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Abstract

This paper proposes a human parsing based texture transfer model via cross-view
consistency learning to generate the texture of 3D human body from a single image.
We use the semantic parsing of human body as input for providing both the shape
and pose information to reduce the appearance variation of human image and
preserve the spatial distribution of semantic parts. Meanwhile, in order to improve
the prediction for textures of invisible parts, we explicitly enforce the consistency
across different views of the same subject by exchanging the textures predicted by
two views to render images during training. The perceptual loss and total variation
regularization are optimized to maximize the similarity between rendered and input
images, which does not necessitate extra 3D texture supervision. Experimental
results on pedestrian images and fashion photos demonstrate that our method can
produce higher quality textures with convincing details than other texture generation
methods. Code is available at https://github.com/zhaofang0627/HPBTT.

1 Introduction

Rebuilding 3D model of human body from 2D images is of great value for many applications, such
as virtual reality, movie making, clothes try-on, generation of synthetic data for learning. Particularly,
generating the 3D human model from a single image has been extensively studied in recent years due
to its potential practical value. However, most research works mainly focus on estimating the pose
and shape of the human body [17, 31, 34, 4, 14] and very few works aim at addressing the texture
generation problem.

In existing methods, [18] introduces texture inference as prediction of an image in a canonical
appearance space and optimizes the perceptual metric between the rendered image and the input
image. [36] proposes to generate textures of human bodies under the supervision of person re-
identification (re-ID), which utilizes the distance metric learned by the re-ID task. [23] infers textures
in a UV-space using an image-to-image translation method, which registers the SMPL model [26] to
3D scans of people to generate ground-truth 3D textures for training. [27] builds a paired dataset of
3D garments and 2D clothing images as training data and then learns a dense mapping from garment
silhouettes to a UV map of a 3D garment model.

There still exist some issues that have not been handled well for generating textures of human
body from a single image. Firstly, obtaining ground-truth 3D textures is time-consuming and labor-
intensive. Secondly, textures of invisible human body parts are difficult to predict due to only one
image available and lack of information from other views at inference. Thirdly, the diversity of
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(b) DeepFashion

(a) Market-1501

Figure 1: Examples of the generated textures on (a) Market-1501 [39] and (b) DeepFashion [25].

human pose and appearance makes the model hard to fit, especially when ground-truth 3D texture
supervision is unavailable.

To address the aforementioned issues, we propose a human parsing based texture transfer model
via cross-view consistency learning to generate the texture of 3D human body from a single image,
without using 3D texture supervision. Examples of the generated textures are shown in Fig. 1. We
first use the semantic parsing of human body as the model input. Compared to image pixels and
silhouettes, human parsing reduces the appearance variation of human image and preserves its pose
information. Then, an encoder employs two Convolutional Neural Networks (CNN) to extract shape
and pose features from the human parsing, respectively. After that, a decoder combines features of
shape and pose and deconvolves to produce a texture flow, which stores coordinates of the input
image to sample pixel values of a texture image from. In order to improve the texture prediction for
invisible parts of human body, we explicitly enforce the cross-view consistency of texture prediction
between two images with different views of the same subject during training. Specifically, the texture
predicted by one view is used to render with the 3D mesh of another view and enforced to match the
input image of another view. Finally, we optimize the perceptual loss and total variation regularization
to maximize the similarity between rendered and input images.

Our main contributions include the following three aspects: 1) We propose a novel texture transfer
model to effectively generate textures of 3D human body from a single image via cross-view
consistency learning. 2) We leverage the semantic parsing of human body as input to reduce the
human appearance variation and preserve the pose information. 3) Our model produces the state of
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the art quality of textures on both pedestrian images from the surveillance scene and fashion photos
from the web.

2 Related Work

Texture generation of 3D model. The texture generation of 3D model produces textures on 3D
model surface given one or multiple 2D images. These works mostly focus on combining texture
pieces from multiple images. Some methods [24, 12, 35] try to mitigate the problems of seams and
broken textures while mapping photographs onto appropriate 3D mesh surface. For example, [12]
assigns compatible texture to adjacent triangles by searching combinatorially over the source images
and a set of local image transformations that compensate for geometric misalignment. Some other
methods [9, 20] fuse multiple images to generate textures by designing various weighted average
strategies. There are also some methods [10, 41, 7, 2, 3] which are based on warping refinement.
These methods usually need images with different views or RGB-D sensors to infer 3D textures. [41]
maps color images onto geometric reconstructions by optimizing camera poses in tandem with non-
rigid correction functions for all images to maximize the photometric consistency of the reconstructed
mapping. [7] proposes a global patch-based optimization framework to synthesize the aligned images,
which uses patch-based synthesis to reconstruct a set of photometrically-consistent aligned images by
drawing information from the source images. [2] stitches a complete texture using graph-cut based
optimization based on a semantic texture prior. [3] warps the estimated canonical model back to each
frame and back-projects the image color to all visible vertices to generates a texture image. Besides,
as mentioned in Section 1, only very few works [18, 36, 23, 27] are proposed to address the problem
of generating textures from a single image. The most related work to ours is [36] which also uses a
pre-trained human body mesh model and a differentiable renderer. Different from [36] , we explicitly
encourage the cross-view consistency during training. Moreover, we propose to use the semantic
parsing of human body as the model input to reduce the appearance variation of human image and
preserve its pose information.

3D human reconstruction. The 3D human reconstruction aims to reconstruct 3D human shape and
pose under a specific body model. Some methods [6, 13] use key-points and silhouettes of human
body to estimate the pose and shape parameters of SCAPE [5], which is a data-driven human shape
model. Some of recent methods adopt more powerful SMPL [26] as their human body model. SMPL
is a skinned vertex-based model which can represent a wide variety of body shapes in natural human
poses. [8] learns the SMPL model by minimizing the difference between projected 3D body joints
and detected 2D joints and preventing the inter-penetration between limbs and trunk. [22] accelerates
the SMPL model by inferring the 3D shape and pose directly from 91 landmark predictions in UP-3D
dataset. [17] iteratively regresses the SMPL parameters by generative adversarial network to learn
more real human shape and pose. [30] improves human mesh estimation using multi-view textures
as a weak-supervision signal. There also exist some methods that are built on more complicated
models with more body details [3, 1, 4, 11, 29, 33, 14]. [3] proposes to transform the silhouette cones
corresponding to dynamic human silhouettes to obtain a visual hull in a common reference frame.
[1] predicts shape in a canonical T-pose space using both bottom-up and top-down streams allowing
information to flow in both directions. [4] turns shape regression into an aligned image-to-image
translation problem and estimates detailed normal and vector displacement maps from a partial
texture. [14] learns two separate networks that disentangle the task into a pose estimation and a
non-rigid surface deformation step in a weakly supervised manner. [32] introduces a self-supervised
approach to learn a powerful representation for 3D pose estimation, where a spatial transform based
bidirectional novel view synthesis is further proposed to exploit view consistency. In contrast, our
work is to generate a physical 3D model for computer graphics system, with a parameterized 3D
mesh along with detailed textures on it.

3 Method

We aim to learn a predictor that can infer the texture of the 3D human body from a single image
without using 3D ground-truth textures. In this section, we present the proposed texture transfer
model consisting of an encoder which extracts shape and pose information from the semantic parsing
of human body, and a decoder which predicts the texture flow by combining shape and pose features.
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Figure 2: Overview of the proposed texture transfer model via cross-view consistency learning. The
proposed model contains an encoder which extracts shape and pose information from the semantic
parsing of human body and a decoder which predicts the texture flow by combining shape and pose
features. A cross-view consistency learning strategy is introduced to enforce the rendered image to
match the image with different view.

We also propose a cross-view consistency learning strategy to enforce the rendered image to match
the image with different view. The overall framework is illustrated in Fig. 2.

3.1 3D Human Body Model

We represent the 3D human body model as a 3D mesh M , which is defined by vertices V ∈ R
|V|×3

and faces, and then parameterize it with the SMPL body model [26] as M(β, θ, γ) controlled by
shape parameters β, pose parameters θ and translation parameters γ. To reduce the impact of various
body shapes, poses and translations during texture prediction learning, we employ HMR [17], which
is the state-of-the-art method of 3D human body shape and pose estimation, to obtain parameters of
the shape, pose and translation of the input human image. Then, we use these parameters to align the
rendered human image with the input image and keep them fixed in the follow-up training.

3.2 Texture Prediction with Human Parsing

Once we get the 3D mesh M(β, θ, γ) of human body, we can learn the texture transfer from the
image to the 3D mesh surface. However, directly predicting textures in 3D space is difficult. Here we
first compute a 2D texture image Iuv with height Huv and width Wuv and then project the image Iuv

to the mesh surface via a fixed UV mapping [16]. In order to preserve more details of textures, similar
to [18], instead of regressing the pixel values of Iuv , we predict the texture flow F ∈ R

Huv×Wuv×2,
which denotes the coordinates of the input image to sample the pixel values of Iuv from. After that,
the bilinear sampling g is applied on the input image I by using the predicted flow F to obtain the
texture image: Iuv = g(I;F).

Our texture transfer model first employs an encoder to extract features of the input image. Because
the location where the input image pixel is transferred to the 3D mesh is irrelevant with its value, but
only depends on its location on the input image, we use the semantic parsing of human body as the
input of the encoder instead of the original image. Here the human parsing can be obtained easily by
using part labels of the SMPL body mesh [22], without the aid of any external algorithm. Different
from [28], where clothing image silhouettes are used as the input and those clothing images from the
online shop have good pre-segmentation and less pose variation, the human images considered in our
task have multiple semantic parts and complicated poses. Thus, we propose to leverage the human
parsing to provide the information of human part and pose besides the silhouette shape.
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Figure 3: Motivation of using the human parsing
as the input. With the human silhouette alone, it is
hard to know the arm position and body orientation.
However, these information can be easily obtained
from the human parsing.

As shown in Fig. 2, we segment the body mesh
into 6 parts, including head, torso, left-arm,
right-arm, left-leg and right-leg. We further
render the human parsing of the body mesh to
get two components. One is a coordinate mask
I
mask ∈ R

H×W×2, which stores at each image
pixel location its own coordinates if the pixel be-
longs to the human body, and 0 otherwise [28].
The coordinate mask I

mask provides the shape
information of human body. The other is a se-
mantic part map I

part ∈ R
H×W×3, which rep-

resents the semantic parts by using 6 sets of
RGB values. The part map I

part indicates the
spatial distribution of semantic parts and pro-
vides the pose information of human body. Fig. 3 shows that it is crucial for inferring accurate
textures. Obviously, with the human silhouette alone, it is hard to know the arm position and body
orientation. However, these information can be easily obtained from the human parsing. Our en-
coder uses two Convolutional Neural Networks (CNN) respectively to embed I

mask and I
part into a

common feature space: f1
enc(I

mask) ∈ R
K , f2

enc(I
part) ∈ R

K .

Once we extract the features of Imask and I
part, we employ a decoder to combine the features and

the pose parameters θ obtained by HMR, which provides additional pose information encoded in
SMPL, and deconvolve them to produce the texture flow F:

F = fdec([f
1
enc(I

mask), f2
enc(I

part), θ]). (1)

Our decoder first uses Multilayer Perceptrons (MLP) to expand the input vectors to 3D tensors and
concatenates them along the channel dimension, and then feeds the combined feature map into a
series of deconvolutional layers.

Finally, we adopt NMR [19], a differentiable renderer, to render the human body mesh M with the
predicted texture image I

uv to obtain the rendered image:

I
rend = R(M, Iuv). (2)

3.3 Model Learning via Cross-View Consistency

In order to learn our texture transfer model, the perceptual loss [38] is optimized to make the rendered
image I

rend similar with the input image I. Since only one image is available for the inference,
some human parts are invisible, which may affect the texture prediction for these parts. Thus, we
explicitly enforce the consistency of predicted textures across different views of the same subject
during training. Specifically, we select two images I1 and I2 with different views from the same
subject and estimate their SMPL parameters using HMR to obtain their 3D body mesh M1 and M2.
Through our encoder and decoder, we can have the predicted texture images Iuv1 and I

uv
2 . Then, we

use I
uv
1 to render M2 and I

uv
2 to render M1:

I
rend
1→2 = R(M2, I

uv
1 ), Irend2→1 = R(M1, I

uv
2 ). (3)

Intuitively, because I
uv
1 and I

uv
2 come from the same subject, the rendered images Irend1→2 and I

rend
2→1

should be consistent with the input images I2 and I1, respectively. Thus, we learn the model by not
only matching the rendered images with its own input image but also the input image of another view.
The texture transfer loss is given by

Ltex =
∑

n

Lperc(I
rend
n , In) +

∑

n,k

Lperc(I
rend
n→k, Ik) + Lperc(I

rend
k→n, In). (4)

We also use an anisotropic version of the total variation regularization to make the texture flow F

produced by the decoder remain smooth.

Ltv =
∑

i,j,c

|Fi+1,j,c − Fi,j,c|+ |Fi,j+1,c − Fi,j,c|. (5)

Thus, the overall objective function is

L = Ltex + λLtv, (6)

where λ is the weight of the total variation regularization.
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4 Experiments

We evaluate the proposed texture transfer model on two human datasets, i.e., Market-1501 [39] and
DeepFashion [25], which contain human images with various views and poses. Following [36], we
adopt the Structural Similarity (SSIM) [37] and its masked version mask-SSIM to measure the quality
of generated textures. We also compare the proposed model against the related texture generation
methods [18, 36].

4.1 Datasets

Market-1501 [39] is a person re-identification dataset, which consists of 32,668 images of 1,501
persons from six disjoint surveillance cameras. The image size is 128× 64. We regard images with
the same person identity as belonging to the same subject. 12,936 images of 751 identities are used
for training. 3,368 query images from the remaining 750 identities and 19,732 gallery images form
the test set. In our experiments, we use the query set for testing.

DeepFashion (In-shop Clothes Retrieval Benchmark) [25] includes 52,712 in-shop clothes images
with large pose, view and scale variations. All images have size 256× 256. We regard images with
the same clothes as belonging to the same subject. After removing images only containing a small
part of human body, we use 20,185 images from the original training set for training, 6,639 images
from the original query set for testing.

4.2 Implementation Details

In all experiments, we use the Adam [21] optimizer with β1 = 0.9 and β2 = 0.999. The learning rate
is 1× 10−4. The model is trained with the mini-batch size 16 for 93k iterations on Market-1501 and
100k iterations on DeepFashion. In order to enable the cross-view learning, each mini-batch consists
of 8 subjects and each subject has two images. The weight λ of the total variation regularization is
set empirically to 0.5. Similar to [36], for Market-1501, background images are randomly cropped
from the PRW dataset [40] and added to the rendered images, and for DeepFashion, the texture of
face part is fixed because here we mainly consider the body texture generation.

For the network architecture, the encoder adopts two ResNet-18 [15] with random initialization
to extract 4096-D feature vectors of the coordinate mask and semantic part map, respectively, and
feeds them into two fully-connected layers to get 200-D feature vectors. The decoder adopts 3
two-layer MLP to combine the encoded features and SMPL pose parameters, and then passes the
combined feature map through 6 deconvolutional layers. At last, a tanh activation function is applied
to normalize the texture flow to [−1, 1].

4.3 Ablation Study

We firstly verify the effectiveness of main components in our proposed texture transfer model by both
qualitative and quantitative evaluations on the Market-1501 dataset.

Semantic part map. To investigate the impact of our semantic part map, we only use the coordinate
mask as the model input and show images rendered with the predicted textures in the column “No-
PM” of Fig. 4. As one can see, if the semantic part map is not employed, some small body parts of
the rendered images, e.g., arms, hands and legs, are not textured appropriately. This indicates the
semantic part map can provide the information of spatial distribution of body parts for the model. We
also report the SSIM and mask-SSIM scores in Table. 1. The model without using the semantic part
map obtains worse scores, which is consistent with the qualitative results.

Cross-view consistency. We only use single view image matching during training to evaluate
the influence of the proposed cross-view consistency learning. The results are illustrated in the
column “No-CC” of Fig. 4. It can be observed that the textures of some invisible parts in the input
images cannot be inferred correctly, such as profiles and occluded logos, which shows enforcing the
consistency between rendered images with different views during training is able to make the learned
model more robust for invisible body parts. The quantitative results are also reported in Table. 1. The
model without cross-view consistency learning obtains 0.305 and 0.863 for the SSIM and mask-SSIM
scores respectively, which are lower than our model.
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Input No-CCNo-PM OursBaseline

Figure 4: Textured human bodies predicted by different components in our model on Market-1501,
including the baseline (CMR [18]), No-PM (without semantic part map), No-CC (without cross-view
consistency) and our model.

Table 1: SSIM and mask-SSIM scores obtained by different components in our model on Market-
1501, including the baseline (CMR [18] ), No-PM (without semantic part map), No-Pose (without
SMPL pose), No-CC (without cross-view consistency), No-TV (without total variation regularization)
and our model.

Model Baseline No-PM No-Pose No-CC No-TV Ours

SSIM 0.276 0.310 0.315 0.305 0.316 0.318

mask-SSIM 0.836 0.869 0.873 0.863 0.875 0.877

SMPL pose. We employ the pose parameters of the SMPL body model as a complement to the
semantic part map. As shown in Table. 1, the SSIM and mask-SSIM scores decline when removing the
SMPL pose from our model, which indicates that the SMPL pose can provide extra pose information
encoded in SMPL for the model learning.

Total variation regularization. We also use the total variation regularization to smooth the predicted
texture flow during training. From Table. 1, one can see that the performance slightly drops if without
using the total variation regularization because it can guarantee the neighborhood correlation of
predicted coordinates in the input image.
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Figure 5: Textured human bodies predicted by different texture generation methods on (a) Market-
1501 and (b) DeepFashion.

4.4 Comparison with Related Methods

We now compare the proposed texture transfer model against the related texture generation methods,
including CMR [18] and RSTG [36] on the Market-1501 and DeepFashion datasets. Fig. 5 and Fig. 6
illustrate the textures predicted by different methods and Table 2 lists their SSIM and mask-SSIM
scores.

As shown in Fig. 5, our model recovers the texture of 3D human body with more details while
keeping accurate semantic part correspondence with 2D image. RSTG loses too many texture details
although it predicts the semantic part distribution of textures on the 3D mesh well. For example, on
the first row of Fig. 5 (a), black strips on the shirt in the input image are completely lost in the texture
generated by RSTG. The reason is that RSTG directly predicts the pixel values of textures, which
cannot preserve the texture information of the input image very well compared with the texture flow.
CMR is our baseline, which uses the image pixel values as input to predict the texture flow with single
view learning. From Fig. 5 one can see that CMR cannot preserve the semantic part correspondence
precisely and sometimes loses parts of textures because the appearance variation of input image
weakens the robustness of the model. Besides, CMR cannot handle well the texture prediction for
invisible parts, e.g., the legs in the input image on the first row of Fig. 5 (b). Instead, our model is
able to infer the textures of those parts successfully by the cross-view consistency learning. We also
show comparisons from multiple views of textured human bodies in Fig. 6. It can be seen that our
model still obtains consistently higher quality textures under different views.

For the quantitative results, our model achieves the highest SSIM and mask-SSIM scores on both
Market-1501 and DeepFashion, as reported in Table. 2. This further demonstrates the effectiveness of
the proposed human parsing based texture transfer and cross-view consistency learning.

5 Conclusion and Future Work

In this paper, we propose the human parsing based texture transfer model via cross-view consistency
learning to generate the texture of 3D human body from a single image. The semantic parsing of
human body is used as the model input, which provides both the shape and pose information, to
reduce the appearance variation of human image and preserve the spatial distribution of semantic
parts. To improve the prediction for textures of invisible parts, the consistency across different views
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Figure 6: Comparisons from multiple views of textured human bodies on (a) Market-1501 and (b)
DeepFashion.

Table 2: SSIM and mask-SSIM scores obtained by different texture generation methods.

Method
Market-1501 DeepFashion

SSIM mask-SSIM SSIM

CMR [18] 0.276 0.836 0.709

RSTG [36] 0.164 0.372 -

Ours 0.318 0.877 0.735

of the same subject is learned by not only matching the rendered images with its own input image but
also the input image of another view. Experimental results on two human datasets demonstrate that
our method is able to generate textures with convincing details for 3D human body.

Future work could focus on improving texture prediction for patterns totally lost in input images, e.g.,
patterns only in the front or back view, in this case the current model tends to simply copy the textures
from the back or front view. Since only one image is used as input at inference and ground-truth 3D
textures are unavailable during training, it is very hard to infer such textures, especially for texture
flow prediction which needs to sample pixel values in the input image. Further improvements could
be possible with prior knowledge about front-back texture relations learned from data.
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Broader Impact

Enabling machine learning models to understand and reconstruct 3D data is able to significantly
improve the experience of human-machine interaction, such as virtual reality, clothes try-on and so on.
Besides, it also facilitates the invariant and robust representation learning from the geometry effects,
such as scales and views. Texture generation of 3D model is a critical part in 3D reconstruction.
Particularly, the texture generation model based on a single image can extremely reduce the resources
required by model learning and inference, and shows great potential for industrial applications.
However, poses, shapes and textures estimated by the model could be abused to synthesize fake
pictures of people, which is a negative aspect.
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