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Abstract Paradoxically, although humans have a superb
sense of smell, they don’t trust their nose. Furthermore,
although human odorant detection thresholds are very low,
only unusually high odorant concentrations spontaneously
shift our attention to olfaction. Here we suggest that this
lack of olfactory awareness reXects the nature of olfactory
attention that is shaped by the spatial and temporal enve-
lopes of olfaction. Regarding the spatial envelope, selective
attention is allocated in space. Humans direct an attentional
spotlight within spatial coordinates in both vision and audi-
tion. Human olfactory spatial abilities are minimal. Thus,
with no olfactory space, there is no arena for olfactory
selective attention. Regarding the temporal envelope,
whereas vision and audition consist of nearly continuous
input, olfactory input is discreet, made of sniVs widely sep-
arated in time. If similar temporal breaks are artiWcially
introduced to vision and audition, they induce “change
blindness”, a loss of attentional capture that results in a lack
of awareness to change. Whereas “change blindness” is an
aberration of vision and audition, the long inter-sniV-inter-
val renders “change anosmia” the norm in human olfaction.
Therefore, attentional capture in olfaction is minimal, as is
human olfactory awareness. All this, however, does not
diminish the role of olfaction through sub-attentive mecha-
nisms allowing subliminal smells a profound inXuence on
human behavior and perception.
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Introduction

Mammalian olfaction is highly conserved (Ache and
Young 2005). Indeed, the human olfactory system is not
very diVerent from that of goats and guinipigs. That said,
the place of olfaction in human behavior is diVerent, and
seemingly largely diminished in comparison to most mam-
mals (Stevenson 2009a). In this review we will propose two
mechanistic reasons for this state of aVairs. Beforehand,
however, we will brieXy outline human olfactory neuro-
anatomy, and human olfactory capabilities.

Human olfactory neuroanatomy

Like all mammalian olfactory systems, the human olfactory
system follows a stereotyped anatomy consisting of three
primary processing stages: The olfactory epithelium, the
olfactory bulb, and olfactory cortex (Price 1990) (Fig. 1).
The system is of course bilateral, containing two of each of
these structures. Whereas until recently it was thought that
the system is characterized by ipsilateral connectivity only,
e.g., connectivity from left epithelium to left bulb to left
cortex, recent functional evidence suggests that connectiv-
ity to cortex may follow contralateral pathways as well
(McBride and Slotnick 1997; Wilson 1997; Savic and
Gulyas 2000; Uva and de Curtis 2004; Porter et al. 2005;
Cross et al. 2006).

Before an odorant is processed in this system, however,
it must Wrst be acquired. This acquisition is through
sniYng, an active and critical sampling of the olfactory
environment (Kepecs et al. 2006; Mainland and Sobel
2006; Schoenfeld and Cleland 2006) Notably, odorants can
also be acquired through the mouth, a path referred to as
retronasal olfaction (Heilmann and Hummel 2004; Small
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et al. 2005; Hummel et al. 2006a). SniYng not only carries
the stimulus, but also drives patterns of neural activity
throughout the olfactory system (Sobel et al. 1998a, b;
Scott 2006; Verhagen et al. 2007). This sniV-driven activity
may partly reXect an often-overlooked property of olfactory
receptors, namely their possible dual-function as mechano-
receptors that sense air Xow (Adrian 1942; Grosmaitre et al.
2007).

Once an odorant molecule is sniVed, it acts as a ligand
for olfactory receptors that line the olfactory epithelium.
These receptors are 7-transmembrane G-protein coupled
second-messenger receptors where a cascade of events that
starts with odorant binding culminates in the opening of
cross-membrane cation channels that depolarize the cell
(Spehr and Munger 2009). The mammalian genome con-
tains more than 1,000 such receptor types (Buck and Axel
1991), yet humans functionally express only »400 of these
(Gilad and Lancet 2003). Humans have »12 million
bi-polar receptor neurons in each epithelium (Moran et al.
1982), and these neurons diVer from typical neurons in that
they constantly regenerate from a basal cell layer through-
out the lifespan (Graziadei and Monti Graziadei 1983).
Typically, each receptor neuron expresses only one recep-
tor type, although recent evidence from Drosophila has sug-
gested that in some cases a single neuron may express two
receptor types (Goldman et al. 2005). Each receptor is

typically responsive to a small subset of odorants (Malnic
et al. 1999; Hallem and Carlson 2006; Saito et al. 2009),
although some receptors may be responsive to only very
few odorants (Keller et al. 2007), and other receptors may
be responsive to a very wide range of odorants (Grosmaitre
et al. 2009). This receptor odorant speciWcity is considered
the basis for olfactory coding (Su et al. 2009).

Whereas receptor types appear largely dispersed
throughout the olfactory epithelium, the path from epithe-
lium to bulb via the olfactory nerve entails a unique pattern
of convergence that brings together all receptor neurons
that express a particular receptor type. These synapse onto
one of two common points at the olfactory bulb termed
glomeruli. Thus, the number of glomeruli is expected to be
about double the number of receptor types, and the recep-
tive range of a glomerulus is expected to reXect the recep-
tive range of a given receptor type. Whereas these rules
have been learned mostly from studies in rodents, the
human olfactory system may be organized slightly diVer-
ently, as rather than the expected »750 glomeruli (about
double the number of expressed receptor types), postmor-
tem studies revealed many thousands of glomeruli in the
human olfactory bulb (Maresh et al. 2008).

The olfactory bulb is largely considered the seat of olfac-
tory identity coding. The common notion is that an odorant
is represented in the spatiotemporal pattern of activated
glomeruli (Leon and Johnson 2003; Su et al. 2009). That
said, such a spatiotemporal code has yet to be linked to
meaningful olfactory information (Mainen 2006). In other
words, despite the development of recent methods to
characterize odorants (Haddad et al. 2008a, b), there is
still no key that would allow looking at a bulbar spatio-
temporal activation pattern and determining what odorant
generated it.

From the bulb, olfactory information is projected to pri-
mary olfactory cortex via the olfactory tract. Primary olfac-
tory cortex inhabits large portions of the ventral temporal
lobe, and its primary component is the piriform cortex
(Price 1990). Not much is known on how odorants are rep-
resented in cortex. However, a recent rodent study has
found that cells with similar receptive Welds are highly dis-
tributed across piriform cortex (Stettler and Axel 2009).
In other words, similar odorants are not likely to activate
adjacent cells. Moreover, a growing body of research using
functional imaging in humans points to the role of the
piriform cortex in odor classiWcation and diVerentiation
(Li et al. 2006, 2008; Howard et al. 2009). In turn, a role for
piriform cortex in the generalization processes that allow
the stability of olfactory perception has also been identiWed.
For example, an ensemble of piriform neurons responded
similarly to a mixture of 10 odors and to a mixture including
9 of the 10 odors, but responded diVerently when one of the
10 odors was replaced with a novel odor (Barnes et al. 2008).

Fig. 1 Schematic of the human olfactory system. Odorants are trans-
duced at the olfactory epithelium (1). DiVerent receptor types (three
illustrated, 1,000 in mammals) converge via the olfactory nerve onto
common glomeruli at the olfactory bulb (2). From here information is
conveyed via the lateral olfactory tract to primary olfactory cortex (3).
From here, information is further relayed throughout the brain, most
notably to orbitofrontal cortex (5) via a direct and indirect route
through the thalamus (4)
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In other words, piriform cortex responded similarly to an
odor and a degraded version of the same odor, but
responded diVerently to what was potentially a novel odor
source, despite overall chemical similarity. With all this in
mind, it is interesting that in contrast to the well docu-
mented phenomena of cortical blindness and deafness, we
know of no case of cortical anosmia, that is, a complete loss
of smell following a focal cortical lesion although there are
known cases of sub-cortical anosmia as in the case of
Kallmann Syndrome that aVects the olfactory bulb (Madan
et al. 2004; Fechner et al. 2008). This alone poses restric-
tions on the functional role of primary olfactory cortex.

Beyond primary olfactory cortex, olfactory information
is distributed widely throughout the brain. Notable in this
respect is the orbitofrontal cortex that is largely considered
secondary olfactory cortex (Price 1990), as is the issue of
thalamic connectivity: Whereas other sensory modalities
traverse a thalamic relay en route from periphery to primary
cortex, in olfaction information reaches primary cortex
directly. This is not to say, however, that there is no olfac-
tory thalamic pathway. A recent lesion study has implicated
thalamic involvement in olfactory identiWcation, hedonic
processing, and olfactomotor control (Sela et al. 2009), and
a recent imaging study has implicated a thalamic role in
olfactory attention (Plailly et al. 2008).

Finally, it is noteworthy that the nose contains several
additional subsystems beyond the olfactory receptors that
are also capable of transducing airborne molecules (Breer
et al. 2006). Of these, most notable are the trigeminal nerve
endings. Most odorants will induce at least some trigeminal
activation, and only very few identiWed “pure olfactants”
will stimulate the olfactory nerve alone (Doty 1995).
Macrosmatic mammals also have an accessory olfactory sys-
tem with its sensory epithelium in the vemoronasal organ
(Keverne 1999), as well as additional chemosensing subsys-
tems such as the septal organ (Kaluza et al. 2004; Tian and
Ma 2004) and Gruenberg organ (Fleischer et al. 2006). The
existence of these structures in humans, however, remains
unclear (Meredith 2001; Witt and Hummel 2006).

Humans have a superb sense of smell

Given that humans are endowed with a typical mammalian
olfactory system, one may question what humans can do
with this hardware. As we have recently reviewed
elsewhere (Yeshurun and Sobel 2010), humans indeed
have an extraordinary, if underappreciated, sense of smell
(Shepherd 2004; Zelano and Sobel 2005). For example,
humans can detect the scent of fear in human sweat (Chen
and Haviland-Jones 2000; Ackerl et al. 2002), and may
select mates who’s body-odor infers a favorable genetic
makeup (Wedekind and Furi 1997). Such behaviors can

depend on keen human olfactory detection. For example,
the odorant ethyl mercaptan that is often added to propane
as a warning agent, can be detected at concentrations rang-
ing between 0.2 ppb (parts per billion) (Whisman et al.
1978) and 0.009 ppb (Nagata 2003). This is equivalent to
approximately three drops of odorant within an Olympic-
size swimming pool—given two pools, a human could
detect by smell which pool contained the three drops of
odorant. Extremely low detection thresholds have been
reported for the odorants d-limonene and ozone as well
(Cain et al. 2007). Finally, the lowest human detection
threshold we are aware of is for isoamyl mercaptan reported
at 0.77 parts per trillion (Nagata and Takeuchi 1990).

Humans are not only inherently good at odorant detec-
tion; they can further improve with practice. Repeated
exposure to an odorant leads to decreased detection thresh-
olds for a number of diVerent odorants (Engen and Bosack
1969; Cain and Gent 1991; Dalton et al. 2002). Further-
more, humans who were completely unable to detect the
odor of androstenone developed the ability to detect it after
repeated exposure (Wysocki et al. 1989). There is an ongo-
ing debate as to the location of plasticity underlying these
improvements: Whereas some studies implicate plasticity
at the olfactory epithelium (Yee and Wysocki 2001; Wang
et al. 2004), other studies suggest a cortical mechanism of
plasticity (Mainland et al. 2002). The recent identiWcation
of the speciWc human olfactory receptor that is primarily
responsible for the detection of androstenone (Keller et al.
2007) may now enable a more direct investigation of this
question.

Humans are not only good at detecting odorants, they are
also good at discriminating one odorant from another,
either in terms of concentration or molecular identity.
Humans can discriminate between two odorants that diVer
in concentration by as little as 7% (the olfactory “just
noticeable diVerence”) (Cain 1977), and even smaller
changes in the relative proportion of a component in a mix-
ture can change the perception of the mixture (Le Berre
et al. 2008). Humans can also discriminate the smallest
alterations in molecular structure, such as between odorants
equal in number of carbons but diVering in functional group
(Laska et al. 2000), or equal in functional group but diVer-
ing in chain length by one carbon only (Laska and Freyer
1997). Moreover, humans are able to discriminate between
various pairs of enantiomers (mirror-image molecules)
such as (+) and (¡) carvone (Laska et al. 1999).

The most impressive cases of human olfactory discrimi-
nation involve odorants that are ecologically meaningful.
For example, human participants could use smell to dis-
criminate their own T-shirt from 100 identical T-shirts
worn by others for 24 h (Lord and Kasprzak 1989). Human
mothers could discriminate between the smell of their baby
and other babies (Porter et al. 1983). Five- to eight-year-old
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children could discriminate between the smell of their
three- to four-year-old siblings and other children (Porter
and Moore 1981), and 9-year-old children could discrimi-
nate between the smell of their close friends (Mallet and
Schaal 1998). Furthermore, these discriminatory powers
may be innate: Babies can discriminate the smell of their
breast-feeding mothers from other mothers by 6 days after
birth (Macfarelane 1975; Schaal et al. 1980), and newborn
babies cry less when exposed to the odor of amniotic Xuid
(which was present in the intrauterine environment) than to
the odor of their mother’s breasts (Varendi et al. 1998).
Breast-feeding infants, at approximately 2 weeks of age,
discriminated between their mother’s axillary odor and
odors produced by either nonparturient or unfamiliar lactat-
ing women (Cernoch and Porter 1985).

Like odorant detection, odorant discrimination can
improve with learning and practice (Rabin 1988). Increased
familiarization was associated with a decrease in discrimi-
nation errors of initially unfamiliar odors (Jehl et al. 1995).
Odor enantiomers that were initially indiscriminable
became discriminable after one of the enantiomers was
associated with an electric shock (Li et al. 2008). Subjects
working in perfume retail outlets were signiWcantly better
at odor discrimination compared with subjects not working
in such odorous environments (Hummel et al. 2004), and
wine tasters were superior to naive controls at odor discrim-
ination (Solomon 1990; Melcher and Schooler 1996; Bende
and Nordin 1997; Parr et al. 2002).

Notably, across the above reviewed feats of olfactory
detection and discrimination, women usually outperform
men (Koelega and Koster 1974; Wysocki and Gilbert 1989;
HulshoV Pol et al. 2000; Choudhury et al. 2003), and per-
formance declines with age starting at about the age of 40
(Cain and Stevens 1989; Murphy et al. 2002; Rawson
2006).

Humans don’t trust their nose

Despite possessing a Wrst-rate chemical detector, humans
appear to both underrate it and mistrust it. Indeed, many of
the above detailed feats of olfactory discrimination were
achieved despite low conWdence (Lundstrom et al. 2008).
This mistrust is reXected in both direct and indirect mea-
sures. For example, a survey of college students found that
olfaction was overwhelmingly classiWed as the least impor-
tant human sense (Classen et al. 1994). This common
approach is reXected in legislation: the American Medical
Association has determined that whereas loss of vision or
audition constitutes an 85 and 35% impairment respec-
tively, loss of olfaction constitutes a 3% impairment only
(AMA 1993). Furthermore, humans are very poor at assess-
ing their own acuity. For example, there was no correlation

between olfactory detection thresholds and self-ratings of
olfactory abilities (Philpott et al. 2006). In a replication of
this result, self-ratings again didn’t correlate with abilities,
but did correlate with “odor annoyance” (Knaapila et al.
2008). In other words, people who notice odors and are
annoyed by them, therefore think that they have a better
sense of smell, yet in fact they don’t. They simply pay more
attention to smell. This state of aVairs can be modiWed:
when subjects were Wrst asked to rate their sense of smell
and were then tested, there was again no correlation
between self-ratings and performance. However, when sub-
jects were Wrst tested and then subsequently asked to rate
their sense of smell, a signiWcant correlation emerged
(Landis et al. 2003). In other words, an acute and implicit
demonstration (the test) was suYcient to enlighten partici-
pants as to their true olfactory prowess.

Humans don’t notice smells

Taken together, the above studies suggest that humans are
disconnected from their own abilities in olfaction. This
explicit underrating is further reXected indirectly: In a task
that was described to participants as an “examination of
diVerent sensory conditions on judgments about art”, the
only sensory condition that was in fact manipulated was
odor. Participants were instructed to rate the appeal of neu-
tral pictures presented in a room scented with either vanilla
or lavender. Participants were later asked whether they
noticed which sensory modality was manipulated. Whereas
numerous participants reported a perceived (although non-
existent) manipulation in luminance, only 3 of 93 reported
a manipulation of smell (Lorig 1992).

Furthermore, when humans obtain conXicting informa-
tion from their nose and eyes, they trust their eyes, even in
decidedly olfactory tasks. For example, adding color to an
odorless solution increased the probability of assigning an
odor to the solution (Engen 1972). Similarly, coloring a
cherry-Xavored drink in orange rendered it as having an
orange or apricot Xavor, and also, coloring the same drink
in green rendered it as lime or lemon Xavor (Dubose et al.
1980). Strikingly (and embarrassingly), even “olfactory
experts” are not immune to visual dominance in olfactory
decisions: A panel of 54 students of Oenology shifted to
assigning red wine descriptors to white wine that was col-
ored with an odorless red (Morrot et al. 2001).

The above studies combine to reveal that humans go
largely unaware of their olfactory environment and there-
fore underestimate their olfactory abilities. This is punctu-
ated by the standards applied to the use of odorants as
warning agents. Whereas the detection threshold for ethyl
mercaptan is as low as 0.009 ppb (Nagata and Takeuchi
1990), it is introduced as a warning agent to propane at
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0.5 ppm, i.e., »57,000 times its detection threshold. Herein
lies the paradox. Humans have a superb sense of smell, they
can detect ethyl mercaptan at exceedingly low concentra-
tions, yet it takes 57,000 times threshold in order to sponta-
neously shift attention to olfaction. Why?

No space for human olfactory attention

Humans, like all mammals, function in an environment
packed with countless stimuli. Mechanisms of selective
attention have evolved to cope with this mass of informa-
tion (James 1890; Broadbend 1958). These mechanisms
allow focusing of processing resources on environmental
features that were selected, either according to the salience
of the objects or by volitional intention. The primary distal
sense in humans is vision. In that vision is inherently spatial
(DeValois and DeValois 2002), selective attention has
evolved to allow allocation of attention in space. A so-
called “attentional spotlight” can be directed with extreme
spatial precision to allow heightened processing for events
at selected locations (Posner et al. 1980). Moreover, this
spotlight can be overtly directed in external space, or
covertly directed in an internal analogue-space. Whereas
the former is clearly evident in behaviors such as shifting of
gaze, the latter was revealed in experiments where a spatial
cue improved performance in the cued location despite no
shifting of the actual gaze (Posner and Petersen 1990).
Such spatial attention is similarly evident in audition (Salmi
et al. 2007). Humans have superb spatial abilities in audi-
tion (Bregman 1990), and auditory acuity can be height-
ened for a particular location in space by shifting attention
towards that location (Hafter 1984; Robin and Rizzo 1992;
Spence and Driver 1994; Driver and Spence 2004). Similar
to vision, such shifting can take place in external space by
directing the ears towards the area of interest, or in an inter-
nal analogue auditory space, where similar to vision a spa-
tial cue improves auditory performance in the cued location
despite no redirection of the ears (Fritz et al. 2007). Nota-
bly, mechanisms of selective attention are activated in
proximal senses as well (e.g., tactile perception (Driver and
Grossenbacher 1996; Spence 2002; Driver and Spence
2004), and gustation (Veldhuizen et al. 2007; Grabenhorst
and Rolls 2008)), yet here we will restrict our review to dis-
tal sensing alone.

In contrast to the superb human spatial abilities in vision,
and audition, humans have only rudimentary spatial abili-
ties in olfaction. A critical distinction in spatial abilities is
between egocentric and allocentric space. As these terms
can be used diVerently by diVerent researchers (Klatzky
1998), we will clearly state our use of these terms here:
By allocentric abilities, we are referring to a spatial repre-
sentation obtained through movement, whether of the nose

alone or the entire body, within the olfactory environment.
As anybody who has located a spoiled food source in the
refrigerator knows, humans do have allocentric olfactory
spatial abilities. Furthermore, these can be reWned with
practice. For example, we have found that humans can
learn to track a scent-trail in a Weld (Fig. 2a), and they sig-
niWcantly improve their performance at this task with each
of only four practice sessions (Porter et al. 2007) (Fig. 2b).

In turn, by egocentric olfactory spatial abilities, we are
referring to an olfactory representation of coordinate space
despite a Wxed nose. Whereas macrosmatic mammals most
likely have such abilities that rely on cross-nostril compari-
sons (Rajan et al. 2006), humans may enjoy only rudimen-
tary egocentric olfactory representation. This question was
initially studied by Von Bekesy, who had previously con-
ducted pioneering studies on auditory spatial processing
(Békésy 1964). Von Bekesy generated olfactory stimuli
with precise spatial and temporal control, and determined
that human subjects could egocentricly localize an odorant
to within 7 to 10 spatial degrees, and that this localization
depended on time-of-arrival or concentration diVerences
across nostrils. This astonishing result, however, was never
successfully replicated. As previously noted, many odor-
ants can contain a trigeminal component that excites the tri-
geminal nerve. Several studies suggested that the Von
Bekesy result reXected use of trigeminal rather than pure
olfactory stimuli, and that when using pure olfactants that
do not stimulate the trigeminal nerve humans could not
even tell whether the odorants were coming from the left or
from the right, let alone localize them to within 7 to 10
degrees (Schneider and Schmidt 1967; Kobal et al. 1989;
Radil and Wysocki 1998; Frasnelli et al. 2009). In our stud-
ies of this question we found that humans could in fact dis-
tinguish left from right even when using pure olfactory
stimuli, but performance was only slightly yet signiWcantly
above chance (Porter et al. 2005) (Fig. 2c). Furthermore,
we found a nostril-speciWc representation in piriform cortex
similar to that found in rats (Wilson 1997), which may
combine with additional brain mechanisms (Fig. 2d) to pro-
vide a neural substrate for such localization.

The above studies combine to suggest that human ego-
centric olfactory representation is minimal at best. Given
that humans have no external allocentric olfactory coordi-
nate space, they obviously don’t have an internal analogue
olfactory coordinate space. Thus, humans do not have a
spatial arena in which to direct olfactory selective attention,
and this renders olfactory attention profoundly diVerent
from visual and auditory attention.

Attention, however, is not directed in coordinate space
alone. In both vision and audition, attention can also be
directed in stimulus space. Such attentional selectivity
allows extraction of salient signals from the complex and
noisy background. For example, in audition, the cocktail
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party eVect (Cherry 1953) refers to the remarkable human
ability to detect and selectively attend to a speciWc source
of auditory input in a noisy environment. The guidance of
attention can be exogenous (unintentional directing of
attention to a salient event), as when hearing your name in a
loud party automatically directs attention to the source, or
endogenous (intentionally guidance of attention to a partic-
ular event or spatial location), as when deciding to try and
“listen in” for a particular voice at the same party. Similar
exogenous and endogenous mechanisms allow the focusing
of attention within visual (Treisman and Gelade 1980)
stimulus space as well.

Such stimulus-space based attention, however, is again
minimal in olfaction. For example, when trying to identify
a component in a mixture, subjects performed equally well
whether they simply tried to identify all the components in
the mixture, or were Wrst exposed to the target component
and tried to determine whether it alone was present or
absent in the mixture (Laing and Glemarec 1992). In other
words, this and similar results (Laing and Francis 1989;
Livermore and Laing 1996) suggest that unlike in vision

and audition, an eVort to direct attention towards a speciWc
aspect of stimulus space did not improve performance in
olfaction. To relate this poor ability in stimulus-space to the
near rudimentary ability in coordinate-space, it is notewor-
thy that when attending within visual and auditory stimu-
lus-space, the object of attention nevertheless does have
spatial coordinates, even if those are not the object of the
attentional focus. It may be that such coordinate location is
critical for attentional mechanisms, even when tuned to
stimulus attributes (Deouell et al. 2007). As noted, in
human olfaction coordinate space is rudimentary, and
whereas this will clearly limit olfactory coordinate-space
attention, it may also limit olfactory stimulus-space
attention.

All this, however, is not to say that there is no olfactory
attention at all. Whereas there is scant evidence for atten-
tion in olfaction, there are several demonstrations of atten-
tion to olfaction. For example, when making intensity
discriminations in both vision and olfaction, olfactory dis-
criminations were faster when an explicit cue Wrst directed
the subject’s attention to olfaction (Spence et al. 2001).

Fig. 2 No space for human 
olfactory attention. a Results 
from Porter et al. (2007). 
Humans have good allocentric 
olfactory abilities, and can fol-
low a scent trail. b Scent-trail 
tracking speed increases with 
each of 4 days of practice. 
c Results from Porter et al. 
(2005). Humans have poor 
egocentric olfactory abilities, 
and are only marginally but 
signiWcantly above chance at 
localizing the pure olfactant 
PEA to either the left or right of 
the nose. Note signiWcantly 
better performance for propionic 
acid that has a signiWcant trigem-
inal component. D. Brain mech-
anisms involved in extracting 
spatial information from smell, 
including the superior temporal 
gyrus
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Such directing of attention to olfaction is reXected in both
global and focal measures of brain activity. Globally,
recording of olfactory event-related potentials (OERPs)
suggested that attending to odors reduced latency for an
early OERP component (Krauel et al. 1998), and increased
amplitude for a later OERP component (Pause et al. 1997;
Krauel et al. 1998; Geisler and Murphy 2000). Locally,
brain-imaging studies found that activity in several brain
structures reXected directing of attention to olfaction. These
include the earliest levels of cortical processing, such as
piriform cortex and olfactory tubercle, where sniV-induced
activity was altered by the expectation of odor alone
(Zelano et al. 2005). Furthermore, activity in downstream
structures was further modulated as a function of expected
odor content (de Araujo et al. 2005). Attention to olfaction
also augmented the functional interaction between the pos-
terior piriform cortex and the orbitofrontal cortex through
the mediodorsal nucleus of the thalamus (Plailly et al.
2008).

To conclude this section, one reason for minimal human
awareness of olfaction may be the nature of selective atten-
tion in olfaction. Human olfaction is characterized by mini-
mal spatial abilities. Given no external olfactory coordinate
space, there is therefore no internal analogue olfactory
coordinate space, hence no arena for olfactory spatial selec-
tive attention. Although this reduced attention in olfaction
does not prevent mechanisms of attention to olfaction, it
nevertheless likely inXuences the place of olfaction in
human awareness.

No time for human olfactory attention

The distal senses of vision, audition, and olfaction diVer not
only in their ability to produce an internal representation of
external space, but also in their temporal envelope. Audi-
tion consists of an essentially continuous sampling of the
sensory content. Vision similarly entails nearly continuous
sampling broken only by occasional blinks, a short lived
loss of input on the order of 250 ms (CaYer et al. 2003).
Rapid eye movements termed saccades and microsaccades
may also entail brief loss of input, although this remains
unclear (Burr et al. 1994). In contrast to this largely contin-
uous input in vision and audition, the olfactory system
acquires sensory information in temporally discrete quanta,
namely sniVs. Olfactory information is made available to
the brain during brief bursts followed by often prolonged
periods of no input. These bursts are often rhythmic in
macrosmatic mammals occurring at between 4 and 11 Hz
(Welker 1964; Youngentob et al. 1987), yet are discreet in
humans, who tend to use one or very few successive sniVs
to explore olfactory content (Laing 1983) (Fig. 3). There
has been extensive research on how this unique quantized

temporal envelope is reXected in the neural representation
of olfaction (Sobel et al. 1998a; Kepecs et al. 2006;
Mainland and Sobel 2006; Scott 2006; Verhagen et al.
2007). Here, we suggest that it is also this temporal dynamic
that shaped the special place of olfaction in human aware-
ness (awareness in this case refers to the ability of a person
to consciously distinguish or detect an olfactory stimulus
from the surrounding background). The basis for our claim
rests on the phenomena of change blindness. Using vision,
humans can detect even the slightest change in the visual
scene, and this change detection can function as an

Fig. 3 No time for human olfactory attention. a, b. Results from
Youngentob et al. (1987). Two typical sniV-traces from rats. Note the
time-scale bar is at 0.1 s. In other words, sniYng is portrayed at »9 Hz
within the sniYng bout. c A typical sniV-trace from a human subject
in our lab. The subject generated 2 sniVs in 4 s, i.e. 0.5 Hz. The long
delay between each sniV in the sniYng bout is suYcient in our view
for change-anosmia
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orienting cue for attention. Furthermore, changes in a scene
are often accompanied by transients such as motion. The
motion signal attracts attention to the changed location, and
in this way facilitates visual processing (Remington et al.
1992). For example, if one complex landscape image is
instantaneously replaced by a second nearly identical land-
scape image with only one minor change, that change will
mostly be detected with ease. Furthermore, visual attention
will focus on the change location (Abrams and Christ
2003). However, if a temporal break is introduced between
one image and the next, even signiWcant changes in image
content may go unnoticed. This phenomenon, termed
change blindness (Rensink et al. 1997), can be experienced
by the interested reader at several on-line demonstrations
(e.g., http://www.psych.ubc.ca/»rensink/flicker/download/).
Notably, a similar phenomenon occurs in audition (Vitevitch
2003; Eramudugolla et al. 2005; Wayand et al. 2005;
Demany et al. 2008) and touch (Gallace et al. 2006; Auvray
et al. 2008) as well. In other words, change blindness (or
deafness) suggests that temporal continuity of input is key
to awareness. As noted, human olfaction lacks temporal
continuity, and therefore we argue that this has dictated a
unique, and indeed extremely limited, place for olfaction in
human awareness. As this claim is a major point in this
review, we will reiterate by example: Look at Fig. 4, then
look at a blank page, and then turn the page to look at
Fig. 5. Do this such that the transition from Figs. 4, 5 takes
a few seconds. Can you detect the change between Wgures?
Such is human olfaction. A slow transition from one image
(sniV) to the next, with a blank page inserted in between.
Although change blindness may diVer from the case of
olfaction in that it requires an intentional search of the
change in the scene, other features of change blindness,
namely the inability to detect change in quantal as opposed
to continuous information, provides a powerful analogy to
the constant state of olfaction.

We suggest that these breaks in olfactory sampling result
in change anosmia, a likely inability to spontaneously
detect less than drastic changes in the olfactory natural
space. Impaired olfactory change detection may, in turn,
result in poor attention to olfaction. Indeed, the attentional
mechanisms revealed in change-blindness are arguably the
main path for non-volitional attention allocation to salient
stimuli in the environment (Corbetta and Shulman 2002).
We suggest here that due to a form of olfactory change-
blindness, olfactory stimuli are less prone to attract atten-
tion, and therefore humans have poor awareness to the
olfactory environment.

To this point we have delineated two aspects of human
olfaction that may limit human awareness to smell. We
argued that poor spatial abilities combined with discontinu-
ous input over time together rendered a limited place for
olfaction in human awareness. However, two studies that

measured brain-responses in relation to olfactory attention
suggest a more complicated situation. A classic attentional
task is the odd-ball paradigm, where a repeating standard
stimulus is periodically replaced with an infrequent deviant.
This paradigm was adapted to olfaction using frequent and
infrequent odorants in fMRI (Sabri et al. 2005) and OERP
(Krauel et al. 1999) studies. In the fMRI study the para-
digm was repeated under two conditions, an attend condi-
tion where attention was explicitly directed to olfaction,
and an unattend condition where attention was directed to
audition. The OERP study used an unattend condition only.
Both studies found brain-responses to odorants in the unat-
tend condition, i.e., when attention was focused on audi-
tion. In fact, the fMRI study revealed a more extensive
odorant-change-induced response in the unattend compared
to the attend condition (Sabri et al. 2005). In other words,
even and perhaps especially when humans are unaware of
odors, their brain clearly registers odorant change. This was
further evidenced in electrophysiology and brain imaging
studies that although not in the context of an attentional
task, revealed that undetected odorants nevertheless induce

Fig. 4 SniV 1. Carefully examine this picture, then look at a blank
page, and then turn the page to look at Fig. 5
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neural activity at the olfactory epithelium (Hummel et al.
2006b) and cortex (Sobel et al. 1999; Jacob et al. 2001b).

Taken together, this suggests that in spite of the aware-
ness-limiting settings we have proposed in relation to the
spatial and temporal envelopes of olfaction, the human
brain may nevertheless register the Wnest alterations in
olfactory content, and these may signiWcantly inXuence
behavior. Indeed, in the previously described study where
subjects were asked which sensory modality they thought
was manipulated (Lorig 1992), anecdotally, one subject
who was in the “vanilla” condition thought that luminance
was manipulated, yet then stressed that she wants to go
home to bake some cookies… Could it be that odorants that
humans are unaware of continuously shape their behavior?

The inXuence of subliminal odors

The topic of subliminal odors immediately conjures up the
topic of pheromones. Pheromones are odorants that are

released by one member of a species to inXuence or signal
other members of the same species (Karlson and Luscher
1959), yet nowhere in their classic deWnition does the issue
of awareness arise. Indeed, pheromones were mostly stud-
ied in the context of non-human animals where awareness
per se cannot be deWned. Whether humans have phero-
mones is a topic of heated debate (Wysocki and Preti
2004), as is whether the term pheromone is at all helpful
when considering odor-guided behavior (Doty 2003;
Stowers and Marton 2005). For the purpose of this review,
however, we choose to circumvent this often semantic
debate altogether. We will detail cases where subliminal
odorants inXuenced perception and behavior, and the exis-
tence of such inXuence is our interest regardless of whether
one chooses to call the odorant a pheromone or ordinary
odorant. That said, in cases where the odorant was derived
from human bodily secretions, or is present in such secre-
tions, in our mind suggests that these odorants may func-
tion as human chemosignals.

When considering evidence for the inXuence of odors
without awareness one must make a distinction between
two types of studies: In what we will call here Type A stud-
ies, participants were made aware of the focus on olfaction,
or even of a particular odorant, yet not the odorant of inter-
est that was typically masked within a perfume. There is an
extremely large body of such studies. By contrast, in what
we will call Type B studies, even the mere presence of
odors was not explicitly revealed to participants. Type B
studies, although limited in number, are particularly rele-
vant to the attentional mechanisms (or lack thereof) we
have proposed. Here we will focus on this latter type of
study, with only reference to Type A studies.

Subliminal odorants inXuence physiological state

Women who live in close proximity and continuous
interaction, such as roommates in female dormitories, tend
to synchronize the timing of their menstrual cycle
(McClintock 1971) (but see (Wilson 1992)). In that this
occurs with no awareness of an olfactory signal, this dra-
matic eVect clearly Wts our criteria for Type B studies.
However, one may question whether this eVect was at all
chemosignal dependent. Perhaps there was some non-
chemical social signal at play? This was answered in a
series of studies where experimenters obtained underarm
sweat extracts from donor women during either the ovula-
tory or follicular menstrual phase. These extracts were then
deposited on the upper lips of recipient women, where
follicular sweat accelerated ovulation and ovulatory sweat
delayed it (Russell et al. 1980; Stern and McClintock
1998). Whereas these latter studies were Type A, they
verify that the initial Type B menstrual synchrony studies,
where odorants were truly subliminal, were indeed

Fig. 5 SniV 2 Do you see the change from sniV 1? Probably not. Such
is human olfaction: discreet samples of sensory content separated by
prolonged periods of no input. Now repeat rapidly without the inter-
sniV-interval
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olfactory. Menstrual synchrony remains the most clear-cut
instance of subliminal odors inXuencing human physiology.
Combined with numerous Type A studies where either
sweat or individual components of sweat altered hormonal
state (Preti et al. 2003; Wyart et al. 2007), brain activity
(Savic et al. 2001, 2005; Savic 2002; Gulyas et al. 2004),
and mood (Chen and Haviland-Jones 2000; Jacob et al.
2001a; BensaW et al. 2004; Lundstrom and Olsson 2005),
together suggest that human sweat contains compounds that
function as human chemosignals.

Subliminal odorants inXuence social judgments

The earliest Type B study we know of assessed the eVects
of two odorants, androstenol (5a-16-androsten-3a-oi) and
an aliphatic acid mixture, on what was described as the
“assessment-of-people test”, a battery of judgments made
by participants on a Wxed group of individuals posing as job
candidates (Cowley et al. 1977). To hide the use of odors,
the authors deceived their participants and told them to
wear surgical face-masks in order to hide their own facial
expressions from other participants, when in fact these
face-masks were impregnated with the odorants. The
results indicated signiWcant opposing inXuences of the two
odorants on judgments. These eVects were restricted pri-
marily to female participants, while making positive judg-
ments, that were enhanced by androstenol and reduced by
the aliphatic acid mixture.

In a more recent study that was closer to Type A than
Type B, the appeal of human faces was estimated in the
presence of one of three diVerent odorants; the pleasant cit-
ral, the neutral anisole, and the unpleasant valeric acid
(Li et al. 2007). The odorants were presented at very low
concentrations. The subjects tried to smell the odorants
(hence Type A), and then conducted the task. The hedonic
value of the odorants altered the appeal of the faces, but
only for those subjects who were unable to detect the odor-
ants (Fig. 6a). In other words, consistent with the previ-
ously reported increased brain activity associated with the
unattend over the attend condition (Sabri et al. 2005), when
odorants were not consciously perceived they had a greater
eVect on perception. The initial results obtained by Cowely
et al. combined with numerous Type A studies (Cowley
and Brooksbank 1991; Cutler et al. 1998; McCoy and
Pitino 2002; Saxton et al. 2008), to suggest that subliminal
odors can inXuence social judgments.

Subliminal odorants inXuence mood

That odorants can inXuence mood is of course a major
tenet of aromatherapy, a rapidly growing industry (Herz
2009). Several lines of evidence suggest that subliminal
odors indeed have the capacity to inXuence mood. For

example, dispersing an orange scent in a dentist’s waiting
room had a host of positive eVects on women’s but not
men’s mood (Lehrner et al. 2000). The authors attributed
the observed gender diVerence to the diVerent olfactory
sensitivity across genders. In an additional study, experi-
menters diVused either a pleasant or unpleasant odorant in
a room where subjects completed various questionnaires.
Each subject participated twice, once with an odorant
diVused, and once without (Knasko 1995). The authors

Fig. 6 The inXuence of subliminal odors a Results from Li et al. (2007).
Increased odor awareness (x axis) was associated with a reduced inXu-
ence on judgments (y axis). b Results from Epple and Herz (1999).
Mean performance on a cognitive test by 5-year old children as a func-
tion of odor condition. Participants in the “same odor” condition (an
odor previously associated with a frustrating task) performed worse
than participants in the “diVerent odor” or “no odor” groups (P < 0.05).
c Results from Holland et al. (2005). Mean reaction times for cleaning
related words and control words in odor and control conditions (with-
out an odor) during a lexical decision task. Participants responded fast-
er to cleaning-related words than to control words (P < 0.05), and
excluding participants that have been aware of the odor, revealed a sig-
niWcant interaction between odor presence and word type (P < 0.05)
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found that whereas the pleasant odorant (lavender or
lemon) had no inXuence in this instance, the unpleasant
odorant (dimethyl sulWde) negatively impacted mood.
Furthermore, subjects who experienced the unpleasant odor in
their Wrst session had reduced mood in their second session
even when it was odorless. This suggests an implicit odor-
ant-induced conditioning of mood. Indeed, several studies
have replicated this eVect. For example, undetected levels
of the odorant Trimethylundecylenic aldehyde induced
anxiety in women who had previously been exposed to
similarly undetected levels of the odorant during a stressful
task. Critically, this anxiety was not the result of the odor-
ant alone, as participants in the stressful task that was con-
ducted without odor were in fact soothed by the odorant
when presented later (Kirk-Smith et al. 1983). This core
Wnding was later replicated independently (Zucco et al.
2009). Finally, a large body of Type A studies examined
the mood inXuences of compounds present in sweat (Chen
and Haviland-Jones 1999, 2000; Grosser et al. 2000; Jacob
et al. 2001a; BensaW et al. 2004; Lundstrom and Olsson
2005). Whereas these studies were typically Type A stud-
ies, critically, one study revealed that these eVects repli-
cated across detectable and undetectable concentrations of
the odorant (Lundstrom et al. 2003).

Subliminal odorants inXuence cognitive performance

A Type B study that revealed cognitive inXuences of sub-
liminal odors was conducted in children. Five-year-old
children were engaged in a frustrating maze-solving task in
the presence of undetected odor. Following the maze task,
subjects participated in a challenging cognitive task that
was held in another room in the presence of either the same
odor, a diVerent odor, or no odor. Children who were
exposed to the same odor in the maze and cognitive tasks
obtained signiWcantly lower scores than children in the no
or diVerent odor groups (Epple and Herz 1999) (Fig. 6b).
These studies combined with numerous Type A studies
(Chen et al. 2006; Hummer and McClintock 2009) to sug-
gest that subliminal odors can inXuence cognitive
performance. In one such Type A example, smelling andro-
stadienone led women to the feeling of being focused with-
out detecting the presence of the compound (Lundstrom
et al. 2003).

Subliminal odorants inXuence behavior

In an early Type B experiment that studied behavior,
researchers sprayed one of three diVerent concentrations of
the odorant androstenone on a seat in a dentist’s waiting
room. They found that the high concentration of androsten-
one repelled men and attracted women to sit on that particu-
lar chair (Kirk-Smith and Booth 1980).

In a more recent study, researchers scented the experi-
mental room with a citrus odor typical of cleaning Xuids.
They found that participants responded faster to cleaning
than to non-cleaning related words in a lexical decision
task, reported more near future plans involving cleaning
activities, and in fact generated more actual cleaning behav-
ior while eating (Holland et al. 2005) (Fig. 6c).

The possibility of subliminally inXuencing behavior with
odors has not gone unnoticed by the consumer industry
(Spangenberg et al. 2006). For example, men evaluated
magazines more positively under exposure to the odorant
androstenol (Ebster and Kirk-Smith 2005). Ambient scent
spread in a mall increased the amount of money spent by
young shoppers (Chebat et al. 2009), positively inXuenced
shoppers’ perceptions (Michon et al. 2005) as well as brand
appreciation and memory (Morrin and Ratneshwar 2003),
and increased both the time and amount of money spent in a
restaurant (GuÈguen and Petr 2006). Furthermore, dis-
persal of one odor, but not another in the surroundings of
casino slot machines increased the sums of money spent in
those machines (Hirsch 1995). These studies combined
with numerous Type A studies (Gustavson et al. 1987;
Cowley and Brooksbank 1991; Cutler et al. 1998; McCoy
and Pitino 2002; Castiello et al. 2006; Tubaldi et al. 2008a, b,
2009) to suggest that subliminal odors can inXuence
behavior.

A time-stamp dissociating subliminal from perceived 
olfactory stimuli

Electrical recordings of odorant dependent neural activity
in humans reveal several typical time-points. Brain activity
recorded by OERP and OMEG (olfactory magnetoencepha-
logram) revealed a typical response pattern consisting of a
negative component (N1) at 320–500 ms, a positive com-
ponent (P2) at 450–700, a second negative component (N2)
at 600–900 ms, and a second positive component (P3) at
750–1,200 ms after stimulus onset (Pause et al. 1996, 1997;
Morgan et al. 1999; Walla et al. 2002; Harada et al. 2003;
Rombaux et al. 2006; Walla 2008).

It is generally accepted that the Wrst two components,
parietal N1 and frontal P2, reXect exogenous modulators
such as stimulus concentration, whereas the late parietal
positive component P3 represents endogenous modulators
such as subjective stimulus signiWcance and stimulus prob-
ability (Pause et al. 1996). Explicitly attending to the odor-
ant increased the amplitude of P3 only (main eVect across
all three electrodes (Fz, Cz and Pz)) (Pause et al. 1997).
Furthermore, comparing OEMG responses between sub-
jects that perceived an odor and subjects that did not,
revealed that whereas the early 200–500 ms response com-
ponents were identical across groups, the late 600–900 ms
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response components were associated with conscious per-
ception (Walla et al. 2002). Together, these Wndings sug-
gest a two-stage olfactory process containing mechanisms
without awareness that enact within »200 ms post stimulus
onset, and mechanisms of awareness within »600 ms post
stimulus onset (Walla 2008).

In that olfactory awareness may have a time-stamp, it is
tempting to then link this temporally localized activity to an
anatomical substrate. Despite the theoretically high spatial
resolution of MEG, Walla et al. (2002) did not clearly
assign the late component to a particular brain region.
Previous MEG studies, unrelated to attentional manipula-
tions, have assigned a 300–500 ms component to anterior
central parts of the insula (Kettenmann et al. 1997), and a
500–700 ms component to the superior temporal sulcus, but
comprehensive anatomical pin-pointing of this source
remains unavailable. Various theoretical considerations
have implied locating olfactory awareness to primary or
secondary olfactory cortex (Smythies 1997; Shepherd
2007), but this question remains unresolved.

Conclusions

We reviewed evidence suggesting that humans have superb
olfactory abilities, yet olfaction has a limited place in
human awareness. We attributed this apparent paradox to
the facts that odors are poorly localized in space, and are far
separated in time, and this combination renders odors a
poor substrate for selective attention. Reduced applicability
of selective attention may combine with a theorized inhibi-
tory mechanism (Sobel and Brown 2001) and additional
factors (Stevenson 2009b) to jointly limit the place of odors
in awareness. Critically, when human spatial and temporal
processing of vision and audition are damaged by lesions
such that they are then comparable to the spatial and tempo-
ral aspects of intact human olfaction, these lesions are
accompanied by a loss of awareness (Deouell et al. 2000;
Deouell 2002). This suggests that the mechanisms we have
proposed are not unique to olfaction, but rather unique and
representative of brain mechanisms for awareness.

Finally, it is noteworthy that the two mechanisms of
olfaction considered in this review are very diVerent in
macrosmatic mammals. Most mammals likely do have ego-
centric spatial abilities in olfaction (Rajan et al. 2006), and
sniV at a frequency that may prevent change-blindness
(Welker 1964). These diVerences may allow a form of
olfactory awareness in macrosmatic mammals that is
unavailable to humans. Thus, whereas human olfactory per-
ception is dominated by the perceptual axis of odorant
pleasantness to an extent that renders it nearly unidimen-
sional (Yeshurun and Sobel 2010), the mechanisms we
have highlighted here may allow macrosmatic olfactory

perception that is far richer. All this, however, does not
limit the inXuence of odors on human perception and
behavior, both of which may in fact be more susceptible to
the inXuence of subliminal than perceived smells (Fig. 6a).

Acknowledgments The work in our lab is funded by an ERC FP7
grant #200850, and by the James S. McDonnell foundation. We Thank
Arak Elite and Assaf Rotman for Figs. 4 and 5 etc.

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

Abrams RA, Christ SE (2003) Motion onset captures attention.
Psychol Sci 14:427–432

Ache BW, Young JM (2005) Olfaction: diverse species, conserved
principles. Neuron 48:417–430

Ackerl K, Atzmueller M, Grammer K (2002) The scent of fear. Neuro
Endocrinol Lett 23:79–84

Adrian ED (1942) Olfactory reactions in the brain of the hedgehog.
J Physiol 100:459–473

AMA (1993) Guides to the evaluation of permanent impairment.
American Medical Association, Chicago

Auvray M, Gallace A, Hartcher-O’Brien J, Tan HZ, Spence C (2008)
Tactile and visual distractors induce change blindness for tactile
stimuli presented on the Wngertips. Brain Res 1213:111–119

Barnes DC, Hofacer RD, Zaman AR, Rennaker RL, Wilson DA (2008)
Olfactory perceptual stability and discrimination. Nat Neurosci
11:1378–1380

Békésy GV (1964) Olfactory analogue to directional hearing. J Appl
Physiol 19:369–373

Bende M, Nordin S (1997) Perceptual learning in olfaction: profes-
sional wine tasters versus controls. Physiol Behav 62:1065–1070

BensaW M, Brown WM, Khan R, Levenson B, Sobel N (2004) SniYng
human sex-steroid derived compounds modulates mood, memory
and autonomic nervous system function in speciWc behavioral
contexts. Behav Brain Res 152:11–22

Breer H, Fleischer J, Strotmann J (2006) The sense of smell: multiple
olfactory subsystems. Cell Mol Life Sci 63:1465–1475

Bregman A (1990) Auditory scene analysis. MIT Press, Massachusetts
Broadbend DE (1958) Perception and communication. Pergamon

Press, London
Buck L, Axel R (1991) A novel multigene family may encode odorant

receptors: a molecular basis for odor recognition. Cell 65:175–187
Burr DC, Morrone MC, Ross J (1994) Selective suppression of the

magnocellular visual pathway during saccadic eye movements.
Nature 371:511–513

CaYer PP, Erdmann U, Ullsperger P (2003) Experimental evaluation
of eye-blink parameters as a drowsiness measure. Eur J Appl
Physiol 89:319–325

Cain WS (1977) DiVerential sensitivity for smell: “noise” at the nose.
Science 195:796–798

Cain WS, Gent JF (1991) Olfactory sensitivity: reliability, generality,
and association with aging. J Exp Psychol Hum Percept Perform
17:382–391

Cain WS, Stevens JC (1989) Uniformity of olfactory loss in aging. Ann
N Y Acad Sci 561:29–38

Cain WS, Schmidt R, WolkoV P (2007) Olfactory detection of ozone
and D-limonene: reactants in indoor spaces. Indoor Air 17:337–
347
123



Exp Brain Res (2010) 205:13–29 25
Castiello U, Zucco GM, Parma V, Ansuini C, Tirindelli R (2006)
Cross-modal interactions between olfaction and vision when
grasping. Chem Senses 31:665–671

Cernoch JM, Porter RH (1985) Recognition of maternal axillary odors
by infants. Child Dev 56:1593–1598

Chebat JC, Morrin M, Chebat DR (2009) Does age attenuate the
impact of pleasant ambient scent on consumer response? Environ
Behav 41:258

Chen D, Haviland-Jones J (1999) Rapid mood change and human
odors. Physiol Behav 68:241–250

Chen D, Haviland-Jones J (2000) Human olfactory communication of
emotion. Percept Mot Skills 91:771–781

Chen D, Katdare A, Lucas N (2006) Chemosignals of fear enhance
cognitive performance in humans. Chem Senses 31:415–423

Cherry EC (1953) Some experiments on the recognition of speech,
with one and two ears. J Acoust Soc Am 25:975–979

Choudhury ES, Moberg P, Doty RL (2003) InXuences of age and sex on
a microencapsulated odor memory test. Chem Senses 28:799–805

Classen C, Howes D, Synnott A (1994) Aroma: the cultural history of
smell. Routledge, New York

Corbetta M, Shulman GL (2002) Control of goal-directed and stimu-
lus-driven attention in the brain. Nat Rev Neurosci 3:201–215

Cowley JJ, Brooksbank BW (1991) Human exposure to putative
pheromones and changes in aspects of social behaviour. J Steroid
Biochem Mol Biol 39:647–659

Cowley JJ, Johnson AL, Brooksbank BW (1977) The eVect of two
odorous compounds on performance in an assessment-of-people
test. Psychoneuroendocrinol 2:159–172

Cross DJ, Flexman JA, Anzai Y, Morrow TJ, Maravilla KR,
Minoshima S (2006) In vivo imaging of functional disruption,
recovery and alteration in rat olfactory circuitry after lesion. Neu-
roimage 32:1265–1272

Cutler WB, Friedmann E, McCoy NL (1998) Pheromonal inXuences
on sociosexual behavior in men. Arch Sex Behav 27:1–13

Dalton P, Doolittle N, Breslin PA (2002) Gender-speciWc induction of
enhanced sensitivity to odors. Nat Neurosci 5:199–200

de Araujo IE, Rolls ET, Velazco MI, Margot C, Cayeux I (2005)
Cognitive modulation of olfactory processing. Neuron 46:671–679

Demany L, Trost W, Serman M, Semal C (2008) Auditory change
detection: simple sounds are not memorized better than complex
sounds. Psychol Sci 19:85–91

Deouell LY (2002) Pre-requisites for conscious awareness: clues from
electrophysiological and behavioral studies of unilateral neglect
patients. Conscious Cog 11:546–567

Deouell LY, Bentin S, Soroker N (2000) Electrophysiological evi-
dence for an early (pre-attentive) information processing deWcit in
patients with right hemisphere damage and unilateral neglect.
Brain 123:353–365

Deouell LY, Heller AS, Malach R, D’Esposito M, Knight RT (2007)
Cerebral responses to change in spatial location of unattended
sounds. Neuron 55:985–996

DeValois RL, DeValois KK (2002) Spatial vision. In: Ramachandran
VS (ed) Encyclopedia of the human brain, vol 4. Academic Press,
New York, pp 419–431

Doty RL (1995) Intranasal trigeminal chemoreception: anatomy, phys-
iology, and psychophysics. In: Doty RL (ed) Handbook of olfac-
tion and gustation. Marcel Dekker, Inc., New York, pp 821–834

Doty RL (2003) Mammalian pheromones: fact or fantasy? In: Doty RL
(ed) Handbook of olfaction and gustation. Marcel Dekker, Inc.,
New York, pp 345–383

Driver J, Grossenbacher PG (1996) Multimodal spatial constraints on
tactile selective attention. In: Inui T, McClelland JL (eds) Atten-
tion and performance XVI: information integration in perception
and communication. MIT Press, Cambridge, pp 209–235

Driver J, Spence CJ (2004) Rossmodal spatial attention: evidence from
human performance. In: Spence CJ, Driver J (eds) Rossmodal

space and crossmodal attention. Oxford University Press, Oxford,
pp 179–220

Dubose C, Cardello A, Maller O (1980) EVects of colorants and Xavo-
rants on identiWcation, perceived Xavor intensity, and hedonic
quality of fruit-Xavored beverages and cake. J Food Sci 45:1393–
1399

Ebster C, Kirk-Smith M (2005) The eVect of the human pheromone
androstenol on product evaluation. Psychol Market 22:739

Engen T (1972) The eVect of expectation on judgments of odor. Acta
Psychol (Amst) 36:450–458

Engen T, Bosack TN (1969) Facilitation in olfactory detection. J Comp
Physiol Psychol 68:320–326

Epple G, Herz RS (1999) Ambient odors associated to failure inXuence
cognitive performance in children. Dev Psychobiol 35:103–107

Eramudugolla R, Irvine DR, McAnally KI, Martin RL, Mattingley JB
(2005) Directed attention eliminates ‘change deafness’ in com-
plex auditory scenes. Curr Biol 15:1108–1113

Fechner A, Fong S, McGovern P (2008) A review of Kallmann
syndrome: genetics, pathophysiology, and clinical management.
Obstet Gynecol Sur 63:189–194

Fleischer J, Schwarzenbacher K, Besser S, Hass N, Breer H (2006)
Olfactory receptors and signalling elements in the Grueneberg
ganglion. J Neurochem 98:543–554

Frasnelli J, Charbonneau G, Collignon O, Lepore F (2009) Odor local-
ization and sniYng. Chem Senses 34:139–144

Fritz JB, Elhilali M, David SV, Shamma SA (2007) Auditory atten-
tion—focusing the searchlight on sound. Curr Opin Neurobiol
17:437–455

Gallace A, Tan HZ, Spence C (2006) The failure to detect tactile
change: a tactile analogue of visual change blindness. Psychon
Bull Rev 13:300–303

Geisler MW, Murphy C (2000) Event-related brain potentials to
attended and ignored olfactory and trigeminal stimuli. Int
J Psychophysiol 37:309–315

Gilad Y, Lancet D (2003) Population diVerences in the human func-
tional olfactory repertoire. Mol Biol Evol 20:307–314

Goldman AL, Van der Goes van Naters W, Lessing D, Warr CG,
Carlson JR (2005) Coexpression of two functional odor receptors
in one neuron. Neuron 45:661–666

Grabenhorst F, Rolls ET (2008) Selective attention to aVective value
alters how the brain processes taste stimuli. Eur J Neurosci
27:723–729

Graziadei PP, Monti Graziadei AG (1983) Regeneration in the olfac-
tory system of vertebrates. Am J Otolaryngol 4:228–233

Grosmaitre X, Santarelli LC, Tan J, Luo M, Ma M (2007) Dual func-
tions of mammalian olfactory sensory neurons as odor detectors
and mechanical sensors. Nat Neurosci 10:348–354

Grosmaitre X, Fuss SH, Lee AC, Adipietro KA, Matsunami H,
Mombaerts P, Ma M (2009) SR1, a mouse odorant receptor with
an unusually broad response proWle. J Neurosci 29:14545–14552

Grosser BI, Monti-Bloch L, Jennings-White C, Berliner DL (2000)
Behavioral and electrophysiological eVects of androstadienone, a
human pheromone. Psychoneuroendocrinol 25:289–299

GuÈguen N, Petr C (2006) Odors and consumer behavior in a restau-
rant. Inter J Hosp Man 25:335–339

Gulyas B, Keri S, O’Sullivan BT, Decety J, Roland PE (2004) The
putative pheromone androstadienone activates cortical Welds in
the human brain related to social cognition. Neurochem Inter
44:595–600

Gustavson AR, Dawson ME, Bonett DG (1987) Androstenol, a puta-
tive human pheromone, aVects human (Homo sapiens) male
choice performance. J Comp Psychol 101:210–212

Haddad R, Khan R, Takahashi YK, Mori K, Harel D, Sobel N (2008a)
A metric for odorant comparison. Nat Methods 5:425–429

Haddad R, Lapid H, Harel D, Sobel N (2008b) Measuring smells. Curr
Opin Neurobiol 18:438–444
123



26 Exp Brain Res (2010) 205:13–29
Hafter ER (1984) Spatial hearing and the duplex theory: how viable is
the model? In: Edelman GM, Gall WE, Cowan WM (eds)
Dynamic aspects of neocortical function. Wiley, New York,
pp 425–448

Hallem EA, Carlson JR (2006) Coding of odors by a receptor reper-
toire. Cell 125:143–160

Harada H, Shiraishi K, Kato T (2003) Olfactory event-related poten-
tials in normal subjects and patients with smell disorders. Clin
Electroencephalogr 34:191–196

Heilmann S, Hummel T (2004) A new method for comparing orthona-
sal and retronasal olfaction. Behav Neurosci 118:412–419

Herz RS (2009) Aromatherapy facts and Wctions: a scientiWc analysis
of olfactory eVects on mood, physiology and behavior. Int J Neu-
rosci 119:263–290

Hirsch AR (1995) EVects of ambient odors on slot-machine usage in a
Las Vegas casino. Psychol Market 12:585–594

Holland RW, Hendriks M, Aarts H (2005) Smells like clean spirit.
Nonconscious eVects of scent on cognition and behavior. Psychol
Sci 16:689–693

Howard JD, Plailly J, Grueschow M, Haynes JD, Gottfried JA (2009)
Odor quality coding and categorization in human posterior piri-
form cortex. Nat Neurosci 12:932–938

HulshoV Pol HE, Hijman R, Baare WF, van Eekelen S, van Ree JM
(2000) Odor discrimination and task duration in young and older
adults. Chem Senses 25:461–464

Hummel T, Guel H, Delank W (2004) Olfactory sensitivity of subjects
working in odorous environments. Chem Senses 29:533–536

Hummel T, Heilmann S, Landis BN, Redem J, Frasnelli J, Smal DM,
Gerber J (2006a) Perceptual diVerences between chemical stimuli
presented through the ortho- or retronasal route. Flav Frag
J 21:42–47

Hummel T, Mojet J, Kobal G (2006b) Electro-olfactograms are present
when odorous stimuli have not been perceived. Neurosci Lett
397:224–228

Hummer TA, McClintock MK (2009) Putative human pheromone
androstadienone attunes the mind speciWcally to emotional infor-
mation. Horm Behav 55:548–559

Jacob S, Hayreh DJ, McClintock MK (2001a) Context-dependent
eVects of steroid chemosignals on human physiology and mood.
Physiol Behav 74:15–27

Jacob S, Kinnunen LH, Metz J, Cooper M, McClintock MK (2001b)
Sustained human chemosignal unconsciously alters brain func-
tion. Neuroreport 12:2391–2394

James W (1890) The principles of psychology. Cosimo, New York
Jehl C, Royet JP, Holley A (1995) Odor discrimination and recognition

memory as a function of familiarization. Percept Psychophys
57:1002–1011

Kaluza JF, Gussing F, Bohm S, Breer H, Strotmann J (2004) Olfactory
receptors in the mouse septal organ. J Neurosci Res 76:442–452

Karlson P, Luscher M (1959) “Pheromones”: a new term for a class of
biologically active substances. Nature 183:55–56

Keller A, Zhuang H, Chi Q, Vosshall LB, Matsunami H (2007) Genetic
variation in a human odorant receptor alters odour perception.
Nature 449:468–472

Kepecs A, Uchida N, Mainen ZF (2006) The sniV as a unit of olfactory
processing. Chem Senses 31:167–179

Kettenmann B, Hummel C, Stefan H, Kobal G (1997) Multiple olfac-
tory activity in the human neocortex identiWed by magnetic source
imaging. Chem Senses 22:493–502

Keverne EB (1999) The vomeronasal organ. Science 286:716–720
Kirk-Smith MD, Booth DA (1980) EVect of androstenone on choice of

location in others’ presence. In: International symposium on
olfaction and taste VII, vol olfaction and taste VII. IRL Press
Limited, Noordwijkerhout, Netherlands, pp 397–400

Kirk-Smith MD, Van Toller C, Dodd GH (1983) Unconscious odour
conditioning in human subjects. Biol Psychol 17:221–231

Klatzky R (1998) Allocentric and egocentric spatial representations:
deWnitions, distinctions, and interconnections. Lect Notes
Comput Sci 1404:1–17

Knaapila A, Tuorila H, Kyvik KO, Wright MJ, Keskitalo K, Hansen J,
Kaprio J, Perola M, Silventoinen K (2008) Self-ratings of olfac-
tory function reXect odor annoyance rather than olfactory acuity.
Laryngoscope 118:2212–2217

Knasko SC (1995) Pleasant odors and congruency: eVects on approach
behavior. Chem Senses 20:479–487

Kobal G, Van Toller S, Hummel T (1989) Is there directional smell-
ing? Experientia 45:130–132

Koelega HS, Koster EP (1974) Some experiments on sex diVerences in
odor perception. Ann N Y Acad Sci 237:234–246

Krauel K, Pause BM, Sojka B, Schott P, Ferstl R (1998) Attentional
modulation of central odor processing. Chem Senses 23:423–432

Krauel K, Schott P, Sojka B, Pause BM, Ferstl R (1999) Is there a
mismatch negativity analogue in the olfactory event-related
potential? J Psychophysiol 13:49–55

Laing DG (1983) Natural sniYng gives optimum odour perception for
humans. Perception 12:99–117

Laing DG, Francis GW (1989) The capacity of humans to identify
odors in mixtures. Physiol Behav 46:809–814

Laing DG, Glemarec A (1992) Selective attention and the perceptual
analysis of odor mixtures. Physiol Behav 52:1047–1053

Landis BN, Hummel T, Hugentobler M, Giger R, Lacroix JS (2003)
Ratings of overall olfactory function. Chem Senses 28:691–694

Laska M, Freyer D (1997) Olfactory discrimination ability for aliphatic
esters in squirrel monkeys and humans. Chem Senses 22:457–465

Laska M, Liesen A, Teubner P (1999) Enantioselectivity of odor per-
ception in squirrel monkeys and humans. Am J Physiol Regul
Integr Comp Physiol 277:R1098–R1103

Laska M, Ayabe-Kanamura S, Hubener F, Saito S (2000) Olfactory
discrimination ability for aliphatic odorants as a function of oxy-
gen moiety. Chem Senses 25:189–197

Le Berre E, Beno N, Ishii A, Chabanet C, Etievant P, Thomas-Danguin
T (2008) Just noticeable diVerences in component concentrations
modify the odor quality of a blending mixture. Chem Senses
33:389–395

Lehrner J, Eckersberger C, Walla P, Potsch G, Deecke L (2000) Ambi-
ent odor of orange in a dental oYce reduces anxiety and improves
mood in female patients. Physiol Behav 71:83–86

Leon M, Johnson BA (2003) Olfactory coding in the mammalian olfac-
tory bulb. Brain Res Brain Res Rev 42:23–32

Li W, Luxenberg E, Parrish T, Gottfried JA (2006) Learning to smell
the roses: experience-dependent neural plasticity in human piri-
form and orbitofrontal cortices. Neuron 52:1097–1108

Li W, Moallem I, Paller KA, Gottfried JA (2007) Subliminal smells
can guide social preferences. Psychol Sci 18:1044–1049

Li W, Howard JD, Parrish TB, Gottfried JA (2008) Aversive learning
enhances perceptual and cortical discrimination of indiscrimina-
ble odor cues. Science 319:1842–1845

Livermore A, Laing DG (1996) InXuence of training and experience on
the perception of multicomponent odor mixtures. J Exp Psychol
Hum Percept Perform 22:267–277

Lord T, Kasprzak M (1989) IdentiWcation of self through olfaction.
Percept Mot Skills 69:219–224

Lorig T (1992) Cognitive and ‘non-cognitive’ eVects of odor exposure:
electrophysiological and behavioral evidence. In: Van Toller S,
Dodd G (eds) The psychology and biology of perfume. Elsevier,
Amsterdam, pp 161–173

Lundstrom JN, Olsson MJ (2005) Subthreshold amounts of social
odorant aVect mood, but not behavior, in heterosexual women
when tested by a male, but not a female, experimenter. Biol
Psychol 70:197–204

Lundstrom JN, Goncalves M, Esteves F, Olsson MJ (2003) Psycho-
logical eVects of subthreshold exposure to the putative human
123



Exp Brain Res (2010) 205:13–29 27
pheromone 4, 16-androstadien-3-one. Horm Behav 44:395–
401

Lundstrom JN, Boyle JA, Zatorre RJ, Jones-Gotman M (2008) The
neuronal substrates of human olfactory based kin recognition.
Hum Brain Mapp 30:2571–2580

Macfarelane A (1975) Olfaction in the development of social prefer-
ences in the human neonate. Ciba Found Symp 33:103–117

Madan R, Sawlani V, Gupta S, Phadke RV (2004) MRI Wndings in
Kallmann syndrome. Neurol India 52:501–503

Mainen ZF (2006) Behavioral analysis of olfactory coding and compu-
tation in rodents. Curr Opin Neurobiol 16:429–434

Mainland J, Sobel N (2006) The sniV is part of the olfactory percept.
Chem Senses 31:181–196

Mainland JD, Bremner EA, Young N, Johnson BN, Khan RM, BensaW
M, Sobel N (2002) Olfactory plasticity: one nostril knows what
the other learns. Nature 419:802

Mallet P, Schaal B (1998) Rating and recognition of peers’ personal
odors by 9-year-old children: an exploratory study. J Gen Psychol
125:47–64

Malnic B, Hirono J, Sato T, Buck LB (1999) Combinatorial receptor
codes for odors. Cell 96:713–723

Maresh A, Rodriguez Gil D, Whitman MC, Greer CA (2008) Princi-
ples of glomerular organization in the human olfactory bulb—
implications for odor processing. PLoS One 3:e2640

McBride SA, Slotnick B (1997) The olfactory thalamocortical system
and odor reversal learning examined using an asymmetrical lesion
paradigm in rats. Behav Neurosci 111:1273–1284

McClintock MK (1971) Menstrual synchrony and suppression. Nature
229:244–245

McCoy NL, Pitino L (2002) Pheromonal inXuences on sociosexual
behavior in young women. Physiol Behav 75:367–375

Melcher JM, Schooler JW (1996) The misremembrance of wines past:
verbal and perceptual expertise diVerentially mediate verbal over-
shadowing of taste memory. J Mem Lang 35:231–245

Meredith M (2001) Human vomeronasal organ function: a critical
review of best and worst cases. Chem Senses 26:433–445

Michon R, Chebat JC, Turley LW (2005) Mall atmospherics: the inter-
action eVects of the mall environment on shopping behavior.
J Bus Res 58:576–583

Moran DT, Rowley JC, Jafek BW, Lovell MA (1982) The Wne-struc-
ture of the olfactory mucosa in man. J Neurocytol 11:721–746

Morgan CD, Geisler MW, Covington JW, Polich J, Murphy C (1999)
Olfactory P3 in young and older adults. Psychophysiology
36:281–287

Morrin M, Ratneshwar S (2003) Does it make sense to use scents to
enhance brand memory? J Market Res 40:10–25

Morrot G, Brochet F, Dubourdieu D (2001) The color of odors. Brain
Lang 79:309–320

Murphy C, Schubert CR, Cruickshanks KJ, Klein BE, Klein R,
Nondahl DM (2002) Prevalence of olfactory impairment in older
adults. Jama 288:2307–2312

Nagata Y (2003) Measurement of odor threshold by triangle odor bag
method. Odor measurement review, Japan Ministry of the Envi-
ronment, pp 118–127

Nagata Y, Takeuchi N (1990) Measurement of odor threshold by trian-
gle odor bag method. Bull Jpn Environ Sanit Center 17:77–89

Parr WV, Heatherbell D, White KG (2002) Demystifying wine exper-
tise: olfactory threshold, perceptual skill and semantic memory in
expert and novice wine judges. Chem Senses 27:747–755

Pause BM, Sojka B, Krauel K, Ferstl R (1996) The nature of the late
positive complex within the olfactory event-related potential
(OERP). Psychophysiology 33:376–384

Pause BM, Sojka B, Ferstl R (1997) Central processing of odor
concentration is a temporal phenomenon as revealed by chemo-
sensory event-related potentials (CSERP). Chem Senses 22:9–26

Philpott CM, Wolstenholme CR, Goodenough PC, Clark A, Murty GE
(2006) Comparison of subjective perception with objective mea-
surement of olfaction. Otolaryngol Head Neck Surg 134:488–490

Plailly J, Howard JD, Gitelman DR, Gottfried JA (2008) Attention to
odor modulates thalamocortical connectivity in the human brain.
J Neurosci 28:5257–5267

Porter RH, Moore JD (1981) Human kin recognition by olfactory cues.
Physiol Behav 27:493–495

Porter RH, Cernoch JM, McLaughlin FJ (1983) Maternal recognition
of neonates through olfactory cues. Physiol Behav 30:151–154

Porter J, Anand T, Johnson B, Khan RM, Sobel N (2005) Brain mech-
anisms for extracting spatial information from smell. Neuron
47:581–592

Porter J, Craven B, Khan RM, Chang SJ, Kang I, Judkewicz B, Volpe J,
Settles G, Sobel N (2007) Mechanisms of scent-tracking in
humans. Nat Neurosci 10:27–29

Posner MI, Petersen SE (1990) The attention system of the human
brain. Annu Rev Neurosci 13:25–42

Posner MI, Snyder CR, Davidson BJ (1980) Attention and the detec-
tion of signals. J Exp Psychol 109:160–174

Preti G, Wysocki CJ, Barnhart KT, Sondheimer SJ, Leyden JJ (2003)
Male axillary extracts contain pheromones that aVect pulsatile
secretion of luteinizing hormone and mood in women recipients.
Biol Reprod 68:2107–2113

Price JL (1990) Olfactory system. In: Paxinos G (ed) The human ner-
vous system. Academic Press, San Diego, pp 979–1001

Rabin MD (1988) Experience facilitates olfactory quality discrimina-
tion. Percept Psychophys 44:532–540

Radil T, Wysocki CJ (1998) Spatiotemporal masking in pure olfaction.
Ann N Y Acad Sci 855:641–644

Rajan R, Clement JP, Bhalla US (2006) Rats smell in stereo. Science
311:666–670

Rawson NE (2006) Olfactory loss in aging. Sci Aging Knowl Environ
5:pe6

Remington R, Johnston J, Yantis S (1992) Involuntary attentional cap-
ture by abrupt onsets. Percep Psychophy 51:279–290

Rensink RA, O’Regan JK, Clark JJ (1997) To see or not to see: the need
for attention to perceive changes in scenes. Psychol Sci 8:368–373

Robin DA, Rizzo M (1992) Orienting attention in audition and be-
tween audition and vision—young and elderly subjects. J Speech
Hear Res 35:701–707

Rombaux P, Mouraux A, Bertrand B, Guerit JM, Hummel T (2006)
Assessment of olfactory and trigeminal function using chemosen-
sory event-related potentials. Neurophysiol Clin 36:53–62

Russell MJ, Switz GM, Thompson K (1980) Olfactory inXuences on the
human menstrual cycle. Pharmacol Biochem Behav 13:737–738

Sabri M, Radnovich AJ, Li TQ, Kareken DA (2005) Neural correlates
of olfactory change detection. Neuroimage 25:969–974

Saito H, Chi Q, Zhuang H, Matsunami H, Mainland JD (2009) Odor
coding by a mammalian receptor repertoire. Sci Signal 2:ra9

Salmi J, Rinne T, Degerman A, Salonen O, Alho K (2007) Orienting
and maintenance of spatial attention in audition and vision: mul-
timodal and modality-speciWc brain activations. Brain Struct
Funct 212:181–194

Savic I (2002) Sex diVerentiated hypothalamic activation by putative
pheromones. Mol Psychiatry 7:335–336

Savic I, Gulyas B (2000) PET shows that odors are processed both ipsi-
laterally and contralaterally to the stimulated nostril. Neuroreport
11:2861–2866

Savic I, Berglund H, Gulyas B, Roland P (2001) Smelling of odorous
sex hormone-like compounds causes sex-diVerentiated hypotha-
lamic activations in humans. Neuron 31:661–668

Savic I, Berglund H, Lindstrom P (2005) Brain responses to putative
pheromones in homosexual men. Proc Natl Acad Sci USA
102:7356–7361
123



28 Exp Brain Res (2010) 205:13–29
Saxton T, Lyndon A, Little AC, Roberts C (2008) Evidence that
androstadienone, a putative human chemosignal, modulates
women’s attributions of men’s attractiveness. Horm Behav
54:597–601

Schaal B, Montagner H, Hertling E, Bolzoni D, Moyse A, Quichon R
(1980) Olfactory stimulations in mother–child relations. Rep Nut
Dev 20:843–858

Schneider RA, Schmidt CE (1967) Dependency of olfactory localiza-
tion on non-olfactory cues. Physiol Behav 2:305–309

Schoenfeld TA, Cleland TA (2006) Anatomical contributions to odor-
ant sampling and representation in rodents: zoning in on sniYng
behavior. Chem Senses 31:131–144

Scott JW (2006) SniYng and spatiotemporal coding in olfaction. Chem
Senses 31:119–130

Sela L, Sacher Y, Serfaty C, Yeshurun Y, Soroker N, Sobel N (2009)
Spared and impaired olfactory abilities after thalamic lesions.
J Neurosci 29:12059–12069

Shepherd GM (2004) The human sense of smell: are we better than we
think? PLoS Biol 2:E146

Shepherd GM (2007) Perspectives on olfactory processing, conscious
perception, and orbitofrontal cortex. Ann N Y Acad Sci 1121:87–
101

Small DM, Gerber JC, Mak YE, Hummel T (2005) DiVerential neural
responses evoked by orthonasal versus retronasal odorant percep-
tion in humans. Neuron 47:593–605

Smythies J (1997) The functional neuroanatomy of awareness: with a
focus on the role of various anatomical systems in the control of
intermodal attention. Conscious Cogn 6:455–481

Sobel N, Brown WM (2001) The scented brain: pheromonal responses
in humans. Neuron 31:512–514

Sobel N, Prabhakaran V, Desmond JE, Glover GH, Goode RL,
Sullivan EV, Gabrieli JD (1998a) SniYng and smelling: separate
subsystems in the human olfactory cortex. Nature 392:282–286

Sobel N, Prabhakaran V, Hartley CA, Desmond JE, Zhao Z, Glover
GH, Gabrieli JD, Sullivan EV (1998b) Odorant-induced and sniV-
induced activation in the cerebellum of the human. J Neurosci
18:8990–9001

Sobel N, Prabhakaran V, Hartley CA, Desmond JE, Glover GH,
Sullivan EV, Gabrieli JD (1999) Blind smell: brain activation
induced by an undetected air-borne chemical. Brain 122(Pt 2):
209–217

Solomon GEA (1990) Psychology of novice and expert wine talk. Am
J Psychol 103:495–517

Spangenberg ER, Sprott DE, Grohmann B, Tracy DL (2006) Gender-
congruent ambient scent inXuences on approach and avoidance
behaviors in a retail store. J Bus Res 59:1281–1287

Spehr M, Munger SD (2009) Olfactory receptors: G protein-coupled
receptors and beyond. J Neurochem 109:1570–1583

Spence C (2002) Multisensory attention and tactile information-pro-
cessing. Behav Brain Res 135:57–64

Spence CJ, Driver J (1994) Covert spatial orienting in audition: exog-
enous and endogenous mechanisms. J Exp Psychol Hum Percept
Perform 20:555–574

Spence C, McGlone FP, Kettenmann B, Kobal G (2001) Attention to
olfaction. A psychophysical investigation. Exp Brain Res
138:432–437

Stern K, McClintock MK (1998) Regulation of ovulation by human
pheromones. Nature 392:177–179

Stettler DD, Axel R (2009) Representations of odor in the piriform cor-
tex. Neuron 63:854–864

Stevenson RJ (2009a) An initial evaluation of the functions of human
olfaction. Chem Senses 35:3–20

Stevenson RJ (2009b) Phenomenal and access consciousness in olfac-
tion. Conscious Cog 18:1004–1017

Stowers L, Marton TF (2005) What is a pheromone? Mammalian pher-
omones reconsidered. Neuron 46:699–702

Su CY, Menuz K, Carlson JR (2009) Olfactory perception: receptors,
cells, and circuits. Cell 139:45–59

Tian H, Ma M (2004) Molecular organization of the olfactory septal
organ. J Neurosci 24:8383–8390

Treisman AM, Gelade G (1980) A feature-integration theory of atten-
tion. Cogn Psychol 12:97–136

Tubaldi F, Ansuini C, Dematte ML, Tirindelli R, Castiello U (2008a)
EVects of olfactory stimuli on arm-reaching duration. Chem Senses
33:433–440

Tubaldi F, Ansuini C, Tirindelli R, Castiello U (2008b) The grasping
side of odours. Plos One 3:e1795

Tubaldi F, Ansuini C, Tirindelli R, Castiello U (2009) The eVects of
task-irrelevant olfactory information on the planning and the exe-
cution of reach-to-grasp movements. Chemosens Percept 2:25–31

Uva L, de Curtis M (2004) Polysynaptic olfactory pathway to the ipsi-
and contralateral entorhinal cortex mediated via the hippocampus.
Neuroscience 130:249–258

Varendi H, Christensson K, Porter RH, Winberg J (1998) Soothing
eVect of amniotic Xuid smell in newborn infants. Early Hum Dev
51:47–55

Veldhuizen MG, Bender G, Constable RT, Small DM (2007) Trying to
detect taste in a tasteless solution: modulation of early gustatory
cortex by attention to taste. Chem Senses 32:569–581

Verhagen JV, Wesson DW, NetoV TI, White JA, Wachowiak M
(2007) SniYng controls an adaptive Wlter of sensory input to the
olfactory bulb. Nat Neurosci 10:631–639

Vitevitch MS (2003) Change deafness: the inability to detect changes
between two voices. J Exp Psychol-Hum Percep Perform 29:333–
342

Walla P (2008) Olfaction and its dynamic inXuence on word and face
processing: cross-modal integration. Prog Neurobiol 84:192–209

Walla P, Hufnagl B, Lehrner J, Mayer D, Lindinger G, Deecke L,
Lang W (2002) Evidence of conscious and subconscious olfac-
tory information processing during word encoding: a magneto-
encephalographic (MEG) study. Brain Res Cogn Brain Res
14:309–316

Wang L, Chen L, Jacob T (2004) Evidence for peripheral plasticity in
human odour response. J Physiol 554:236–244

Wayand JF, Levin DT, Varakin DA (2005) Inattentional blindness for
a noxious multimodal stimulus. Am J Psychol 118:339–352

Wedekind C, Furi S (1997) Body odour preferences in men and wom-
en: do they aim for speciWc MHC combinations or simply hetero-
zygosity? Proc Biol Sci 264:1471–1479

Welker WI (1964) Analysis of sniYng of the albino rat. Behaviour
22:223–244

Whisman M, Goetzinger J, Cotton F, Brinkman D (1978) Odorant
evaluation: a study of ethanethiol and tetrahdrothiophene as warn-
ing agents in propane. Environ Sci Technol 12:1285–1288

Wilson HC (1992) A critical review of menstrual synchrony research.
Psychoneuroendocrinology 17:565–591

Wilson DA (1997) Binaral interactions in the rat piriform cortex.
J Neurophysiol 78:160–169

Witt M, Hummel T (2006) Vomeronasal versus olfactory epithelium:
is there a cellular basis for human vomeronasal perception? Int
Rev Cytol 248:209–259

Wyart C, Webster WW, Chen JH, Wilson SR, McClary A, Khan RM,
Sobel N (2007) Smelling a single component of male sweat alters
levels of cortisol in women. J Neurosci 27:1261–1265

Wysocki CJ, Gilbert AN (1989) National geographic smell survey.
EVects of age are heterogenous. Ann N Y Acad Sci 561:12–28

Wysocki CJ, Preti G (2004) Facts, fallacies, fears, and frustrations with
human pheromones. Anat Rec A Discov Mol Cell Evol Biol
281:1201–1211

Wysocki CJ, Dorries KM, Beauchamp GK (1989) Ability to perceive
androstenone can be acquired by ostensibly anosmic people. Proc
Natl Acad Sci USA 86:7976–7978
123



Exp Brain Res (2010) 205:13–29 29
Yee KK, Wysocki CJ (2001) Odorant exposure increases olfactory
sensitivity: olfactory epithelium is implicated. Physiol Behav
72:705–711

Yeshurun Y, Sobel N (2010) An odor is not worth a thousand words:
from multidimensional odors to unidimensional odor objects.
Annu Rev Psychol 61:(219–241):C211–C215

Youngentob SL, Mozell MM, Sheehe PR, Hornung DE (1987) A quan-
titative analysis of sniYng strategies in rats performing odor
detection tasks. Physiol Behav 41:59–69

Zelano C, Sobel N (2005) Humans as an animal model for systems-
level organization of olfaction. Neuron 48:431–454

Zelano C, BensaW M, Porter J, Mainland J, Johnson B, Bremner E,
Telles C, Khan R, Sobel N (2005) Attentional modulation in
human primary olfactory cortex. Nat Neurosci 8:114–120

Zucco GM, Paolini M, Schaal B (2009) Unconscious odour condition-
ing 25 years later: revisiting and extending ‘Kirk-Smith, Van
Toller and Dodd’. Learn Motiv 40:364–375
123


	Human olfaction: a constant state of change-blindness
	Abstract
	Introduction
	Human olfactory neuroanatomy
	Humans have a superb sense of smell
	Humans don't trust their nose
	Humans don't notice smells
	No space for human olfactory attention
	No time for human olfactory attention
	The influence of subliminal odors
	Subliminal odorants influence physiological state
	Subliminal odorants influence social judgments
	Subliminal odorants influence mood
	Subliminal odorants influence cognitive performance
	Subliminal odorants influence behavior

	A time-stamp dissociating subliminal from perceived olfactory stimuli
	Conclusions
	Acknowledgments
	References


