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Tobler, Philippe N., John P. O’Doherty, Raymond J. Dolan,
and Wolfram Schultz. Human neural learning depends on reward
prediction errors in the blocking paradigm. J Neurophysiol 95:
301–310, 2006. First published September 28, 2005; doi:
10.1152/jn.00762.2005. Learning occurs when an outcome devi-
ates from expectation (prediction error). According to formal
learning theory, the defining paradigm demonstrating the role of
prediction errors in learning is the blocking test. Here, a novel
stimulus is blocked from learning when it is associated with a fully
predicted outcome, presumably because the occurrence of the
outcome fails to produce a prediction error. We investigated the
role of prediction errors in human reward-directed learning using a
blocking paradigm and measured brain activation with functional
magnetic resonance imaging. Participants showed blocking of
behavioral learning with juice rewards as predicted by learning
theory. The medial orbitofrontal cortex and the ventral putamen
showed significantly lower responses to blocked, compared with
nonblocked, reward-predicting stimuli. In reward-predicting con-
trol situations, deactivations in orbitofrontal cortex and ventral
putamen occurred at the time of unpredicted reward omissions.
Responses in discrete parts of orbitofrontal cortex correlated with
the degree of behavioral learning during, and after, the learning
phase. These data suggest that learning in primary reward struc-
tures in the human brain correlates with prediction errors in a
manner that complies with principles of formal learning theory.

I N T R O D U C T I O N

Early classical theories proposed that reward-directed learn-
ing depends on the temporal contiguity between stimuli and
reward (Pavlov 1927; Thorndike 1911). By contrast, in most
modern learning theories (e.g., Mackintosh 1975; Pearce and
Hall 1980; Rescorla and Wagner 1972), a discrepancy between
actual and predicted reward (reward-prediction error) plays an
important role for learning stimulus-reward associations. The
Rescorla and Wagner model (1972) and its real-time exten-
sions (temporal difference models) (Sutton and Barto 1981)
postulate that learning is directly influenced by prediction
errors that decrease gradually until the predictions match the
outcome. According to other theories, prediction errors influ-
ence learning indirectly through changes of attention in sub-
sequent trials (Mackintosh 1975; Pearce and Hall 1980).

The paradigmatic experiment to demonstrate the critical role
for prediction errors is the blocking experiment (Kamin 1969).
A typical blocking experiment generates differential prediction
errors but maintains a similar amount of contiguity by reward-
ing a target stimulus that is presented in compound with a

pretrained stimulus. According to theory, as the pretrained
stimulus fully predicts the reward, the reward fails to generate
a substantial prediction error to the target stimulus. Behavioral
analysis indicates that learning about the target stimulus in this
situation is blocked despite its contiguity with reward.

Brain structures implicated in reward-directed learning in-
clude the orbitofrontal and temporal cortex, amygdala, stria-
tum, insula, thalamus, and lateral hypothalamus (reviewed in
Schultz 2000). The responses of midbrain dopamine neurons
approximate that of a temporal difference signal (Montague et
al. 1996; Schultz et al. 1997), and such a signal appears to be
suitable for inducing synaptic modifications (Bao et al. 2001;
Barto 1995; Brembs et al. 2002; Reynolds et al. 2001; Wickens
et al. 1996). These neurons show less activation to a blocked
compared with a well-learned, reward-predicting, stimulus.
This result can be explained by the induction of a positive
prediction by the reward-predicting but not by the blocked
stimulus. Omission of reward after a reward-predicting stimu-
lus, but not after a blocked stimulus, depresses dopamine firing
at the expected time of reward (Waelti et al. 2001). Depression
of dopamine neurons reflects the negative prediction error
induced by reward omission after the reward-predicting stim-
ulus but not after the blocked stimulus. Blood-oxygen-level-
derived (BOLD) activity in human ventral striatum and orbito-
frontal cortex decreases in situations inducing negative predic-
tion errors such as missed reward (Knutson et al. 2003),
withheld reward (O’Doherty et al. 2003), and delayed reward
(McClure et al. 2003). By contrast, situations inducing positive
prediction errors elicit increases in BOLD signal in these
dopamine-innervated areas on which we focused in the present
study (McClure et al. 2003; O’Doherty et al. 2003, 2004).

Behavioral studies have established the role of prediction
errors in human learning (for review, see De Houwer et al.
2001) by demonstrating blocking of aversive electrodermal
conditioning (Hinchy et al. 1995), eyelid conditioning (Martin
and Levey 1991), and causal learning (Dickinson 2001). How-
ever, it is unknown how the human brain processes reward-
prediction errors during appetitive learning as tested in the
blocking paradigm. The present study is based conceptually on
the Rescorla-Wagner rule and its real-time extension, the
temporal difference model, and tests the role of prediction
errors in appetitive learning using the blocking paradigm by
pairing abstract visual stimuli with fruit juice reward. We used
functional magnetic resonance imaging (fMRI) to measure
brain activations in prime reward structures during, and after,
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the learning phase and correlated the evoked activations with
the degree of behavioral blocking.

M E T H O D S

Subjects

Twenty-two right-handed healthy normal subjects (mean age: 27
yr; range: 19–50; 13 females) participated. Subjects were preassessed
to exclude prior histories of neurological or psychiatric illness. They
were asked to refrain from eating or drinking for 5 h prior to scanning
and were thus in a mildly fluid-deprived state. Subjects rated their
hunger, thirst, and the pleasantness of the juice (scale ranging from
0 � not at all hungry/thirsty to 10 � very hungry/thirsty or from
�10 � very unpleasant to 10 � very pleasant). No specific action was
taken to enforce subjects’ compliance with dietary instructions, but
ratings suggest compliance. Two subjects were psychology students,
but none had knowledge of the blocking paradigm. All subjects gave
informed consent, and the study was approved by the Joint Ethics
Committee of the National Hospital for Neurology and Neurosurgery
(UK).

Behavioral procedure

Subjects were placed on a moveable bed in the scanner, with light
head restraint to limit head movement during image acquisition.
Visual stimuli were presented for 3 s, and subjects viewed them
through a mirror fitted on top of the head coil. Four abstract, complex
visual stimuli, denoted as A, B, X, and Y, were used. Identities of the
stimuli were counterbalanced across subjects. Stimulus A and stimu-
lus compounds AX and BY were rewarded by fruit juice (20%
dilution of commercial blackcurrant juice) at the end of the 3-s
stimulus presentation, whereas stimulus B and the occasional presen-
tations of stimuli X and Y went unrewarded. Intertrial intervals varied
between 3 and 11 s according to a Poisson distribution with a mean of
6 s. Two 50-ml syringes contained the fruit juice and were attached to
an SP220I electronic syringe pump (World Precision Instruments,
Stevenage, UK). The pump was located in the scanner control room
and delivered fixed quantities of 0.5 ml via a 6-m-long, 3-mm-diam
polythene tube. The syringes were attached to a valve system. A
stimulus presentation computer positioned in the control room con-
trolled the apparatus. The same computer also received volume trigger
pulses from the scanner. Both reward and picture delivery was
controlled using Cogent 2000 software (Wellcome Department of
Imaging Neuroscience, London, UK) as implemented in Matlab 6.0.

We employed a Pavlovian blocking procedure that comprised three
consecutive phases during training and testing. In the first, pretraining
phase (Fig. 1A), stimulus A was followed by liquid reward, marked
with a “�” (A�), whereas stimulus B (B�) was not rewarded,
denoted as “�”. The two stimuli A� and B� were presented in 10
trials, in random order, either on the left or the right side of a fixation
cross. In each trial, the side of stimulus appearance was determined
randomly. The task involved subjects indicating on which side of a
central fixation cross the stimulus appeared by pressing one of two
buttons on a button box. Subjects were positioned in the scanner
during this training phase but not scanned. Scanning started with the
second phase, in which stimulus X� appeared alongside A� as a
compound stimulus, followed by juice reward (AX�). Thus stimulus
X� did not predict anything additional over and above to what
stimulus A� already predicted. Thus modern learning theory predicts
that this stimulus would be blocked from learning. As a control,
stimulus B� was shown simultaneously with stimulus Y�, and this
compound was also rewarded (BY�). Theory predicts that stimulus
Y� would not be blocked from learning, as the reward in BY� trials
was not predicted by any stimulus. Both AX� and BY� were
presented in 15 trials. A� and B� trials (10 trials) were also run in
the second phase to maintain the previously learned associations. A�,

B�, AX�, and BY� trials alternated randomly. In a subsequent third
phase, stimuli X� and Y� were tested alone in 20 unrewarded trials
that were randomly intermixed with A�, B� (20 trials), AX�, and
BY� (30 trials) trials.

Data acquisition and analysis

We had subjects rate the pleasantness of visual stimuli before and
after the experiment on a scale ranging from 5 � very pleasant to
(�5 � very unpleasant. Mean ratings were statistically evaluated by
repeated-measures ANOVA. An interaction analysis between trial
type and time (before and after the experiment) tested for changes in
pleasantness ratings induced by the conditioning procedure. For linear
regression analysis of brain activation data, the degree of behavioral
blocking was determined as size of the difference [(pleasantness of
Y� after experiment - pleasantness of Y� before experiment) -
(pleasantness of X� after experiment - pleasantness of X� before
experiment)]. In 15 subjects, this difference was positive, in agree-
ment with a blocking effect, in 6 it was negative, and in 1, it was 0
(Fig. 1C for a separate analysis of subjects showing blocking and
subjects not showing blocking).

We acquired gradient echo T2*-weighted echoplanar images (EPIs)
with BOLD contrast on a Siemens Sonata 1.5 Tesla scanner (slices/
volume, 40; repetition time, 3.6 s). 507 volumes were collected
together with 5 “dummy” volumes at the start of the scanning session.
Scan onset times varied relative to stimulus onset times. A T1-
weighted structural image was also acquired for each subject. Signal
dropout in basal frontal and medial temporal structures due to sus-
ceptibility artifact was reduced by using a tilted plane of acquisition
(30° to the anterior commissure-posterior commissure line, rostral �
caudal). Imaging parameters were: echo time, 50 ms; field-of-view,
192 mm; in-plane resolution, 3 mm; slice thickness, 2 mm; interslice
gap, 1 mm. High-resolution T1-weighted structural scans were coreg-
istered to their mean EPIs and averaged together to permit anatomical
localization of the functional activations at the group level.

Statistical Parametric Mapping (SPM2) served to spatially realign
functional data, normalize them to a standard EPI template, and
smooth them using a Gaussian kernel with a full width at half-
maximum of 10 mm. Functional data were then analyzed by con-
structing a set of 3-s stick functions at the event-onset times for each
of the six trial types (A�, B�, AX�, BY�, X�, and Y�), corre-
sponding to the duration of visual stimulus presentation. We used a
standard rapid event-related fMRI approach in which evoked hemo-
dynamic responses to each trial type are estimated separately by
convolving a canonical hemodynamic response function with the
onsets for each trial type and regressing these trial regressors against
the measured fMRI signal (Dale and Buckner 1997; Josephs and
Henson 1999). This approach makes use of the fact that the hemody-
namic response function summates in an approximately linear fashion
over time (Boynton et al. 1996). By presenting trials in random order
and using variable intertrial intervals, it is possible to separate out
fMRI responses to rapidly presented events without waiting for the
hemodynamic response to reach baseline after each single trial (Dale
and Buckner 1997; Josephs and Henson 1999).

Subject-specific movement parameters were modeled as covariates
of no interest. Trial type-specific estimates of neural activity (betas),
corresponding to the height of the HRF, were computed independently
at each voxel for each subject, using the general linear model (GLM)
(see Friston et al. 1994 for detailed description of how the GLM is
used in an imaging context). The estimated GLM parameter beta
summarized the amount of variance in each fMRI time series ac-
counted for by the events in the experiment. More specifically, the
GLM conforms to Y � �X � �, where � (parameter estimate) reflects
the strength of covariance between Y (the data) and X (canonical
response function for a given condition such as A� or B�), given
error �. Parameter estimates were contrasted against each other to
assess differential model fit for different conditions. Using random-
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effects analysis, these contrasts were entered into a series of one-way
t-test, simple regressions or repeated-measures ANOVAs with non-
sphericity correction where appropriate. MarsBaR (Brett et al. 2002)
served to compute mean activations in two functional regions of
interest (10 mm sphere around peak voxels in the right ventral
putamen; 27/�9/�9, 26/6/�8) described previously (O’Doherty et al.
2003, 2004). For time course plots, we also used MarsBaR (Brett et al.
2002), making no assumptions about the shape of activations, and
applying eight finite impulse responses per trial, each response sepa-
rated from the next by one scan (3.6s). The dependent measure in time
course plots is percentage signal change measured within spheres of
10 mm around peak voxels.

Model setup and contrasts

The data were analyzed using two different approaches. In one
analysis, a temporal difference model was used as previously de-
scribed (O’Doherty et al. 2003; Schultz et al. 1997) to analyze
learning in AX� and BY� trials. Briefly, the temporal difference
model suggests that prediction errors are computed according to
�(t) � r(t) � �(t � 1) - V(t) where V(t) corresponds to the predicted
value V at time t in the trial, r(t) corresponds to the reward at time t,
and � corresponds to a factor for discounting rewards which occur
later in time. Thus the temporal difference model suggests that
prediction errors correspond to the difference between predicted
values at consecutive time steps. At the end of each trial, these are
used to update the values of all the stimuli present in that trial. For
example, in initial BY� trials, the value of B� is low, but the reward
occurs, and value is attributed mostly to Y�. After learning, A� and
Y� elicit a positive prediction, whereas B� and X� do not. Re-
sponses to stimuli A� and B� were modeled as phasic increases at
the time of conditioned stimuli; responses to Y� and X� were
modeled as phasic increases at the time of conditioned stimuli and
phasic decreases at the usual time of unconditioned stimuli. We tested
for regions showing an activation pattern that fitted the model better
for A� than B� or Y� than X�. Thus the effect of reward prediction
versus prediction of no reward was examined in the contrast of
(A�) � (B�), and the effect of a nonblocked stimulus versus a
blocked stimulus was examined in the contrast of (Y�) � (X�). The
conjoint effect of these two contrasts was examined in a conjunction
of (A�) � (B�) and (Y�) � (X�), a conjunction that tests for
responses that are selective for reward-predicting stimuli and are more
activated by a nonblocked than a blocked stimulus. Bar plots show
contrast estimates corresponding to the average fit of the effects of
interest with the model.

In a second analysis, the effect of learning the associative strength
of a novel reward-predicting stimulus was examined in the contrast of
(AX�) � (BY�), after convolving the regressors of AX� and BY�
with an exponential function that had a half-life equal to 1/4 of the
session length. This exponential function models asymptotical acqui-
sition of associative strength in BY� trials but not in AX�, similar to
how learning theories capture the negatively accelerated increase of
associative strength between conditioned and unconditioned stimulus
during learning. The effect of gradual reduction in prediction errors
was examined in the opposite contrast, (BY�) - (AX�), both con-
volved with the exponential function. Thresholding strategy has been
described previously (O’Doherty et al. 2002–2004). For each analysis,
in a priori brain regions identified in previous neuroimaging studies of
appetitive conditioning (O’Doherty et al. 2002, 2003), including
ventral striatum and orbitofrontal cortex, we report activations sur-
viving a threshold of P � 0.001 uncorrected. Reported voxels con-
form to Montreal Neurological Institute (MNI) coordinate space. For
display, the right side of the image corresponds to the right side of the
brain, and functional activations at P � 0.001 are overlaid on the
average structure of participating subjects.

R E S U L T S

Behavioral paradigm

The blocking paradigm employed four visual stimuli leading
to different levels of learning. Stimulus A� was followed by
the delivery of juice, whereas control stimulus B� was not
followed by reward (Fig. 1A). After learning, the reward
following stimulus A� and the absence of reward following
stimulus B� were fully predicted and should not generate
prediction errors. During subsequent compound training, two
stimuli, X� and Y�, were presented simultaneously with A�
and B�, respectively, and both the AX� and BY� com-
pounds were paired with reward. In AX� trials, the reward
was already fully predicted by the pretrained stimulus A�, and
therefore should not have generated a prediction error. Con-
versely, in the BY� control trials, the reward was predicted by
neither stimulus, and the occurrence of reward should have
generated a prediction error. The critical test involved presen-
tation of stimulus X� and stimulus Y� alone. Stimulus X�
was paired with reward in the absence of a prediction error and,
according to theory, should not have been learned (blocking).
Conversely, control stimulus Y� was paired with reward in the
presence of a prediction error and should have been learned as
an effective reward predictor.

Behavior

Subjects rated the pleasantness of visual stimuli before and
after the learning experiment. There were no significant differ-
ences in pleasantness rating before learning for the compari-
sons between stimuli A� and B� and between stimuli X� and
Y� [for all analyses, F(1,21) � 1.85, P � 0.18).] However, in
both cases, trial type interacted with time (before vs. after
learning), indicating that the pleasantness of the visual stimuli
changed during conditioning [A� vs. B�, F(1,21) � 5.91; X�
vs. Y�, F(1,21) � 4.50, both P � 0.05]. Inspection of the data
revealed that the learning procedure had increased the pleas-
antness of stimuli A� and Y� but not of stimuli B� and X�
(Fig. 1B). After learning, the pleasantness of stimulus A� was
not significantly different from that of stimulus Y� and the
pleasantness of stimulus B� was not significantly different
from that of X� (P � 0.34). These results suggest that
stimulus A� had been learned as a valid reward predictor,
whereas stimulus B� did not predict reward, and appetitive
learning was blocked for stimulus X� but not for stimu-
lus Y�.

Inspection of individual pleasantness ratings indicated that
15 subjects showed changes compatible with a blocking effect:
pleasantness of stimulus Y� increased, whereas that of stim-
ulus X� did not. Conversely, six subjects showed decreases of
pleasantness for stimulus Y� but not for stimulus X� (Fig.
1C), and one subject showed no changes for either X� or Y�.
Could the differential increase in pleasantness of Y� and X�
have been due to factors other than the experimental manipu-
lation? We found no correlation between the individual degree
of blocking and contingency awareness, age, hunger, thirst,
juice pleasantness, and scan-to-scan movements (for all corre-
lations, �r� �0.32 and P � 0.18).

To investigate blocking with an additional behavioral mea-
sure, we recorded reaction times in 12 participants that showed
blocking in the pleasantness ratings. Reaction times showed an
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overall difference between trial types [ANOVA, F(5,2351) �
3.85, P � 0.05]. Subjects responded more quickly with reward-
predicting stimulus A� than with neutral stimulus B�
[737.2 � 10.9 (SE) ms vs. 778.4 � 13.7 ms; P � 0.05] and
with reward-predicting stimulus Y� than with blocked stimu-
lus X� (729.6 � 13.0 vs. 753.0 � 16.1 ms; P � 0.05). There
were no significant reaction time differences between AX�
and BY� trials (745.2 � 11.0 vs. 738.3 � 9.5 ms; P � 0.5).
These results suggest appetitive learning of reward-predicting
stimulus A� but not of neutral stimulus B� and blocking of
appetitive learning for stimulus X� compared with reward-
predicting stimulus Y�.

Putamen activation reflecting blocking and
reward expectation

We tested differential blocking of learning by modeling
neural responses to control stimulus Y� and blocked stimulus

X� with a phasic positive response at the time of the stimulus
and a negative prediction-error response at the time of the
omitted reward. We performed a region of interest (ROI)
analysis in 15 subjects showing behavioral blocking by mea-
suring the activation in a 10-mm sphere centered on two
previously reported peaks of reward-prediction-error responses
in the ventral putamen (O’Doherty et al. 2003, 2004). Activa-
tions were stronger for Y� compared with X� (paired t-test,
both P � 0.05, small volume correction; Fig. 2A) and failed to
correlate with movement parameters (�r� for all parameters
�0.53 and P for all �0.12). In a conjunction analysis, we
found that the right ventral putamen (27/3/�6; z � 3.61) was
more activated by control stimulus Y� than by blocked stim-
ulus X� and likewise more by reward-predicting stimulus A�
than by neutral stimulus B� (Fig. 2C; Table 1, top, for
additional activations). These data suggest that activation in the
ventral putamen was blocked together with behavioral learning
in the absence of a reward-prediction error.

The differential blocking is also observed in the time courses
of putamen activation in these ROIs. Reward-predicting stim-
ulus Y� elicited a greater increase in brain activation than
blocked stimulus X� (Fig. 2B). The activation to stimulus Y�
was followed by a deactivation, reflecting the negative predic-
tion error induced by reward omission after a reward-predict-
ing stimulus. In addition, we investigated activations related to
the expectation of reward in A� compared with B� trials.
Compared with the expectation of no reward, both left (�18/
3/�3; z � 4.03) and right (18/�3/�6; z � 3.63) putamen were
activated when subjects expected a reward (Fig. 3A). The
activation extended into the globus pallidus. Time course
analysis of the phasic activations in the left and right ventral
putamen confirmed the differential responses to stimulus A�
and B� (Fig. 3B; see Table 2, top, for additional activations).

FIG. 1. Experimental design and pleasantness ratings in the Pavlovian
blocking paradigm. A: experimental design. During pretraining, reward-pre-
dicting stimulus A� but not neutral stimulus B� was followed by a drop of
juice reward (letters denote visual stimuli presented on a computer monitor, �
denotes reward, � denotes no reward). During compound conditioning, 2
additional stimuli, X� and Y�, appeared together with A� and B� in
rewarded compounds AX� and BY�, respectively. In AX� trials, reward was
already predicted by stimulus A�, and no prediction error should have
occurred. Stimulus X� should therefore have been blocked from learning.
Conversely, in BY� trials, reward was not predicted by stimulus B�, and a
prediction error should have occurred. Stimulus Y� should therefore have
been learned as a reward-predicting stimulus. During unrewarded test trials,
stimuli X� and Y� were presented alone. In each trial, subjects indicated
whether stimuli appeared on the left, right, or both sides of the screen. The
position of stimuli on the screen varied randomly. During compound condi-
tioning, A�, B�, AX�, and BY� alternated randomly. During the test phase,
all 6 trial types alternated randomly. The compound conditioning phase was
immediately followed by the test phase. B: average absolute pleasantness
ratings of all subjects. Compared with the beginning of the experiment,
pleasantness ratings were increased at the end of the experiment for reward-
predicting stimulus A� and prediction error-eliciting control stimulus Y� but
not for neutral stimulus B� and blocked stimulus X�. Pleasantness ratings
were taken on a dimensionless scale of -5 (very unpleasant) to �5 (very
pleasant). C: average change in pleasantness rating in subjects showing
blocking compared with subjects not showing blocking. Over the course of the
experiment, pleasantness of A� but not B� and X� increased in both subjects
showing blocking behaviorally (n � 15) and in subjects not showing blocking
(n � 6). Pleasantness of Y� increased in subjects showing blocking but
decreased, for unknown reasons, in subjects not showing blocking.
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Decrease of neural prediction error in ventral striatum
during learning

During learning, a gradual (asymptotic) decrease of predic-
tion error occurs at the time of the gradually better predicted
reward (Rescorla and Wagner 1972; Sutton and Barto 1981).
We specifically investigated whether brain activations would
show better fits with asymptotic decreases in BY� compared
with AX� trials as differential learning progressed. We found
that in the 15 subjects showing blocking behaviorally, activa-
tion in the ventral striatum fitted better for BY� than AX�
trials with an asymptotically decreasing learning function,
corresponding to gradually reduced prediction error responses
(Fig. 4; �15/�3/�12; z � 3.98).

Correlation between behavioral and orbitofrontal responses
to stimuli blocked from learning

We performed a linear regression analysis of differential
brain activation following reward-predicting stimulus Y�
compared with blocked stimulus X� against the individual
degree of behavioral blocking. All subjects were included in
the analysis, irrespective of their blocking behavior. We found
a significant correlation in the medial orbitofrontal cortex (Fig.
5A; peak at �18/30/�6; z � 3.27). This region overlapped
with the orbitofrontal region that showed stronger activation
for Y� than X� in the previous analysis restricted to subjects
with behavioral blocking (peak at �18/36/�6; z � 3.89; Table
1, bottom).

Further relationships between behavioral and learning re-
lated neural responses are revealed by the time courses of
activation in a 10-mm orbitofrontal sphere (centered around
-18/36/�6). The initial activations differed between stimuli
Y� and X� only in subjects that showed behavioral blocking
with stimulus X� being ineffective in these subjects (Fig. 5, B
and C). Furthermore, we also used an interaction analysis to
compare activations in brain regions between subjects showing
behavioral blocking and no blocking. We found greater acti-
vations for Y� compared with X� in the medial orbitofrontal
cortex (peak at �18/33/�9; z � 3.74; Fig. 5D) and posterior
cingulate (�9/�39/39; z � 3.71) only in subjects showing
blocking, whereas no such differences occurred in subjects that
failed to show blocking.

Correlation between behavioral blocking and asymptotic
orbitofrontal response increases during learning

During learning, a gradual (asymptotic) increase of associa-
tive strength of the conditioned stimulus occurs simultaneously

FIG. 2. Differential reward-prediction-related activity at the time of stimuli Y� and X� and of omitted reward in the ventral putamen during the blocking
experiment. A: region of interest analysis. Left: 10-mm sphere centered on a striatal voxel shown previously to report prediction errors (O’Doherty et al. 2004).
Right: bar plots show contrast estimates (dimensionless) corresponding to the average fit for X� and Y� when modeled with an activation at the time of
conditioned stimuli and a deactivation at the usual time of reward within region of interest shown left. B: event-related time courses to X� and Y�, averaged
within the region of interest shown in A and across subjects. Stimuli occurred at time � 0, were displayed for 3 s, and not followed by reward. Intertrial intervals
varied between 3 and 11 s according to a Poisson distribution with a mean of 6 s. All 6 trial types alternated randomly, and scan onsets occurred randomly with
regard to stimulus onsets. In this and all following time course plots, the hemodynamic response is plotted as percentage signal change and occurs with the usual
lag of �5 s. Error bars correspond to SE. To characterize the shape of the responses in time course plots, regressors have been convolved with finite impulse
responses rather than hemodynamic response functions. The bin size corresponded to the scan repetition time (3.6 s). C: conjunction of reward-predicting stimulus
A� vs. neutral stimulus B� and reward-predicting stimulus Y� vs. blocked stimulus X�. This analysis was restricted to subjects showing blocking behaviorally.

TABLE 1. Activated areas in the conjunction of A� versus B�
and Y� versus X� and in the single contrast of Y� versus X�,
restricted to subjects showing blocking behaviorally

A� versus B� and Y�
versus X� Hemisphere x y z z Score

Striatum (ventral
putamen)

Right 27 3 �6 3.6

Cingulate (posterior) Left �9 �30 45 3.7
Cingulate (middle) Left �6 3 33 3.2
Cerebellum Left �27 �60 �45 3.3

Left �30 �57 �42 3.2
Lateral frontal cortex Right 54 0 39 3.7

Right 18 �6 63 3.3
Lateral prefrontal cortex Right 54 27 27 3.5
Y� versus X�
Orbitofrontal cortex Left �18 36 �6 3.9
Cingulate (posterior) Left �9 �36 36 3.1
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with decreases in prediction errors. We specifically searched
for activations showing better fit with a gradually increasing
asymptotic learning function in BY� trials compared with
AX� trials during progressive differential learning and corre-
lated the obtained differential increases with the degree of
individual behavioral blocking. The activity in an anterior
region of orbitofrontal cortex correlated with the degree of
behavioral blocking across all subjects during learning in BY�
trials (Fig. 6; �27/36/�15; z � 3.49). Thus responses in
orbitofrontal cortex increased asymptotically during learning,
and these increases reflected the degree to which subjects
showed behavioral learning in the blocking paradigm.

D I S C U S S I O N

These data suggest that human brain structures acquire
responses to reward-predicting stimuli proportional to the de-
gree of reward prediction error as suggested by formal learning
theory. Activation of the ventral putamen was sensitive to
blocking: in subjects showing blocking behaviorally, stimuli
that were learned elicited prediction-error responses in the
ventral putamen that were greater than those elicited by stimuli
presented contiguously with reward and that failed to induce
prediction errors. Distinct regions in the orbitofrontal cortex
correlated with the degree to which subjects showed the block-
ing effect and showed asymptotic increases during learning the

associative strength of a stimulus predictive of reward. The
results are compatible with basic concepts of learning theory
and indicate a correlation of activation in human basal ganglia
and orbitofrontal regions with learning induced by prediction
errors in the context of a formal blocking paradigm.

In the present experiment, humans rated reward-predicting
stimuli as more pleasant than neutral and blocked stimuli
(evaluative conditioning) (for review, see De Houwer et al.
2001). The results confirm that human appetitive learning can
be blocked, presumably due to the lack of prediction error
caused by a previously established prediction of reward. It thus
appears that appetitive learning is governed by similar asso-
ciative mechanisms as other forms of Pavlovian conditioning
such as aversive electrodermal and eyelid conditioning
(Hinchy et al. 1995; Martin and Levey 1991). Apparently the
mere contiguity between a stimulus and reward is insufficient
for an increase in pleasantness of that stimulus. Rather, learn-
ing depends crucially on the presence of an error in the
prediction of an appetitive outcome.

The pleasantness ratings for stimulus X� decreased over the
course of the experiment. However, absolute differences in
stimulus ratings over the experiment should not be interpreted
without additional control stimuli that were never paired with
reward and that were not included in the present experimental
design. Irrespective of this result, the behavioral ratings sug-
gest that the relative differences in pleasantness ratings be-
tween X� and Y� changed in the direction compatible with a
blocking effect in 75% of subjects. Our study also found that
thirst, hunger, juice pleasantness, age, and contingency aware-
ness did not correlate significantly with the degree of the
blocking effect. Possible explanations for the partial effective-
ness of our experimental parameters include insufficient re-
ward intensity and a high ratio of stimulus-reward interval to
intertrial interval.

During learning, prediction errors gradually decrease, and
the associative strength (motivational value) of stimuli in-
creases. In the present experiment, the associative strength of
the control stimulus, Y�, gradually increased while subjects
learned about the predictive relation between Y� and reward
in BY� trials. Rostral orbitofrontal activations increased

TABLE 2. Areas activated by A� versus B� over all subjects

A� versus B� Hemisphere x y z z Score

Striatum (ventral putamen) Left �18 3 �3 4.0
Right 18 �3 �6 3.6
Right 9 �3 �3 3.4

Cingulate (middle) Right 6 3 36 3.2
Right 9 18 39 3.2

Cerebellum Left �15 �66 �24 3.8
Right 18 �66 �24 4.1
Left �6 �42 �33 3.9

Lateral frontal cortex Left �51 6 33 3.5
Right 63 6 27 4.6

Insula Right 45 3 12 3.5

FIG. 3. Activation in putamen by expectation
of reward. A: compared with neutral stimulus
B�, reward-predicting stimulus A� activated
the putamen bilaterally. Activations extended
into the globus pallidus and the right insula. The
cortical and cerebellar activations were not ex-
pected a priori and did not survive whole brain
correction. B and C: event-related time courses of
responses to stimuli A� and B� averaged across
subjects within the left (�18/3/�3; B) and right
(18/3/�6; C) ventral putamen. Stimuli occurred
at time � 0 and were displayed for 3 s. A� but
not B� was followed by reward at the end of the
3-s stimulus duration. This analysis was per-
formed over all subjects, irrespective of behav-
ioral blocking.
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asymptotically during learning as a function of the degree of
behavioral blocking. The asymptotical increase in orbitofrontal
activation is compatible with the acquisition of associative
strength during learning proposed by learning theories (Res-
corla and Wagner 1972; Sutton and Barto 1981). Neurophys-
iological studies reported reward expectation and cue-related
activity of orbitofrontal neurons that changed together with
behavioral indicators of learning (Schoenbaum et al. 2003;
Tremblay and Schultz 2000b), although the relation to learning
theories was less well explored in these studies. The present
data extend these neurophysiological studies by suggesting that

the human orbitofrontal cortex processes the acquisition of
associative strength of conditioned stimuli during learning
according to a formal learning curve.

The omission of a predicted reward reflects an outcome that
is worse than expected, and learning theory suggests that it
elicits a negative prediction error. In the present study, control
stimulus Y� predicted reward as it was paired with reward and
prediction error in BY� trials. Thus when stimulus Y� was
presented in unrewarded test trials, a positive prediction should
have occurred at the time of the stimulus (reward prediction)
and a negative prediction error should have occurred at the

FIG. 4. Differential activations at the time of the reward in
ventral striatum during reduction of prediction errors during
learning. A: regions showing significantly better fits (P � 0.001)
with modeled asymptotic decreases in activation during condi-
tioning in BY� compared with AX� trials. Thus prediction-
error related striatal activation at the time of reward decreased
more in BY� compared with AX� trials during learning. B:
bar plots showing contrast estimates (dimensionless) corre-
sponding to the average fit of AX� and BY� with an asymp-
totically decreasing learning function. Error bars correspond to
95% confidence intervals. This analysis was performed only in
subjects that showed blocking behaviorally.

FIG. 5. Relationship of orbitofrontal activation to degree of behavioral blocking. A: correlation with degree of blocking. Across all subjects, the differential
activation to Y� compared with X�, plotted as dimensionless contrast estimates, in the medial orbitofrontal cortex was higher with larger pleasantness
differences between nonblocked stimulus Y� and blocked stimulus X�. The individual data points are from individual subjects. B and C: average event-related
time courses in medial orbitofrontal cortex (10 mm sphere around -18/36/�6) to stimuli Y� and X� in subjects showing blocking behaviorally (B) and in
subjects not showing blocking behaviorally (C). Stimuli occurred at time � 0, were displayed for 3 s, and not followed by reward. D: comparison of subjects
showing blocking behaviorally with subjects not showing blocking revealed blocked acquisition of activation in medial orbitofrontal cortex in subjects that
showed behavioral blocking but not in subjects that failed to show blocking. Both activation and deactivation for Y� was stronger than for X� in the blocking
group. Conversely, the nonblocking group showed similar activation to Y� and X�.
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usual time of reward (reward omission). In Y� trials, ventral
putamen and orbitofrontal cortex showed activations at the
time of conditioned stimuli followed by deactivations at the
time of reward (Figs. 2B and 5B). Thus both the ventral
putamen and the orbitofrontal cortex appeared to code a bidi-
rectional prediction error signal with increased activation in-
duced by positive prediction errors and decreased activation
induced by negative prediction errors. In lateral regions of the
prefrontal cortex, both positive and negative prediction errors
elicit increased activation (Fletcher et al. 2001; O’Doherty et
al. 2003). Such a unidirectional prediction error signal would
be reminiscent of the one proposed by attentional theories
(Mackintosh 1975; Pearce and Hall 1980). Thus different
regions may process different prediction error signals, and
striatal and orbitofrontal regions appear to code a bidirectional
signal.

Activations in the ventral putamen appeared to be sensitive
to prediction errors in being stronger to nonblocked control
than to blocked test stimuli, and they decreased during learning
in subjects showing blocking behaviorally. Simple contiguity
pairing of a stimulus with reward, as in the case of the blocked
stimulus, was insufficient to activate the ventral putamen.
Rather a prediction error, as elicited by the nonblocked control
stimulus, was necessary for putamen activation. Results from
previous imaging studies suggest that activation of the ventral
putamen reflects reward-prediction errors (McClure et al.
2003; O’Doherty et al. 2003). The present study extends these
findings by showing that the ventral putamen processes pre-
diction errors in the blocking paradigm that tests for the crucial
role of such prediction errors in learning stimulus-reward
associations. Thus rewards that produce prediction errors cor-
relate with putamen activations and behavioral learning, and
the activation of the ventral putamen at the time of the reward
may reflect a teaching signal as proposed by current learning
theories and their real-time extensions (Rescorla and Wagner
1972; Sutton and Barto 1981).

The present results suggest that the degree of medial orbito-
frontal activation by the nonblocked control stimulus compared
with the blocked experimental stimulus correlated with the
degree of behavioral blocking across all subjects. Correspond-
ingly, medial orbitofrontal cortex is more activated by the
nonblocked stimulus than by the blocked stimulus in subjects
showing behavioral blocking but not in subjects without block-
ing. Single-cell recordings indicate that some orbitofrontal
neurons respond to unpredicted reward delivered outside the
task (Tremblay and Schultz 2000a) and to omitted reward
when the animal makes an error (Thorpe et al. 1983). Results
from a previous functional imaging experiment show that the
orbitofrontal cortex is activated by unexpected rewards and
depressed by unexpected reward omissions, indicating the
explicit processing of reward prediction errors (O’Doherty et
al. 2003). The present results extend these findings by suggest-
ing that activations in orbitofrontal cortex may follow the
systematic experimental manipulations of prediction errors to
the degree to which individual subjects follow them behavior-
ally. Taken together the orbitofrontal cortex appears to process
errors in reward prediction according to formal assumptions of
learning theory.

The presently observed activations in the ventral putamen
and the orbitofrontal cortex resemble the stronger responses of
dopamine neurons for reward-predicting stimuli compared
with neutral stimuli (Ljungberg et al. 1992; Waelti et al. 2001).
Furthermore, dopamine neurons acquire weaker responses to
stimuli that are blocked from learning compared with control
stimuli that are being learned in the presence of a reward-
prediction error (Waelti et al. 2001). These similarities suggest
that learning theories can account for both phasic dopamine
firing and activation of ventral putamen and orbitofrontal
cortex. Thus dopamine, orbitofrontal and striatal regions ap-
pear to signal prediction errors and acquire responses to con-
ditioned stimuli dependent on prediction errors.

FIG. 6. Relationship between asymptotic increases of
orbitofrontal activation and degree of behavioral blocking
during acquisition of associative strength. A: regions
showing a correlation between differential fit in BY� and
AX� trials, both modeled with gradual increases, and
degree of behavioral blocking. Thus orbitofrontal activa-
tion increased more in BY� compared with AX� trials
the more subjects showed blocking behaviorally (P �
0.001; r � 0.7). B: scatter plot of differential activation
increases during BY� compared with AX� trials, dis-
played in terms of dimensionless contrast estimates, and
degree of blocking. Across all subjects, degree of blocking
was quantified as pleasantness differences between non-
blocked stimulus Y� and blocked stimulus X�. The
individual data points are from individual subjects. This
analysis was performed over all subjects, irrespective of
whether or not they showed blocking behaviorally.
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Both putamen and orbitofrontal cortex regions are inner-
vated by dopamine neurons (Groves et al. 1994; Lynd-Balta
and Haber 1994; Williams and Goldman-Rakic 1998). Given
that the hemodynamic responses measured by fMRI may
reflect mainly inputs to an activated region rather than the
spiking activity of projection neurons (Logothetis et al. 2001),
it is tempting to suggest that the prediction-error-dependent
learning observed presently might be driven by dopamine
inputs. Alternatively, dopamine might influence different neu-
ronal processes in the two target structures. For example,
reward-processing neurons in the orbitofrontal cortex might be
preferentially involved in detection, perception, and expecta-
tion of reward, whereas those in the striatum might also
incorporate reward information into motor preparation (Pasu-
pathy and Miller 2005; Schultz 2000). Dopamine might also
affect blood flow through dilatory effects on the vascular
system (Amenta et al. 2000; Hughes et al. 1986), and this effect
could potentially contribute to the present activations. How-
ever, it is not clear what the time scale of such an effect would
be and whether this would contribute to rapid event-related
(phasic) activations of the type seen here.

Based on previous results, our hypotheses were primarily
restricted to the striatum and orbitofrontal cortex. However,
prediction error coding may be operational in several other
brain structures as well. For instance, cingulate, cerebellum,
superior colliculus, frontal, parietal and occipital cortex, locus
coeruleus, and nucleus basalis show various forms of predic-
tion error processing (for review, see Schultz and Dickinson
2000). Some of these regions showed activation in the present
study in situations eliciting prediction errors. For example the
posterior cingulate was more activated by control stimulus Y
than by blocked stimulus X, and the activations were related to
the degree to which subjects showed blocking behaviorally.
Posterior cingulate neurons respond to the unexpected delivery
and omission of reward (McCoy et al. 2003), and the present
results suggest that these responses may contribute to reward
learning. Furthermore prediction errors activated the lateral
prefrontal cortex during appetitive conditioning in the present
study and in a study investigating causal learning (Fletcher et
al. 2001). The cerebellum, which has primarily been implicated
in coding aversive and motor prediction errors (e.g., Ploghaus
et al. 2000), showed activations in the present study on reward-
related learning as in a previous study on appetitive prediction
errors (O’Doherty et al. 2003). Taken together, prediction error
coding may constitute a basic form of brain functioning used
throughout the brain in a wide variety of learning situations.
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