlas. Brains or tissue blocks were mounted for slicing with the optimal 

orientation for preserving intactness of apical dendrites of neocortical 

pyramidal neurons.

Slices were transferred to an oxygenated and warmed (34 °C) slicing 

ACSF for 10 min, then transferred to room temperature holding ACSF of 

the composition52 (in mM): 92 NaCl, 2.5 KCl, 1.2 NaH2PO4, 30 NaHCO3, 

20 HEPES, 25 D-glucose, 2 thiourea, 5 sodium-L-ascorbate, 3 sodium 

pyruvate, 2 CaCl2.4H2O and 2 MgSO4.7H2O for the remainder of the day 

until transferred for patch clamp recordings. Before use, the solution 

was equilibrated with 95% O2, 5% CO2 and the pH was adjusted to 7.3 

using NaOH. Osmolality was verified to be between 295–305 mOsm kg−1.

Patch clamp recording

Slices were bathed in warm (32–34 °C) recording ACSF containing 

the following (in mM): 126 NaCl, 2.5 KCl, 1.25 NaH2PO4, 26 NaHCO3, 

12.5 D-glucose, 2 CaCl2.4H2O and 2 MgSO4.7H2O (pH 7.3), continuously 

bubbled with 95% O2 and 5% CO2. The bath solution contained block-

ers of fast glutamatergic (1 mM kynurenic acid) and GABAergic synap-

tic transmission (0.1 mM picrotoxin). Thick-walled borosilicate glass 

(Warner Instruments, G150F-3) electrodes were manufactured (Narishige 

PC-10) with a resistance of 4–5 MΩ. Before recording, the electrodes 

were filled with ~1.0–1.5 µl of internal solution with biocytin (110 mM 

potassium gluconate, 10.0 mM HEPES, 0.2 mM ethylene glycol-bis 

(2-aminoethylether)-N,N,N′,N′-tetraacetic acid, 4 mM potassium chlo-

ride, 0.3 mM guanosine 5′-triphosphate sodium salt hydrate, 10 mM 

phosphocreatine disodium salt hydrate, 1 mM adenosine 5′-triphosphate 

magnesium salt, 20 µg ml−1 glycogen, 0.5 U µl−1 RNAse inhibitor (Takara, 

2313A)  and 0.5% biocytin (Sigma B4261), pH 7.3). The pipette was 

mounted on a Multiclamp 700B amplifier headstage (Molecular Devices) 

fixed to a micromanipulator (PatchStar, Scientifica).

The composition of bath and internal solution as well as preparation 

methods were made to maximize the tissue quality, to align with solu-

tion compositions typically used in the field (to maximize the chance 

of comparison to previous studies), and modified to reduce RNAse 

activity and ensure maximal recovery of mRNA content.

Electrophysiology signals were recorded using an ITC-18 Data Acqui-

sition Interface (HEKA). Commands were generated, signals were 

processed and amplifier metadata were acquired using MIES (https://

github.com/AllenInstitute/MIES/), written in Igor Pro (Wavemetrics). 

Data were filtered (Bessel) at 10 kHz and digitized at 50 kHz. Data were 

reported uncorrected for the measured (Neher 1992) –14 mV liquid 

junction potential between the electrode and bath solutions.

Before data collection, all surfaces, equipment and materials were 

thoroughly cleaned in the following manner: a wipe down with DNA 

away (Thermo Scientific), RNAse Zap (Sigma-Aldrich) and finally with 

nuclease-free water.

For human slices, pyramidal shaped neurons in L2-3 were targeted. 

For mouse experiments, pyramidal neurons in L2/3 were targeted, 

either tdTomato− pyramidal neurons when recording from a transgenic 

line that labels interneurons, or tdTomato+ neurons when recording 

from a line that labels different populations of L2/3 glutamatergic neu-

rons, specifically Oxtr-T2A-Cre and Penk-IRES2-Cre-neo, each crossed 

to the Ai14 tsTomato reporter line.

After formation of a stable seal and break-in, the resting membrane 

potential of the neuron was recorded (typically within the first minute). 

A bias current was injected, either manually or automatically using 

algorithms within the MIES data acquisition package, for the remainder 

of the experiment to maintain that initial resting membrane potential. 

Bias currents remained stable for a minimum of 1 s before each stimulus 

current injection.

To be included in analysis, a cell needed to have a >1 GΩ seal recorded 

before break-in and an initial access resistance <20 MΩ and <15% of the 

input resistance (Rinput). To stay below this access resistance cut-off, 

cells with a low input resistance were successfully targeted with larger 

electrodes. For an individual sweep to be included, the following criteria 

were applied: (1) the bridge balance was <20 MΩ and <15% of the Rinput; 

(2) bias (leak) current 0 ± 100 pA; and (3) root mean square noise meas-

urements in a short window (1.5 ms, to gauge high frequency noise) 

and longer window (500 ms, to measure patch instability) <0.07 mV 

and 0.5 mV, respectively.

Each cell was recorded using a standardized stimulus paradigm, 

including square pulses, ramps and noisy current injections, with the 

goal of extracting features that could be compared across cells, rather 

than tailoring each stimulus to the physiological input of that neuron.

Upon completion of electrophysiological examination, the pipette 

was centered on the soma or placed near the nucleus (if visible). A small 

amount of negative pressure was applied (~−30 mbar) to begin cytosol 

extraction and attract the nucleus to the tip of pipette. After approxi-

mately one minute, the soma had visibly shrunk and/or the nucleus was 

near the tip of the pipette. While maintaining the negative pressure, the 

pipette was slowly retracted in the x and z direction. Slow, continuous 

movement was maintained while monitoring pipette seal. Once the 

pipette seal reached >1 GΩ and the nucleus was visible on the tip of 

the pipette, the speed was increased to remove the pipette from the 

slice. The pipette containing internal solution, cytosol and nucleus 

was removed from pipette holder and contents were expelled into a 

PCR tube containing the lysis buffer (Takara, 634894).

http://celltypes.brain-map.org
https://github.com/AllenInstitute/MIES/
https://github.com/AllenInstitute/MIES/


Article

cDNA amplification and library construction

We performed all steps of RNA-processing and sequencing as described 

for mouse Patch-seq cells41. We used the SMART-Seq v4 Ultra Low Input 

RNA Kit for Sequencing (Takara, 634894) to reverse transcribe poly(A) 

RNA and amplify full-length cDNA according to the manufacturer’s 

instructions. We performed reverse transcription and cDNA amplifica-

tion for 20 PCR cycles in 0.65 ml tubes, in sets of 88 tubes at a time. At 

least 1 control 8-strip was used per amplification set, which contained 

4 wells without cells and 4 wells with 10 pg control RNA. Control RNA 

was either Universal Human RNA (UHR) (Takara 636538) or control 

RNA provided in the SMART- Seq v4 kit. All samples proceeded through 

Nextera XT DNA Library Preparation (Illumina FC-131-1096) using either 

Nextera XT Index Kit V2 Sets A-D(FC-131-2001,2002,2003,2004) or cus-

tom dual-indexes provided by Integrated DNA Technologies (IDT). Nex-

tera XT DNA Library prep was performed according to manufacturer’s 

instructions except that the volumes of all reagents including cDNA 

input were decreased to 0.2× by volume.  Each sample was sequenced 

to approximately 1 million reads.

RNA-seq data processing

Fifty-base-pair paired-end reads were aligned to GRCh38.p2 using a 

RefSeq annotation gff file retrieved from NCBI on 11 December 2015 

for human and to GRCm38 (mm10) using a RefSeq annotation gff file 

retrieved from NCBI on 18 January 2016 for mouse (https://www.ncbi.

nlm.nih.gov/genome/annotation_euk/all/). Sequence alignment was 

performed using STAR v2.5.353 in two pass Mode. PCR duplicates were 

masked and removed using STAR option bamRemoveDuplicates. Only 

uniquely aligned reads were used for gene quantification. Gene counts 

were computed using the R Genomic Alignments package summa-

rizeOverlaps function using IntersectionNotEmpty mode for exonic 

and intronic regions separately54.  Expression levels were calculated as 

counts of exonic plus intronic reads.  For most analyses, log2(counts 

per million (CPM) + 1)-transformed values were used.

Morphological reconstruction

Biocytin histology. A horseradish peroxidase (HRP) enzyme reac-

tion using diaminobenzidine (DAB) as the chromogen was used 

to visualize the filled cells after electrophysiological recording, 

and 4,6-diamidino-2-phenylindole (DAPI) stain was used to identify 

cortical layers as described previously9.

Imaging of biocytin-labelled neurons. Mounted sections were im-

aged as described previously9. In brief, operators captured images 

on an upright AxioImager Z2 microscope (Zeiss, Germany) equipped 

with an Axiocam 506 monochrome camera and 0.63× Optivar lens. 

Two-dimensional tiled overview images were captured with a 20× objec-

tive lens (Zeiss Plan-NEOFLUAR 20×/0.5) in bright-field transmission 

and fluorescence channels. Tiled image stacks of individual cells were 

acquired at higher resolution in the transmission channel only for the 

purpose of automated and manual reconstruction. Light was transmit-

ted using an oil-immersion condenser (1.4 NA). High-resolution stacks 

were captured with a 63× objective lens (Zeiss Plan-Apochromat 63×/1.4 

Oil or Zeiss LD LCI Plan-Apochromat 63x/1.2 Imm Corr) at an interval 

of 0.28 µm (1.4 NA objective) or 0.44 µm (1.2 NA objective) along the 

z axis. Tiled images were stitched in ZEN software and exported as 

single-plane TIFF files.

Morphological reconstruction. Reconstructions of the dendrites and 

the full axon were generated for a subset of neurons with good qual-

ity transcriptomics, electrophysiology and biocytin fill. Reconstruc-

tions were generated based on a 3D image stack that was run through a 

Vaa3D-based image processing and reconstruction pipeline55. Images 

were used to generate an automated reconstruction of the neuron using 

TReMAP56. Alternatively, initial reconstructions were created manually 

using the reconstruction software PyKNOSSOS (Ariadne-service) or 

the citizen neuroscience game57 Mozak (Mosak.science). Automated 

or manually-initiated reconstructions were then extensively manu-

ally corrected and curated using a range of tools (for example, virtual 

finger and polyline) in the Mozak extension (Zoran Popovic, Center for 

Game Science, University of Washington) of Terafly tools58,59 in Vaa3D. 

Every attempt was made to generate a completely connected neuronal 

structure while remaining faithful to image data. If axonal processes 

could not be traced back to the main structure of the neuron, they were 

left unconnected.

Before morphological feature analysis, reconstructed neuronal mor-

phologies were expanded in the dimension perpendicular to the cut 

surface to correct for shrinkage17,60 after tissue processing. The amount 

of shrinkage was calculated by comparing the distance of the soma to 

the cut surface during recording and after fixation and reconstruction. 

A tilt angle correction was also performed based on the estimated dif-

ference (via CCF registration) between the slicing angle and the direct 

pia-white matter direction at the cell’s location9.

Slice immunohistochemistry

Immunohistochemistry. Tissue slices (350 µm-thick) designated 

for histological profiling were fixed for 2–4 days in 4% paraformal-

dehyde (PFA) in phosphate-buffered saline (PBS) at 4 °C and trans-

ferred to PBS, 0.1% sodium azide for storage at 4 °C. Slices were then 

cryoprotected in 30% sucrose, frozen and re-sectioned at 30 µm using 

a sliding microtome (Leica SM2000R). Sections were stored in PBS 

with azide at 4 °C in preparation for immunohistochemical and Nissl 

staining. Specific probes (vendor, dilution) used were: Neu-N (Mil-

lipore, MAB377, 1:2,000); SMI-32 (Biolegend, 801704, 1:2,000); GFAP 

(Millipore, MAB360, 1:1,500); parvalbumin (Swant, PV235, 1:2,000); 

IBA1 (Wako 019-19741, 1:1,000); Ki-67 (Dako M724001-2, 1:200). Full 

immunohistology protocol details available at http://help.brain-map.

org/download/attachments/8323525/CellTypes_Morph_Overview.pd

f?version=4&modificationDate=1528310097913&api=v2

Slide imaging. Colorimetric immunohistochemistry and other 

histologically-stained whole slides (that is, Nissl-stained prepa-

rations) for bright-field imaging were scanned using an Aperio 

ScanScope XT slide scanner (Leica Biosystems). The samples were illu-

minated using a 21DC Halogen Lamp (Techniquip). Bright-field images 

were acquired using ScanScope Console (v101.0.0.18) and controller 

(ve101.0.4.446) at 10× magnification (objective lens 20×/0.75 NA 

Plan Apo, 0.5× magnifier) resulting in a pixel size of 1.0 µm per pixel.

Pathology scoring. For every case, each set of images per histological 

marker were independently scored by three pathologists using a 4-point 

scale, where 0 is normal and 3 is overtly pathological. Well-established 

histological markers were used to evaluate cellularity (Nissl), neuronal 

density and layer orientation (NeuN), astrogliosis (GFAP), microglial 

activation state (IBA1), non-phosphorylated neurofilament-H (using 

antibody SMI-32), and cellular proliferation (Ki-67).

mFISH

Fresh-frozen human postmortem brain tissues were sectioned at 

14–16 µm onto Superfrost Plus glass slides (Fisher Scientific). Sections 

were dried for 20 min at −20 °C and then vacuum sealed and stored at 

−80 °C until use. The RNAscope multiplex fluorescent v1 kit was used 

per the manufacturer’s instructions for fresh-frozen tissue sections 

(ACD Bio), except that fixation was performed for 60 min in 4% para-

formaldehyde in 1× PBS at 4 °C and protease treatment was shortened to 

10 min. For combined RNAscope and immunohistochemistry, primary 

antibodies were applied to tissues after completion of mFISH staining. 

Primary mouse anti-neurofilament H (SMI-32, Biolegend, 801701) was 

applied to tissue sections at a dilution of 1:250. Secondary antibod-

ies (1:250) were goat anti-mouse IgG (H+L) Alexa Fluor conjugates  
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(594 or 647, ThermoFisher Scientific A-11005 or 21235). Sections were 

imaged using a 60× oil-immersion lens on a Nikon TiE fluorescence 

microscope equipped with NIS-Elements Advanced Research imaging 

software (version 4.20). For all RNAscope mFISH experiments, positive 

cells were called by manually counting RNA spots for each gene. Cells 

were called positive for a gene if they contained ≥3 RNA spots for that 

gene. Lipofuscin autofluorescence was distinguished from RNA spot 

signal based on the larger size of lipofuscin granules and broad fluo-

rescence spectrum of lipofuscin. The following probe combinations 

were applied to label cell types of interest: (1) LTK: LTK (NM_002344.5) 

and LAMP5 (NM_012261.3); (2) GLP2R: GLP2R (NM_004246.2) and 

CUX2 (NM_015267.3); (3) FREM3: RORB (NM_006914.3) and FREM3 

(NM_001168235.2); (4) CARM1P1: RORB and CARTPT (NM_004291.3); 

(5) COL22A1: RORB and COL22A1 (NM_152888.3); (6) Adamts2: Cbr3 

(NM_173047.3), Neurod1 (NM_010894.2) and Cdh13 (NM_019707.4); 

(7) Rrad: Nr4a3 (NM_015743.3), Cux1 (NM_009986.4) and Cdh13; (8) 

Agmat: Pou3f2 (NM_008899.2), Igfbp7 (NM_001159518.1) and Coch 

(NM_001198835). Experiments were repeated on at least n = 2 donors 

per probe combination for both mouse and human.

Quantification of human and mouse soma size

Images of NeuN+ stained sections from human MTG (1 section per 

donor for 5 donors) and mouse VISp (1 section per mouse for 3 mice) 

(described above) were imported into ImageJ for processing. Regions 

of interest (ROIs) were drawn around cell bodies and exported as .roi 

files for downstream processing. In both species, L4 is defined as a 

band of densely packed, small granular cells, and the upper bound of 

this band (which includes overlying large pyramidal cells) is treated as 

the border between L3 and L4.  The border between L1 and L2 is defined 

as the sharp boundary between the cell-sparse zone of L1 and the is a 

cell-dense zone of L2. In mouse, the border between L2 and L3 is indis-

tinguishable and not defined. In human MTG, the boundary between L2 

and L3 can be closely approximated as transition from densely packed 

small pyramidal cells to less densely packed larger pyramidal cells, 

which is largely consistent among donors.

Soma areas were defined as the number of pixels contained in each 

ROI, scaled by the number of pixels per µm. Cortical depth was defined 

for each cell as the position of that cell centroid relative to pia (abso-

lute depth) or relative to the L1/2 and L3/4 boundaries (scaled depth) 

at that position in the tissue. The number of neurons per mm2 of L2-3 

neocortex (absolute density) is the number of neurons per image scaled 

by the area of the image where cell counts were assessed.  For measur-

ing surface density and cell area across L2-3 cortical depth, L2-3 was 

split into 20 evenly sized bins and the relevant measurements within 

each bin were calculated independently per section (one section per 

donor) and the average and standard deviation across sections were 

reported.  The first and last bins are omitted from plots as they display 

boundary effects.  Relative (scaled) neuron density scales to 1 for each 

donor and is defined as the fraction of total neuron count in each bin.  

In human, a nadir of scaled density was identified at −0.575, which we 

define as a quantitative boundary between superficial and deep L3 in 

this manuscript.

Analysis of data from dissociated cells and nuclei

Reference data used in this study include dissociated excitatory cells 

(mouse) or nuclei (human) collected from human MTG3 and mouse 

VISp26, and are all publicly accessible at the Allen Brain Map data portal 

(https://portal.brain-map.org/atlases-and-data/rnaseq). In human, 

cells from the five previously identified L2-3 glutamatergic types were 

retained, subsampling to match the laminar distribution of neurons 

included in the Patch-seq dataset as closely as possible, leaving a total 

of 2,948 neurons from LTK, GLP2R, FREM3, CARM1P1 and COL22A1 

t-types.  In mouse, all neurons from the three L2/3 glutamatergic t-types 

(Adamts2, Rrad and Agmat) were retained.  Datasets were visualized 

as follows.  First, the top 2,000 most binary genes by beta score3 were 

selected. Beta score  is defined as the squared differences in propor-

tions of cells or nuclei in each cluster that expressed a gene above 1, 

normalized by the sum of absolute differences plus a small constant 

(ε) to avoid division by zero. Scores ranged from 0 to 1, and a perfectly 

binary marker had a score equal to 1.  Second, the Seurat pipeline39,40 

(more details below) was used to scale the data, reduce the dimensional-

ity using principal component analysis (PCA) (30 PCs).  These PCs were 

then used to generate a UMAP61. Finally, data and metadata such as 

cluster, subcluster, layer and gene expression were then overlaid onto 

this UMAP space using different colored or shaded points.

Cluster heterogeneity is defined as average observed variance 

explained by the first PC compared with permuted data after account-

ing for differences in the number of cells per cell type.  To get this, we 

(1) randomly selected 80 cells from each cell type, (2) identified the 

80 most variable genes using the FindVariableFeatures Seurat func-

tion with selection.method=”vst”, (3) performed PCA after removing 

outlier cells, (4) calculated the percent of variance explained by the 

first PC, (5) repeated steps 1–4 for 100 sets of data where the expres-

sion levels for each gene are shuffled across the 80 cells to break 

gene correlations but retain other gene statistics, and (6) identified 

the average and standard deviation of PC1 for observed versus per-

muted data.  Cluster discreteness is defined as the average number 

of differentially expressed genes between a given type and each of 

the remaining homologous t-types (LTK, GLP2R and FREM3 t-types in 

human; Rrad, Agmat and Adamts2 t-types in mouse).  In this case pair-

wise differential expression is defined using the de_score function in 

the scrattch.hicat R library26 after subsampling each cluster to 80 cells, 

and only the genes with higher expression in the relevant cluster are 

considered.  The getMarkers function from the genesorteR R library 

(https://github.com/mahmoudibrahim/genesorteR)42 was used to 

identify genes differentially expressed genes between deep FREM3 (f73 

subtype; collected from L3 or L4 dissection), COL22A1 and CARM1P1 

neurons, using all default parameters except quant = 0.7.  To validate 

the cell selection for deep L3 (since sublaminar dissection was not per-

formed on the dissociated nuclei data), this analysis was repeated on 

Patch-seq neurons from these three types collected in deep L3 (scaled 

depth < −0.575). GO enrichment analysis was performed using Top-

pGene62 with default settings, and Bonferroni-corrected P-values are 

reported unless stated otherwise.

Dataset curation

Patch-seq cells were included in this dataset if they met the following 

criteria.  All neurons: (1) had high-quality transcriptomic data, meas-

ured as the normalized summed expression (NMS, adapted from the 

single-cell quality control measures in ref. 63) of ‘on’-type marker genes 

greater than 0.4; and (2) retained a soma through biocytin processing 

and imaging such that an accurate laminar association could be made.  

In addition, mouse neurons were: (1) located within VISp; (2) either 

tdTomato− or tdTomato+ from a line known to label glutamatergic neu-

rons (that is, tdTomato+ neurons from known inhibitory mouse lines 

were excluded); (3) mapped to L2/3 IT VISp Rrad, L2/3 IT VISp Agmat, 

or L2/3 IT VISp Adamts2 using Seurat mapping (as described below); 

and (4) mapped to L2/3 IT VISp Rrad, L2/3 IT VISp Agmat, L2/3 IT VISp 

Adamts2, or L4 IT VISp Rspo1 in a separate Seurat mapping analysis 

where only reads located within gene introns are considered for both 

datasets.  This final filter removes Patch-seq cells that jointly express 

markers for GABAergic and glutamatergic cells, probably representing 

L2/3 GABAergic neurons contaminated with adjacent glutamatergic 

cells.  We do not find examples of such cells in human, possibly owing 

to a much smaller sampling of GABAergic cells than in the mouse.

Identifying t-types

Due to the differences in gene expression between Patch-seq and 

dissociated cells (see Extended Data Fig. 3b and a companion mouse 

study41), we used transcriptomes of dissociated human nuclei3 or 

https://portal.brain-map.org/atlases-and-data/rnaseq
https://github.com/mahmoudibrahim/genesorteR
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cells26 as reference datasets for human and mouse, respectively, and 

mapped Patch-seq transcriptomes to the reference data to identify 

their cell types.  Prior to data transfer, we filtered genes potentially 

related to technical variables.  X and Y chromosomes were excluded 

to avoid nuclei mapping based on sex. Many mitochondrial genes have 

expression correlated with RNA-seq data quality in dissociated nuclei 

data3, so nuclear and mitochondrial genes downloaded from Human 

MitoCarta2.064 were also excluded.  We also find that Patch-seq cells 

often have high expression of non-neuronal marker genes, so any genes 

most highly expressed in a non-neuronal cell type are excluded.  Finally, 

any genes showing at least four-fold higher expression in dissociated 

nuclei versus Patch-seq cells in the included cell types (or vice versa) 

were excluded as potentially platform dependent.  In total 23,129 of 

50,281 genes (46%) remained in human and a comparable fraction for 

mouse.  Variable genes for mapping were selected as described above 

for dissociated nuclei data visualization, by using the top 2,000 remain-

ing genes by beta score as input into the procedure described below.

For both species, we mapped Patch-seq datasets to the relevant dis-

sociated cells or nuclei reference using Seurat V3 (https://satijalab.org/

seurat/)39,40 following the tutorial for integration and label transfer with 

default parameters for all functions, except when they differed from 

those used in the tutorial, and replacing variable gene selection with 

the genes described above. More specifically, we first defined a low 

(30)-dimensional PCA space of the dissociated cells or nuclei dataset 

and then project this onto the Patch-seq dataset.  We then found transfer 

anchors (cells that are mutual nearest neighbours between datasets) in 

this subspace.  Each anchor is weighted on the basis of the consistency 

of anchors in its local neighbourhood, and these anchors were then 

used as input to guide label transfer (or batch correction), as described 

previously65. We then scaled the data, reduced the dimensionality using 

PCA, and visualized the results with UMAP61. This process is done using 

the FindTransferAnchors and TransferData R functions, which provide 

both the best mapping cell type and a confidence score.  For mouse 

data, the three homologous types did not provide a heterogenous 

enough reference dataset, and therefore a larger set of glutamatergic 

and GABAergic cell types was used as reference.  Cell-type assignments 

for most cells were robust to choice of reference dataset and to changes 

in parameter settings.  Some cells with expression levels intermediate 

to two cell types changed calls between different runs; however, the 

cell-type-level results presented are robust to these small changes.

Multiple variations of three different mapping strategies were 

tested: (1) Seurat (as described in this Article), (2) a variation of the 

tree-mapping strategy previously described41 for analysis of GABAer-

gic cell types in mouse Patch-seq and (3) a correlation-based strategy 

comparing expression of marker genes in Patch-seq versus cluster 

medians of the scRNA-seq data.  In all cases, 75–95% of cells mapped to 

the same cell type when comparing pairs of methods, consistent with 

similar analyses performed using dissociated FACS-sorted cells and 

therefore does not reflect a quality issue with Patch-seq data per se, 

but rather the fact that cell-type definitions are not totally discrete, and 

single cell measurements are not totally accurate (for example, owing 

to dropouts).  As such, many cells show expression patterns that are 

not unambiguously mapped between highly similar transcriptomic cell 

types, although how much of this is biological and how much technical 

is difficult to assess.  Despite the imperfect agreement of specific cells, 

the statistical results regarding morphology and electrophysiology for 

each cell type remain relatively unchanged regardless of the mapping 

method used.

Gene expression of Patch-seq cells was visualized by projection into 

the UMAP space calculated from dissociated nuclei using a combination 

of Seurat and the R implementation of the UMAP library (https://github.

com/tkonopka/umap). More specifically, the Seurat data integration 

pipeline (functions FindIntegrationAnchors and IntegrateData) was 

used to calculated scaled data for both datasets and PCA was performed 

on this integrated space.  The first 30 PCs from both datasets, as well 

as the UMAP coordinates calculated for dissociated nuclei above were 

input into the UMAP pipeline and the ‘predict’ function was used to 

project the Patch-seq cells into UMAP coordinates.  As above, data and 

metadata were then overlaid on these UMAP coordinates.

Since dissociated nuclei were not collected using sublaminar dissec-

tions, ‘deep FREM3’ neurons were defined as FREM3 neurons dissected 

from L3 or L4 that were assigned to subtype f73 (Extended Data Fig. 1), 

which colocalizes with deep FREM3 Patch-seq neurons in UMAP space 

(Figs. 1, 3).  Furthermore, 77 of these 219 marker genes (including four 

genes shown in Fig. 4e) were also defined as marker genes by Patch-seq, 

where cortical depth was explicitly measured, suggesting the selection 

of deep FREM3 neurons in dissociated nuclei was reasonable.

Assessing transcript contamination

To quantify the effect of contamination and gene dropout in the 

Patch-seq dataset, we compared median gene expression levels of 

homologous t-types between platforms (Fig. 3a).  Dissociated nuclei 

and Patch-seq cells from matched human t-types were highly corre-

lated (R = 0.85, P ≈ 0).  Relatively few genes (177 genome-wide) showed 

enriched expression in dissociated nuclei relative to Patch-seq cells, 

suggesting that high quality transcriptomes collected in this data-

set do not show the increased dropout rate reported in our previous 

study in mouse41.  This is likely to be because we compared our human 

Patch-seq cells to a reference of dissociated nuclei, rather than the ref-

erence based on dissociated cells in mouse.  By contrast, we identified 

2,670 genes with at least fourfold enrichment in Patch-seq, including 

genes associated with extra-nuclear compartments such as the mito-

chondria (P < 10–12) and ribosome (P < 10−9), genes regulating cell death 

(P < 10–18), RNA-binding genes (P < 10−8) including immediate early 

genes, and markers for non-neuronal cells such as microglia (P < 10–20). 

Some of the top genes in these categories include COX3, FOS and IL1B, 

which all show >100-fold enrichment in Patch-seq cells.  These results 

indicated that Patch-seq cells probably contain some RNA collected 

from extranuclear compartments and from nearby contaminating 

cells (particularly microglia), and may show some activity-dependent 

transcription. However, these effects were minor compared to cell-type 

differences and we find overall high consistency and similar quality 

between Patch-seq cells and dissociated nuclei.

Comparison of gene expression between species

Gene orthologues between mouse and human were pulled from the 

gene orthologues table on NIH (https://ftp.ncbi.nlm.nih.gov/gene/

DATA/gene_orthologs.gz) on 22 November 2019.  Only genes with 

unique orthologues between mouse and human were included in 

cross-species analyses.

Electrophysiology feature analysis

Electrophysiological features were measured from responses elicited 

by short (3 ms) current pulses and long (1 s) current steps as previously 

described9. In brief, action potentials were detected by first identifying 

locations where the smoothed derivative of the membrane poten-

tial (dV/dt) exceeded 20 mV ms−1, then refining on the basis of several 

criteria including threshold-to-peak voltage, time differences and 

absolute peak height. For each action potential, threshold, height, 

width (at half-height), fast after-hyperpolarization (AHP) and interspike 

trough were calculated (trough and AHP were measured relative to 

threshold), along with maximal upstroke and downstroke rates dV/dt 

and the upstroke/downstroke ratio (that is, ratio of the peak upstroke 

to peak downstroke). Additional features from supratheshold sweeps 

included the rheobase and slope of the firing rate versus current curve 

(f–I slope); the first spike latency and initial firing rate (inverse of first 

inter-spike interval), measured at rheobase; and the mean firing rate 

and spike frequency adaptation ratio (mean ratio of consecutive 

inter-spike intervals), measured at ~50 pA above rheobase. Subthresh-

old features included the resting membrane potential (RMP), input 

https://satijalab.org/seurat/
https://satijalab.org/seurat/
https://github.com/tkonopka/umap
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resistance and membrane time constant (tau) from response across 

or before hyperpolarizing long steps, and sag ratio from response at 

~−100 pA. All feature calculation used the IPFX package (https://github.

com/AllenInstitute/ipfx).

Morphology feature analysis

Morphological features were calculated as previously described9. In brief, 

feature definitions were collected from prior studies10,66. Features were 

calculated using the version of neuron_morphology package (https://

github.com/alleninstitute/neuron_morphology/tree/dev). Recon-

structed neurons were aligned in the direction perpendicular to pia 

and white matter. Additional features, such as the laminar distribution 

of axon, were calculated from the aligned morphologies. Shrinkage cor-

rection was not performed (see above), features predominantly deter-

mined by differences in the z-dimension were not analysed to minimize 

technical artifacts due to z-compression of the slice after processing.

Analysis of features by t-type and species

Combined datasets of electrophysiological and morphological 

features across homologous t-types from mouse and human were 

visualized by an analysis pipeline of data imputation and stand-

ardization, followed by projection to two dimensions using UMAP 

or SPCA  (sklearn  and  umap  python packages)67,68. Cells with 

more than 3 out of 18 electrophysiological features missing were 

dropped, the remaining missing features were imputed as the mean 

of 5 nearest neighbours (KNNImputer), and features were centred 

about the median and scaled by interquartile range (RobustScaler). The 

SPCA regularization parameter was adjusted to minimize non-zero fea-

tures while preserving dataset structure. All features with coefficients 

over 0.05 were reported directly in the case of electrophysiology or  

summarized by feature categories for morphology.

For each feature, differentiation by t-type was assessed by running 

a one-way ANOVA for the feature by t-type, using the statsmodels pack-

age69. This analysis was repeated separately for the three mouse and 

human homologous t-types, as well as the three deep human t-types 

(with the subset of deep FREM3 cells only). Results were reported as 

fraction of variance explained (η2 or R2) and heteroscedasticity-robust F 

test P-value (HC3), corrected for FDR (Benjamini–Hochberg procedure) 

across all features for each data modality. Post-hoc Mann–Whitney U 

tests were run across pairs of t-types in each group (human and mouse 

homologous types and deep human types) for top-ranked features 

from ANOVA, and results FDR-corrected.

For classification of t-types, features were normalized using the 

standard scaler scalar in sklearn (StandardScalar), and the data were 

randomly assigned with stratification to training (70%) and testing 

sets (30%). The random forest classifier was trained using the sklearn 

package with 600 decision trees. The classification performance 

was estimated after averaging the results of the classifiers trained on 

1,000 random data splits and compared against performance for data 

with shuffled t-type labels. Confusion matrices shown are for a single  

representative train–test split.

Analysis of features by depth for FREM3 t-type

For each electrophysiology,  morphology, and gene  feature, 

the depth-related variability was assessed by a linear regression of the 

feature against relative L2-3 depth, using the statsmodels package69. 

Results were reported as fraction of variance explained (R2), Pearson 

correlation r, and heteroscedasticity-robust F test P-value (HC3), cor-

rected for FDR (Benjamini–Hochberg procedure) across all features 

for each data modality. Owing to the large number of morphology 

and genes tested, results were summarized by calculating GO-term 

enrichment in ToppGene62 for the set of depth-correlated genes 

(FDR < 0.05), followed by subselection of representative GO terms 

using REViGO70. Groups of features were ranked by the group’s highest 

R2, and the features with highest correlation shown for the top groups.

Reporting summary

Further information on research design is available in the Nature 

Research Reporting Summary linked to this paper.

Data availability

Transcriptomic, electrophysiological, and morphological data support-

ing the findings of this study are available at https://portal.brain-map.

org/explore/classes/multimodal-characterization.

Code availability

The custom electrophysiology data acquisition software (MIES) is avail-

able at https://github.com/alleninstitute/mies. The Vaa3D morphologi-

cal reconstruction software, including the Mozak extension, is freely 

available at www.vaa3d.org and its code is available at https://github.

com/Vaa3D. Code for reproducing most of the analyses presented in 

this work is available on GitHub https://github.com/AllenInstitute/

patchseq_human_L23.
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Extended Data Fig. 1 | Human tissue acquisition and pathology analysis. 

a, UMAP of 2,948 dissociated human nuclei collected26 from five glutamatergic  

t-types in L2 and L3 of human MTG using the 2,000 most binary genes (repeated  

from Fig. 1d for clarity).  FREM3 nuclei, color-coded by subtype assignment 

26(middle) or dissected layer (right).  b, Example resected tissue specimen 

from human middle temporal gyrus is processed into a series of 350 µm-thick 

slices according to a standardized sampling plan.  c, Immunohistochemistry 

and imaging on human surgical specimens. Averages of scores from 0 [normal] 

to 3 [pathological). Shown are images for donors with the lowest (top) and high-

est (middle) average marker score. Scores indicated below each image. Bottom, 

histograms of scores across all donors (N=number of cases). d, Pearson correla-

tion coefficient between various tissue pathology scores: GFAP, IBA1, SMI-32, 

Ki-67, NeuN and Nissl. e, Boxplots of electrophysiology features with potential 

relationships to pathology. Cells are assigned to low or high pathology groups 

based on pathology scores <1 or ≥1 respectively. Bars indicate significant  

pairwise comparisons (p<0.05, FDR-corrected Mann-Whitney test), both of 

which are nonsignificant once cell depth is included as a factor (main text).  

Boxes show median (center) and quartiles (ends), whiskers show trimmed 

range bounded at 1.5×IQR beyond quartiles.
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Extended Data Fig. 2 | Relationships between patient metadata and 

features. UMAP projection of electrophysiological features (left) and gene 

expression (right), with data points for each neuron colored by t- type  

(upper left) and by patient characteristics. In particular, cells split by medical 

condition (upper right) show a lack of correspondence between pathology, 

electrophysiology, and transcriptomic cell identity.



Extended Data Fig. 3 | Human Patch-seq pipeline. a, Workflow for patch 

clamp recording using standardized stimulus protocols and feature extraction 

code (1), followed by RNA-seq on extracted nucleated patches (2).  

Biocytin-filled neurons in slices are visualized with DAB as chromogen, imaged, 

and digitally reconstructed for morphological feature calculation and analysis 

(3). b, Density scatter plot showing the average expression of genes between 

dissociated nuclei and Patch-seq cells in human.  Dashed lines indicate two-fold 

enrichment, with number of differentially expressed genes shown in the 

off-diagonal corners. p~0.  c, Depth distribution of neurons in human and 

mouse supragranular layers normalized to depth within L2-3, grouped  

and colored by t-type.  All pairwise comparisons are significant at FDR<0.05 

(Mann-Whitney test). Boxes show median and quartiles, whiskers show 

trimmed range without outliers >1.5 IQR beyond quartiles. Individual neuron 

data points horizontally jittered for clarity. d, Marker gene expression  

values for each t-type, based on FACS data3, shown for all five human t-types, 

normalized by gene.
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Extended Data Fig. 4 | Human L2-3 excitatory neuron dendritic 

reconstructions. All human L2-3 excitatory neuron dendritic reconstructions 

ordered by t-type and aligned by layer to an average cortical template. Apical 

dendrites are in darker colors, basal dendrites in lighter colors. The division 

between superficial and deep FREM3 neurons is indicated by the gray vertical 

line.



Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Mouse VISp L2/3 excitatory neurons are less 

morphoelectrically discrete than their homologous human L2, L3 

counterparts. a, Joint UMAP of dissociated mouse cells from Fig. 1e and 133 

glutamatergic Patch-seq neurons from supragranular cortex in VISp. Left plot 

shows cells color-coded by collection strategy. Right plot shows only Patch-seq 

neurons color-coded by mapped t-type. b, Depth distribution of neurons in 

mouse supragranular cortex, grouped and colored by t-type. Left plot shows 

depth from pia in µm. Right plot shows scaled depth within L2/3. Boxes show 

median and quartiles, whiskers show trimmed range without outliers >1.5 IQR 

beyond quartiles. Individual neuron data points horizontally jittered for 

clarity. c, Morphology and electrophysiology descriptions of the three L2/3 

glutamatergic t-types in mouse visual cortex: Adamts2, Rrad, and Agmat. For 

each panel, colored lines are individual neurons, solid black line represents the 

mean of all neurons in that t-type, dashed gray line represents the global mean 

of the other 2 homologous t-types in that species. Left is an overlaid response 

to -70 and -30 pA current injections (scale bar = 10 mV, 1.0 s), center left are 

hyperpolarizing pulses normalized to their peak deflection to allow for a sag 

comparison, shown is the range -0.5 to -1.0 (scale bar = 0.5 s). Right is a 

representative suprathreshold spiking response (top, scale bar = 20 mV, 0.5 s), 

and the normalized instantaneous firing rates for a suprathreshold pulse, 

demonstrating the neuron’s firing rate adaptation (bottom, scale bar = 0.5 s). 

Scale bar = 250 µm. Electrophysiological responses are shown for 9 Adamst2, 

43 Rrad and 55 Agmat cells. d, e, Effect size (explained variance) for one-way 

ANOVA of each electrophysiology (d) and morphology (e) feature vs. t-type for 

human (green) and mouse (red). Stars indicate significance at FDR (False 

Discovery Rate) < (0.05, 0.01, 0.001). Box plots on right show data distribution 

by t- type for the four features with the largest effect size in human. Gray bars 

indicate significant pairwise comparisons (FDR<0.05, Mann-Whitney test). 

Boxes show median and quartiles, whiskers show trimmed range without 

outliers >1.5 IQR beyond quartiles. Individual neuron data points horizontally 

jittered for clarity.



Extended Data Fig. 6 | Mouse L2/3 excitatory neuron dendritic reconstructions. All mouse L2/3 excitatory neuron dendritic reconstructions ordered by t-type 

and aligned by layer to an average cortical template. Apical dendrites are in darker colors, basal dendrites in lighter colors.
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Extended Data Fig. 7 | Somata radius by depth and t-type. a, Soma radius vs. normalized L2-3 depth. Each soma is colored by t-type. b, Average soma radius by 

t-type for human and mouse.



Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Axon distribution pattern by t-type. a, Morphology 

descriptions of LTK and superficial FREM3 neurons with intact apical dendrites 

and substantial local axon (top two rows). For each panel: Left, Histograms  

of the average apical dendrite and axon branch length (normalized to the  

maximum value for each t-type) by cortical depth and layer. Right, representative  

examples of morphological reconstructions from each t-type. Axons appear in 

gray. Morphology descriptions of deep FREM3, GLP2R, CARM1P1 and COL22A1 

neurons with either intact apical dendrites (b) or truncated apical dendrites (c) 

and substantial local axon. For each panel: Left, Histograms of the average  

apical dendrite and/or axon branch length (normalized to the maximum value 

for each t-type) by cortical depth and layer. Right, representative examples of 

morphological reconstructions from each t-type. Axons appear in gray. d, Box 

plots illustrating axon feature distribution by t-type. Total axon length, axon 

histogram Principal Component (PC) 0, number of axon branches and  

maximum branch order are shown. Brackets indicate significant pairwise  

comparisons (FDR<0.05, Mann-Whitney test). Scale bar = 250 µm.



Extended Data Fig. 9 | Deep human L2, L3 neuron types are more 

morphoelectrically distinct than superficial L2, L3 t-types. Effect size 

(explained variance) for one-way ANOVA of each electrophysiology (left) and 

morphology (right) feature vs. t-type for human superficial L2-3 (LTK, GLP2R, 

Superficial FREM3, green) and deep L2-3 (Deep FREM3, CARM1P1, COL22A1, 

purple). Stars indicate significance at FDR (False Discovery Rate) < (0.05, 0.01, 

0.001).
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Extended Data Fig. 10 | Differentially expressed genes between deep types. differentially expressed genes selective for one or two of the CARM1P1, COL22A1, 

and deep FREM3 t-types, selected using genesorteR. Heatmap and legend show Z score normalized expression values.
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Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Electrophysiology acquisition: Igor Pro 8 (Wavemetrics) with a custom acquisition module (https://github.com/AllenInstitute/MIES). 

Image acquisition: Zeiss Efficient navigation (ZEN) 2012 SP2 software module (Zeiss).

Data analysis The Vaa3D version 3.2 morphological reconstruction software, including the Mozak extension, is freely available at www.vaa3d.org and 

its code is available at github.com/Vaa3D. The Python 3 code for electrophysiological and morphological feature analysis is available as 

part of open-source repositories (github.com/AllenInstitute/AllenSDK, github.com/alleninstitute/ipfx, github.com/alleninstitute/

neuron_morphology).  

Mapping and other transcriptomic analysis was performed using custom software written in R (3.6.1) which used several packages 

including cowplot (1.0.0), data.table (1.12.4), dplyr (0.8.3), feather (0.3.5), future (1.14.0), genesorteR (0.4.2), ggbeeswarm (0.6.0), 

ggplot2 (3.2.1), gplots (3.0.1.1), gridExtra (2.3), Matrix (1.2.17), matrixStats (0.55.0), mfishtools (0.0.1), pheatmap (1.0.12), scrattch.hicat 

(0.0.23), scrattch.vis (0.0.212), Seurat (3.1.1), umap (0.2.4.1), VENcelltypes (0.1.0), and WGCNA (1.68). Sequence alignment was 

performed using STAR v2.5.3. 

Analysis of electrophysiology and morphology data was performed using custom software written in Python (3.7), using several packages 

including numpy (1.15), pandas (0.2.4), scipy (1.4), scikit-learn (0.22), seaborn (0.9), statsmodels (0.11), and umap-learn (0.3.8). 

Morphological features were calculated using the version of neuron_morphology package (https://github.com/alleninstitute/

neuron_morphology/tree/dev). 

Soma area and density was calculated in NeuN+ neurons using custom software written in R (3.6.1) which used several packages 

including dplyr (0.8.3), ggplot2 (3.2.1), msir (1.3.2), and RImageJROI (0.1.1).   

All custom code will be made available at github.com/alleninstitute/patchseq_human_L23.  

Analysis of gene-depth correlations was performed using ToppGene (https://toppgene.cchmc.org/enrichment.jsp) and REViGO (http://

revigo.irb.hr/), along with custom Python (3.7) software using the goatools package (0.9.9).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 

We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A list of figures that have associated raw data 

- A description of any restrictions on data availability

Transcriptomic, electrophysiological, and morphological data supporting the findings of this study are available at https://portal.brain-map.org/explore/classes/

multimodal-characterization.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to predetermine sample sizes, but the sample sizes here are similar to those reported in previous 

publications. 

The size of the final data set was determined based on reaching a number of cells per transcriptomic type on which meaningful statistics could 

be applied to determine phenotypic differences. For the most rare type we encountered, CARM1P1, this worked out to 5 neurons with intact 

dendrite morphologies.

Data exclusions All cells included in this study were used in the transcriptomics analysis and passed the exclusion criteria laid out in the "Dataset curation" 

Methods section.  Addition data exclusions were imposed for electrophysiology and morphology.  To be included in electrophysiology 

analysis, each cell was required to pass a set of pre-established quality control metrics, including a > 1 GΩ seal recorded prior to break-in and 

the initial access resistance < 20 MΩ and < 15% of the input resistance. For an individual sweep to be included: (1) the bridge balance was < 

20 MΩ and < 15% of the Rinput, (2) bias (leak) current 0 +/- 100 pA, (3) root mean square (RMS) noise measurements in a short window (1.5 

ms, to gauge high frequency noise) and longer window (500 ms, to measure patch instability) < 0.07 mV and 0.5 mV, respectively and (4) the 

difference in the voltage at the end of the data sweep (measured over 500 ms of rest) and the voltage measured immediately prior to the 

stimulus onset < 1 mV. (For some human cells, after inspection of traces by eye, exceptions were made to cell-level QC and the sweep-level 

constraint on change in voltage relaxed from 1 to 2 mV.) 

Cells were excluded from morphological reconstruction due to pre-established quality control metrics (poor fill, extensive truncation or 

breakage of axon or dendrites).

Replication A total of 385 human Patch-seq cells from 82 individuals were used in the analysis, including cells from multiple types of surgeries and from 

multiple cortical areas. Data acquired from multiple mice from multiple litters per transgenic line surveyed. Extensive acquisition metadata as 

well as detailed white papers are reported as part of the Allen Cell Types Database (celltypes.brain-map.org); these additional details are 

intended to aid other laboratories if they seek to replicate the results presented in this study. 

Each cell is recorded as an independent experiment and tissue was collected from 90 independent donors. The fact that so cells from so many 

donots map so reliably (see Extended Data Figure 2) supports the replicability of this study.

Randomization Randomization is not relevant to this study as there was a single condition for all acquired data.

Blinding Blinding is not relevant to this study as there was a single condition for all acquired data.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies

Antibodies used Primary mouse anti-Neurofilament H (SMI-32, Biolegend, 801701), Neu-N (Millipore #MAB377, 1:2000); SMI-32 (Biolegend 

#801704, 1:2000); GFAP (Millipore #MAB360, 1:1500); Parvalbumin (Swant #PV235, 1:2000); Iba-1 (Wako #019-19741, 1:1000); 

Ki67 (Dako #M724001-2, 1:200), goat anti-mouse IgG (H+L) Alexa Fluor conjugates (594 or 647, ThermoFisher Scientific A-11005 

or 21235). 

Validation Anti-Neurofilament H, Neu-N; SMI-32; GFAP; Parvalbumin; and Iba-1 were verified via internal controls in every brain tissue slice 

- morphologies of expected cells to be stained were verified for each application. Ki67 stains rapidly dividing cells and is not 

expected to label healthy brain tissue, so a positive control slice was run using tonsil tissue for each application.

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Mice (male and female) between the ages of P45-P70 were maintained on the C57BL/6J background, and newly received or 

generated transgenic lines were backcrossed to C57BL/6J. 

Wild animals The study did not involve wild animals.

Field-collected samples The study did not involve field-collected samples.

Ethics oversight All procedures were carried out in accordance with Institutional Animal Care and Use Committee at the Allen Institute for Brain 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants

Policy information about studies involving human research participants

Population characteristics Humans (male and female) between the ages of 18-85 were that were undergoing surgery for epilepsy (73%), tumor (21%), both 

epilepsy and tumor (3%), or other reasons (2%) are included in this study.  Surgeries were performed on both hemispheres 

(left=33%; right=67%) and in all four cortical hemispheres, but primarily temporal cortex (85%).  Most donors were of unknown  

(71%) or unspecified (5%) ethnicity, with the following breakdown for individuals of specified ethnicity:   90% Caucasian, 5% non-

Hispanic or Latino, 3% Alaskan Native, and 1% African-American.  Genetic information is not known.

Recruitment Surgical specimens were obtained from local hospitals (Harborview Medical Center, Swedish Medical Center and University of 

Washington Medical Center) in collaboration with local neurosurgeons.  Although bias could be present if there are biases in 

characteristics of individuals undergoing surgery for epilepsy or tumor, or of the subset of individuals undergoing surgery who 

choose to donor brain tissue, in this study we did not identify any relationship between cell properties and age, gender, 

neuropathology, or reason for surgery.

Ethics oversight All patients provided informed consent and experimental procedures were approved by Harborview Medical Center, Swedish 

Medical Center and University of Washington Medical Center institute review boards before commencing the study. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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