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Abstract

This paper presents a novel human-object-object (HOO)
interaction affordance learning approach that models the
interaction motions between paired objects in a human-
object-object way and use the motion models to improve
the object recognition reliability. The innate interaction-
affordance knowledge of the paired objects is modeled from
a set of labeled training data that contains relative motions
of the paired objects, humans actions, and object labels.
The learned knowledge of the pair relationship is repre-
sented with a Bayesian Network and the trained network
is used to improve recognition reliability of the objects.

1. Introduction

Traditionally, object categorization and human action
recognition are treated separately. Recently, more re-
searchers started to model the object features, object affor-
dance, and human action at the same time. Most of the
works build a relation model between single object features
and human action or object affordance and uses the models
to improve object recognition accuracies [1, 2, 3].

It is natural in our daily life that we not only pay our
attentions to the objects we hold and manipulate, but also
the the interactive relationship between objects. We also se-
lect our motions according to what kind of the interaction
will happen and that is mostly defined by both objects. For
example, when a person holds a pen, there could be many
different kinds of motions. However, if the pen is associ-
ated to a piece of paper, the human motions with the pen
is significantly limited. Most likely, a writing motion will
occur. Likewise, if we detect a human writing motion and a
piece of paper, the chance that the object in the human hand
is much higher than without writing motion or the paper. In
addition to the functionalities of the object, the interaction
motion is more confined and associated to a pair of objects
and we call it the inter-object affordance. There are many
similar examples such as a book and a schoolbag, and a
teapot and a cup. The interactive motions performed by the

Figure 1. Several objects on a table have inter-object relationships.

humans have strong relationship with both objects. There-
fore, the motion information can enhance our belief of the
recognition results of the objects. If we can detect a stirring
motion and recognize a cup, we can enhance our belief that
the object in the human’s hand is a spoon. Figure 1 shows
several objects on a table that have inter-object relationship:
a CD and a CD case, a pen and a piece of paper, a spoon
and a cup, and a cup and a teapot. In this paper, we attempt
to capitalize the strong relationship between paired objects
and interactive motion by building an object relation model
and associating it human action model in the human-object-
object way to characterize inter-object affordance.

Object affordance has only been explored recently in
limited works that mainly model the object affordance with
the interaction between single object and a human user, and
then use the mutual relation to improve the recognition of
each other. For example, Gupta and Davis [1] recently
achieved inspiring success in using single object action to
improve the recognition rate of both the object and human
motion. Kjellstrm et. al. [2] used conditional random
field (CRF) and factorial conditional random field (FCRF)
to model the relationship between object type and human
action, in which the 3D hand pose was estimated to repre-
sent human action including open, hammer, and pour ac-
tions. Most recently, Gall, et. al. [3] have recovered the hu-
man action from a set of depth images and then represented
object’s function and affordance with the human action. In
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their work, objects were classified according to the involved
human action in an unsupervised way base on high-level
features.

Another recent approach in literature is to derive the ob-
jects’ affordance from their low level features or 3D shapes.
Stark et. al. [4] obtained the object affordance cues from
human hand and object interaction in the training images,
and then they detected an object and determine the objects
functions according to the objects affordance cue features.
Grabner et. al. [5] proposed a novel way to determine ob-
ject affordance using computer graphical simulation. The
system imagines or simulate an actor performing actions on
the objects to compute the objects affordances from the ob-
ject’s 3D shape.

In robotics community, there are several existing works
on obtaining and using object-action relation. In [6], ob-
jects were categorized solely according to object interaction
sequences (motion features), but the geometry appearance
features of the objects was not considered. First, the objects
were segmented out from the background in a number of
video sequences, then the space interaction relationship be-
tween objects were represented with an undirected semantic
graph. Their work was able to represent the object temporal
and spatial interactions in an event with a sequence of such
graphs.

In summary, most of the existing works focus on object-
action interaction, or object geometry-related affordance
features. To the authors’ knowledge, there is no existing
investigation on modeling the affordance relationship be-
tween objects for object recognition. This paper presents
a way to model the inter-object affordance, and then use
the inter-object affordance relationship to improve object
recognition.

Different from existing work, we design a graphical
model that composes of two objects and the human motions
that relate the both object. The graphical model contains
the inter-object affordance that can be learned to represent
the interaction relationship between paired objects, such as
teapot-cup, and pen-paper. A Bayesian Network is struc-
tured to integrate the paired objects, the interact action, and
the consequence of the object interaction.

From the Bayesian Network graphical model, we devel-
oped an approach to recognize the paired objects by analyz-
ing and classifying the interactive motions with the statisti-
cal knowledge learned from training data. In addition, we
extend this approach to leverage the object recognition ac-
curacy from videos with the interactive motion recognition.
Our results in several experiments show that the detection
accuracy of the interactive objects is significantly improved
with our proposed approach.

2. Human-Object-Object-Interaction Model-
ing

We start by obtaining the initial likelihoods of the ob-
jects, human manipulation, and object reaction. Among
them, the objects’ initial likelihoods are estimated by a slid-
ing window object detector that is based on the Histogram
of Oriented Gradients (HoG). We then estimate the initial
likelihood of human manipulation action from the features
in the trajectories of human hand motions. In our approach,
we assume the human hand can be tracked at all time. The
hand motion can be segmented according to the trajectory’s
velocity characters. The start time of the manipulation is es-
timated based on the object pair locations and hand motion
trajectory.

With the motion segmentation and possible object loca-
tions in an image, the interactive object pair can established.
Then the initial believe of manipulation is changing. For ex-
ample, if a CD is put into the CD case, the color of the CD
case probably will change. The likelihood of object reac-
tion is estimated by comparing with the training datasets.
Finally the belief in each node is updated with the inference
algorithm for Bayesian Networks.

2.1. Bayesian Network Model for HOO Interaction

𝑃 (𝑂1, 𝑂2, 𝐴,𝑂𝑅∣𝑒) ∝ 𝑃 (𝑂1∣𝑒𝑂1
)𝑃 (𝑂2∣𝑒𝑂2

) (1)

𝑃 (𝐴∣𝑂1, 𝑂2)𝑃 (𝐴∣𝑒𝐴)
𝑃 (𝑂𝑅∣𝑂1, 𝑂2, 𝐴)𝑃 (𝑂𝑅∣𝑒𝑂𝑅

)

We choose Bayesian network because it is a powerful
inference tool for decision making in the observation of
several or many interrelated factors. As illustrated in Fig-
ure 2, our Bayesian network has eight nodes. The two
interactive objects are represented as node 𝑂1 and node
𝑂2. Node 𝐴 denotes hand manipulation action, also rep-
resents the inter-object affordance. The node 𝑂𝑅 repre-
sents the object reaction that reflects the change of object
state after the interaction. The rest notes are the evidences
𝑒 = {𝑒𝑂1

, 𝑒𝑂2
, 𝑒𝐴, 𝑒𝑂𝑅

}, and they represent the evidence
for 𝑂1, 𝑂2, 𝐴, and 𝑂𝑅 respectively. The nodes are con-
nected according to their conditional dependencies. Since
node 𝐴 is determined by the two interacting objects (𝑂1 and
𝑂2), they are the parents of node 𝐴. Similarly, since the ob-
ject reaction is the consequence of the two objects and the
manipulation, it is the child of those three nodes. The belief
for each node can be updated with the messages from the
corresponding evidence node. According to the Bayesian
rule and conditional independence relations, the joint prob-
ability distribution of the paired objects, inter-action, and
reaction can be represented with Equation 1.
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Figure 2. The Bayesian network model used to represent objects,
actions and object interactions.

To estimate the initial likelihood of the objects, we im-
plemented an approach according to Ref. [7]. The object is
detected with a sliding window and compare the local fea-
tures represented in HoG features [8]. The window size and
aspect ratio are learned from training data set. Our training
images are from the Image-Net [9] and the Google Image
Search and they are labeled. We use around 50 positive
and 70 negative examples to train a bi-class Support Vector
Machine (SVM ) classifier for each object. The LibSVM
library [10] is used to obtain the probability of the classifi-
cation for each window.

Each of the paired objects can be modeled with the object
type (𝑜𝑏𝑗) and its current location (𝑙). Therefore their initial
likelihood is represented as 𝑃 (𝑂1 = {𝑜𝑏𝑗1, 𝑙𝑂1}∣𝑒𝑂1

) and
𝑃 (𝑂2 = {𝑜𝑏𝑗2, 𝑙𝑂2}∣𝑒𝑂2

). They are computed for each
sliding window with the SVM estimation.

2.2. Motion Analysis

The object detector in the previous section can only give
us the possible object locations with their types. Since the
inter-object affordance is represented by the object interac-
tion, that affordance should be modeled with motion fea-
tures. To represent the inter-object action – the affordance
of the pair, we need to detect and analyze the hand motion
that are associated with one of both of the objects. The hand
motion should be tracked, and the motion trajectory should
be analyzed. Here we break the trajectories to segments and
use the motion segments to represent and recognize the mo-
tion types.

2.2.1 Human Hand Tracking in 2D

It is difficult to track an arbitrary hand in a daily-living
environment with various background solely based on the
hand’s shape as a hand can have many different shapes for
different gestures. In this work, we use the human skin color
since it is much more stable and has been used successfully
in previous works [11]. In addition, we combine the skin
color model in Ref. [12] and the TLD object tracker [13] to

(a)

(b)
Figure 3. One example of the tracking in a 2D image: (a) the hand
is tracked with a window; (b) the hand motion trajectory for a
motion that puts a CD into a its case.

build our own hand tracker. In our approach, the hands in
the initial several frames are located using optical flow and
the skin color. Then for each additional frame, the hand lo-
cation is updated according to the color information around
the previous hand location and the shape features from TLD
tracker. Here, since only the right hand was used in our ex-
periments, the right hand motion is tracked. It is the same
approach if we want to track the left hand as we don’t distin-
guish them. Figure 3(a) shows one example of the tracking
result and the Figure 3(b) shows the tracked trajectory for a
whole inter-action motion – putting a CD into its case.

2.2.2 Motion Segmentation

From the tracked hand motion trajectory, motion features
should be extracted to represent the motion. In this ap-
proach, we segment the obtained trajectories into several
segments according to the velocity and represent the mo-
tion with motion features in the segments. According to
Ref. [14], there are two kinds of human limb motions: bal-
listic motion and mass spring motion. In those two kind
of motions, the velocity provides natural indications of the
motion segments. We segment the trajectories with the lo-
cal minimal points in their velocity curves, and then these
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Figure 4. The segmented motion shown in red and between vertical
lines is the motion putting a pencil into a pencil case.

small pieces can be either merged or segmented further into
possible ballistic and mass spring segments. Similar to the
method in Ref.[14], the segments are classified into ballistic
and mass sprint types according to their velocity features.
The features used in this paper include the maximum veloc-
ity, average velocity, number of local minimum point, stan-
dard deviation, and motion distance etc. Figure 4 shows the
motion segments in velocity for one motion that is putting a
pencil into a pencil case.

2.2.3 Key Reach Motion Detection

We noticed that the interaction motion usually include a
reaching motion in which a human hand carries one object
to the location of another object or they both reach toward
each other. For example, in the stirring water example, a hu-
man hand carries a spoon and moves it to the cup. We call
this reach motion as the key reach motion. There could be
several reach motions in one action. For example, in a pro-
cess of putting a book into a schoolbag, there are three reach
motions. A person first opens the schoolbag, the first reach
motion; reach to the book, the second reach motion; and
then take the book to the schoolbag to put into it, the third
reach motion. However, we only call the taking the book to
the schoolbag as the key reach motion for this interaction
as this only reach motion involves both objects. Therefore
we name the book as the start object and the schoolbag as
the end object as object 1 and object 2 respectively in our
graphical model.

The ballistic segments are then further classified into

reach motion and non-reach motion according to motion
features including the velocity during acceleration and de-
celeration, time duration, average velocity, and stand devi-
ation of the velocity. However, it is difficult to segment out
the key reach motion only based on the hand motion and
to detect if a hand is carrying object or not if the object is
small. Instead, we rely on the motion of the object since it is
easy to detect the object state around the start and end loca-
tion of the reach motion. The key reach motion starts from
one location (𝑙𝑎𝑟1), and ends at another location (𝑙𝑎𝑟2). The
distance between the location of start object (𝑙𝑂1 ) and the
start of the key reach motion location 𝑙𝑎𝑟1 is modeled with
a normal distribution, 𝑁(∣𝑙𝑎𝑟1𝑙𝑂1 ∣, 𝜇𝑂1

𝑟 , 𝜎𝑂1
𝑟 ). Likewise, the

distance between the location of the end object (𝑙𝑂2 ) and 𝑙𝑎𝑟2
is modeled with 𝑁(∣𝑙𝑎𝑟2𝑙𝑂2 ∣, 𝜇𝑂2 , 𝜎𝑂2

𝑎 ). The start and end
locations for each reach motion are obtained in the tracking.
Then, the start object, end object, and the key reach motion
are detected at the same time, according to the two distri-
butions values. Here 𝜇𝑂1

𝑟 , 𝜎𝑂1
𝑟 , 𝜇𝑂2

𝑎 , and 𝜎𝑂2
𝑎 are learned

from the training data set. In the key reach motion, human
hand carries object 1 from location 𝑙𝑂1 to location 𝑙𝑂2 , so
the believe of the key reach motion can be further enhanced
by checking if the detected start object (object 1) is removed
or not. This can be carried out by comparing the likelihood
value of object 1 at location 𝑙𝑂1 before and after the key
reach motion.

2.2.4 Manipulation Motion Estimation

A manipulation action can be modeled to the features in
the human hand trajectory. The features are the start time
(𝑡𝑎𝑠 ), the end time (𝑡𝑎𝑒 ), the two reach locations (𝑙𝑎𝑟1, 𝑙

𝑎
𝑟2),

and the manipulation type (𝑇 𝑎). According to Equa-
tion 1, we model the conditional probability 𝑃 (𝐴∣𝑂1𝑂2),
and the initial likelihood of 𝐴, 𝑃 (𝐴∣𝑒𝐴). 𝑃 (𝐴∣𝑂1𝑂2)
can be computed with Equation 2. If we define 𝑙𝑎𝑠 as
the hand location for the start time 𝑡𝑎𝑒 , we can model
𝑃 (𝑡𝑎𝑠 , 𝑡

𝑎
𝑒 ∣𝑂1𝑂2) with 𝑁(∣𝑙𝑎𝑠 𝑙𝑂∣, 𝜇𝑂

𝑟 , 𝜎
𝑂
𝑟 ), and 𝑂 is either

𝑂1 or 𝑂2. 𝜇𝑂
𝑟 is the mean of the grasping distance for

the object 𝑂, while 𝜎𝑂
𝑟 is the variance, which can be

learned from the training data. 𝑃 (𝑙𝑎𝑟1∣𝑂1) and 𝑃 (𝑙𝑎𝑟2∣𝑂2)
are modeled as normal distributions 𝑁(∣𝑙𝑎𝑟1𝑙𝑂1 ∣, 𝜇𝑂1

𝑟 , 𝜎𝑂1
𝑟 )

and 𝑁(∣𝑙𝑎𝑟2𝑙𝑂2 ∣, 𝜇𝑂2
𝑎 , 𝜎𝑂2

𝑎 ), which have been discussed in
Section 2.3.3. 𝑃 (𝑇𝐴∣𝑜𝑏𝑗1, 𝑜𝑏𝑗2) is computed according to
the occurrence of manipulation type and object type in the
training data.

𝑃 (𝐴∣𝑂1𝑂2) = 𝑃 (𝑡𝑎𝑠 , 𝑡
𝑎
𝑒 ∣𝑂1𝑂2)𝑃 (𝑙𝑎𝑟1∣𝑂1) (2)

𝑃 (𝑙𝑎𝑟2∣𝑂2)𝑃 (𝑇 𝑎∣𝑜𝑏𝑗1, 𝑜𝑏𝑗2)
We estimate the likelihood 𝑃 (𝐴∣𝑒𝐴) with the features

from the hand motion trajectory. Based on the segmenta-
tion results in Section 2.3.2, the ballistic and mass spring
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segments are replaced with labels. The manipulation mo-
tions are classified according to the numbers of ballistic and
mass spring segments, the translation rate of the two seg-
ments, and time duration etc. Linear SVM is trained as the
classifier and gives the likelihood of the manipulation.

We want to detect the key reach motion and the interact-
ing object pair at the same time once we obtain the detected
objects and hand motion trajectory.

2.3. Object Reaction

The object reaction node is modeled with two parame-
ters: reaction type (𝑇𝑅) and reaction location (𝑙𝑅). It is dif-
ficult to fully model the object reaction. Therefore, we only
consider the state change of the object 2 after the interac-
tion. Similar to [4], we use the color histogram at the object
2 to represent the object reaction. We estimate 𝑃 (𝑂𝑅∣𝑒𝑂𝑅

)
by comparing the histogram of the object 2 with the his-
togram of the training instances from the training data set.
Then we model the prior 𝑃 (𝑂𝑅∣𝑂1, 𝑂2, 𝐴) according to
Equation (3). 𝑃 (𝑙𝑅∣𝑂2) is model with 𝑁(∣𝑙𝑅𝑙𝑂2 ∣, 𝜇𝑅, 𝜎𝑅),
and parameters 𝜇𝑅 and 𝜎𝑅 are learned from the training
data. 𝑃 (𝑇𝑅∣𝑂1, 𝑂2, 𝐴) is learned from the training data set
by counting the occurrence of 𝑇𝑅, 𝑂1 , 𝑂2 and 𝐴.

𝑃 (𝑂𝑅∣𝑂1, 𝑂2, 𝐴) = 𝑃 (𝑙𝑅∣𝑂2)𝑃 (𝑇𝑅∣𝑂1, 𝑂2, 𝐴) (3)

2.4. Bayesian Network Inference

After getting the key reach motion and the interaction
object pair locations, we estimate the parameters for 𝐴 and
𝑂𝑅 according to (2.3.3) and (2.3.4). We perform the infer-
ence with Pearls algorithm [15] once all of the initial likeli-
hoods for 𝑂1, 𝑂2, 𝐴, and 𝑂𝑅 are estimated. The Bayesian
Network, the object classifier and the manipulation classi-
fier are trained with fully-labeled data.

3. Experiments and Results

We have evaluated our framework with a dataset col-
lected from six subjects who performed five types of inter-
actions of five pairs of objects. The interaction object pairs
include teapot-cup, pencil-pencil case, bottle cap-bottle,
CD-CD case and spoon-cup. The actions for these object
pairs are pouring water from a teapot to a cup, putting a
pencil into a pencil case, screwing on a bottle cap, putting
a CD into the CD case and stirring a spoon in a cup. All
of these objects and actions are chosen because they are
very common in everyday life, and they are representative
for different inter-object affordance relationships. The data
from four subjects were used for training, and the data from
the rest two subjects are used for testing. Each subject per-
forms each action for two or three trials.

The object classifier, the action classifier and the
Bayesian Network were trained in supervised manner. As

(a)

(b)
Figure 5. Results comparison: (a) Object 1 likelihood confusion
matrix. The left one shows the result using HoG detector. The
right shows the result using the our approach; (b) Object 2 likeli-
hood confusion matrix. The left one shows the result using HoG
detector. The right shows the result using our framework.

stated before, the training images for the object classi-
fier are collected from the ImageNet [9] and Google Im-
age Search. The training data for the action classifier and
the Bayesian Network are collected from manually labeled
video sequences taken in our experiments. About 50 videos
sequences that performed by four subjects were used for
training. In each training video sequence, object locations,
reach locations and action type and the start frame of the
manipulation were manually labeled.

The test data set are video sequences that contain the ac-
tion sequences performed by the other two subjects. Figure
5(a) shows the object classification confusion matrixes for
object 1 for the testing data, which is the object at at the
beginning of the key reach motion. Figure 5(b) presents the
likelihood confusion matrixes for object 2 that is the object
at the end of the key reach motion. In each of the confusion
matrices, the 𝑖th row represents the likelihood value when
the 𝑖th type of object presents. For object 1, as we can see
from the confusion matrices, it is difficult to distinguish a
pencil from a spoon only based on the appearance, which is
consistent with the fact that they have the similar shape and
both of them are small. With our approach, by including the
context of human-object-object interaction, our Bayesian
network can distinguish and recognize the spoon and and
the pencil more much accurately. The average recognition
success rate of our approach for object 1 is improved from
72.6% to 86.0% and improved from 75.3% to 82.8% for
object 2.
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4. Conclusions and Future Work

In this paper we investigated the object categoriza-
tion and action recognition using human-object-object-
interaction affordance framework. The knowledge of ob-
ject affordance is learned from labeled video sequences, and
represented with a Bayesian Network. The elements of the
Bayesian Network include objects, human action and ob-
ject reaction. Our experiments with six subjects and about
70 video sequences have shown that with human-object-
object-interaction affordance knowledge, the object classi-
fication rate is significantly improved.

In the future, we plan to include more objects into our
framework and investigate more complicated relations be-
tween objects. We also plan to use the learned affordance
knowledge to help us to learn affordance motion more pre-
cisely and apply the learned motion in guiding and con-
trolling robot motions in our learning from demonstration
framework [16], since the interaction affordance knowledge
can suggest proper actions that the robot should take to per-
form interactive tasks with paired objects. .
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