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Human Oral Processing and Texture Profile Analysis Parameters – 

Bridging the gap between the sensory evaluation and the instrumental 

measurements 

 

Abstract 

Studies in food oral processing are becoming increasingly important with the 

advent of the aged society. The food oral processing model of Hutchings and 

Lillford (J Texture Studies 19 103-115) describes the structural breakdown and 

lubrication of ingested food before the swallowing stage, and has been revisited in 

the present paper. The instrumental technique Texture Profile Analysis (TPA) 

purports to mimic the first two bites of mastication and its ease of use has lured 

some researchers to use it without a critical eye.  

In this paper we consider inconsistencies in the Hutchings and Lillford model with 

the hope that it might be further refined. With regard to TPA we question the 

validity of the data generated and urge authors caution before they publish 

results from the test protocol. If results are published then the x-axis should be 

viewed as deformation or strain, and not time. Hardness should be represented 

by the breaking stress. Adhesiveness should be measured at a medium strain 

taking into account the surface properties of the plunger. The ratio of the energy 

estimated by the area under the curve obtained from the second and the first 

bites (A2/A1) should be called recoverability and not cohesiveness. 

 

Practical applications 

To select the suitable foods for disadvantaged people, a simple and easy method 

to judge the safety of each food is required. Correct usage of TPA is necessary. 

The users of TPA should understand the limitation and validity of TPA. While 

hardness and related parameters of TPA can be used, other methods should be 

used to get adhesiveness and cohesiveness. 

 

Introduction 

Aspiration induced pneumonia has become a serious problem in our ageing 

society and many studies have been undertaken to prevent it. Many recent food 
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oral processing studies start by accepting the breakdown path model of Hutchings 

and Lillford (1988) which schematically represents the trajectory of foods during 

oral processing. According to this model, weakly structured foods such as juice or 

raw oysters may be swallowed immediately. If it has a stronger structure such as 

meat or biscuit it must be broken down and mixed with saliva.  When the 

structure is weak and the moisture content low (as in sponge cake), then it needs 

to absorb saliva to form a bolus.  

Chen (2009) systematically reviewed food oral processing trying to combine the 

oral physiology, food physics, psychology and related disciplines. He also initiated 

and convened the international conferences on food oral processing (Chen and 

Engelen, 2012; Chen and Loret, 2017) which are now organized every two years, 

raising the profile of this important area of research. 

To date publications on the structure and texture during the breakdown of foods 

have been heavily influenced by two ideas: 

1. The breakdown path model devised by Hutchings and Lillford (1988) which 

proposes that for a food to be swallowed, two criteria must be reached. 

Firstly its structure must be broken down till it reaches a threshold and 

secondly it must become lubricated until a second threshold is achieved. 

The oral processing that is required to meet these two thresholds is 

commonly referred to as the oral trajectory. These thresholds are 

illustrated in figure 1 and the intersection of the threshold planes forms a 

bar within which the food can be swallowed. 

2. The second idea is that we can use an instrument to mimic what goes on 

in the mouth, and from the first two bites alone, identify many of the 

textural characteristics of the food. This idea originates from the protocol 

described by Friedman, Whitney and Szczesniak (1963) which is normally 

referred to as Texture Profile Analysis (TPA). Its popularity is perhaps 

because it is simple to carry out and that it lures the operator into 

believing that as it mimics biting, and that it might provide measures of 

food texture analogous to those experienced during oral processing. 

  

In this paper, the past and present discussion around the oral processing model of 

Hutchings and Lillford is considered in relation to the validity of the parameters of 

TPA, which attempts to mimic the initial steps (first two bites) of the same 

breakdown process. 
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I. Hutching and Lillford model of food oral processing 

I-1. Structure breakdown 

In the dentistry, the particle size distribution after mastication has been studied 

quantitatively as an index of masticatory performance (Olthoff, van der Bilt, 

Bosman and Ueizen, 1984; van der Bilt, Olthoff, van der Glas and van der 

Weelen, 1987). Their studies were based on the fracture mechanics which explain 

mathematically the disintegration of food, though originally used to understand 

the grinding of rocks, coals and such hard materials. Jalabert-Malbos, Mishellany-

Dutour, Woda, & Peyron (2007) measured the particle size distribution of bolus 

formed from 10 natural foods including nuts, carrots, ham and cheese, just 

before swallowing they found that most foods are degraded into smaller particles 

(<2mm). Larger particles in bolus arise from softer foods such as gherkins and 

green olives. They attributed the size difference of particles in boli formed from 

hard and soft foods to the following physiological reason: softer particles are not 

liable to injure the upper digestive mucosae. It should be remembered that softer 

and round particles are sensed as less gritty than hard and anisotropic irregular 

shape particles with a similar size (Tyle, 1993; Engelen, van der Bilt, Schipper 

and Bosman, 2005). More recently, Chen, Khandelwal, Liu and Funami (2013) 

examined the relation between the particle size and the hardness of foods and 

found that bolus particle size decreased with the increase of food hardness 

corroborating the previous finding of Jalabert-Malbos et al (2007). Therefore, 

although the particle size is an important criterion for safe swallowing, and is a 

good measure for the structural breakdown, it is not possible to find a single 

particle size below which the swallowing is triggered. 

Prinz and Lucas (1997) studied the food oral processing using Brazil nuts and raw 

carrots. Although these two foods have very different mechanical properties, they 

are found to be swallowed after approximately the same number of chewing 

cycles at which point the cohesive force peaked for both foods. They concluded 

that the swallowing time is determined by the maximum cohesiveness, and 

beyond that time excessive saliva floods the bolus making it less cohesive. They 

calculated the cohesive force = FV – FA, where FV is a viscous force, and FA is an 

adhesive force (assuming that the particles in bolus are spherical).    

Chen and Lolivret (2011) questioned the optimum swallow model of Prinz and 

https://www.ncbi.nlm.nih.gov/pubmed/?term=van%20der%20Bilt%20A%5BAuthor%5D&cauthor=true&cauthor_uid=3479099
https://www.ncbi.nlm.nih.gov/pubmed/?term=van%20der%20Bilt%20A%5BAuthor%5D&cauthor=true&cauthor_uid=3479099
https://www.ncbi.nlm.nih.gov/pubmed/?term=van%20der%20Weelen%20K%5BAuthor%5D&cauthor=true&cauthor_uid=3479099
https://www.ncbi.nlm.nih.gov/pubmed/?term=van%20der%20Weelen%20K%5BAuthor%5D&cauthor=true&cauthor_uid=3479099
https://www.ncbi.nlm.nih.gov/pubmed/?term=Bosman%20F%5BAuthor%5D&cauthor=true&cauthor_uid=3479099
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Lucas (1997) because if the bolus has the maximum cohesiveness at the swallow 

point, then the effort to swallow may be higher, and therefore it is more logical to 

assume that the flowability is the key determinant of the swallow point. Chen and 

Lolivret (2011) examined the flowability and oral residence time for 28 fluid foods 

(yogurt drink, mayonnaise, strawberry jam, etc). They found that peanut paste 

(peanut butter) showed the second longest oral residence time 7 ± 1.7 s (after 

7.7 ± 1.2 s of honey) and the highest perceived difficulty of swallowing. They 

found a positive correlation between the shear viscosity and the perceived 

difficulty of swallowing. The maximum force and the work required to stretch a 

fluid bolus were shown highly correlated with the oral residence time and the 

ease of swallowing. From these experimental results, Chen and Lolivret (2011) 

hypothesized that the flowability and stetchability were relevant in determining 

the trigger of swallowing. They thought that as the bolus becomes more flowable 

and stretchable, and once Prinz and Lucas’s maximum cohesiveness is obtained, 

then less effort is required to initiate the swallow. However, they did not seem 

concerned that excessive chewing might induce flooding of the bolus (Prinz and 

Lucas,1997). This point should be further studied in relation with the risk of 

aspiration by flooded boli. 

Rosenthal and Share (2010) studied the oral processing of peanut, peanut meal 

(crushed into small pieces (0.5-2mm), and peanut paste (further milled to 

smooth texture) in relation to Hutchings and Lillford’s model. Unsurprisingly both 

the time to the first swallow and clearance decreased as the degree of the 

structural destruction progressed, longest for whole peanut and shortest for 

peanut paste. Temporal Dominance of Sensations (TDS) showed the five 

sensations (Hard Crunchy Chewy Soft Compacted on teeth) for whole 

peanut as time progressed, while only three sensations occurred for peanut meal 

(Chewy Soft Compacted on teeth) and in the case of peanut paste only two 

sensations (Soft Sticks to palate) existed. It is not surprising to notice that 

comminuted foods lose their ‘hardness’ and ‘crunchiness’ sensations, but 

Rosenthal and Share (2010) considered it odd that in the case of peanut paste, 

‘sticks to palate’ increases with the time. These authors observed a similar 

behaviour with other oils seed pastes (Hawthornthwaite, Ramjan and Rosenthal, 

2015) and they coined the phrase “hard to swallow”.  

Using sesame paste, Rosenthal and Yilmaz (2015) tried to understand the 

mechanism underlying this behaviour. They observed the physical properties 

(compressive and adhesive forces) of sesame paste while adding water and 

measuring water activity. The initial water activity (Aw) of the sesame paste was 
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0.58, and this value barely changed until 4% water addition, there was then a 

gradual rise reaching an Aw of 0.90 at about 12% added water, at which point it 

ceased to behave as a liquid and showed the first (of two) peaks in adhesiveness. 

Compressive force peaked at 25% added water which also corresponded to the 

second and larger peak in adhesiveness. Further addition of water resulted in a 

gradual increase in Aw which leveled off at 0.99 (28% added water). At 35% 

added water it no longer behaved as a solid. The authors interpreted the increase 

of compressive and adhesive forces as the absorption of added water to cell 

debris resulting in a hard, sticky mass. The cell debris was originally suspended in 

oil, but on hydration eventually forms an oil in water emulsion. Only when it is 

diluted by about one third does it start lose its solidity as the emulsion is 

progressively thinned by the addition of water. 

Figure 1  

The ‘hard to swallow’ concept does not deny the effectiveness of Hutchings and 

Lillford’s oral trajectory model, but contributes to its refinement. The left hand 

image of figure 1 is the published trajectory for hard to swallow peanut paste 

(Rosenthal & Yilmaz, 2015) appears to move towards negative time. Obviously 

this is impossible and is actually a distortion resulting from perspective of three 

dimensional images represented in two dimension. The right hand image of figure 

1 above is the revised trajectory redrawn on Hutchings and Lillford’s model that 

has been rotated through 90° and which overcomes this distortion. In such a 

modified schematic, the time monotonically increases (towards the reader) while 

the degree of structure initially increases simultaneously with a decrease in the 

degree of lubrication. However with further secretion of saliva there is a gradual 

increase in lubrication and a loss of structure towards the final swallow.  This is 

possible if we recall Hiiemae and Palmer’s process model (Hiiemae, 2004) for 

feeding where the processing cycles are repeated until the second “transport ?” 

question (the judgement for the bolus to go to the next step) can be answered in 

the affirmative. When sesame paste sticks to the tongue and palate, the question 

in Hiiemae and Palmer’s model cannot be answered affirmatively until the time 

passes so that the paste absorbs more water. During this short time, the “hard to 

swallow” sensation can occur. Clearly time can only increase, but in the food 

examples mentioned above, Hutchings and Lillford’s concepts of lubrication and 

degree of structure can both decrease and increase, during the oral processing. 

An increase in the structure coordinate of the trajectory can be easily imagined 

with the absorption of water (or saliva) by powdery foods (e.g. Rosenthal & Pang, 

2018). It is well-known that the flowability of powders decreases with increasing 



 6 

moisture content. Yet further increase in moisture content surely increase the 

flowability (Juarez-Enriquez, et al., 2017). Here, we should also think about the 

relation between the flowability and lubrication. In the example of powders, the 

increase in the moisture content leads to a decreases in the flowability, while a 

further increase in the moisture content increases the flowability through the 

creation of a slurry. In this latter case, the lubrication in the sense of Hutchings 

and Lillford increases. In other words Hutchings and Lillford’s lubrication is similar 

to the flowability of powders after the absorption of high levels of moisture. 

Therefore, it should be noticed that the structure axis and the lubrication axis in 

the Hutchings and Lillford are not independent, but the structure and the 

lubrication are correlated each other as shown in the above example of powders. 

An essential point of Figure 1 (right) is that the degree of lubrication initially 

decreases while the degree of structure increases, and then the degree of 

lubrication increases while the degree of structure decreases. The peanut and 

sesame pastes studied by Rosenthal and co-workers, exhibited a “hard to 

swallow” sensation resulting from the addition of saliva or water. Is this 

phenomenon limited to foods with comparatively low water content? Polymers of 

animal or plant origin such as collagen and amylose (main ingredient of starch, 

Nishinari and Fukada, 1980) are known to become firmer with increasing water 

content, which is related to the increase in the crystallinity. Some dried foods 

such as dried bonito, laverbread, dried soybean powders etc are usually eaten 

after adding water or together with moistened foods, but sometimes tasted 

without adding water. In such a situation, it is expected that the hardness would 

increase first to some extent and then decrease with increasing saliva content. If 

this is not detected by humans it is not called texture. As Bourne says (2000), 

physical properties which are not detected by human senses are not textural 

properties. Therefore, if the humans do not detect the hardness change in this 

phenomenon, it is not a textural property although it can be detected and 

explained by physics.  

Here, another question arises. To what extent are human beings sensitive and 

can the threshold value be changed by training? Tyle (1983) and Engelen et al 

(2005) found that the minimum size of particles which humans can detect as 

gritty, depends on the hardness and the shape of the particles. If the panelists 

are trained, do they detect more subtle difference in the grittiness? This problem 

of the threshold concerns all textural attributes, grittinesss, hardness, 

adhesiveness, etc.  

As Bourne (2000) says, instruments measure only one aspect of the texture 
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which is a multi-faceted. Recently, many masticating machines have been created 

trying to analyze the texture as a whole (Peyron and Woda, 2016), and if the 

motion of such instruments faithfully mimic human mastication, then analysis of 

mastication become possible, in comparison the simple uniaxial compression 

employed in TPA seems wholly insufficient for such a purpose. However, no 

systematic analysis of mimicking mastication has yet been carried out.  

 

I-2. Lubrication 

There have been many papers to clarify the effect of structure breakdown and 

increasing lubrication in the oral processing. Pereira, de Wijk, Gavião and van der 

Bilt (2006) showed that tap water or alpha-amylase solution reduced the jaw 

movement and muscle activity for dry foods (Melba toast, cake), but it did not 

influence the chewing of fatty (cheese) and wet products (carrot). Thus, the 

addition of fluids facilitated chewing, and enhanced the structure breakdown and 

lubrication. Pereira, Gavião, Engelen and van der Bilt (2007) demonstrated that 

the addition of fluid could significantly reduce the number of chewing cycles for 

some dry foods because of enhanced bolus flowability in the presence of extra 

fluid. As with the hard-to-swallow oil seed pastes, if we bypass the initial 

structural breakdown and focus on the secondary oral processing characteristics, 

then hydration becomes the dominant factor in the oral processing of dry, 

carbohydrate rich foods such as crackers and Melba toast (Rosenthal and Pang 

2018).  Engelen, Fontijn-Tekamp and van der Bilt (2005) demonstrated that 

butter reduced the chewing cycles for dried foods such as toast and cake. More 

recently van Eck and co-workers (2018) reported that toppings such as cheese 

spread, mayonnaise on the bread reduced the chewing effort by enhancing the 

lubrication. 

Hutchings and Lillford (1988) recognized that lubrication could arise from both 

hydration and/or oil.  Recently tribological measurements have been carried out 

(Chen and Stokes, 2012; Stokes , 2012; Stokes, Boehm and Baier, 2013; Torres, 

Andablo-Reyes, Murray and Sarkar, 2018). In the food oral processing, bulk 

rheological properties detected by first bite, chewing (comminution), deformation, 

granulation dominate the sensation in the initial stages. During the later stages of 

mastication and incorporation of saliva result in formation of a bolus. Prior to 

swallowing the tribological sensation between bolus and tongue/palate become 

dominant. This is caused by the length scale change from the order of 

centimeters for ingested food to the order of micrometers in the case of thin 
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layers between bolus and tongue/palate. Most tribological measurements were 

done using a mini-traction machine which enables detection of the frictional force 

of food layers between the rotating ball and the elastomeric (usually polydimethyl 

siloxan) disk (Stokes, 2012). Chojnicka-Paszun, de Jongh and de Kruif (2012) 

found a good correlation between the perceived creaminess and the friction 

coefficient observed by a mini-traction machine (Figure 2).  

 

Figure 2  

 

It is widely accepted that the perceived intensity in the sensory evaluation is 

correlated with the instrumentally observed quantity by a power law equation. A 

good fitting by a straight line shown in the Figure 2 suggests that the exponent is 

close to one, indicating that the creaminess is almost linearly correlated with 

friction coefficient. Since creaminess has been a difficult sensation to measure 

instrumentally this is a very encouraging result. However, the geometry used for 

most tribological measurements is still limited to hard surfaces (metal, glasses, 

Teflon, etc), and thus Dresselhuis, de Hoog, Cohen Stuart and van Aken (2008) 

used a pig’s tongue as a substrate to assess lubrication effects of food emulsions 

to better mimic the real situation in the mouth (Stokes, 2012). Further 

development in instrumentation are expected. An artificial tongue was used to get 

a better understanding of the squeezing of soft food between the tongue and the 

palate (Ishihara, et al. 2014).  

In the case of some foods such as noodles, the structure doesn’t need to be 

broken down, and the slippery strands are swallowed without chewing. 

Lubrication related characteristics are related to frictional properties. The friction 

force between noodle strands were measured by pulling noodles glued to a 

holding plate attached to a plunger, which is in contact with another noodle 

strand glued to it. The slipperiness, the inverse of the frictional force, of rice 

noodle strands was found to increase with increasing concentration of added 

alginate or pectin to rice flour (Nitta et al, 2018). This appreciation of slippery 

sensations in food is related to culture. In Western countries, slurping foods is not 

considered good manners while in Asian countries people enjoy noodles in such a 

way where the structure is not so much broken down and swallowed because of 

the slippery and already lubricated characteristics (when covered with soup). 

II. Parameters of Instrumental Texture Profile Analysis 
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In food science and technology area, the most frequently used method to obtain 

the relation between the sensory evaluation and the instrumental measurement is 

TPA which was proposed and promoted by Szczesniak and Bourne (Szczesniak, 

2002; Bourne 2002). The technique is a two-bite (double compression) type test 

from which various parameters (named: hardness, adhesiveness, cohesiveness, 

brittleness/fracturability, elasticity/springiness, gumminess, chewiness) can be 

obtained. The reason why this method has been so often used is its simplicity. 

Most researchers use some kind of texture analyzer, originally the General Food 

Texturometer (GFT) was used, though this has now been replaced by uniaxial 

machines (Fiszman and Tarrega, 2017; Nishinari and Fang, 2018). Unfortunately, 

many papers lack important information or misinterpret  the TPA parameters. 

The discussion of the TPA parameters in the present paper is not exhaustive 

because the above mentioned books and review papers have already described 

these systematically. In this short paper, the validity of TPA parameters especially 

hardness, adhesiveness and cohesiveness is discussed.  

TPA is a testing protocol which has evolved over time. It was originally developed 

by workers at General Foods (Friedman, Whitney and Szczesnizk 1963) who had 

adapted the MIT denturometer (Proctor, Davison et al. 1955, Brody 1957) to 

create the General Foods Texturometer (GFT). Yet over the years the technique 

evolved notably by Bourne (1968) who adapted the protocol to operate on an 

Instron Universal Testing Machine in which forces are applied normal to the 

sample instead of the arctuate action of the GFT. In addition to changing the 

texturometer, he replaced the plunger of fixed contact area with a platen to 

squash the sample and the rate of compression was greatly reduced from an 

average speed 17.78 mm.s-1 to just 0.83 mm.s-1.  Since Bourne’s modification, 

the protocol has been adapted by numerous workers, so much so that the only 

thing that seems to have remained as a constant is that it is a two-bite test! 

Some examples which show the extent of the variation in the test protocol are: 

 The speed of compression ranging from 0.02 mm.s-1 (Ravi and 

Susheelamma 2004) to 100 mm.s-1 (Allais, Edoura-Gaena et al. 2006).   

 The applied strain also seems to have been modified with figures ranging 

from 7% (Abbas, Ali et al. 2006) to 90% (Mørkøre and Einen 2003) 

 The dimensions of the surface in contact with the sample, with numerous 

researchers following Bourne’s (1968) lead and compress the sample with 

a platen, yet with others who reduce the diameter down to 1.2 mm, which 

must be akin to a puncture test (Lamsal, Jung et al. 2007).   
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 Sample sizes also vary 3mm diameter cores cut out of pecan nuts (Ocón, et 

al. 1995) to slabs of restructured scallops which were moulded in 100 x 

100 mm slabs and then compressed with a 50 mm diameter cylindrical 

probe (Beltrán-Lugo, Maeda-Martínez et al. 2005).  When researchers 

work with small food materials they often take multiple items and subject 

collections of the food to the double compression, for example Mohamed 

and co-workers (2005) tested 5 (2 cm long) noodles each time, or three 

intact rice grains (Moretti, Lee et al. 2005) or individual cooked rice grains 

with multiple replicates (Okadome et al, 1998).  

 Researchers interested in compression of gels have often undertaken 

lubrication to minimize sample barrelling and some reported experiments 

with TPA have done likewise, for example Bryant, Ustunol and Steffe 

(1995) working with cheddar cheese. 

It is not clear why such changes have been introduced, but perhaps it relates to 

the capability of the texture analyser being used for the study.  Clearly for the 

instrument to work we must have a signal (preferably) mid-range of the 

instruments load cell.  With small food items or those with very low levels of 

hardness, we could increase the signal by increasing the resisting force, for 

example using larger contact area to compress the sample will boost this. 

Similarly, so as to avoid going off scale and risk overloading the instrument, 

samples could be reduced in size. Alternatively, the signal can be reduced by 

slowing the speed of compression, thus giving the sample time to relax and 

recover between the two bites. It should be noted, however, that Shama and 

Sherman (1973) and Rosenthal (2010) found that the TPA performed at too slow 

compression speed could not be correlated with sensory evaluation. Another way 

of lessening the force exerted on the load cell is to reduce applied strain . 

 

II-1. Hardness 

Hardness was originally defined as “the force necessary to attain a given 

deformation” (Szczesniak 1963, p387). Normally the first few bites of oral tests 

result in gross structural breakdown of the food.  If during the first TPA 

compression the material fractures then there is a parallel. But if no fracture 

occurs then the “hardness” may tell us something about the nature of the 

material but not how it breaks down.  In the original protocol the sample height 

was fixed and the probe had a smaller diameter than that of the sample, thus the 
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contact area on the sample was a constant. Adoption of the Instron universal 

testing machine  made the peak shapes less pointed (Bourne, 1968). Yet the 

hardness is still defined as the peak force resulting from the first uniaxial 

compression, but since the force depends on the sample size and therefore the 

contact area, it would be better if the hardness were defined as the peak stress. 

While the original TPA used plungers of fixed cross section area, more recently 

researchers have used platens in which the size of the sample makes a 

difference.  Furthermore, the stresses cannot be defined so easily for an irregular 

shaped food such as peas, nuts and grains. For such samples, the shape and size 

and how the sample is fixed on the base of the uniaxial compression apparatus as 

well as the compression speed should be described in detail so that the readers 

can repeat the measurement under the same conditions. Needless to say, the 

temperature and the humidity should be controlled or at least be recorded 

especially for samples affected by these parameters. 

Although the sensorily evaluated hardness is expected to be highly correlated 

with the instrumental measurement, it is necessary to take into account the 

achievements of fracture mechanics as stressed by Peleg (2019) and Vincent 

(2004). Even if the sensory evaluation of foods has some specific complexities as 

influenced by cross modal interaction as well as being in a non-equilibrium state 

(Nishinari and Fang, 2018), and while foods are very complex consisting of 

multiple ingredients, the mechanical properties of foods can be measured 

objectively. Peleg (2019) and Vincent (2004) emphasize the importance of what 

we can learn from solid mechanics applied in material science.  

Vincent, Saunders and Beyts (2002) using the critical stress intensity KIC, defined 

in fracture mechanics, examined the “hardness” and found a high correlation 

between KIC and hardness for crisp foods such as carrot, apple, celery and 

cucumber. They found that the crispness was not correlated with KIC, and 

hardness and crunchiness were indistinguishable (Vincent, 2004). Rojo and 

Vincent (2009) studied the relation between the sensory crispness of potato 

crisps (commonly called chips outside UK) and the objective mechanical 

measurements based on stress and strain curves analysed by Weibull model. 

They found that crisper crisps break at a higher force, and breakdown speed of 

the crisp during chewing is proportional to the Weibull modulus, which is 

determined from the slope of the double logarithmic plot of the survival 

probability (= 1- failure probability) and the stress (Rojo and Vincent, 2008). 

As for the structure breakdown in the mastication, the hardness has been a 

commonly measured variable. In most papers, hardness is represented by the 
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unit of force (N) though sometimes gravity is ignored and the mass (kg) is 

inappropriately reported. Even when the contact area is reported, the size and 

shape of the food sample and the probe (plunger) must be stated. For example , 

the hardness which is often defined as the peak force of a force-deformation 

curve evidently depends on the size of the food sample. In the compression 

measurement of cylindrical watermelon with a constant height 10mm, Peleg 

(2019) shows the peak force increases with increasing diameter from 13mm to 

22mm. Kohyama and Nishinari (1992) also showed a similar behavior for 

cylindrical tofu with a fixed height. It might be thought impossible to record the 

cross sectional area of the food samples such as rice grains, peas or nuts. In 

some countries, such as Japan, it is common to cook rice and soybeans together 

and it may be necessary to evaluate the hardness of each. But, if the report does 

not include dimensional information for them, it is evident that the hardness 

values represented by the force for rice and soybean cannot be compared 

because their sizes and shapes are so different! Unfortunately such simple detail 

is often missing in many publications.   

To determine the hardness accurately lubrication between the sample surface and 

the plunger should be taken into account. In the case of watery samples such as 

food gels, a small amount of water exudes from the surface and acts as a 

lubricant, thus the barreling of the sample is prevented. To avoid such 

complications, a plunger with a diameter smaller than the sample is sometimes 

used (Chen et al, 2013). However, in this case, the friction between the sample 

and the side surface of the plunger contributes to the recorded force. When, the 

sample shows an obvious fracture, the force shows a peak, but if no fracture 

occurs, the force recorded at predetermined deformation is sometimes employed 

as the hardness. It should not be forgotten to note the deformation in such a 

case. 

Figure 3 

Figure 3 shows a typical (single bite) puncture test of a carrot root (Horiuchi, 

Nishinari, Niikura and Hakamada, 1976). Arranged from the surface to the centre 

of the tissues are: epidermis, cortex, phloem, cambium, xylem and pith. To study 

the detailed mechanical property of each tissue a thin needle (2-4mm dia) was 

driven into the carrot (Horiuchi, et al., 1976). The force increases when the 

plunger is pushed into the carrot, and shows a peak force at the first firm tissue 

(cortex) followed by a minimum at the softer cambium, then there are further 

increases producing a second peak. After reaching the central tissue (pith), the 

plunger is withdrawn (thus the deformation is decreased), therefore the direction 
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of force exerted on the plunger becomes negative. To identify the tissue at peak 

forces and the minimum force, it is necessary to check the distance from the 

surface to each tissue using a thin (2mm dia) needle. In the case of TPA the x-

axis is taken as the time, though in terms of stress and strain it might have a 

clearer meaning if the x-axis is redrawn as deformation. Such a representation is 

shown in Figure 3, the area under the curve and above x-axis represents the 

energy or work done by compression. The area above the curve and below the 

axis represents the energy or work done by decompression.  Clearly the shape of 

the curve depends on the firmness of the different tissues. 

Despite all that has been said above, the hardness is probably the most reliable 

TPA parameter. Bourne (2002) and Peleg (2006) explain the pitfalls from 

choosing the wrong geometry, size and shape. Experimenters should carefully 

choose the right geometry so that the deformation should occur in the intended 

way: when the puncture test is done, the diameter of the plunger should be less 

than one-third of the diameter of the sample so that the semi-infinite geometry is 

kept; when a sample on the support base with a hole is punctured, the diameter 

of the hole should not be too large to avoid the bending of the sample, and not 

too small to avoid the “puncture and die” in which a cylinder of the sample food is 

cut out from the food and pushed into the hole (Bourne, 2002). 

A second and equally important point is the speed of compression. TPA is usually 

thought to be imitative of human mastication, and therefore the compression 

speed should be closer to the chewing speed of humans. Bourne (2002) showed 

an example of Sherman’s experiment on cheese (Shama and Sherman, 1973) 

emphasizing the importance of compression speed. A good correlation between 

the hardness evaluated by sensory panel and the instrumentally measured values 

was only found at a certain range of compression speed. Nishinari and Fang 

(2018) recently discuss the effect of compression speed on the fracture stress of 

foods and the relation of mastication speed and the hardness. Using model starch 

gels, Rosenthal (2010) changed the compression speed from 0.1 mm/s to 10 

mm/s and found the TPA hardness increased with increasing speed of 

compression upto 2mm/s and that hardness values leveled off above this speed. 

He recommended to choose compression speeds in excess of 2mm/s for TPA, yet 

such speeds would be totally inappropriate to measure fundamental properties 

such as modulus. The uniaxial compression test of gels at a lower speed is useful 

to get the insight of the gel structure (Nakamura, Shinoda and Tokita, 2001), but 

the slow compression does not correspond to the human mastication, and 

therefore TPA parameters obtained by such a slow compression cannot be 
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compared with sensory evaluation. 

Since soft foods are not bitten by teeth but squeezed or compressed between the 

tongue and hard palate (Arai and Yamada, 1993), for such materials perhaps the 

hard metal base plate of the texture analyzer could be replaced with a soft 

material mimicking the tongue, discriminating between deformation of the sample 

and the ‘tongue’ then become possible through videographic observation. 

Ishihara et al (2013, 2014) used an artificial tongue to simulate this situation. 

The force and the deformation at fracture in such an experiment is different from 

that obtained by a compression between two hard plates (metal or Teflon etc). 

This difference can be predicted from the fracture probability of model gels and 

the proportion of subjects who decide to squeeze the food between 

tongue/palate.  

 

II-2. Adhesiveness  

In TPA adhesiveness was originally defined as “the work necessary to overcome 

the attractive forces between the surface of the food and the surface of other 

materials with which the food comes in contact (e.g., tongue, teeth, palate, etc.)” 

(Szczesniak 1963, p387).  Adhesiveness is not exhibited by all foods. When TPA 

curves show multiple breaks (brittleness/fracturability) during the first 

compression generally adhesiveness is absent, yet when present it shows up as a 

negative peak after the first compression. Traditionally, adhesiveness was 

determined as the area under the negative force – deformation curve, i.e. the 

energy required to raise and separate the plunger from the food sticking to it.  

The adhesiveness can be quantified by the negative peak force or the energy 

which is exerted on the plunger pulled apart from the sample. If the sample does 

not stick to the plunger at all, the adhesiveness is estimated as zero. 

Adhesiveness is related to the ability of the sample to wet the surface and when 

the surfaces are pulled apart the material or liquid at the surface must flow into 

the gap created by the separating surfaces. Adhesiveness is caused by the force 

between the food sample and the plunger imitating the role of teeth, tongue or 

palate. When a puncture test geometry is used and the probe penetrates the 

surface of the food, e.g. raw carrot in Figure 3, the adhesiveness should be 

evaluated cautiously. In such a case, the negative peak force area is driven by 

the carrot tissues which surrounded the penetrating plunger and not any inherent 

stickiness. An obvious and different situation exists if we imagine a similar 
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penetration test on sticky rice cake. The origin of the exerted force from the 

sample is different, and therefore the negative peak in TPA cannot always be 

thought as having originated from adhesiveness. 

Nishinari and Fang (2018) show that even if two samples have the same TPA 

adhesiveness, the sticky sensation may be different if the force curves are tall & 

narrow as opposed to short & broad as shown in Figure 4. The attached part of a 

food to the plunger is separated at a short distance in the former case while the 

latter curve shows a long distance though the force required is smaller. Another 

important point for the adhesiveness is that this value depends strongly on the 

brittleness or crumbliness of the food. The area of compressed food sticking to 

the plunger is different among foods as shown in Brenner and Nishinari (2014). 

Therefore, for crumbly solid foods, the adhesiveness should better be measured 

at a relatively small compression before the sample fractures so that the contact 

area does not change at the first contact in the compression (plunger downward) 

and in the extension (plunger upward). 

Figure 4 

In an oral situation it should be remembered that the chewed food with 

incorporated saliva must be compressed to a certain extent for it to show any 

adhesiveness.  

 It might be useful to compare the two cases: in a liquid-like food and a solid-like 

food. In the former case, the liquid sample sticking to the side and the bottom 

surfaces of the plunger will exert the downward force when the plunger is raised 

up. In the latter case, the excluded part of compressed or penetrated food tend to 

recover by virtue of the elasticity, and thus exert the negative force when the 

plunger is raised up. Even though the direction of the force exerted by food to the 

plunger is similarly negative, the origin of the force is different. Humans maybe 

able to distinguish this difference, while the instrumental TPA cannot tell the 

difference because it detects only the force and deformation. In addition, the 

liquid flows in the oral cavity and thus sensed not only by teeth but also by the 

tongue and hard palate while the solid may be sensed mostly by the teeth in the 

first bite. Therefore, we should be cautious in interpreting the meaning of TPA 

adhesiveness. 

Instrumentally measured adhesiveness has been reported to be well correlated 

with sensory evaluation where the comminuted food stick to the oral organs, the 

tongue, palate and teeth. Since the boli are disintegrated and mixed with saliva, 
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the adhesiveness may be reasonably well characterized by TPA for such foods. In 

most published papers, the adhesiveness of bread was reported as zero. It may 

be true if the bread is compressed without adding saliva. Since the TPA is an 

imitation measurement, the addition of saliva and temperature control are 

necessary to evaluate the adhesiveness of bread. The addition of saliva will of 

course affect the textural characteristics of most foods. 

In Japan, palatability of cooked rice is determined by texture, and this is 

understood by the fact that cooked rice has only a weak taste and aroma 

intensity (which is different from scented rice preferred in Thailand). This is also 

true for other staple foods like noodles, bread, and potatoes which are consumed 

in great quantities as an energy source. The preference of cooked rice depends on 

food culture and history. For example, in France rice grains which stick each other 

are not liked while in Japan appropriate stickiness is the most required 

characteristics not only for sushi or rice balls but also for cooked rice. Two 

methods to evaluate the textural characteristics of cooked rice have been used, 

1) cooked rice in a cup is compressed by a plunger, 2) one or a few cooked rice 

grains are separately put on the base of a uniaxial compression apparatus, and 

then compressed by a plunger. Matsuo and co-workers (2002) using the first 

method, found that the combination of stickiness (the maximum force of the 

negative peak in the uniaxial compression test in Figure 4) and adhesiveness (the 

area enclosed by the negative peak and the baseline A3 in Figure 4) are highly 

correlated with preference. The preference in the sensory evaluation has been 

known highly correlated with sensory stickiness and adhesiveness. They used 

three cylindrical (12mm diameter) plungers in the uniaxial compression to get 

average values for the rice grains cooked in a metal cup without moving cooked 

rice sample to the plate of the apparatus to avoid the change in densification. It 

was more effective to use both the energy A3 and the peak force F3 to correlate 

with the sticky and adhesive sensation. Okadome and colleagues (1998) using 

the second method they performed a uniaxial compression, at compression ratios 

25%, 90% as well as a continuous progressive compression test using both one 

cooked rice grain and an average for 10 grains. They found that low compression 

tests were useful to correlate the instrumental data with sensory stickiness which 

might be determined by stickiness of surface layer of cooked rice grain. Recently, 

Yu et al (2019) employing compression at small deformation range for individual 

rice grains and using a shear ring tester based on Schulze’s method (described in 

the next section) demonstrated a possibility of further development of 

understanding the cooked rice texture. 
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In the oral cavity, the adhesive force between food fragments and the oral organs 

(teeth, tongue and palate) was evaluated. In the instrumental measurement, the 

adhesive force between food and the plunger was evaluated, but since the 

surface properties of plunger affect the detected force, it might be simple to 

measure the adhesive force between the fragments of the same food. 

Adhesiveness may be evaluated by compressing a food sample glued to the base 

of a texture analyzer by another food sample of the same size and shape glued 

on the plunger. The deformation should not be too large so that the contact area 

is well defined. Nitta et al (2018) evaluated the adhesiveness of noodle strand by 

this method.  

II-3. Cohesiveness 

Szczesniak (1963 p387) defined cohesiveness “as the strength of the internal 

bonds making up the body of the product”, a definition that works well in the 

sensory evaluation of foods. In the context of the instrumental TPA, Friedman and 

colleagues (1963, p393) explain that cohesiveness is “a direct function of the 

work needed to overcome the internal bonds of the material.” These authors went 

on to attribute it to the ratio of the areas under the twin peaks. Drake cited by 

Breene (1975) expressed concern as to the appropriateness of naming the ratio 

of the two peaks as cohesiveness. The ratio of the area under the peaks is a 

meaningful measure, but probably one that relates to recovery after deformation. 

In his attempt to relate outcomes from TPA to well defined rheological 

parameters, Sherman (1969) points out that cohesion (and hardness) relate to 

elasticity. Despite being recognized as a primary parameter from the TPA, the 

General Foods scientists were not able to identify foods that provided varying 

degrees of cohesiveness when attempting to create standard rating scales 

(Szczesniak, Brandt and Friedman, 1963). If cohesiveness is the strength of the 

internal bonds then we would need to measure it by pulling the material apart in 

all directions and hence its units should be Nm-2 indicating a similar property to 

the bulk modulus (in expansion). While uniaxial deformation, has been widely 

used in compression and extension to study rubber-like materials (Treloar, 1975), 

the negative hydrostatic pressure test has rarely been employed because of the 

difficulty in the instrumentation. Biaxial extension is sometimes used to study 

rubber-like materials and gels (Urayama, Kawamura and Kohjiya, 2009). Since 

biaxial data can offer some information which is not available by uniaxial 

extension, the three dimensional expansion experiments on foods would be useful 

to get more insight on the cohesiveness. It is worth noting that the bulk modulus 

(like the elongational elastic modulus) should be the same whether measured in 
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compression or expansion (extension in the case of the elongational elastic 

modulus). Thus we may be able to estimate the cohesiveness in a compressive 

mode. 

In view of the comments above, the value A2/A1 from the TPA curve should not 

be called cohesiveness and should not be defined as “the strength of the internal 

bonds making up the body of the product”, but should perhaps be referred to as 

“structural recoverability” (Nishinari and Fang, 2018). Mioche and Peyron (1995) 

studied the bite force for model foods with elastic, plastic and brittle textures 

(silicone elastomers, waxes and pharmaceutical tablets, etc) at 10% strain. They 

found that elastic model foods showed almost complete recovery in spite of a 

slight hysteresis, while a plastic model food showed a large hysteresis because of 

the large unrecoverable deformation. When viscous and plastic components 

coexist in a model food, the force-deformation curve shows the hysteresis in the 

compression and decompression by a plunger. The recoverability parameter 

(A2/A1) could be considered in a similar way to adhesiveness (Figure 4). That is 

not only the ratio of the area enclosed by the force-deformation curve but also a 

comparison of the peak forces of different curves.  

Another approach might be to measure cohesiveness of solid foods by methods 

widely used in solid mechanics. The cohesiveness of solid particles has been 

estimated by flowability defined as the ratio ffc of unconfined yield strength  u to 

the consolidation stress  c (ffc = c / u ). Here, the unconfined yield strength is 

the minimum normal stress required to cause the yield of a cylindrical solid, while 

the consolidation stress is the normal stress on the same cylinder confined in a 

strong hollow metal cylinder (Figure 5). The unconfined yield strength is an 

increasing function of the consolidation stress (Schulze, 2008). The unconfined 

yield strength increases with increasing consolidation stress. The larger value of 

ffc indicates the higher flowability of the material in that conditioned densification. 

The flow behavior of solid particles is classified by the value of the flowability ffc, 

as: ffc < 1 (not flowing), 1 < ffc < 2 (very cohesive), 2 < ffc < 4 (cohesive), 4 < 

ffc <10 (easy-flowing), 10 < ffc (free-flowing) (Scheltze, 2008). See also a review 

on the cohesiveness and flowability of powders by Peleg (1977). This method first 

proposed in powder evaluation by Jenike (1964) was developed by Ashton, 

Cheng, Farley and Valentin, 1965) and Schulze (2008), and used widely for 

granular materials. Recently, ring shear test based on this method has been 

applied to food samples such as pea powders with different moisture contents 

(Tobin et al , 2017) and cooked rice (Yu et al, 2019). These papers show great 

potential for the ring shear test for wider range of food samples. 
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Figure 5 

The above approach to evaluate cohesiveness of solid foods may be suitable for 

fragmented foods, but less so for non-fragmented foods. In the case of solid 

foods, the size distribution of fragments after repeated compression may be 

closely related with the cohesiveness. Non-cohesive foods and brittle foods may 

be crushed into smaller fragments. Kobayashi and his coworkers analyzed the 

particle size distribution after mastication (Kobayashi, Kohyama, Sasaki, and 

Matsushita, 2006; Kobayashi, Kohyama, Shiozawa, 2010; Moritaka, Yamanaka, 

Kobayashi, Ishinhara, Nishinari, 2019). Although they did not use the word 

cohesiveness in the sense “as the strength of the internal bonds making up the 

body of the product”, it seems that the size distribution reflects this property.  

Peleg (1976) proposed a corrected shape of a TPA curve obtained as shown in 

Figure 6. This has similarities to Figure 3 in that the x-axis is not the time but the 

deformation (distance). He pointed out that the x-axis of the original TPA should 

be converted to the distance from the time so that the area under the curve has 

the meaning of the energy or the work done during the compression. We should 

pay attention that the distance in TPA is taken downward from the time of the 

contact of the plunger with the food sample. After compression to a 

predetermined deformation, the plunger is raised up so that the displacement is 

decreased as shown in Figures 3 and 6.  

 

Figure 6  

 

It is self-evident that the forces shown in Figure 6 depends on the nature of food 

and whether they stick to the plunger or not. Semi-solid type yogurt or rice cakes 

stick to the plunger and this contributes to the force detected. The force exerts 

from the lower to upper direction to the plunger. The adhered portion of the 

sample exerts a negative force on the plunger acting downwards.  

TPA is intended for solid foods, yet viscoelasticity is a continuum and deciding at 

what consistency the test is no longer valid is a value judgement. Nevertheless, 

when the food is a liquid, the application of TPA is both inappropriate and 

disastrous! Nishinari et al (2013) have clearly shown that the so-called 

cohesiveness of water is 1 and decreases with increasing concentration of 

xanthan gum. The reason is clear, water recovers very fast the initial horizontal 
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plane during the upstroke of the plunger and thus the second bite records the 

same force value as in the first bite. Concentrated xanthan gum solution sticks to 

the plunger and the initial horizontal plane cannot be recovered completely before 

the second stroke commences, and in addition the recovery of the structure takes 

a time, and thus the thixotropic nature should be taken into account (Barnes, 

1997). This tendency is increased with increasing concentration of xanthan. 

Therefore, the so-called cohesiveness determined by a conventional TPA is 

decreased with increasing concentration of xanthan. Imagine a semi-solid yogurt 

used for dysphagic patients instead of xanthan, the surface of yogurt does not 

recover its original shape before the second bite. This shows clearly that a 

conventional TPA cohesiveness is meaningless for fluids. To quantify the 

cohesiveness of liquids, it is recommended that we estimate the force and 

deformation of the liquid when it is subjected to an extension experiment, taking 

into account the rate dependence, or estimate the length of liquid filament 

flowing down from a narrow tube (Nishinari, Turcanu, Nakauma, Fang, 2019). 

There is a sense that having defined the notion of cohesiveness from a sensory 

point of view the creators of TPA desired to include it in their instrumental 

technique. Yet with no obvious way to measure the strength of the internal 

bonds, the authors conceived the ratio of the positive peaks as something that 

might be related, and shoehorned this disparate definition and the measurement 

together.  Apart from poorly matched measurement and definition, it is worrying 

that the so-called cohesiveness is used in two of the derived terms: gumminess 

and chewiness.   

The common use of TPA to evaluate adhesiveness and cohesiveness is flawed, as 

the physical properties of an intact specimen only provide very limited insights to 

these attributes. This is because these properties depend on many factors 

including granulation and hydration that are not emulated under TPA conditions 

as mentioned earlier. Addition of artificial saliva or water for the adhesiveness 

evaluation may improve the TPA procedure, but it also depends on the degree of 

deformation and then the fragmentation complicates the situation such as the 

uncertainty of the contact area of the probe (plunger) and the food sample.  

 

Conclusion 

TPA has been used widely and will be used because it is easy to use. However, 

the parameters obtained should be cautiously interpreted. To avoid common 
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misuses of TPA parameters the following should be taken into account: Hardness 

should be measured at higher compression speed. Temperature dependent 

samples such as gelatin gels and fat should be measured in temperature 

controlled condition. The size and shape of the samples and plunger should be 

described in figure captions because often figures are cited by other researchers 

without including measurement conditions. Adhesiveness should be measured 

separately at a lower compression ratios so that the area of contact with the 

plunger does not change especially for brittle or crumbly food samples. For dried 

samples such as biscuits and bread, it is recommended to add artificial saliva or 

water to evaluate adhesiveness because without fluids the adhesiveness of these 

foods are to be estimated as zero, which does not reflect the reality. In the 

context of TPA the term cohesiveness (originally defined as A2/A1) should not be 

used, but replaced by recoverability (and perhaps Peleg’s corrected cohesiveness 

should be named corrected recoverability) but this should be further discussed in 

the texture community. This recoverability should not be used for liquid samples. 

The true cohesiveness of foods should be quantified by other measurements such 

as fluid extension for liquids, and flowability index or bulk modulus for solid foods. 

The cohesiveness of bolus should be carefully estimated because it is sometimes 

very close to liquid. 

The words we use to describe the consistency of foods during instrumental 

processing and oral processing should tally, yet in this paper we have questioned 

the meaning of the parameters defined in TPA. Consequently our understanding 

of the “cohesive” bolus formed in oral processing may not tally with 

“cohesiveness” as defined in TPA. While brittleness (fracturability) named in TPA 

has a parallel to structural breakdown in the mouth – hardness without fracture is 

probably irrelevant to oral processing. We have tried to look critically at both the 

oral trajectory of a range of foods, some which follow the widely accepted 

breakdown path and some which appear not to fit that model; and instrumental 

measures of corresponding textural properties. 
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