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Primate inferior temporal (IT) cortex is thought to contain a high-level representation of

objects at the interface between vision and semantics. This suggests that the perceived

similarity of real-world objects might be predicted from the IT representation. Here we

show that objects that elicit similar activity patterns in human IT (hIT) tend to be judged as

similar by humans.The IT representation explained the human judgments better than early

visual cortex, other ventral-stream regions, and a range of computational models. Human

similarity judgments exhibited category clusters that reflected several categorical divi-

sions that are prevalent in the IT representation of both human and monkey, including the

animate/inanimate and the face/body division. Human judgments also reflected the within-

category representation of IT. However, the judgments transcended the IT representation in

that they introduced additional categorical divisions. In particular, human judgments empha-

sized human-related additional divisions between human and non-human animals and

between man-made and natural objects. hIT was more similar to monkey IT than to human

judgments. One interpretation is that IT has evolved visual-feature detectors that distin-

guish between animates and inanimates and between faces and bodies because these

divisions are fundamental to survival and reproduction for all primate species, and that

other brain systems serve to more flexibly introduce species-dependent and evolutionarily

more recent divisions.

Keywords: object perception, vision, neuronal representation, fMRI, representational similarity analysis, human,

primate

INTRODUCTION

How does our percept of the similarity of two objects arise from

our internal representation of the objects? One influential theory

holds that perceived similarity can be explained on the basis of

the distance between the objects in a conceptual space (e.g., Gär-

denfors, 2004). A conceptual space can be seen as analogous to

the spatial environment that we live in: in both the location of

an object is determined by its positions on a set of dimensions.

The difference lies in the dimensions that define the space: for our

spatial environment, the location of an object can be specified by

three spatial coordinates (x, y, and z dimensions); for a concep-

tual space, the dimensions can be any object properties, including

perceived color, shape, or semantic category. The location of a

perceived object in a conceptual space is interpreted as the mental

representation of that object. Distances between object representa-

tions inform us about their relationships: the greater the distance,

the greater the perceived dissimilarity. Perceived similarity can be

estimated by asking observers to make explicit object-similarity

judgments.

How the perceived similarity of two objects can be explained on

the basis of their mental representation has long been of interest

to philosophers, mathematicians, and psychologists (e.g., Carnap,

1928/1967; Shepard, 1958; Torgerson, 1958; Rosch et al., 1976;

Tversky, 1977; Edelman, 1998). The geometrical model of the

mental representation described above (e.g., Shepard, 1958; Torg-

erson, 1958; Edelman, 1998) can account for a great variety of

empirical findings and the most recent versions (e.g., Gärdenfors,

2004) also account for phenomena, such as context dependence,

that were initially thought to be difficult to accommodate (Good-

man, 1972; Tversky, 1977; for a recent review, see Decock and

Douven, 2011). Importantly, the geometrical model enables a

direct comparison between brain representational similarity and

similarity judgments. In keeping with the concept of distance in

a representational space, we describe judgments and brain repre-

sentations in terms of dissimilarities, rather than similarities. We

study correlations between representational dissimilarity matri-

ces (RDMs) within the framework of representational similarity

analysis (RSA, Kriegeskorte et al., 2008a) to quantitatively compare

brain, behavior, and computational models.

Object representations are thought to be implemented in the

brain by means of population codes (e.g., Sanger, 2003). If the neu-

rons represent the dimensions of some conceptual space, then the

distances in neuronal pattern space are identical to the conceptual

distances. Neuronal recordings and functional magnetic resonance

imaging (fMRI) both provide only very impoverished samples of

a neuronal population code. With recordings we are missing most
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of the cells. With fMRI, each voxel reflects a local spatiotemporal

average of neuronal activity. In either case, we are sampling a sub-

set of the dimensions of the neuronal response space. However,

the representational distance in our sample can be interpreted as

an estimate of the representational distance in the neuronal popu-

lation code (e.g., Kiani et al., 2007; Kriegeskorte et al., 2008b). This

line of thought has become increasingly popular in recent years

(Edelman et al., 1998; Haxby et al., 2001; McClelland and Rogers,

2003; Kriegeskorte and Kreiman, 2011).

Multiple studies have shown that distributed activity patterns

in human inferior temporal (IT) cortex – a large region of object-

selective cortex located in the ventral visual stream – contain

information about category membership of visual objects (Haxby

et al., 2001; Cox and Savoy, 2003). These results are broadly consis-

tent with earlier findings by Edelman et al. (1998), who pioneered

the application of geometrical models of shape similarity to brain

data and showed initial evidence for clustering by category. Group-

ing individual real-world objects on the basis of the similarity of

the activity patterns they elicit in IT reveals clusters corresponding

to well-known object categories, including animate and inanimate

objects and, within the animates, faces, and bodies (Kiani et al.,

2007; Kriegeskorte et al., 2008b). Major category clusters (e.g., ani-

mates) contain smaller clusters (e.g., faces and bodies), suggesting

a hierarchical organization. The categorical divisions are strikingly

similar between human and monkey IT (mIT) and, importantly,

not accounted for by a range of computational models of low- and

intermediate complexity features (Kriegeskorte et al., 2008b).

The presence of hierarchically organized clusters that corre-

spond to well-known object categories parallels earlier findings on

human categorization behavior by Rosch et al. (1976), who intro-

duced the concept of superordinate (e.g., animate objects), basic

(e.g., faces), and subordinate categories (e.g., female faces). This

parallel suggests that IT, which is thought to be at the interface of

perception and cognition, might be the neuronal substrate for the

mental representations giving rise to object-similarity judgments.

In line with this idea, several studies have suggested a relationship

between perceived similarity and activity-pattern similarity in pri-

mate object-selective cortex for abstract and computer-generated

visual shapes (Edelman et al., 1998; Op de Beeck et al., 2001, 2008;

Kayaert et al., 2005; Haushofer et al., 2008). However, these studies

have not thoroughly investigated the mental similarity representa-

tion of real-world object images and its relation to the inherently

categorical IT representation. Do human object-similarity judg-

ments reflect the IT object space, including its hierarchy of category

clusters?

In order to investigate whether objects that elicit similar activity

patterns in IT are perceived as similar, we compared dissimilar-

ity judgments and IT activity-pattern dissimilarities for 96 color

photos of isolated objects, spanning a wide range of object cat-

egories, including faces and bodies. The stimuli (Figure 1) were

the same as those used in Kriegeskorte et al. (2008b) [and subset

of the stimuli used in Kiani et al. (2007)]. We used the activity-

pattern dissimilarity matrices estimated for human IT (hIT) and

mIT in Kriegeskorte et al. (2008b). We estimated perceived dissim-

ilarities (Figure 2) by acquiring object-similarity judgments in 16

different human observers, using a novel multi-arrangement (MA)

method (Kriegeskorte and Mur, 2012), which enables efficient

FIGURE 1 | Stimuli. This figure shows the object images that we

presented to our subjects. Two stimuli were described as ambiguous by

several of our subjects during debriefing. These stimuli (back of a human

head, knitting wool) are marked with a yellow “A.” This figure is adopted

from Kriegeskorte et al. (2008b).

measurement of perceived similarity for large sets of objects. We

compared the object-similarity judgments to hIT activity-pattern

dissimilarities using (a) descriptive visualizations (Figures 3 and

4), (b) inferential analyses of categorical structure (Figures 5–7),

(c) inferential analyses of continuous structure (Figures 8 and

9), and (d) descriptive and inferential analyses of inter-subject

reliability and categoricality (Figures 10–13). We additionally

related the object-similarity judgments to mIT (Figure 7), to com-

putational models of varying complexity, and to brain-activity

measurements from visual regions other than IT, including early

visual cortex (EVC) (Figure 10).

MATERIALS AND METHODS

OBJECT-SIMILARITY JUDGMENTS

Subjects

Sixteen healthy human volunteers (mean age = 28 years; 12

females) participated in the MA experiment. Subjects had nor-

mal or corrected-to-normal vision; 13 of them were right-handed.

Before participating, the subjects received information about the

procedure of the experiment and gave their written informed
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FIGURE 2 | Continued
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FIGURE 2 | Dissimilarity judgments by multi-arrangement (MA). (A)

Dissimilarity judgments were acquired using a novel MA method, which

allows efficient and subject-tailored acquisition of perceived similarity for large

sets of objects. Subjects were asked to arrange the objects according to their

similarity, using mouse drag-and-drop on a computer display. Perceived

similarity was communicated by adjusting the distances between the objects:

objects perceived as similar were placed close together; objects perceived as

dissimilar were placed further apart. The upper panel of the figure shows

screenshots taken at different moments during the acquisition of the

dissimilarity judgments for one subject. Columns correspond to trials and

rows show object arrangements over time, running from the start (first row)

to the end of each trial (final arrangement, last row). The first trial contained all

object images; subsequent trials contained subsets of images that were

adaptively selected to optimally estimate perceived similarity for each subject.

The black dots represent not-shown arrangements during a trial (small dots)

and not-shown trials (large dots). (B) Once acquisition of the dissimilarity

judgments was completed, inter-object distances of the final trial

arrangements were combined over trials by rescaling and averaging to yield a

single dissimilarity estimate for each object pair. Conceptually, this step can

be seen as “inverse” multidimensional scaling, since it combines several

lower-dimensional (2D) similarity representations into one higher-dimensional

similarity representation. This process is shown for two example objects

pairs: a boy’s face and a hand (red), and carrots and a stop sign (blue). Their

single-trial dissimilarity estimates (arrows) are combined into a single

dissimilarity estimate, which is placed at the corresponding entry of the RDM

(lower panel). Mirror-symmetric entries are indicated by lighter colors.

consent for participating. The experiment was conducted in accor-

dance with the Ethics Committee of the Faculty of Psychology and

Neuroscience, Maastricht University.

Multi-arrangement method

A detailed description of the MA method, including empirical val-

idation of the method by comparison to conventional methods,

can be found in Kriegeskorte and Mur (2012).

Perceived object-similarity is conventionally measured using

pairwise dissimilarity judgments (e.g., Cortese and Dyre, 1996;

Cooke et al., 2007). Given the large number of object pair

dissimilarities to be measured in our study (96 objects, 4560 possi-

ble pairs), acquiring pairwise dissimilarity judgments, or any other

measure that considers each possible pair of objects separately,

would be practically difficult. Data acquisition would require many

hours and multiple sessions. Moreover, subjects might change their

implicit criteria when judging pairwise dissimilarities one-by-one

over different sessions. The MA method solves these problems

by allowing subjects to communicate multiple object-pair dissim-

ilarities at once (Figure 2). In the MA method, subjects com-

municate perceived object-similarity by arranging multiple object

images in 2D on a computer screen by mouse drag-and-drop.

The use of spatial arrangement as a measure of perceived sim-

ilarity has been proposed before (Goldstone, 1994; Risvik et al.,

1994). Our MA method extends this earlier work by introduc-

ing adaptive selection of object subsets during measurement, in

order to efficiently and optimally estimate perceived similarity

for each individual subject. Using our MA method, the acqui-

sition of the 4560 pairwise dissimilarities only required 1 h per

subject.

The method can be summarized as follows. Each arrangement,

or trial, consists of multiple (>2) objects that have to be arranged

in a circular “arena” such that inter-object distances reflect per-

ceived dissimilarity (similar objects are placed close together, dis-

similar objects are placed further apart). This approach enables

time-efficient measurement of perceived object-similarity because

moving one object changes multiple object-pair dissimilarities

at once. Single-trial estimates of object-pair dissimilarities are

computed as Euclidean distances between the objects (after

normalization of object positions by the diameter of the arena).

On the first trial, subjects arrange all objects. On subsequent trials,

they arrange subsets of objects. To optimize the object subsets to be

presented on subsequent trials, we assume that the arrangements

are affected by isotropic placement noise in 2D. The dissimilarity

signal-to-noise ratio of the estimates then depends on how closely

the objects are placed together in the arena: if two objects are

placed close together (smaller dissimilarity signal), the dissimilar-

ity estimate will have a smaller signal-to-noise ratio than when

they are placed further apart. After each trial, the object subset

for the next trial is constructed adaptively so as to provide more

evidence for the object pairs whose current combined estimates

are expected to have the greatest error, thus aiming to minimize

the maximum error of the final dissimilarity estimates. For exam-

ple, the object pair placed closest together on the first trial will

be sampled again on the next trial so as to increase the evidence

for estimating the dissimilarity of these two objects. The use of

multiple trials also enables the subjects to communicate similarity

relationships that would require more than two dimensions to

be accurately estimated. The duration of the MA acquisition can

either be fixed (e.g., 1 h as in our experiment) or contingent upon

the quality of the estimated dissimilarities (e.g., ensuring that

the maximum error margin across all pairs is below a certain

threshold). The MA method was implemented in Matlab (The

MathWorks Inc.).

We instructed our subjects to “Please arrange these objects

according to their similarity,” such that similar objects were

placed close together and dissimilar objects were placed further

apart. The instruction intentionally did not specify which object

properties to focus on, as this would have biased our perspec-

tive on the mental representation of the objects. In other words,

the general instruction enabled us to investigate which properties

subjects would spontaneously use when judging object-similarity

for a large set of real-world object images. After performing the

experiment, subjects were asked to report which object features

they had used for object arrangement.

Construction of the representational dissimilarity matrix

For each subject, the dissimilarity estimates acquired for a given

stimulus pair were averaged across trials. Rescaling of each trial’s

dissimilarity estimates was required before averaging, because sub-

jects were instructed to use the entire arena for each arrangement,

making only the relations between distances on a single-trial, but

not the absolute on-screen distances meaningful. For example,

a given dissimilarity between two objects tended to correspond

to a greater on-screen distance when the two objects appeared

in a smaller subset on a given trial. The single-trial dissimilarity

estimates were therefore iteratively rescaled so as to align them to

the overall average (minimizing the sum of squared deviations)
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FIGURE 3 | Representational dissimilarity matrices (RDMs) and MDS

arrangements for human IT and judgments. Human IT activity patterns and

human similarity judgments both show an inherently categorical

representation of real-world object images with an animate/inanimate top-

level division. At the same time, the similarity judgments show additional

categorical divisions and stronger clustering than the hIT similarity

representation. (A) RDMs based on hIT activity patterns and human similarity

judgments. Each RDM is based on data from multiple subjects (4 and 16,

respectively), averaged at the level of the dissimilarities. Each entry of a

matrix represents hIT activity-pattern dissimilarity (1-r, where r is Pearson

correlation coefficient; 316 most visually responsive bilateral hIT voxels

defined using independent data) or judged dissimilarity (relative Euclidean

distance as measured by the MA method) for a pair of objects. The matrices

were independently transformed into percentiles (see color bar). (B)

Multidimensional scaling (MDS; criterion: metric stress) was used to visualize

the hIT and judgment similarity representations of the 96 real-world object

images. Distances between images reflect the dissimilarities that are shown

in the RDMs in (A): images that elicited similar activity patterns or that were

judged as similar are placed close together; images that elicited dissimilar

activity patterns or were judged as dissimilar are placed further apart.
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FIGURE 4 | Hierarchical clustering for human IT and human judgments.

hIT object-activity patterns have been shown to cluster according to natural

categories (top panel) (Kriegeskorte et al., 2008b). In order to assess whether

human object-similarity judgments show a similar categorical structure, we

performed hierarchical cluster analysis on the similarity judgments (bottom

panel). Hierarchical cluster analysis starts with single-image “clusters” and

successively combines the two clusters closest to each other to form a

hierarchy of clusters. The vertical height of each horizontal link reflects the

average dissimilarity between the stimuli of two linked subclusters. hIT

activity-pattern dissimilarity was measured as 1-r (where r is Pearson

correlation coefficient), judged dissimilarity was measured as relative

Euclidean distance (using the MA method). Text labels indicate the major

clusters. Both hIT activity patterns and human similarity judgments cluster the

objects according to natural categories and show a top-level

animate/inanimate division. However, the human similarity judgments

introduce additional categorical divisions.

until convergence. The 4560 trial-average dissimilarity estimates

were placed in an RDM. RDMs were constructed for each subject

separately and then combined by averaging.

fMRI EXPERIMENT

Acquisition and analysis of the fMRI data have been described in

Kriegeskorte et al. (2008b), where further details can be found.

More information on the RSA framework can be found in

Kriegeskorte et al. (2008a).

Subjects

Four healthy human volunteers participated in the fMRI exper-

iment (mean age = 35 years; two females). Subjects were right-

handed and had normal or corrected-to-normal vision. Before

scanning, the subjects received information about the procedure

of the experiment and gave their written informed consent for

participating. The experiment was conducted in accordance with

the Institutional Review Board of the National Institutes of Mental

Health, Bethesda, MD, USA.
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FIGURE 5 | Human dissimilarity judgments emphasize additional

categorical divisions not present in human IT. (A) We decomposed the

dissimilarity matrices for hIT and judgments into two additive components,

reflecting the category-related dissimilarity variance and non-category-related

dissimilarity variance (i.e., within-category dissimilarities and noise). (B) The

decomposition was performed by fitting a linear model with multiple predictor

dissimilarity matrices, each reflecting a categorical division (red, magenta,

cyan, blue) or an imbalance between average within-category dissimilarities

of two categories (e.g., average within-animate dissimilarity < average

within-inanimate dissimilarity). We fitted the model to the RDMs for hIT and

judgments using ordinary-least-squares and estimated the ratio of

category-related dissimilarity variance (captured by the model) and

non-category-related dissimilarity variance (residuals). We then equated the

proportion of residual variance by adding noise to the RDM with smaller

proportion residual variance. The judgments had a smaller proportion of

residual variance. The judgments matrix shown in A contains the added noise.

Equating the residual variance is necessary for valid statistical inference (for

details on the noise model and inference, see Materials and Methods).

(C) We then fitted the model to the residual-equated RDMs and compared hIT

and judgments in terms of the percentage of category variance explained by

each category division. The animate/inanimate and face/body divisions

explained significantly more variance in hIT than in the judgments. The

human/non-human and natural/artificial divisions explained significantly more

variance in the judgments than in hIT.
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FIGURE 6 | Categorical divisions in human IT and monkey IT. We used the

linear model from Figure 5 (repeated in (B) for convenience) also to compare

the IT representations between human and monkey [same data as in

Kriegeskorte et al. (2008b) for both species; a more in-depth analysis of the

monkey data is Kiani et al. (2007)]. (A,B) The proportion of residual variance

was greater in mIT than hIT. Residual variance was therefore equated by

adding noise to the hIT matrix (which is therefore not identical to Figure 5).

(C) Descriptively, the animate/inanimate and face/body divisions are

prominent in both hIT and mIT and the human/non-human and natural/artificial

divisions less so. Monkey IT might emphasize the animate/inanimate division

less and the face-body division more relative to human IT. However, we could

not perform the randomization test of Figure 5 here, because there were only

two monkey subjects. For further inferential analyses comparing hIT, mIT, and

human judgments, see Figure 7.

Experimental design and task

Stimuli were presented using a rapid event-related design (stim-

ulus duration, 300 ms; interstimulus interval, 3700 ms) while

subjects performed a fixation-cross-color detection task. Stim-

uli were displayed on a uniform gray background at a width of

2.9˚ visual angle. Each of the 96 object images was presented
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FIGURE 7 | Human IT and monkey IT are more similar to each other

than to human judgments. (A) hIT, mIT, and human judgment RDMs

compared in a second-order MDS arrangement (criterion: metric stress;

distance measure: 1 – Pearson r ) before (left) and after (middle) equating

the proportion of non-category-related variance by adding dissimilarity

noise to the hIT and judgment RDMs. Statistical inference (right, via

bootstrapping the stimulus set) indicates that hIT and mIT RDMs are more

similar to each other than either of them is to human judgments. (B) The

same analysis applied to the predicted RDMs of the category-model

(Figure 5) suggests that hIT and mIT are very similar in terms of the

categorical divisions they emphasize and significantly more similar to each

other in this respect than either of them is to human judgments. (C) The

same analysis applied to the residual RDMs of the category-model shows

a weak reflection of the category-model results: hIT and mIT appear

slightly more similar to each other than either of them is to the human

judgments.

once per run. Subjects participated in two sessions of six 9 min

runs each. In addition, subjects participated in a separate block-

localizer experiment. Stimuli (grayscale photos of faces, objects,

and places) were presented in 30-s category blocks (stimulus dura-

tion, 700 ms; interstimulus interval 300 ms). Subjects performed a

one-back repetition-detection task on the images.

Functional magnetic resonance imaging

Blood-oxygen-level-dependent fMRI measurements were per-

formed at high resolution (voxel volume: 1.95 mm × 1.95 mm ×

2 mm), using a three Tesla General Electric HDx MRI scanner,

and a custom-made 16-channel head coil (Nova Medical Inc.).

We acquired 25 axial slices that covered IT and EVC bilater-

ally (single-shot, gradient-recalled Echo Planar Imaging: matrix

size: 128 × 96, TR: 2 s, TE: 30 ms, 272 volumes per run, SENSE

acquisition).

Estimation of single-image activity patterns

fMRI data were preprocessed in BrainVoyager QX (Brain Inno-

vation) using slice-scan-time correction and head-motion cor-

rection. All further analyses were conducted in Matlab (The

MathWorks Inc.). Single-image activity patterns were estimated

for each session by voxel-wise univariate linear modeling (using

all runs except those used for region-of-interest definition). The

model included a hemodynamic-response predictor for each

of the 96 stimuli along with run-specific motion, trend, and

confound-mean predictors. For each stimulus, we converted the

response-amplitude (beta) estimate map into a t map.
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FIGURE 8 | hIT activity-pattern dissimilarities and judged dissimilarities

are significantly correlated within all images and within category

subsets of images. (A) Scatter plot of hIT activity-pattern dissimilarities and

judged dissimilarities taken from the subject-average RDMs shown in

Figure 3A. A dot is placed for each stimulus pair based on its hIT

activity-pattern dissimilarity and judged dissimilarity (three example stimulus

pairs are shown). The large gray dots represent all possible stimulus pairs

(r = 0.39, p < 0.0001; r is Spearman correlation coefficient). The smaller

colored dots placed on top of the gray dots code for subsets of images:

green dots represent animate object pairs (r = 0.34, p < 0.0001), cyan dots

represent inanimate object pairs (r = 0.19, p < 0.0001), and red dots

represent object pairs consisting of an animate and an inanimate object

(r = −0.16, p < 0.9975). Consistent with the results in Figure 3, the

marginal histograms show that both hIT and judged dissimilarities are larger

for object pairs that cross the animate-inanimate category boundary (red)

than for object pairs that do not cross this boundary (green and cyan). (B) To

test whether the continuous match between hIT and judged dissimilarities

would generalize to the population of similarity judgment subjects, we

computed the correlation of each single-subject judgment RDM with the

subject-average hIT RDM and tested whether the average of those

correlations was significantly larger than zero, using a one-sample t test.

Bars show the average correlation between hIT and judged dissimilarities

across subjects. Error bars show SEM. Asterisks indicate significance

(p < 0.001).

Definition of regions of interest

All regions of interest (ROIs) were defined on the basis of indepen-

dent experimental data and restricted to a cortex mask manually

drawn on each subject’s fMRI slices. Human IT was defined by

selecting the 316 most visually responsive voxels within the IT

portion of the cortex mask. Visual responsiveness was assessed

Frontiers in Psychology | Perception Science March 2013 | Volume 4 | Article 128 | 10

http://www.frontiersin.org/Perception_Science
http://www.frontiersin.org/Perception_Science/archive


Mur et al. Object-similarity judgments and IT

FIGURE 9 | hIT activity-pattern dissimilarities and judged dissimilarities

are significantly correlated within most finer-grained category subsets of

images. (A) Scatter plots of hIT and judged dissimilarities taken from the

subject-average RDMs in Figure 3A. A dot is placed for each stimulus pair

based on its hIT activity-pattern dissimilarity and judged dissimilarity. The large

(Continued )
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FIGURE 9 | Continued

gray dots represent all possible stimulus pairs, the smaller colored dots

placed on top of the gray dots code for subsets of images as indicated in

the plot legends. Plot legends show Spearman correlation coefficients and

associated p-values computed with a one-sided stimulus-label

randomization test (10,000 randomizations). Asterisks indicate significance

(*** = p < 0.001, ** = p < 0.01). The hIT and judgment similarity structures

are significantly correlated within the following subsets of images: faces,

bodies, human bodies, humans, non-human animates, natural objects, and

artificial objects. This suggests a shared within-category similarity structure.

(B) The within-category match between hIT activity-pattern dissimilarities

and judged dissimilarities generalizes to the population of similarity

judgment subjects. We computed the correlation of each single-subject

similarity judgment RDM with the subject-average hIT RDM and tested

whether the average of those correlations was significantly larger than zero,

using a one-sample t test. Bars show the average correlation between hIT

and judged dissimilarities across subjects. Error bars show SEM. Asterisks

indicate significance (p < 0.001).

using the t map for the average response to the 96 object images.

The t map was computed on the basis of one third of the runs

of the main experiment within each session. To define EVC, we

selected the 1057 most visually responsive voxels, as for IT, but

within a manually defined anatomical region around the cal-

carine sulcus within the cortex mask. The fusiform face area (FFA)

(Kanwisher et al., 1997) and parahippocampal place area (PPA)

(Epstein and Kanwisher, 1998) were defined based on the separate

block-localizer experiment. The FFA was defined by the contrast

faces minus objects and places; the PPA was defined by the con-

trast places minus objects and faces. Each of the four resulting

unilateral regions contained 128 voxels.

Construction of the representational dissimilarity matrix

For each ROI, we extracted a multivoxel pattern of activity (t map)

for each of the 96 stimuli. For each pair of stimuli, activity-pattern

dissimilarity was measured as 1 − Pearson linear correlation across

voxels within the ROI (0 for perfect correlation, 1 for no correla-

tion, 2 for perfect anticorrelation). The resulting 4560 pairwise

dissimilarity estimates were placed in an RDM. RDMs were con-

structed for each subject and session separately and then combined

by averaging.

COMPARING REPRESENTATIONAL SIMILARITY BETWEEN BRAIN AND

BEHAVIOR

Descriptive visualizations

To compare hIT activity-pattern dissimilarities and dissimilarity

judgments, we first visualized the data in multiple ways (Figures 3

and 4). These figures display not only the RDMs, but also the asso-

ciated multidimensional scaling (MDS) plots (Torgerson, 1958;

Shepard, 1980) and hierarchical cluster trees (Shepard, 1980).

The MDS plots (criterion: metric stress) display the multidimen-

sional similarity representations in 2D: the closer the objects, the

more similar their activity patterns or the higher their perceived

similarity. The hierarchical cluster trees (linkage method: aver-

age linking) explore, which object clusters emerge from the data

when objects are grouped based on activity-pattern or perceived

similarity.

Comparing categorical structure

The descriptive visualizations were complemented by inferen-

tial analyses addressing the question whether hIT and simi-

larity judgments emphasize different categorical divisions. For

this purpose, we assumed conventional categorical divisions

(animate/inanimate, face/body, human/non-human, and nat-

ural/artificial) and tested whether the percentage of dissimilarity

variance explained by a given categorical division was greater for

hIT or for the similarity judgments.

Linear model of category-related variance. We modeled each

RDM (hIT, judgments) as a linear combination of RDMs rep-

resenting the category divisions and within-category clustering

imbalances (Figures 5A,B). Clustering imbalance refers to a

difference in degree of clustering for the categories involved in a

division, e.g., stronger clustering within faces than within bodies.

The model was fit using ordinary least squares. We then com-

pared the proportion of the total dissimilarity variance explained

by the category-model for hIT and judgments. This proportion

was larger for the judgments (0.59) than for hIT (0.39). This must

be due to a combination of two components: the within-category

variance and the noise. In order to perform statistical inference

on the difference between hIT and judgments with respect to

a given categorical division despite the different proportions of

residual variance, we took two steps. (1) We expressed variance

explained by that division as a portion of the total variance

explained by the category-model (thus measuring, for example,

animate/inanimate variance as a percentage of total category-

related variance) (Figure 5C). We used the squared beta weights to

estimate explained variance, yielding estimates that are normalized

for predictor energy. (2) We added dissimilarity noise to the judg-

ment RDM, so as to equate the proportion dissimilarity variance

explained by the category-model between hIT and judgments. The

noise-equated judgment RDM is shown in Figure 5A.

Note that ordinary-least-squares fitting is often motivated by

the fact that it gives a maximum-likelihood estimate when the

errors are independent and Gaussian. Here we model dissimi-

larities, which are not independent or Gaussian. The ordinary-

least-squares fit merely serves to give us descriptive indices of the

relative strength of different categorical divisions. Our method of

inference on these statistics is not dependent on assumptions of

Gaussianity or independence and has been validated by simula-

tion (An alternative approach to modeling the categorical divi-

sions, motivated by maximum-likelihood estimation, would be to

replace the correlation distances by correlations, i.e., to use simi-

larities instead of dissimilarities, apply the Fisher Z transform, and

then fit a category-model by least squares. The Z values reflecting

the similarities would still be dependent and not exactly Gaussian,

but perhaps the model would be preferable from a statistical per-

spective. This approach would require a validation study, which is

beyond the scope of the present paper).

Equating residual variance. To equate the proportion residual

variance between judgments and hIT, we assumed that the dissim-

ilarity noise arises from isotropic Gaussian noise affecting single-

subject patterns in a high-dimensional representational space. In

the limit of infinite dimensions, the noise displacements are then
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FIGURE 10 | Similarity judgments’ match to brain and model

representations. (A) Multidimensional scaling of similarity

representations (criterion: metric stress, distance measure: 1-r, where r is

Spearman correlation coefficient). The MDS plot visualizes the

relationships between multiple RDMs simultaneously. Text-label colors

indicate the type of similarity representation: red indicates brain-activity,

blue indicates human similarity judgments, black indicates simple

computational models, and gray/blue indicates complex computational

models. Single-subject similarity judgment RDMs are shown as well

(smaller font). The gray connections between the RDMs reflect the

inevitable distortions induced by arranging the higher-dimensional

similarity representations in a lower-dimensional space (2D). (B) Match

bars for several brain regions and models showing their deviation from the

subject-average similarity judgment RDM. The deviation is measured as

1 − Spearman correlation between RDMs. Text color encodes the type of

representation as in (A). Error bars indicate the standard error of the

deviation estimate. The standard error was estimated as the standard

deviation of 100 deviation estimates obtained from bootstrap resamplings

of the condition set. The p-value below each bar indicates whether the

associated RDM is significantly related to the similarity judgment RDM

(stimulus-label randomization test, 10,000 randomizations). hIT is the best

match to the similarity judgments.

orthogonal to the representational distances. We assumed this

orthogonality and a Euclidean distance metric. By the Pythagorean

theorem, for each pattern, its squared Euclidean noise displace-

ment can then be added to each squared Euclidean distance of

that pattern to other patterns, to simulate the effect of the noise.

After adding the noise components to the squared Euclidean

RDM, we took the square root to convert back to the original

RDM units. We adjusted the standard deviation of the Gaussian

noise to equate the proportion of category-related variance in the

RDM.

Randomization test. To test whether hIT and judgments place

different emphasis on a given categorical division, we performed

statistical inference on the difference in percentage of explained
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FIGURE 11 | Human judgments show similar reliability but stronger

categoricality than human IT. (A) Multidimensional scaling of

single-subject similarity representations (criterion: metric stress, distance

measure: 1-r, where r is Spearman correlation coefficient). The MDS plot

visualizes the relationships between multiple RDMs simultaneously.

Text-label colors indicate the type of similarity representation: red indicates

human IT, blue indicates human similarity judgments. Subject-average

RDMs are shown in larger font. The gray connections between the RDMs

reflect the inevitable distortions induced by arranging the

higher-dimensional similarity representations in a lower-dimensional space

(2D). Visual inspection of the MDS plot suggests that variability across

subjects is similar for judgments and hIT. (B) This panel shows inter-subject

reliability for hIT and judgments. We estimated inter-subject reliability as the

average pairwise inter-subject RDM correlation (Spearman r ), using sets of

(Continued )

FIGURE 11 | Continued

four subjects (one set for hIT; 5,000 randomly selected subsets for the

judgments). The hIT reliability falls well within the judgment distribution,

indicating that hIT and judgments do not significantly differ in terms of

reliability. (C) This panel shows categoricality for hIT and judgments. We

estimated categoricality as the proportion of dissimilarity variance explained

by the category-model (Figure 5B), averaged across sets of four subjects

(one set for hIT; 5,000 randomly selected subsets for the judgments). Note

that we fitted the model after accounting for any difference in reliability

between judgments and hIT. The hIT categoricality falls within the bottom

5% of the judgment distribution, which indicates that the judgments are

more categorical than the hIT representation.

FIGURE 12 | Single-subject RDMs and category-model predictions for

human IT and human judgments. To give an impression of categoricality

at the single-subject level, we plotted the single-subject RDMs for hIT and

judgments (top panel), and the associated single-subject category-model

predictions (bottom panel). The category-model (Figure 5B) was fitted to

each subject’s RDM after equating inter-subject reliability between hIT and

judgments. Visual inspection suggests stronger categoricality for the

judgments than for hIT.
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category variance between hIT and judgments (Figure 5C).

Inference was performed by randomization of the data labels

(“hIT” or “judgments”) across subjects, simulating the null

hypothesis that hIT and judgments do not differ in the percentages

of category-related dissimilarity variance explained by the categor-

ical divisions. We performed 10,000 randomizations, each yielding

an estimate of our test statistic under the null hypothesis. If the

actual difference (for the true labeling) in percentage of explained

category variance for a given categorical division fell within the

most extreme 5% of the simulated null distribution (two-sided

test), we rejected the null hypothesis of no difference in categorical

structure between hIT and judgments for that categorical division.

To check whether the label randomization test succeeds at con-

trolling the false-positive rate at 0.05, we simulated the case of

two sets of RDMs with an identical categorical structure (null

hypothesis), but different levels of dissimilarity noise. The num-

ber of conditions and categorical divisions matched those in our

actual data. The proportions of residual variance of the cat-

egory model were set to match those in hIT and judgments.

We ran the simulation 100 times, each time performing (1)

the noise-adjustment step to equate the proportion of resid-

ual variance, (2) the fitting of the category model, and (3) the

label-randomization test (1,000 randomizations) on the simu-

lated RDMs. The false-positives rates for all simulated category

divisions (animate/inanimate, face/body, natural/artificial) were

consistently below 0.05, suggesting that our test is valid and slightly

conservative.

Comparison between human and monkey IT. We additionally

compared the categorical structure between human and mIT using

the same approach (Figure 6). The monkey RDM is based on neu-

rophysiological recordings from a population of IT cells (Kiani

et al., 2007), which we previously compared to hIT in terms of

continuous structure (Kriegeskorte et al., 2008b). We could not

perform statistical inference for the human-monkey compari-

son of categorical divisions because the monkey data were based

on only two subjects, which is too few to perform a valid ran-

domization test. Instead, we compared the hIT, mIT, and human

judgment RDMs in a second-order MDS arrangement (Figure 7).

To test whether the RDMs were significantly related, we cor-

related each pair of RDMs (i.e., hIT-mIT, hIT-judgments, and

mIT-judgments), and performed statistical inference on each pair-

wise correlation coefficient using a stimulus-label randomization

test (10,000 randomizations), which simulates the null hypoth-

esis of unrelated RDMs. If the actual correlation coefficient fell

within the top 5% of the null distribution, we rejected the null

hypothesis of unrelated RDMs. Even if all RDMs are significantly

related, some of them might be more strongly related than oth-

ers. To test whether two RDMs were more closely related than

two other RDMs, we performed statistical inference on the differ-

ence of the correlation distances (1 – Pearson r) using bootstrap

resampling of the stimulus set (1,000 resamplings). This simulates

the distribution of differences between the correlation distances

that we would expect to observe if we repeated the experiment for

different samples of stimuli (drawn from the same hypothetical

distribution of stimuli). If 0 fell in the top or bottom 2.5% of the

difference distribution, we rejected the null hypothesis of equal

relatedness of both pairs of RDMs and concluded that the two

more highly correlated RDMs were more closely related.

Comparing continuous structure

We performed further inferential analyses addressing the question

whether hIT and similarity judgments share continuous dissim-

ilarity variance. To address this question, we tested whether the

dissimilarity estimates of corresponding object pairs were signifi-

cantly correlated between hIT and judgments. We performed this

test for all objects (Figure 8), and for category subsets of objects

(Figure 9). We used the same test to relate the judgments to brain-

activity measurements from visual regions other than hIT, and to

computational models of varying complexity (Figure 10).

We estimated the degree of correlation using Spearman’s rank

correlation coefficient, since we expected a monotonic, but not

necessary linear, relationship between hIT and judgment RDMs.

The correlation was restricted to the lower triangle of each RDM,

which contained all possible pairwise dissimilarity estimates. The

classical method for inference on correlation coefficients assumes

independent pairs of measurements for the variables being corre-

lated. Such independence cannot be assumed for RDMs, because

each dissimilarity estimate is dependent on two stimuli, each of

which also codetermines the dissimilarities of all its other pair-

ings in the RDM. We therefore tested the relatedness of the hIT

and judgment RDMs by randomization of the stimulus labels

(Figures 8A, 9A, and 10B). We performed 10,000 randomizations,

each yielding an estimate of the correlation coefficient under the

simulated null hypothesis that hIT and judgments do not share

continuous dissimilarity variance. The obtained estimates served

as a null distribution for statistical inference. If the actual cor-

relation coefficient fell within the top 5% of the simulated null

distribution, we rejected the null hypothesis of unrelated RDMs.

We also tested the relatedness of the hIT and judgment RDMs

in a random-effects analysis across subjects (Figures 8B and 9B).

This analysis enables generalization of the results to the population

and does not assume independence of the dissimilarity estimates

in an RDM. We first computed single-subject Spearman rank cor-

relation coefficients by correlating each single-subject judgment

RDM with the subject-average hIT RDM. We then transformed

these correlation coefficients using the Fisher Z transform and

performed a standard one-sample t test on the resulting Z val-

ues. The t test was used to determine whether the average of the

single-subject Z values was larger than zero.

Measurement noise affects correlation estimates, e.g., it might

weaken the observed correlation between two variables (hIT, judg-

ments). An attenuation correction could alleviate the influence

of noise, however, this would ideally require estimating the test-

retest reliability of the hIT and judgment data. This was not

feasible since the judgments were acquired in a single session.

The reported correlation coefficients are therefore not corrected

for attenuation. Although this might have decreased our sensitiv-

ity to effects, it does not affect the validity of our stimulus-label

randomization test.

Comparing inter-subject reliability and categoricality

To get an impression of the inter-subject variability of hIT and

judgment RDMs, we performed second-order MDS (criterion:
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FIGURE 13 | Human similarity judgments show substantial

consistency across subjects, for all images and for most category

subsets of images. The upper triangle of each matrix shows all

possible pairwise inter-subject RDM correlations (Spearman r ). The

mirror-symmetric entries in the lower triangle of each matrix show the

corresponding thresholded p-values. p-values were computed using a

stimulus-label randomization test with 10,000 randomizations and

corrected for multiple comparisons using the False Discovery Rate. The

average of all pairwise 120 inter-subject correlations is shown below

each matrix.

metric stress; distance measure: 1 − Spearman r) on the single-

subject RDMs for hIT and judgments combined (Figure 11A):

the closer two subjects in the MDS plot, the more similar their

representational similarity structures. The MDS visualizations

were complemented by inferential analyses addressing the ques-

tion whether hIT and judgments differ in inter-subject reliability

(Figure 11B). We estimated inter-subject reliability as the average

pairwise correlation (Spearman r) between single-subject RDMs.

We first computed the inter-subject reliability for hIT (four sub-

jects, six pairwise comparisons), and then repeatedly selected

random subsets of four subjects from the judgment data (16

subjects) to estimate inter-subject reliability for the judgments

(5,000 randomizations). We used these 5,000 estimates as a null

distribution for statistical inference: if the hIT estimate fell within

the most extreme 5% of the judgment distribution, we rejected

the null hypothesis of no difference between hIT and judgments

in inter-subject reliability.

If we consider both measurement error and inter-subject vari-

ation as noise, we can equate noise levels by equating inter-

subject reliability, and address the question whether the similar-

ity judgments are more categorical than the hIT representation

(Figure 11C). Although inter-subject reliability was not signifi-

cantly different between judgments and hIT, we explicitly equated

it using the same procedure as described previously under the

heading ‘Equating residual variance’ (i.e., by adding dissimilar-

ity noise to the single-subject judgment RDMs; inter-subject
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reliability for hIT was 0.28, average inter-subject reliability for

the judgments was 0.32). Note that this time the amount of noise

was adjusted to equate inter-subject reliability, not the proportion

of category-related variance, enabling us to compare the latter

between judgments and hIT. We fitted the category model (shown

in Figures 5 and 6) to the noise-equated single-subject RDMs, and

computed the proportion of category-related dissimilarity vari-

ance for each subject. We used the subject-average proportion of

category-related dissimilarity variance as an estimate of categori-

cality. We first estimated categoricality for hIT (four subjects), and

then repeatedly selected random subsets of four subjects from the

judgment data (16 subjects) to estimate categoricality for the judg-

ments (5,000 randomizations). We used these 5,000 estimates as

a null distribution for statistical inference: if the hIT estimate fell

within the bottom 5% of the judgment distribution, we rejected

the null hypothesis of no difference between hIT and judgments

in categoricality. Figure 12 shows the single-subject hIT and judg-

ment RDMs and the single-subject category-model predictions

(estimated using noise-equated RDMs) for visual inspection.

Figure 13 displays inter-subject reliability for the judgments in

more detail. The correlation matrices show all possible pairwise

inter-subject correlation coefficients (Spearman r), for all images

(top panel), and for category subsets of images (smaller panels).

Statistical inference was performed using stimulus-label random-

ization tests, simulating the null hypothesis of uncorrelated RDMs.

Results were corrected for multiple comparisons using the False

Discovery Rate.

MODEL REPRESENTATIONS OF THE STIMULI

We processed our stimuli to obtain their representations in a num-

ber of simple and complex computational models. The model rep-

resentations have been described previously (Kriegeskorte et al.,

2008a,b), but are repeated here for completeness. Each image was

converted to a representational vector as described below for each

model. Each representational vector was then compared to each

other representational vector by means of 1-r as the dissimilarity

measure (where r is Pearson correlation coefficient). The result-

ing model RDMs were then compared to the similarity judgment

RDM (Figure 10).

Binary silhouette image

The RGB color images (175 × 175 pixels) were converted to binary

silhouette images, in which all background pixels had the value 0

and all figure pixels had the value 1. Each binary silhouette image

was then converted to a pixel vector (175 × 175 binary numbers).

Luminance image

The RGB color images (175 × 175 pixels) were converted to lumi-

nance images. Each luminance image was then converted to a pixel

vector (175 × 175 numbers).

Color image (CIELAB)

The RGB color images (175 × 175 pixels) were converted to the

CIELAB color space, which approximates a linear representation

of human perceptual color space. Each CIELAB image was then

converted to a pixel vector (175 × 175 × 3 numbers).

Color set (joint CIELAB histogram)

The RGB color images (175 × 175 pixels) were converted to the

CIELAB color space. The three CIELAB dimensions (L, a, b),

were then divided into six bins of equal width. The joint CIELAB

histogram was computed by counting the number of figure pix-

els (gray background left out) falling into each of the 6 × 6 × 6

bins. The joint histogram was converted to a vector (6 × 6 × 6

numbers).

V1 model

The luminance images (175 × 175 pixels, 2.9˚ visual angle) were

given as input to a population of modeled V1 simple and com-

plex cells (Riesenhuber and Poggio, 2002; Lampl et al., 2004; Kiani

et al., 2007). The receptive fields (RFs) of simple cells were simu-

lated by Gabor filters of four different orientations (0˚, 90˚, −45˚,

and 45˚) and 12 sizes (7–29 pixels). Cell RFs were distributed over

the stimulus image at 0.017˚ intervals in a cartesian grid (for each

image pixel there was a simple and a complex cell of each selectivity

that had its RF centered on that pixel). Negative values in outputs

were rectified to zero. The RFs of complex cells were modeled by

the MAX operation performed on outputs of neighboring sim-

ple cells with similar orientation selectivity. The MAX operation

consists in selecting the strongest (maximum) input to determine

the output. This renders the output of a complex cell invariant to

the precise location of the stimulus feature that drives it. Simple

cells were divided into four groups based on their RF size (7–9

pixels, 11–15 pixels, 17–21 pixels, 23–29 pixels) and each com-

plex cell pooled responses of neighboring simple cells in one of

these groups. The spatial range of pooling varied across the four

groups (4 × 4, 6 × 6, 9 × 9, and 12 × 12 pixels for the four groups,

respectively). This yielded 4 (orientation selectivities) × 12 (RF

sizes) = 48 simple-cell maps and 4 (orientation selectivities) × 4

(sets of simple-cell RF sizes pooled) = 16 complex cell maps of

175 × 175 pixels. All maps of simple and complex cell outputs

were vectorized and concatenated to obtain a representational vec-

tor for each stimulus image. We also included a version of the V1

model in which we averaged all simple and complex cell responses

representing the same retinal location (averaging also across ori-

entation selectivities and RF sizes) in order to mimic the effect of

downsampling by population averaging within fMRI voxels (“V1

model, smoothed”).

HMAX-C2 based on natural image fragments

This model representation developed by Serre et al. (2005)

builds on the complex cell outputs of the V1 model described

above (implemented by the same group). The C2 features

used in the analysis may be comparable to those found in

primate V4 and posterior IT. The model has four sequential

stages: S1-C1-S2-C2. The first two stages correspond to the

simple and complex cells described above, respectively. Stages

S2 and C2 use the same pooling mechanisms as stages S1

and C1, respectively. Each unit in stage S2 locally pools infor-

mation from the C1 stage by a linear filter and behaves as

a radial basis function, responding most strongly to a par-

ticular prototype input pattern. The prototypes correspond

to random fragments extracted from a set of natural images

(stimuli independent of those used in the present study). S2
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outputs are locally pooled by C2 units utilizing the MAX

operation for a degree of position and scale tolerance. A

detailed description of the model (including the parameter

settings and map sizes we used here) can be found in Serre

et al. (2005). The model, including the natural image frag-

ments, was downloaded from the author’s website in January

2007 (for the current version, see http://cbcl.mit.edu/software-

datasets/standardmodel/index.html).

RADON transform

As an example of a model inspired by image processing, we

included the Radon transform, which has been proposed as a func-

tional account of the representation of visual stimuli in the lateral

occipital complex. The Radon transform of a two-dimensional

image is a matrix, each column of which corresponds to a set

of integrals of the image intensities along parallel lines of a

given angle. We used the Matlab function radon to compute

the Radon transform for each luminance image. We additionally

used smoothed versions of these radon-transformed images (low-

passed), which were computed by convolving the transformed

images with a Gaussian kernel of 11.75 pixels full width at half

maximum (“radon, smoothed”).

RESULTS

HUMAN JUDGMENTS REFLECT IT CATEGORICAL DIVISIONS AND

INTRODUCE HUMAN-RELATED ADDITIONAL DIVISIONS

Figure 3 visualizes the dissimilarity data for judgments and hIT.

Both the RDMs (Figure 3A) and MDS arrangements (Figure 3B)

suggest that the human judgments strongly emphasize con-

ventional categorical divisions. The top-level division is ani-

mate/inanimate just like in the hIT representation. In addition,

both hIT and judgments show a tight cluster of human faces.

Compared to the hIT representation, the judgments appear to

exhibit tighter (sub)clusters, which could reflect the nature of

the representation or different noise levels of the measurements.

Further analyses support the first explanation (Figure 11). The

cluster analysis (Figure 4) suggests that, in addition to the ani-

mate/inanimate and face/body divisions that are present in both

representations, the judgments show a natural/artificial division

among the inanimate objects and a prominent human/non-

human division among the animate objects. The human/non-

human division appears at a higher level of the hierarchy (sug-

gesting that it explains more pattern variance) than the face/body

division. Both additional divisions observed in the human judg-

ments concern the distinction between human-associated objects

(human face or body, or artificial, i.e., man-made, object) and non-

human-associated objects (non-human face or body, or natural

object).

Debriefing reports of the subjects are consistent with the

descriptive visualizations of the judgment data. Fifteen out of six-

teen subjects indicated that they arranged the objects by semantic

category. The specific categories mentioned by the subjects corre-

spond to the (sub)clusters shown in Figure 3B (e.g., human faces,

monkeys/apes, fruits, tools). Most subjects indicated that they also

used shape and color to arrange the objects, specifically within

category clusters.

Figure 5 shows the inferential analysis of category-related

variance components. The categories were defined according to

our prior hypotheses based on the literature and used con-

ventional categorical divisions (animate/inanimate, face/body,

human/non-human, natural/artificial). We used a linear model

of category-related dissimilarity variance (Figures 5A,B) and

estimated the percentage of the total category-related vari-

ance explained by each categorical division (Figure 5C). Con-

sistent with the clustering results, this showed that the ani-

mate/inanimate and face/body divisions were prominent in both

hIT and judgments, and that the judgments additionally intro-

duced the divisions human/non-human and natural/artifical.

Inferential comparisons showed that the human/non-human and

the natural/artificial division are significantly stronger in the

judgments than in hIT (p < 0.01 for both divisions, random-

ization test), and the animate/inanimate and the face/body divi-

sion are significantly weaker (p < 0.01, p < 0.025, respectively).

Since the category-related variance claimed by each division is

defined as a percentage of the total category-related variance

for each RDM, the additional divisions seen in the judgments

come at the expense of the other divisions. The smaller percent-

age for the animate/inanimate and the face/body division in the

judgments might, thus, be entirely explained by the additional

divisions.

HUMAN IT IS MORE CLOSELY RELATED TO MONKEY IT THAN TO

HUMAN JUDGMENTS

Figures 6 and 7 bring in the mIT data. Figure 6 suggests that

hIT and mIT share their major categorical divisions, i.e., the

top-level animate/inanimate division and the face/body division

within the animates, consistent with descriptive visualizations

in earlier work (Kriegeskorte et al., 2008b). Figure 7 visually

and inferentially relates the three RDMs (hIT, mIT, and human

judgments). The three RDMs are significantly related, as are

their category-related components of the dissimilarity variance

(p < 0.0001 for each pairwise comparison). This, however, does

not exclude that some RDMs might be more strongly related

than others. Further analyses showed that the RDMs for hIT

and mIT are significantly more similar than either of them is

to the judgments (p < 0.05, p < 0.01, respectively; Figure 7A).

When we consider only the category-related component of the

dissimilarity variance (Figure 7B), this effect is even more pro-

nounced: hIT and mIT are much more similar to each other

than either of them is to the judgments (p < 0.001, p < 0.001,

respectively). When we consider only the non-category-related

component (Figure 7C), we see a weak reflection of the same

qualitative picture: hIT and mIT appear slightly more similar to

each other than either of them is to the judgments (p > 0.05,

p < 0.01, respectively). Consistent with this finding, the non-

category-related components are significantly correlated between

human and monkey IT (p < 0.0001) but not between human

judgments and either monkey or human IT. We did not find

any evidence that human judgments are more closely related to

hIT than to mIT for the original RDMs, for the category-related

component RDMs, or for the non-category-related component

RDMs.
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HUMAN JUDGMENTS REFLECT THE IT REPRESENTATION, EVEN

WITHIN CATEGORIES

We have seen that hIT dissimilarities are more closely related

to mIT dissimilarities than to human dissimilarity judgments.

This does not mean that human judgments do not reflect the

hIT representation. To investigate in detail to what extent and for

which categories hIT and judgments share continuous dissimilar-

ity variance, we tested whether the dissimilarities were significantly

correlated between hIT and judgments across object pairs. We

performed this test for all objects (in which case a significant cor-

relation could be driven by shared categorical divisions) and for

category subsets of objects. The dissimilarities were significantly

correlated, both within all objects and within most category sub-

sets of objects (Figures 8A and 9A). In particular, dissimilarities

were significantly correlated (stimulus-label randomization test

applied to group-average RDMs) within the following categories:

animate objects, inanimate objects, faces, bodies, human bodies,

humans (faces and bodies), non-human animates (faces and bod-

ies), natural objects, and artificial objects. We found no evidence

for a dissimilarity correlation between hIT and human judgments

within the following categories: human faces, animal faces, and

animal bodies. The highest correlation coefficients between hIT

activity-pattern dissimilarities and dissimilarity judgments were

found within humans (r = 0.60), within faces (r = 0.40), and

within natural objects (r = 0.46).

A similar pattern of dissimilarity correlations between hIT and

human judgments was found in a random-effects analysis across

subjects (Figures 8B and 9B). Again, hIT and judgments were sig-

nificantly correlated within all images and within most category

subsets of images, including all subsets that were identified by the

stimulus-label randomization test. This suggests that our results

can be generalized to the population of similarity-judgment sub-

jects. These results show that,although judgments emphasize addi-

tional categorical divisions, they do reflect the representational

dissimilarities of IT, even within categories.

HUMAN IT EXPLAINS HUMAN JUDGMENTS BETTER THAN OTHER

VENTRAL-STREAM REGIONS AND COMPUTATIONAL MODELS

Other brain regions, including EVC, the FFA, and the PPA, did

not match the judgments as well as hIT (Figure 10). FFA showed a

lower, but still significant correlation with the similarity judgments

(r = 0.22, p < 0.0001); for EVC and PPA, the correlation was not

significant. Computational models based on low-level and more

complex natural image features also did not match the similarity

judgments as well as hIT (Figure 10B). Among the models, sim-

ple models based on object color and shape, and a more complex

model based on natural image features thought to be representa-

tive of primate V4 and posterior IT (Serre et al., 2005), showed the

closest match to the similarity judgments.

HUMAN JUDGMENTS SHOW STRONGER CATEGORICALITY THAN

HUMAN IT

Categorization is a hallmark of human judgment, so one might

expect judgments to be more categorical than the high-level visual

representation. The MDS arrangement in Figure 3B and the hier-

archical clustering trees in Figure 4 might seem to support this

prediction, suggesting that judgments are more strongly cate-

gorical than hIT. However, this appearance could have resulted

from more noise in the hIT measurements. We therefore infer-

entially compared the reliability of hIT and judgment RDMs

and also inferentially compared categoricality after accounting

for any difference in reliability. Results are shown in Figure 11.

The MDS arrangement of single-subject RDMs in Figure 11A

shows that subjects cluster according to type of measurement

(judgments or hIT), but also suggests similar variability across

subjects for judgments and hIT. Consistent with this observa-

tion, Figure 11B shows that inter-subject reliability does not differ

significantly between hIT and judgments (randomization test,

two-sided p = 0.61), i.e., the judgment and hIT measurements

are equally reliable. We then tested whether the judgments are

more categorical than the hIT representation by comparing the

proportion of category-related dissimilarity variance between hIT

and judgments (Figure 11C). The subject-average proportion of

category-related variance was 0.21 for hIT, and 0.31 for the judg-

ments (the value reported for the judgments is the mean of the

judgment distribution, see Materials and Methods). The results

of our test suggest that the judgments are indeed more categor-

ical than the IT representation (randomization test, one-sided

p < 0.05). Visual inspection of Figure 12, which displays all single-

subject RDMs and category-model predictions, is consistent with

this conclusion: it gives the impression of stronger categoricality of

the judgments than hIT, even at the single-subject level. Together,

these results suggest that the strong categorical clustering observed

for the judgments in Figures 3 and 4 reflects a difference in the

nature of the two representations, not a difference in measurement

noise.

HUMAN JUDGMENTS SHOW SUBSTANTIAL CONSISTENCY ACROSS

SUBJECTS

Figure 10A shows that the single-subject judgment RDMs clus-

ter together within the larger context provided by the RDMs of

different brain regions and computational models. One of the

subjects (S11) falls outside of the cluster, showing a similarity

representation more similar to simple models based on image fea-

tures than to the similarity representations of the other subjects.

This subject reported to have arranged objects by shape instead

of semantic category. Consistent with the observation that single-

subject representations cluster together, all but two of the 120

possible pairwise correlations between single-subject RDMs were

significantly greater than zero (Figure 13, top panel). These results

could be driven (completely) by category divisions shared across

subjects. We therefore repeated the same procedure for category

subsets of images (Figure 13, smaller panels). Results suggest that,

for most tested categories, within-category similarity structure is

also shared across subjects.

DISCUSSION

HUMAN OBJECT-SIMILARITY JUDGMENTS ARE CATEGORICAL AND

REFLECT THE IT OBJECT REPRESENTATION

We asked subjects to judge object-similarity for a large set of

real-world object images and investigated whether these similar-

ity judgments reflected the IT object representation, including its

hierarchy of category clusters and within-category structure. Our
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results show that human similarity judgments are categorical (con-

sistent with Rosch et al., 1976; Edelman et al., 1998) and reflect the

two major categorical divisions that characterize the primate-IT

object representation: the top-level animate/inanimate division

and the face/body division among the animates (Kiani et al., 2007;

Kriegeskorte et al., 2008b).

The shared top-level animate/inanimate division relates to neu-

ropsychological (Warrington and Shallice, 1984; Capitani et al.,

2003), behavioral (Kirchner and Thorpe, 2006; New et al., 2007),

and neuroimaging findings (Martin et al., 1996; Chao et al., 1999;

Kriegeskorte et al., 2008b; Connolly et al., 2012; Naselaris et al.,

2012) that suggest a special status for the living/non-living divi-

sion. This special status might be explained in terms of evolution-

ary pressure toward fast and accurate recognition of animals (New

et al., 2007). Recognizing animals, whether they were predator

or prey, friend or foe, was of vital importance to our primate

ancestors. Recognizing faces was key to survival and reproduc-

tion as well, since faces carry important information that can

be used to infer the emotions, intentions, and identity of other

animals. The IT representation is likely to play a central role in

these essential visual functions, and might be optimized, at the

phylo- and/or ontogenetic level, to distinguish essential categorical

divisions.

Alternatively, one might argue that the categorical structure

of both the similarity judgments and the IT object representa-

tion can be explained in terms of visual similarity. We refer to

features as “visual” if they are not expressly designed (e.g., by

supervised learning) to discriminate categories or encode seman-

tic variables. Previous studies have shown a relationship between

perceived visual shape similarity and IT activity-pattern similarity

for abstract object shapes (Kayaert et al., 2005; Haushofer et al.,

2008; Op de Beeck et al., 2008). Animate and inanimate objects

differ in the parts they are composed of and consequently in visual

properties (Tyler and Moss, 2001). For sufficiently visually distinct

categories, category clustering is expected to arise solely based on

visual similarity. In order to test if our findings could be accounted

for by visual similarity, we studied model representations of the

stimuli. A simple silhouette model and a more complex com-

putational model based on natural image features at a level of

complexity thought to approximately match V4 and posterior IT

(Serre et al., 2005) – do not show a clear categorical structure

(Figure 10; for more detailed analyses, see Kriegeskorte et al.,

2008b), and do not account for either the similarity judgments

or IT. We are in the process of testing a wider range of models. It is

important to note that the space of visual feature representations

that could be considered is infinite, and so a visual feature account

can never strictly be ruled out. However, our current interpretation

is that the IT features might be designed to emphasize behaviorally

important categorical divisions.

It has been shown that visual features of intermediate com-

plexity, which IT is sensitive to (Tanaka, 1996), are optimal for

category discrimination (Ullman et al., 2002). However, sensitiv-

ity to visual features of intermediate complexity alone does not

lead to a categorical object representation. What may be needed

is explicit design, i.e., selection of the visual features that are most

informative about category membership (Ullman et al., 2002).

Indeed, some studies have suggested that IT is especially sensitive

to category-discriminating visual features (Sigala and Logothetis,

2002; Lerner et al., 2008). Categories whose detection is highly

important to the organism, including animals and faces (see also

Mahon et al., 2009), are most likely to be represented by optimized

IT features (Schyns et al., 1998).

Our results show that similarity judgments reflect not only the

two major categorical divisions of the IT representation, but also

the IT within-category similarity structure. Given the functional

properties of IT, this within-category match is likely to be based

on visual similarity between objects that belong to the same cate-

gory cluster. This explanation is consistent with the reports of our

subjects, stating that they used object color and shape to arrange

objects within category clusters. Furthermore, these findings are

consistent with the previously reported relationship between per-

ceived object shape and IT activity-pattern similarities (Edelman

et al., 1998; Kayaert et al., 2005; Haushofer et al., 2008; Op de

Beeck et al., 2008). The matching within-category dissimilarities

of IT and judgments might also be explained in terms of a com-

mon underlying prototype model (see Cutzu and Edelman, 1998;

Edelman, 1998).

HUMAN OBJECT-SIMILARITY JUDGMENTS TRANSCEND THE

PRIMATE-IT OBJECT REPRESENTATION

Several features of the object-similarity judgments cannot be

explained by the IT representation. The human judgments show

stronger categorical clustering and introduce additional human-

specific categorical divisions: between human and non-human

animals and between man-made and natural objects. Both of

these additional divisions relate to the human species. They could

reflect the involvement of other brain systems that either con-

tribute these particular divisions or enable flexible task-dependent

categorization.

It is important to note that judging similarity is a complex

conscious process associated with shifts of overt and covert atten-

tion, while the IT representation was characterized here under

passive-viewing conditions, while the subjects performed a task at

fixation to which the objects were irrelevant. Our finding that IT,

under passive-viewing conditions, predicts some of the major cat-

egorical divisions and within-category structure in the similarity

judgments suggests an involvement of IT in the judgments. How-

ever, the nature of the judgment task is such that it will involve

many brain systems, including those associated with attention

and executive control, and these might even influence the repre-

sentational space within IT. These brain systems might include

prefrontal cortex, which has been implicated in goal-directed

behavior (see Duncan, 2010) and task-dependent categorization

(Freedman et al., 2001; Roy et al., 2010; but see Minamimoto et al.,

2010).

Similarity judgments are dependent on task instruction (Liu

and Cooper, 2001). The task instruction given to the subjects in

our experiment was very general (“Please arrange these objects

according to their similarity”). Note that the instruction did not

refer to “images,” but to “objects” and thus presumably elicited

functional and semantic descriptions along with visual ones. Each

object can be described by multiple properties, including color,

shape, real-world size, function, and semantic category, and sub-

jects were free to choose and weight these properties according
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to their subjective preferences. Nevertheless, subjects exhibited a

strong tendency to group the objects by the same four semantic

categories (human, non-human animal, natural object, artificial

object) and by similar within-category features. The consistency

across subjects may reflect the shared component of the human

experience. The focus on these categorical divisions makes sense

given their importance in daily life.

From the comparison here of IT and judgments within humans,

it is clear that the human judgments introduce additional divi-

sions. We did not have comparable behavioral data for the mon-

keys, so we do not know whether monkeys also introduce addi-

tional divisions when judging similarity in the context of natural

behavior. Previous behavioral studies in monkeys showed that

monkeys represent objects categorically (Sands et al., 1982; Kiani

et al., 2007), but these studies did not investigate differences in

categorical structure between IT activity-pattern similarity and

perceived similarity.

FUTURE DIRECTIONS

Our study takes an important first step toward the identifica-

tion of the neuronal basis of similarity judgments of real-world

object images. Our focus here was on the ventral-stream object

representation. Future research should investigate the similarity

representation in the entire brain, for example using a searchlight

mapping approach (Kriegeskorte et al., 2006) to find the region

that matches the similarity judgments most closely. A closer match

to the similarity judgments might also be found by combining

information from different brain regions.

Another avenue for future research would be to systematically

investigate the effect of task instruction on both the judgments and

the brain representation. Task instruction can be used to “bias”

the subjects toward using certain object dimensions for judging

object-similarity, e.g., color, shape, real-world size, esthetic appeal.

It will be interesting to see to what degree the similarity judgments

reflect the task instruction and how task instruction modulates the

explanatory contributions of different brain regions. Furthermore,

the influence of task instruction on inter-subject consistency could

be investigated. A more specific task instruction might increase

inter-subject consistency, but this might also depend on the object

property mentioned in the task instruction (e.g., color vs. esthetic

appeal).

One drawback of the current study is that the judgments and the

IT representation are based on different groups of subjects. This

enabled a more interpretable comparison of the explanatory power

of the IT representation in human and monkey, and does estab-

lish a close relationship between judgments and IT. However, it is

important to also investigate brain representations and judgments

in the same subjects (e.g., Haushofer et al., 2008; Op de Beeck et al.,

2008). This might reveal an even closer match and might enable us

to explain individual idiosyncrasies of the judgments on the basis

of the same subjects’ brain representations.

CONCLUSION

We conclude that human similarity judgments of visually pre-

sented real-world objects reflect the categorical divisions that are

prominent in the primate-IT representation and also the within-

category similarity structure of the IT representation. The IT

categorical divisions include animate/inanimate and face/body,

divisions that are behaviorally important to all primates. Despite

reflecting IT, similarity judgments also transcend the IT rep-

resentation in that they introduce additional categorical divi-

sions. In the human, these are the human-specific distinc-

tions between humans and other animals and between man-

made and natural objects. These divisions unexplained by IT

may reflect a contribution to similarity judgments from other

brain systems that enable flexible categorization for adaptive

behavior.
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