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The influence of different sources of speech-intrinisic variation (speaking rate, effort, style and
dialect or accent) on human speech perception was investigated. In listening experiments with 16
listeners, confusions of consonant-vowel-consonant (CVC) and vowel-consonant-vowel (VCV)
sounds in speech-weighted noise were analyzed. Experiments were based on the OLLO logatome
speech database, which was designed for a man-machine comparison. It contains utterances spoken
by 50 speakers from five dialect/accent regions and covers several intrinsic variations. By
comparing results depending on intrinsic and extrinsic variations (i.e., different levels of masking
noise), the degradation induced by variabilities can be expressed in terms of the SNR. The spectral
level distance between the respective speech segment and the long-term spectrum of the masking
noise was found to be a good predictor for recognition rates, while phoneme confusions were
influenced by the distance to spectrally close phonemes. An analysis based on transmitted
information of articulatory features showed that voicing and manner of articulation are
comparatively robust cues in the presence of intrinsic variations, whereas the coding of place is
more degraded. The database and detailed results have been made available for comparisons

between human speech recognition (HSR) and automatic speech recognizers (ASR).
© 2010 Acoustical Society of America. [DOI: 10.1121/1.3493450]

PACS number(s): 43.71.Es, 43.71.Gv, 43.72.Ne [DOS]

I. INTRODUCTION

Normal human listeners exhibit an excellent perfor-
mance in speech recognition despite the immense variations
present in spoken language. This holds even if different
speakers have to be understood, i.e., human listeners can
compensate for a variety of speaking rates, different regional
accents and different vocal effort of the received speech.

The robustness to these underlying speech intrinsic vari-
abilities is a major achievement of human speech recognition
(HSR) that is not well understood yet. Many sources of
variation in spoken language have been observed and well
documented in several studies, such as, for example, the gen-
der and age of the talker (male versus female speaker versus
children speech (Hazan and Markham, 2004), the effect of
certain speaking styles [such as, e.g., speaking clearly to
achieve a higher intelligibility (Krause and Braida, 2004)],
and the influence of dialect and accent on speech intelligibil-
ity (Li, 2003). Other factors that may influence speaking rate
and effort are, e.g., emotion, stress, fatigue, and health con-
dition. These sources of variation are not independent, an
example being the influence of speaking rate on pronuncia-
tion that arises from deletions, insertions, and coarticulation
(Fosler-Lussier and Morgan, 1999). Despite the large number
of studies dealing with variations in speech, it is still unclear
how the auditory system manages to produce percepts that
are largely invariant to such changes in speech.
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While the robustness of automatic speech recognition
(ASR) against extrinsic variability (caused by changes of the
transmission channel or by additive noise) has been studied
in detail in the past (Hermansky and Morgan, 1994; Stern er
al., 1996; Tchorz and Kollmeier, 1999; Cooke et al., 2001), it
is far less understood in which way ASR also suffers from a
lack of robustness toward “intrinsic” variation of speech
(caused by factors such as the choice of speaker, gender,
speech rate, vocal effort, regional accents, and speaking
style). Various methods that increase the robustness of ASR
toward such variation of speech have successfully been used
for several years (an example being techniques that compen-
sate for the shift of formant frequencies caused by variations
of vocal-tract length). Recently, however, much of the re-
search is devoted to a larger number of sources of variability,
with the aim of understanding the influence of speech-
intrinsic variation on ASR, and to build feature extraction or
classification methods invariant to this variation (Fissore et
al., 2007). Similarly, several researchers focused on the com-
parison of the recognition performance of HSR and ASR
(Lippmann, 1997; Sroka and Braida, 2005; ten Bosch and
Kirchhoff, 2007; Cooke and Scharenborg, 2008). Meyer er
al. (2007) used a phoneme recognition task to compare HSR
and ASR and observed comparable overall results when the
signal-to-noise ratio was 15 dB higher for the ASR system.
In that study, the larger part of the man-machine gap was
attributed to the feature extraction stage. However, the 15 dB
gap is only a rough estimate that is highly dependent on the
exact type of experiment to be compared across men and
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TABLE I. Properties of the OLLO speech database.

Number of speakers

Number of different VCVs

Number of different VCVs

Number of different logatomes

Number of speaking styles

Number of dialects/accents

Utterances per speaker

Total number of logatomes

Utterances labeled as containing unwanted sounds
Number of utterances per dialect/accent

Number of utterances per variability

Number of utterances per central consonant

Number of utterances per central vowel

50 (25 male, 25 female)

70 (five outer vowels (/a/, /el, I/, /5/, /u/) combined with
14 central consonants (/b/, /d/, /f/, g/, Ik/, I\/, /m/, n/,
Ipl, Isl, 11, Itl, V1, ts/))

80 (eight outer consonants (/b/, /d/, /t/, I/, Ik/, Ipl, Isl,
/f/) combined with 10 central vowels (/a/, /&/, h/, Idl, lul,
Ja:l, lel, 1il, lol, lul))

150

5+reference condition ‘normal’ (fast, slow, loud, soft,
question)

4 +reference condition ‘no dialect’ (East Frisian,
Bavarian, East Phalian, French)

2700
(150 logatomes X 3 repetitions X 6 speaking styles)

133.403
1820
~27 000
~22200
~4450

~7100

machines. Such comparisons highlight the deficiencies of
current automatic recognizers in the presence of extrinsic and
intrinsic variation of spoken language.

Since understanding the principles of HSR may help to
improve the performance of ASR (Allen, 1994), it is there-
fore desirable to study the influence of speech variability on
HSR as a baseline for making ASR more robust against this
type of variation. For example, it was shown that error rates
increase when speaking rates deviate from the normal (i.e.,
average) speaking rate. Siegler and Stern (1995) reported an
increase of ASR error rates by a factor of three when the rate
of speech deviated more than two standard deviations from
the average rate. The effect of conversational speech was
investigated by Weintraub et al. (1996) who found that error
rates doubled when conversational speech is compared to a
read, clearly uttered version of the same speech material.
However, it is often difficult to compare findings from dif-
ferent HSR and ASR studies due to the existing variability
across speakers in the available speech databases and the
lack of appropriate speech corpora that are suitable both for
HSR and ASR experiments while providing the possibility to
study the effect of speech-intrinsic variation.

In this study, we therefore perform HSR experiments to
assess the impact of several sources of intrinsic variability by
using a speech database that is suitable for HSR and ASR
experiments and that contains systematically varied sources
of variability. This database (the ‘Oldenburg Logatome
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(OLLO) Corpus’) consists of CVC and VCV utterances,
which we refer to as logatomes (Table I). The logatomes are
composed according to phonetic and phonotactic rules,
and—in most cases—have no semantic meaning for German
and English listeners. The choice of phonemes included in
the database was based on earlier results from HSR and ASR
experiments. In a few cases, the combination of these pho-
nemes resulted in meaningful CVCs and VCVs; neverthe-
less, these logatomes were used for the experiments in order
to avoid the introduction of a bias due to the selection of
phonemes. By using simple nonsense phoneme combina-
tions, the focus is laid on a basic recognition task that does
not rely on high-level lexical knowledge. Such recognition
can primarily be considered as a bottom-up sensory one-out-
of-N discrimination task in HSR that requires no prior
knowledge of the language structure and a low cognitive
load imposed on the listeners when performing the task. In
ASR the recognition task requires templates or word models
primarily on the acoustical feature layer without a supraseg-
mental or language model to be fitted to the speech data.
Hence, the OLLO database can be used as a reference for
HSR research as well as for comparing ASR experiments
using the same speech elements. Moreover, the influence of
speech variability on both types of experiments can easily be
studied. The principles underlying the database construction
and its recording will be discussed. It is assumed that the
results obtained in phoneme recognition tests may also be of
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value for other tasks such as large vocabulary ASR, even
when the results may not be directly transferable since the
use of context knowledge has to be taken into account
(Bronkhorst ef al., 1993).

The primary aim of the current paper is to establish the
baseline for HSR experiments with the OLLO that can be
utilized in future work for comparison with ASR. To do so,
the influence of speaking style (i. e., fast, slow, soft, loud) as
well as speaker-specific factors (gender and dialect region)
on HSR is studied with a total number of 16 listeners and
120 h of listening experiments. Speakers originated from
various dialect regions in Germany and from the French-
speaking part of Belgium, which enabled an analysis of the
effect of dialect and accent. Since all phonemes in the data-
base occur both in the German and English languages, the
utterances may also be of useful for listening tests with Eng-
lish listeners. The results presented in this study were ob-
tained with German listeners. Even though some differences
in average recognition rates from the mentioned variabilities
are expected (especially when the experiment is performed in
noise, which is necessary to avoid any ceiling effect), it is
unclear if these differences are due to the deterioration of
specific speech features or due to a general, unsystematic
decrease in intelligibility. For this reason, a speech transmis-
sion analysis (Miller and Nicely, 1955; Wang and Bilger,
1973) should be performed that studies the transmission of
acoustic speech features (such as, e. g., average spectrum of
the phonemes to be recognized or articulatory features) as a
function of underlying speech variabilities. In order to cancel
out the individual influence of each individual listener, such
an analysis only makes sense if an appropriate amount of
data is available that can be averaged across listeners. Hence,
the number of subjects was selected to be sufficiently high to
derive valid conclusions for these aspects of HSR.

This paper is structured as follows: In Section II, a de-
tailed description of the Oldenburg Logatome speech data-
base is presented. The measurement setup, parameters for the
listening tests and outcome measures for data analysis are
described in Section III. Overall results and effects of vari-
abilities on information transmission are presented in Section
IV. Section V and Section VI contain the discussion of re-
sults, a summary and the conclusions.

Il. CREATION AND DEVELOPMENT OF THE OLLO
CORPUS

This section describes the design choices for the creation
and the development of the Oldenburg Logatome Corpus.
For the listening experiments performed in this study, several
subsets of the database were selected, which are described in
Section IIT A.

A. Choice of phonemes and speech stimuli

The corpus used for this study should contain speech
with labeled, speech-intrinsic variabilities. The experiments
aim at the simple task of phoneme recognition without the
possibility to exploit context knowledge. An analyis of coar-
ticulation effects and easy determination of phoneme recog-
nition rates are further desirable properties. Short combina-
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tions of phonemes satisfy all of these pre-requisites. We
chose combinations of vowel-consonant-vowel (VCV) and
consonant-vowel-consonant (CVC) with identical outer pho-
nemes for the database. The standard recognition task for
those nonsense utterances or logatomes is to identify the
middle phoneme, which limits the number of response alter-
natives and allows for an easy realization of HSR tests. Since
the OLLO corpus should be suitable for a comparison of
speech recognition by human listeners and automatic speech
recognizers, the choice of phonemes was based on HSR and
ASR recognition experiments. Phonemes that are critical in
either human or automatic recognition of speech were se-
lected, so that significant differences in recognition rates may
already be obtained with smaller test sets.

1. Critical phonemes in human and automatic speech
recognition

The results of monosyllabic and bisyllabic rhyme tests
with normal-hearing listeners were analyzed to determine the
phonemes that are most often confused by human listeners in
English or German (Dubno and Levitt, 1981; Gelfand et al.,
1985; Miiller, 1992; Kliem, 1993). The results suggest that
eleven consonant phonemes (/b, d, f, g, k, 1, p, 1, s, v, ts/) and
seven vowel phonemes (/&, €, 1, i, U, u, y/) should be taken
into account.

In order to determine the critical phonemes in ASR, pho-
neme confusions from a recognition experiment were ana-
lyzed: Eight phonemes (/s, [, 1, k, m, n, p, t/) were selected
for the corpus because they produced high error rates, appear
in both the German and English languages, and are often
present in phoneme confusions.

2. Final set of phonemes

The final number of phonemes to be considered was
limited by the required time to record all necessary items
with a single speaker. Since the standard recognition task for
the OLLO database is to identify the middle phoneme, not all
possible combinations of consonant and vowel phonemes
were taken into account. The final phoneme set for VCVs
consists of five vowel phonemes (/a, €, 1, 9, U/) and 14 con-
sonant phonemes (/b, d, f, g, k, 1, m, n, p, s, [, t, v, ts/). The
set for CVCs contains one of ten vowels (/a, ¢, 1, 9, U, a:, e,
i, 0, u/) and one of eight consonants /b, d, f, g, k, p, s, t/). A
combination of these phonemes results in a total of 150 dif-
ferent logatomes (70 VCVs, 80 CVCs). The vowels are dif-
ferent with respect to height, backness and roundedness (i.e.,
their constituent features in the cardinal vowel system [Mac-
Arthur, 1992)], with the exception of /a/ and /a:/, which dif-
fer only by a suprasegmental indicating different phoneme
durations.

B. Sources of variability and speaker selection

The choice of different sources of variability was based
on ASR experiments with annotated test corpora that com-
pared the performance of automatic recognizers with these
specific variations present or not. The sources under consid-
eration included speaker’s gender, age and dialect, speaking
style/effort (which also relates to pitch), rate of speech, and
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breathing noise. The largest impact on performance was ob-
served for the speaking rate (fast vs. slow), speaking style
(affirmation vs. question), speaking effort (loud vs. soft), and
dialect/accent. The latter was integrated in the database by
including logatomes of dialect speakers from different re-
gions of Germany and from the French-speaking part of Bel-
gium. Ten speakers originating from the northern part of
Germany (Oldenburg near Bremen and Hanover) were re-
corded. The spoken language in this region is usually con-
sidered as standard German (Kohler, 1995). We will refer to
this category as ‘no dialect’ (ND). Furthermore, speakers
were recorded who originate from the Northwestern part of
Germany and commonly speak the East Frisian Lower Saxon
dialect (abbreviated EF) rather than standard German. Other
dialects were included by recording speakers from East Pha-
lia (EP) near Magdeburg, and from Bavarian places near
Munich (BV). The French-speaking participants were re-
corded in Mons (Belgium). They did not speak German as a
second language and usually produce (and perceive) the
same phonemes differently from the German population,
e.g., the French voiceless stop is more similar to the German
voiced stop than to the German voiceless one. This group
was included in order to be able to test the influence of
different phoneme boundaries on HSR and ASR. Five female
and five male speakers from each region were recorded, re-
sulting in a total of 50 speakers. The age of speakers varied
between 18 and 65 years. Each logatome was recorded in a
‘neutral/clear’ speaking style as a reference. In addition, one
of the five selected categories (i.e., fast and slow speaking
rate, loud and soft speaking style, and condition ‘question’,
which refers to rising pitch) was alterered for each of the
subsequent recordings. Note that combinations of these
sources of variability were not recorded (i.e., utterances with
high speaking effort and high speaking rate were not re-
corded, for instance).

To provide a broad test and training basis for ASR ex-
periments and to enable an analysis of intra-individual dif-
ferences, each logatome was recorded three times, which re-
sulted in 150X (5+1)X3=2700 logatomes per speaker.
Additionally, for German speakers 72 German words that are
part of the monosyllabic rthyme test (Kollmeier and Wallen-
berg, 1989) and 20 German sentences part of the Goettingen
sentence test (Kollmeier et al., 1997) were included. Partici-
pants from Belgium recorded 20 French sentences. The sen-
tences are phonetically balanced and can be used to perform
an adaptation of model parameters in automatic recognizers
to individual speakers.

C. Recording setup
1. Technical equipment

All utterances were recorded in sound-insulated audiom-
etry rooms (reverberation time: approximately 0.25 s) with a
studio-quality condenser microphone (AKG C1000 S) placed
approx. 30 cm from the speaker. Recordings were carried out
using a RME QuadMic microphone pre-amplifier and an
RME Hammerfall AD converter connected to a standard
notebook. The software for the presentation of logatome
transcriptions and for recording was based on Matlab (The
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MathWorks) and SoundMex (HoerTech GmbH). The original
sampling frequency was 44.1 kHz at 32 bit resolution, which
was reduced to 16 kHz and 16 bit during post processing.

2. Recording conditions

Since the database was intended to contain speech from
phonetically naive speakers, a transcription of the desired
logatome and speaking style was created by a phonetician
and presented to speakers on a computer screen (an example
being ‘Please speak ascha loudly’, where ‘ascha’ is in-
tepreted as /a [ a/ by German speakers). An adjustment of
transcriptions was carried out for recordings of French
speakers as well. Special attention was paid to the transcrip-
tion and pronunciation of the near-closed phonemes /1/ and
/G/, which are absent from French. Typographic accents and
duration markers were used for the transcription. However,
control samples showed that a considerable part of vowels
embedded in CVCs is nevertheless categorized as closed
phonemes /i/ and /u/ by linguists and the majority of German
listeners. This is due to the fact that non-native speakers
replace unfamiliar phonemes in the target language, which is
absent in their native laguage phoneme inventory, with the
sound considered as the closest in their native language pho-
neme inventory (Flege et al., 2003). This replacement is
likely to increase errors for speakers with accent.

Randomized sequences of 150 logatomes with the same
variability were recorded. After each run, a different variabil-
ity was randomly chosen for the next sequence. Speakers
were supervised during the recordings and periodically re-
minded to speak in the desired manner. All VCV stimuli
were produced with front stress. During training sessions,
speakers could familiarize themselves with the recording
software, which included proceeding to the next item by
pressing a key on a keyboard and the option for re-recording
of utterances that were contaminated with unwanted sounds
or were not judged by the speaker or the supervisor to be
uttered in the appropriate way. Speakers were advised to
speak in a natural manner; the realization of variabilities was
checked and corrected if necessary. Some of the logatomes
that contain a short vowel embedded in plosives (e.g., /p a
p/) cannot be spoken slowly. Speakers were asked to articu-
late the logatome with normal speaking rate when the desired
variability would conflict with the pronunciation. Partici-
pants were encouraged to take regular breaks to avoid mis-
pronunciation due to inattentiveness. The average duration of
the whole recording procedure was 3.5 h per speaker.

D. Postprocessing of recorded material

A quality check of the recordings was carried out using
a semi-automatic software written in Matlab that relied on a
simple energy criterion to detect incomplete utterances or
recordings with an audible keystroke. Unwanted sounds co-
inciding with the silence before or after the utterance were
manually removed from the signal. 1597 signals (which cor-
responds to 1.2% of the total number of utterances) that were
incomplete or had background noise in the speech signal
were removed from the database. Another 1820 utterances
(or 1.4%) were labeled as containing a quiet, unwanted
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sound, which is audible in silence, but not in the presence of
noise. Effects caused by these sounds are assumed to be
negligible for the measurements presented in this work, as
subsets of OLLO were chosen for listening tests, and unsuit-
able utterances were removed from those sets. The silence at
the beginning and at the end of each recording was limited to
500 ms. Signals were then normalized to 99% amplitude and
stored with 16 bit resolution. They were low-pass filtered
with an 8 kHz cutoff frequency and sampled down to 16
kHz.

E. Phonetic labeling

The OLLO corpus was phonetically time-labeled, i.e.,
temporal positions of phoneme boundaries have been deter-
mined for each utterance, making it suitable for tasks such as
training of phoneme recognizers. Labeling was performed
with the ‘Munich Automatic Segmentation System’ (MAUS)
software package provided by the Bavarian Archive for
Speech Signals (BAS). The MAUS labeling procedure is
similar to forced alignment approaches based on hidden Mar-
kov models (HMMs). However, in contrast to standard
forced alignment, it has the ability to take into account pro-
nunciation variations typical to a given language by comput-
ing a statistically weighted graph of all likely pronunciation
variants. For details, the reader is referred to (Kipp et al.,
1996).

All 150 logatomes were transcribed into the SAM pho-
netic alphabet (SAMPA) and the transcription was used as
input for the time-labeling procedure. The MAUS labeling
tool was applied to the data in ‘full mode’, i.e., taking into
account pronunciation variations of the German language,
and in addition the same software was applied in ‘align-only’
mode where HMM forced alignment is performed, but pro-
nunciation variants are not considered.

In about 4.7% of the logatomes, the MAUS method’s
result deviated from the forced alignment result. Most of
these differences (75%) can be accounted for by negligible
shifts in phoneme boundary positions. The remaining quarter
of the utterances with deviating boundaries had a pronuncia-
tion variant identified by MAUS. Most of such variations
corresponded to shifts from short vowel forms (e.g., [a]) to
the longer form (e.g., [a:]), which are plausible variations of
the orthographic transcript presented to the speakers. The
relative rarity of such variations indicates that in the vast
majority of utterances the chosen orthographic transcript was
pronounced in the way intended by the experimenters.

F. Availability of speech material and test results

The OLLO database, including a detailed description,
wordlists, labeling files, technical specifications and calibra-
tion data (normalization coefficients and dB (SPL) values) is
freely available for research in HSR and ASR. The uncom-
pressed corpus is approx. 6.4 Gbyte in size and contains a
total of approximately 140 000 files corresponding to 60 h of
speech. It can be downloaded from http://medi.uni-
oldenburg.de/ollo.
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TABLE II. Subsets of the OLLO database used for human listening tests.
The sets are used to analyze the influence of variabilities such as speaking
rate, effort and style (Set RES), dialect or accent (Set DA) and SNR (Set
SNR). Each set contains at least 150 different logatomes with 24 central
phonemes. For sets with more than one speaker, the gender is equally dis-
tributed.

Aim of experiment: Analysis of the effect of speaking rate,
effort and style (Set RES):

Masking noise  Stationary, speech-shaped noise (—6.2 dB SNR)

HSR test set Set RES: CVC and VCV utterances with two speaking
rates (fast/slow), effort (loud/soft) and style (‘question’/
normal), Four talkers (2M, 2F) 3600 utterances
(150 logatomes X 4 speakers X 6 speaking styles)

HSR listening  Six normal hearing subjects (3M, 3F)

subjects

Aim of experiment: Analysis of the effect of dialect
and accent (Set DA):

Masking noise  Stationary, speech-shaped noise (—6.2 dB SNR)
HSR test set Set DA: CVC and VCV utterances with and without
dialect/accent, normal speaking style, 10 talkers
(5M, 5F) 1500 utterances
(150 logatomes X 2 speakers per region X5 regions)
HSR listening  Five normal hearing subjects (2M, 3F)
subjects

Aim of experiment: Analysis of the effect of signal-to-noise
ratio (Set SNR):

Masking noise  Stationary, speech-shaped noise (SNRs: —20, —15, —10,
—5,0dB)

Set SNR: CVC and VCV utterances (normal speaking
style, no dialect), one male talker, 750 utterances

(150 logatomes X5 SNRs)

HSR listening  Ten normal hearing subjects (7M, 3F)

subjects

HSR test set

lll. METHODS

A. Test sets and presented stimuli

Utterances from the OLLO databases were selected to
analyze the effects of speaking style and effort, dialect and
accent, and SNR. These selections are referred to as sets, and
their properties have been summarized in Table II. The
names were chosen according to the varied parameters in
that set: Set RES is used to analyze the influence of speaking
rate, effort, and style. It contains data in different speaking
styles produced by four talkers (two male, two female) with-
out regional dialect (ND=no dialect). Set DA is used to study
the effect of dialect and accent, and contains utterances from
two speakers (one male, one female) from each of the five
dialect/accent regions with normal speaking style. From the
50 speakers in the database, those speakers were chosen as
being representative for the corpus that produced recognition
rates for a standard ASR task, which were closest to the
average recognition rate. The experimental setup for this
ASR test is described in Appendix B. The effect of a station-
ary, additive noise is investigated with Set SNVR that contains
data from a single male speaker. The data obtained with this
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FIG. 1. Average DFT power spectrum of stationary masking noise signal (thick black line) and long-term spectra of OLLO utterances. Individual long-term
spectra for central consonant and vowel phonemes are shown in the left and right panel, respectively. Mel-scaling with labels in Hz has been chosen for the

frequency axis.

set can be used to compare the effects of intrinsic variations
(quantified with Sets RES and DA) and additive noise.

When presented without masking noise, human listeners
achieve very high phoneme recognition scores. For example,
Meyer et al. (2006) measured scores>99.5% for normally
spoken VCVs and CVCs without accent or dialect. For ac-
cented, clean speech, the lowest recognition rate was found
to be 95%. This high performance prevents a valid analysis
of phoneme confusions, because differences at very high er-
ror rates often are outside the range of reliably observable
differences (ceiling effect). Hence, the OLLO utterances
were presented in noise. A stationary noise signal with
speech-like frequency characteristics was added to the VCV
and CVC utterances (Dreschler et al., 2001). It was intro-
duced by the International Collegium of Rehabilitative Au-
diology (ICRA) and implemented by adding artificial speech
signals that represented a single speaker speaking with nor-
mal effort. The spectral and temporal properties have a close
resemblance to real-life communication without clear modu-
lation, equivalent to a situation with loud cocktail party
noise. The original ICRA1 noise was downsampled from
44.1 kHz to 16 kHz using the Matlab resample function. The
average DFT power spectrum of the resampled noise signal
is shown in Fig. 1.

In order to identify the SNR at which recognition rates
in the range of 70% to 80% are obtained, pilot measurements
with a single listener and a small test set were performed.
Based on these measurements, a fixed SNR of —6.2 dB was
chosen for Sets RES and DA. For Set SNR, the utterances of
one speaker (no dialect) and normal speaking style were used
to analyze the dependency of recognition performance and
noise. Speech-weighted noise at signal-to-noise ratios rang-
ing from —20 dB to 0 dB was added to the logatomes. A
summary of the Sets RES, DA and SNR is listed in Table II.
The SNR was calculated based on the rms values of indi-
vidual utterances. Due to variations of the duration of silence
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before and after each logatome for Set DA, a different SNR
criterion was chosen for Set DA than for Set RES, which is
described in Appendix C.

Figure 1 shows the long-term spectra of logatomes with
different central phonemes. The long-term spectra were ob-
tained by calculating the spectrum of each utterance, per-
forming an rms-normalization and smoothing of each spec-
trum, and averaging over all spectra with identical central
phonemes. The mean spectra were normalized to have the
same rms level before plotting. By using this calculation
scheme, the spectral properties of both vowels and conso-
nants are represented in the long term spectrum. However,
since for each central vowel the type and number of outer
consonants is the same, the effects of outer phonemes are
expected to average out.

B. Measurement setup and listeners

Sixteen German, normal-hearing listeners (10M, 6F)
without regional dialect (cf. Section II F) participated in the
HSR tests. From those sixteen subjects, six listeners (three
male, three female) participated in the measurements with
Set RES. Of those six, five listeners (three male, two female)
also participated in the measurements with Set DA. Ten other
listeners (7 male, 3 female) were chosen for Set SNR. The
listeners were between 18 and 38 years old. Their hearing
threshold for pure tones in standard audiometry did not ex-
ceed +20 dB at more than one data point and +10 dB at
more than two data points in the pure tone audiogram. Ran-
domized sequences of logatomes were presented in a sound-
proof booth and via audiological headphones (Sennheiser
HDA200) after an online free-field equalization was per-
formed. Feedback or the possibility to replay the logatome
was not given during the test procedure. After a training
phase, listeners were presented a sequence of logatomes at a
level of 70 dB SPL, which was the preferred level of most
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TABLE III. Phonetic features of eleven consonants. The articulatory feature ‘voicing’ can assume two feature values (voiced and unvoiced). For manner of
articulation, consonants are categorized as stop, fricative or nasal. Possible values for place of articulation are anterior, medial, and posterior.

Consonant p t k b d g s f v n m
Voicing u u u v v v u v v
Manner S S s S S f f f n n
Place a m p a m p a m p a

listeners. For each presentation, a logatome had to be se-
lected from a randomized list of CVCs or VCVs with the
same outer phoneme and different middle phonemes, which
triggered the presentation of the next random listening item
after a short pause. The number of choice alternatives was
either 10 (corresponding to the 10 central vowels used in
CVCs) or 14 (since 14 different central phonemes are used
for the VCVs). Carrier phrases were not used. A computer
mouse was used as input device. In order to avoid errors due
to inattentiveness, listeners were encouraged to take regular
breaks. The total measurement time for each listener varied
between 6 and 9 h, including pauses and instructions for
listeners. It was distributed across different days (including a
daily training session prior to data recording) in order not to
exceed three hours of measurement for each day and each
listener.

C. Data analysis
1. Articulatory features

It was analyzed whether the particular information asso-
ciated with articulatory features (voicing, place and manner
of articulation) was transmitted across the various speaking
styles and dialects under investigation (e.g., if the voicing
information is equally transmitted when the speaking rate
changes). Miller and Nicely (1955) proposed the analysis of
such articulatory features (AFs) with the aim of identifying
the sources in consonant confusions. Recently, AFs have
gained much interest in the field of automatic speech pro-
cessing: For instance, AFs have been used to improve the
recognition of phones in a language-independent ASR sys-
tem (Siniscalchi er al., 2008), and to increase the perfor-
mance of multi-lingual annotation tools (Chang et al., 2005).
Since the study by Miller and Nicely, the analysis of AFs has
become a standard way of summarizing phoneme confu-
sions: Many studies investigating phoneme recognition used
AF confusions as an analysis tool with the aim of indentify-
ing specific sources of phoneme errors that relate to articu-
latory gestures of the vocal tract (e.g., Dubno and Levitt,
1981; Friesen et al., 2001, Cooke and Scharenborg, 2008;
Scharenborg, 2010).

This analysis is based on the confusion matrices (CMs)
for vowel and consonants, which can be used to derive CMs
for AFs. For example, a degraded classification of voicing
would result in higher confusions between voiced and un-
voiced phonemes (e.g., /p/, /b/), while phoneme pairs that
differ in the place of articulation (/p/, /d/) would still be
distinguishable. A CM for confusions between voiced and
unvoiced sounds can be derived by grouping the phonemes
from the consonant CM according to the values of the articu-
latory features shown in Table III (if the presentation was /b/
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and the response was /p/, this would increase the voiced-
unvoiced confusions in that matrix). Note that this analysis
aims at consonant recognition. The phonemes /1/, /[/ and /ts/
were excluded because they would have required the intro-
duction of new feature values for which only few represen-
tatives exist.

Instead of reporting the complete CMs for each articu-
latory feature, we calculated the relative transmitted informa-
tion 7, for each CM. This measure is comparable to the
overall recognition score for that feature, but corrects for
chance performance and also takes the distribution of feature
values into account (which is important when feature values
are not equally distributed for articulatory features). The ab-
solute information transmission (or mutual information) is
computed using the expression

PiD;
T(x,y) :_Epij 10g_l, (1)
ij ij

with the input variable x and the output variable y, each
having the possible values i=1,2,...,k and j=1,2,...,m,
respectively, with the corresponding probabilities p;, p;, and
the joint probability p;;. The indices i and j refer to the index
of the corresponding feature as listed in Table III, or to the
consonant index, respectively. The probabilities p; and p; are
the a-priori and a-posteriori probabilities for the stimuli,
while Pij is a matrix element of the confusion matrix, either
of the consonant confusions or the derived matrices for ar-
ticulatory features. To compare the transmitted information
of different features, we report the relative information trans-
mission T,(x,y)=T(x,y)/H(x) with the source entropy H(x)
=3,p; log(p;) throughout this study (Miller and Nicely,
1955).

2. Spectral distance

Differences in recognition rate may be caused by spec-
tral, temporal or spectro-temporal cues that are associated
with the according phoneme. We propose two measures that
rely on the spectral properties of speech, in order to investi-
gate to what extent recognition rates and phoneme confu-
sions can be explained by spectral cues. For this approach,
we assume that the recognition rate of a phoneme can be
modeled by the spectral difference of the masking noise and
the phoneme spectrum D(X;,N), i.e., is it assumed that
higher recognition rates are obtained for phonemes with
spectral energy above the noise floor. The second assumption
is that phonemes are more likely to be confused when their
spectra are similar. We propose the spectral inter-phoneme
distance D(X;,X;) as a measure to quantify this similarity,
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which can be compared to the corresponding error rate. The
level distance between phoneme and masking spectrum
D(X;,N) is defined as

M

1
D(X;,N) = — >
£X,(H>N(H+10 dB

Xi(H =N, 2)

where X,(f) is the long-term frequency spectrum of the ith
central phoneme in dB, N(f) is the masking frequency spec-
trum and M is the number of samples of X;. To account for
the higher critical bandwidth toward higher frequencies in
the human auditory system, the long-term spectra are
grouped in 45 mel-frequency bins and converted to a dB-
scale before calculating the difference between signal and
noise. Therefore, level and frequency perception of the hu-
man auditory system are approximated, so that the spectral
level distance can be seen as a very coarse model for the
psycho-physical distance of sounds. The calculation of spec-
tra is described in Section III A. The level of the masking
spectrum is raised by 10 dB before the parts of the signal
above noise level are used to calculate D(X;,N). This proce-
dure is similar to the calculation of the articulation index
(French and Steinberg, 1947) where the dynamic range of
speech sounds (i.e., approx. 30 dB) is adjusted to the mean
noise level so that the information-carrying peak energy por-
tions of speech are adjusted to the average noise level.

As a measure for spectral similarity of phonemes, we
define the distance between the long-term spectra X; and X;
of the ith and jth phoneme as

M
DX =223 ()~ X, G
f

where f represents the index of the M frequency bins. By
relating those differences to recognition results or error rates,
the effect of such dissimilarities can be quantified.

IV. RESULTS
A. Overall recognition scores

Overall recognition accuracies are reported for test Sets
RES, DA and SNR in Fig. 2. Scores are broken down into
consonant/vowel recognition and the varied parameter. For
Sets RES and DA, the overall recognition rate is about 74%,
with large differences between consonants and vowels, the
latter producing higher accuracies at this masking level of
—6.2 dB.

Recognition scores depending on speech-intrinsic varia-
tion obtained with Set RES are shown in the left panel of Fig.
2. Best overall results are obtained for high speaking effort
(condition ‘loud’, 79.3%) and the reference condition
(78.6%). For the categories ‘slow’ and ‘question’, the rela-
tive phoneme error rates increased by 7% and 11%, respec-
tively, compared to the reference condition. The absolute
performance for ‘fast’ (72.3%) and ‘stew (63.3%) is consid-
erably lower than for the reference condition. The relative
increase of phoneme errors compared to normal speaking
amounts to 29% (fast) and 71% (slew). The overall scores
for categories ‘fast’, ‘soft’, and ‘question’ were significantly
different from the reference condition according to McNe-
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FIG. 2. Phoneme recognition results (% correct) with standard errors, de-
pending on speech-intrinsic variabilities such as speaking rate and style (Set
RES, left panel) and dialect (Set DA, middle panel), and on additive mask-
ing noise (right panel). Results for Sets RES and DA were obtained in
listening experiments at —6.2 dB SNR in speech-shaped noise. Variabilities
are sorted by average recognition accuracies, which are broken down into
consonant and vowel scores.

mar’s test, while scores for slow and loud speaking style
were not. However, a further analysis of scores showed that
these speaking styles result in significantly different conso-
nant and vowel recognition rates.

The overall results (Fig. 2) showed that speech-intrinsic
variability induces strong differences in performance for the
chosen signal-to-noise ratio: For measurements with varied
dialect (Fig. 2, middle panel), the reference condition pro-
duces the highest intelligibility (81.5%), as expected for this
group of listeners that came from a region without any strong
accent. The scores obtained with dialectal or accented speech
result in significantly worse scores compared to the refer-
ence, with the exception of East Frisian, for which no sig-
nificant differences are observed when comparing overall re-
sults. French accent yields the lowest intelligibility (59.7%),
both for consonant and vowel recognition. This corresponds
to a relative increase of phoneme error rates of 120%. Even
if problematic phonemes that are absent from French are
excluded from the analysis, the scores are still below the
performance of other conditions. SNR-dependent recognition
performance is shown in Fig. 2 (right panel). Vowel accura-
cies are consistently higher than those of consonants, with
the exception of the lowest SNR (—20 dB), which is presum-
ably a result of ceiling effects.

B. Effects of additive noise and intrinsic variability

Since all measurements are based on the same speech
rpus, effects of different sources of variability can be ex-
pressed in terms of differences of the signal-to-noise ratio
that were measured with Set SNR. This is shown in Fig. 3
where the accuracies for Sets RES and DA are projected on
the SNR dependent recognition scores. The projection of
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variability-dependent scores shows that an average perfor-
mance corresponds to an SNR of —12.2 dB. The accuracy
for the normal speaking style is higher and corresponds to an
SNR of —10.8 dB, resulting in a SNR difference of 1.4 dB.
In the case of varied dialect or accent, the SNR shift amounts
to 2.7 dB. If accuracies obtained with French speech are
excluded from this comparison (due to phonetic dissimilari-
ties in German/English vs. French), the gap reduces to 1.5
dB SNR.

Even though these average differences across
variability-specific accuracies of 1.4 dB and 2.7 dB (or 1.5
dB), respectively, are comparatively small, the maximum de-
viation of a specific speaking style from the average is con-
siderable (which is also reflected in the standard deviation of
this average): For Set RES, the largest performance differ-
ence is observed between loud and soft speaking effort, cor-
responding to an increase of the masking level by 4.2 dB.
The standard deviation amounts to 6.2 dB. For Set DA, the
largest difference occurs between the reference condition and

the French accent condition, which corresponds to a 5.5 dB
increase of the masking level. The resulting standard devia-
tion amounts to 9.4 dB.

The phoneme confusions obtained with Set RES are pre-
sented in the consonant and vowel confusion matrices (Table
IV and Table V, respectively). The consonant and vowel con-
fusions are reported separately, since for the chosen testing
procedure confusions between consonants and vowels do not
occur. Results show that the spread in accuracy is larger for
consonants (with scores ranging from 36% to 99%) while
vowel recognition is more robust in general (72% to 90%).
Highest consonant scores were obtained for the phoneme
group (/t, s, [, ts, f/), which is in accordance with observa-
tions from Phatak and Allen (2007), who found comparable
results for the high-scoring consonant phonemes /t, s, z, [, 3/.
In Table IV, the highest error rates are observed for /a/ and
/a:/, which was expected due to their phonetic similarity, as
discussed in Section II B, and their spectral similarity, which
can be seen from Fig. 1.

TABLE 1V. Confusion matrix for consonant phonemes obtained with Set RES (—6.2 dB SNR), pooled over all speaking styles, listeners and speakers in this
test set. The average recognition rate is 67.7%. Rows (which denote presented phonemes) are normalized and rounded, so that each row adds up to

approximately 100% (corresponding to 720 presentations).

P t k b d g f v n m ) ts 1

p 52.6 2.8 18.2 6.3 1.0 43 6.8 6.4 0.6 0.7 0.4
t 0.4 91.4 22 4.6 0.1 0.1 1.0 0.1
k 5.8 1.9 67.2 1.4 1.1 16.3 0.1 2.2 1.7 0.8 1.4
b 8.1 0.6 7.1 36.1 4.9 12.2 2.5 19.9 2.2 35 0.1 2.9
d 0.7 39 1.0 2.9 58.9 12.9 0.1 0.4 2.6 6.8 0.8 8.9
g 1.5 0.7 6.1 6.0 3.8 62.4 1.3 10.1 2.5 1.0 4.7
s 0.3 97.5 0.4 0.8 1.0

f 32 0.4 0.6 12.2 77.2 5.3 0.6 0.4 0.1
v 2.6 1.0 22 10.8 3.1 6.0 1.0 7.1 55.3 1.3 4.2 0.3 5.3
n 0.1 0.7 0.4 1.8 7.1 1.7 0.3 3.2 50.6 10.8 23.3
m 1.0 0.1 0.6 6.0 2.8 35 1.1 8.6 13.2 48.1 15.1
) 0.1 0.6 0.1 0.1 0.3 0.1 98.5 0.1

ts 0.1 10.0 3.6 0.1 86.1

1 0.1 0.7 0.7 0.8 6.9 3.8 0.8 33 12.1 4.7 0.4 65.6
Sum 76.3 114.7 106.2 72.7 94.2 123.2 114.8 100.2 116.5 90.2 73.8 100.4 89.0 127.8
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TABLE V. CM for vowel phonemes, obtained with Set RES (SNR —6.2 dB SNR). The average recognition rate is 80.5%. Rows are normalized, with 100%
corresponding to 1152 presentations. For a detailed description, see Table IV.

a a g e 1 i bJ 0 U u

a 79.7 19.0 0.1 0.9 0.3 0.1
a: 155 83.6 0.2 0.2 0.6
€ 0.3 71.6 12.0 8.2 0.4 0.2 0.4 0.9
e 1.6 72.0 15.1 9.7 0.7 0.4 0.5
1 2.4 8.4 86.2 1.3 0.5 0.9 0.3
i 2.3 6.1 90.4 0.3 1.0
b) 1.9 1.2 84.4 7.4 43 0.9
0 0.1 0.5 0.7 0.2 0.8 71.6 10.7 15.5
U 0.3 1.3 0.1 2.0 11.7 71.9 6.7
u 0.1 0.1 0.1 0.1 1.0 2.4 7.6 6.9 81.6
Sum 97.5 103.9 82.2 95.3 118.6 104.5 88.3 99.7 102.3 108.1

C. Influence of spectral differences
1. Phoneme-noise-distance

The dissimilarities between long-term spectra of high-
scoring fricatives and the masking noise (Fig. 1) suggest that
spectral properties of phonemes might be a good predictor
for recognition rates. This hypothesis was tested by calculat-
ing the distance between phoneme and masking spectrum
D(X;,N) according to Eq. (2) and by comparing D(X;,N) to
the recognition rates, as shown in Fig. 4 (left panel). Further-
more, large differences between the long-term spectra of
vowels are observed (Fig. 1), while consonant spectra exhibit
only small differences over a large frequency scale. It was
investigated whether this results in systematic recognition
differences between the phoneme types.

A Wilcoxon ranksum test indicated that the distance-to-
noise measure D(X;,N) is not significantly different across
consonants and vowels. Hence, the correlation of the
phoneme-to-noise distance and recognition rate was calcu-
lated based on the data obtained from all phonemes. An
arcsine-transformation (Studebaker, 1985) was applied to the
square root of recognition scores before calculating the cor-
relation in order to linearize the data. The analysis was ap-
plied to individual scores (gray-shaded data points in Fig. 4)
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FIG. 4. Left panel: Relation between the phoneme-noise distance and rec-
ognition rates for consonants and vowels. Next to each data point, the
SAMPA transcript of the according phoneme is denoted. The right panel
shows the dependency of phoneme-phoneme distance and error rates ob-
tained from symmetrized confusion matrices. For each phoneme, several
data points are shown which correspond to confusions with ‘spectral neigh-
bors’, i.e., phonemes that were spectrally closest (marker ‘0’) and 2nd clos-
est (markers ‘C]") to the presented phoneme. Data points in light gray rep-
resent data from individual listeners.
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and showed that the distance-to-noise measure D(X;,N) is a
good predictor for phoneme accuracies (r=0.74, p
<0.0001).

2. Phoneme-phoneme distance

In order to analyze the effect of dissimilarities between
pairs of phoneme spectra, the spectral inter-phoneme level
distance D(X;,X;) is compared to error rates from confusion
matrices. Since D(X;,X;) is a symmetric measure (i.e.,
D(X;,X;)=D(X;,X;)), confusion matrices C were symme-
trized by Csymzé(C+ CT). The dependency between
D(X;,X;) and the corresponding error rate is shown in Fig. 4
(right panel). The analysis for error rates is limited to con-
fusions to phonemes that were spectrally close to the pre-
sented phoneme in order to avoid flooring effects allowing
the application of a simple linear model.

In order to test the hypothesis that error rates are related
in a different way to phoneme-phoneme distances across
consonants and vowels (cf. right panel in Fig. 4), a Wilcoxon
rank-sum test was performed, which showed that the
phoneme-phoneme distance is significantly higher for vow-
els than for consonants (p <0.0001). Linear regressions were
therefore separately performed for the vowel and consonant
group, respectively. The square roots of error rates were sub-
ject to an arc-sine transformation before calculating the cor-
relation. As for the phoneme-noise distance, the analysis was
based on the data gathered from individual listeners (gray-
shaded data points in Fig. 4); it showed that the inter-
phoneme distance between spectral neighbors is a good pre-
dictor for error rates; the correlation between the two
measures was more pronounced for vowels (r=-0.69, p
<0.0001) than for consonants (r=-0.61, p<0.0001).

Even though the very simple measures of spectral
phoneme-masker difference and inter-phoneme difference
are good predictors for average error rates, they fail to ex-
plain the details of the observed recognition and error rates
of human listeners. The proposed model relies on spectral
super-threshold features, but does not account for purely
temporal or spectro-temporal features of the speech signal.
An improved prediction requires models that are based on
human principles of auditory processing, e.g., the extraction
of spectro-temporal features that exhibit a higher signal-to-
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noise ratio in an appropriate “glimpse” of the time-frequency
distribution (Kleinschmidt and Gelbart, 2002; Barker and
Cooke, 2007).

D. Articulatory features and information transmission

The transmitted information of articulatory features is
analyzed in order to pinpoint those cues that are most
strongly affected in the presence of variabilities. The infor-
mation channels under consideration were voicing, manner,
and place of articulation. These features are well-defined for
consonant phonemes, for which the analysis is performed by
deriving confusion matrices for articulatory features from the
consonant CMs for each variability. These matrices were
used to calculate T, scores. Relative information transmis-
sion scores T, depending on speaking effort, rate and dialect
are shown in Fig. 5.

Soft speaking style produced the lowest overall trans-
mission scores, which complies with the consonant results
reported in Fig. 2. Major differences compared to the refer-
ence condition are high error rates for /p/ and /b/ and confu-
sions between the nasals /n/ and /m/. The latter seems to be
the major reason for the low scores of the place feature in
soft speaking style (0.29). In contrast to this, place is well
recognized for loud speaking style (0.65), with a higher 7,
score than normal speaking style (0.50). An analysis of CMs
for the place feature showed that this is mainly caused by
reduced confusions between anterior and medial placed con-
strictions of the vocal tract, reflecting overarticulation of
loudly spoken utterances.

Slow speaking rate exhibits above average scores for all
features. The manner of articulation is particularly well rec-
ognized in this case, with a relative increase of 13% of trans-
mitted information, compared to the reference condition.
Voicing shows only small variations of 7, scores, which
range from 0.49 to 0.59%, and was not found to be signifi-
cantly influenced by speaking style and rate. This AF there-
fore appears as being relatively robust toward the discussed
variations.

The use of the Oldenburg Logatome Corpus enables an
analysis of the same parameters as investigated in related
studies (such as the effect of different speaker characteristics
on the phoneme scores), but also allows for an analysis of
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the effect of speech-intrinsic variation based on the same
speech material. We analyzed the contribution of these pa-
rameters to the observed variance in the recognition results.
A repeated measures two-way ANOVA with two across-
subjects factors (1. the category for different speaking rates,
effort, and style and 2. the choice of speaker) demonstrated
significant effects on the relative transmitted information 7',
of consonant recognition and articulatory features: both the
category for intrinsic variation [F,(5,143)=27.8, p
<0.001] and the choice of speaker [F,(4,143)=27.3, p
<0.001] had a large effect on T,-scores derived from the
consonant confusion matrix.

Similarly, the recognition of manner of articulation was
significantly affected by both factors [F;(5,143)=11.6, p
<0.001, F,(4,143)=15.1, p<0.001], as was the recogni-
tion of place of articulation [F,(5,143)=47.9, p
<0.001, F,(4,143)=16.9, p<0.001]. The voicing feature
was significantly affected by the choice of speaker
[F,(4,143)=35.2, p<0.001], but not by the category for
speaking rates, effort, and style. It therefore seems that the
sources of variation analyzed in this study have the largest
impact on the place of articulation, while the recognition of
the voicing feature seems not to be affected by changes in
speaking rate, effort, and style. In all cases, significant inter-
actions between the choice of speaker and the source of vari-
ability were observed, indicating that speakers employ indi-
vidual strategies to produce the desired variation of speech.

A second series of repeated measures ANOVAs was car-
ried out based on the data obtained with Set DA with the aim
of estimating the influence of such sources of variability on
the relative transmitted information. Dialect and accent had a
significant effect on the overall T,-scores [F,(4,49)
=4.5, p<0.05], and on the AFs manner [F(4,49)
=4.2, p<0.05] and place (F;=3.0, p<0.05). The recogni-
tion of voicing feature was not significantly affected by vari-
ability due to dialect and accent.

Relative information transmission depending on dialect
and accent is shown in Fig. 5 (right panel). Not surprisingly,
the highest values for all features are obtained for standard
German. Compared to this, transmitted information for all
features is approximately halved for French-accented speech,
while the scores for German dialects are in between those

Meyer et al.: Speech-intrinsic variability in speech

Author's complimentary copy


bernd
Cross-Out

bernd
Cross-Out

bernd
Cross-Out

bernd
Cross-Out

bernd
Cross-Out

bernd
Cross-Out

bernd
Cross-Out

bernd
Cross-Out

bernd
Cross-Out

bernd
Cross-Out

bernd
Cross-Out

bernd
Cross-Out

bernd
Sticky Note
As in Fig. 2, the labels for the categories are not in the correct order. The correct order is 1: Loud, 2: Normal, 3: Slow, 4: Question, 5: Fast, 6: Soft.

Further, the reference to the sets of stimuli should read 'Set RES' (instead of Set V) and 'Set DA' (instead of Set D).


conditions. Speech with dialect/accent exhibits the highest
relative degradation of information associated with place of
articulation. This specific degradation of the place feature is
consistent with the notion that the dialects employed differ
primarily with respect to the place of articulation. The articu-
lation of voicing and manner, on the other hand, seems to be
more constrained by language-specific rules, which results in
less variation in transmitted information.

The feature ‘manner’ is relatively well transmitted for
the East Frisian dialect, due to reduced confusions between
plosives and fricatives. For example, the error rate for the
confusion between /v/ and /b/ is almost halved. In the case of
the East Phalian dialect, the voicing feature has relatively
high values, as confusions between voiced-unvoiced pairs
such as /b/, /p/ are reduced.

V. DISCUSSION

In this study we presented results from speech intelligi-
bility tests with the OLLO logatome speech database that
covers several sources of speech-intrinsic variability. From
the wide range of sources for such variation in spoken lan-
guage, we chose those that were found to severely degrade
the performance of automatic recognizers. A speech-shaped
masking noise was used to avoid ceiling effects in phoneme
recognition. While the average degradation in terms of the
equivalent loss of the SNR is small (i.e., in the range of a
few dB), the degradation is considerable for specific sources
of variability: Soft and fast speaking style were identified as
the most problematic for human listeners, as relative error
rates increased by approximately 70 and 30%, respectively,
compared to the reference condition. This reflects the trend
identified by Krause (1993) who reported an increase of
word error rates for a keyword identification task of approxi-
mately 30% when the speaking rate was increased or the
speaking effort was lowered. The other sources of variability
(reduced rate of speech, increased speaking effort and rising
pitch) influenced global recognition scores to a lesser extent
(i.e., they resulted in relative changes of error rates between
3% and 11%), but produced shifts regarding the confusion of
phonemes.

The presented data analysis is limited to a selection of
sources of variability such as speaking rate, effort, style, and
dialect and accent. Future experiments may also take other
sources of variation into account, such as the effects of age,
coarticulation and gender, which has been shown to be a
major factor for variations of spoken language (Hazan and
Markham, 2004).

A. Comparison with past work

A comparison with important studies on consonant rec-
ognition is presented in Fig. 6. It includes data from Phatak
and Allen (2007) [PAO7], Grant and Walden (1996) [GW96]
and Sroka and Braida (2005) [SB05], all of which measured
consonant recognition scores in speech-shaped noise. Results
from Miller and Nicely (1955) [MN55] who used white
noise as masker are also shown. The results obtained in five
studies (including the current paper) form three groups with
respect to average consonant identification scores: Scores
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FIG. 6. Comparison of average consonant recognition scores with results
from Sroka and Braida (2005) [SB05], Phatak and Allen (2007) [PAO7],
Grant and Walden (1996) [GW96] and Miller and Nicely (1955) [MN55].
Filled symbols denote results obtained with the OLLO database. Recogni-
tion scores for Sets RES and DA for ‘normal’ speaking style and ‘no dialect’
condition include a single SNR and appear as single data points.

from GW96 and from Sets RES, DA and SNR show good
resemblance; the performance obtained in these experiments
is between PAO7 (for which the performance is 20% higher
in average) and SB0O5 and MN55 (for which it is 20% lower).
The highest spread in average recognition performance for
sounds masked with speech-shaped noise is observed be-
tween PAO7 and SBOS5 with an absolute difference of 39%.
Since the slope of the performance-intensity curves for all
data given in Fig. 6 is almost identical for 50% consonant
intelligibility (~4.5%/dB), the observed difference can be
expressed in terms of the SNR: Using a linear interpolation
for the mid-region of the performance-intensity curves
shown in Fig. 6, the SNR shift was determined which re-
sulted in the smallest rms error between the shifted data from
the literature and the scores obtained in this study (Set SNR).
While this shift was very small for the GW96 data (0.5 dB),
the differences for the other studies are more noticeable
(PAO7: —6.5 dB; SB05: +5 dB; MN55: +6 dB).

There are numerous reasons for the observed variations
across studies: Since the spectral difference between pho-
neme and masker is of primary importance for the phoneme
recognition rate (cf. Section IV C and Fig. 4), a major part of
the observed variations can be predicted using a simple ap-
proach based on the spectral level difference to compensate
for the effect of spectral masker and phoneme properties on
recognition scores and error rates. The results are in line with
findings from PAO7 where a modified version of the articu-
lation index (AI) with frequency-dependent weighting coef-
ficients was used, which resulted in a close match of data
from MNS55, PAO7, and GW96. However, the close resem-
blance of scores between MN55 and SB05 (where masking
noises with different characteristics were employed) or the
large SNR-shift between PAQ7 and SBO05 (both of which
used a speech-shaped masking noise) suggests that average
spectral differences are not sufficient as the only important
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factor in phoneme recognition. Hence, other experimental
parameters have to be considered that differ across the stud-
ies under consideration: The number of consonant phonemes
lies between 12 (SB05) and 18 (GW96). This number influ-
ences both chance performance as well as any phoneme con-
fusions that depend on the similarity of phonemes (c.f. Sec-
tion IV C), which affects overall error rates. Differences
across studies may also arise from an unequal number of
talkers or listeners, e.g., two talkers and three listeners have
been used in (SBO5), while in this study, the number of talk-
ers is between one and ten, and the number of listeners be-
tween five and ten (depending on the HSR test set, cf. Table
IT). The difference in SNR calculation might also consider-
ably contribute to the observed shift: For example, the exact
definition of the SNR was found to produce differences of
more than 3 dB in this study (cf. Appendix C). Finally, dif-
ferences between PAO7 and the other studies may arise from
the fact that PAO7 removed high-error sounds (which pro-
duced error rates>20% for the quiet condition), which
would raise the overall score. Such utterances were not re-
moved for measurements with the OLLO corpus (for which
an average recognition score of 0.5% was reported in (Meyer
et al., 2006).

Recognition scores depending on speaking rate and style
are consistent with other studies. Krause and Braida (2002)
presented experiments with conversational and clear speech
(i.e., speech with higher intelligibility than conversational
speech) with different speaking rates and styles. In our study,
we confirm the finding that loudly spoken utterances result in
highest intelligibility (after compensating for different abso-
lute speech levels), followed by slow, fast and soft speaking
style (in that order). The absolute differences of recognition
scores reported by Krause and Braida (2002) are larger than
found in this study, i.e., the difference between loud and soft
speaking style amounts to 27 percentage-points in Krause
and Braida (2002) and to 16 percentage-points in this study.
For this comparison we refer to results obtained with conver-
sational speech in Krause and Braida (2002), rather than
clear speech that was produced by trained speakers, since
speakers recorded for the OLLO database were encouraged
to speak in a normal or natural way. However, this larger
difference in speech intelligibility score across studies can be
explained by the presumably steeper performance-intensity
curve for Krause and Braida (2002) where listeners had to
identify key words from sentences, in comparison to the flat
curve for phonemes employed here (~4.5%/dB, see above).
Another factor that significantly influences intelligibility is
the inter-individual difference of talkers. Krause and Braida
(2004) have shown that two talkers who were trained to pro-
duce clear speech at normal speaking rates employed very
different strategies for performing this task. For example,
large differences of acoustic properties such as voice-onset
time and the duration and extent of formant transitions were
observed for the talkers. This result underlines the difficulties
that arise when results obtained with different speakers are
compared, especially when variabilities of speech are consid-
ered in connection with unnatural articulation modes (such
as speaking “loud” or “clear”) where stronger changes due to
additional variations (e.g., speaking rate or style) are ex-
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pected than in normal speech. In this work, we tried to con-
trol for these differences by recording several variabilities
from the same set of speakers.

B. Comparison between HSR and ASR

In other studies the OLLO corpus has been successfully
applied to the problem of ASR (Wesker et al., 2005; Meyer
et al., 2007), as an evaluation tool for speech models (Jiir-
gens et al., 2007) and to study speaker discrimination of
cochlear implant users (Miihler et al., 2009). By making the
speech corpus available for research in HSR and ASR, we
hope to promote research dealing with the impact of speech-
intrinsic variabilities on both human and automatic recogni-
tion. The HSR scores presented in this study may serve as
baseline for experiments that aim at narrowing the gap be-
tween ASR and HSR, which is still one of the most impor-
tant challenges in speech research. The speech database,
measurement results and detailed results from the analysis
can be obtained at http://medi.uni-oldenburg.de/ollo for re-
search purposes.

Bronkhorst er al. (1993) showed that the recognition
performance increases when meaningful CVCs are presented
instead of nonsense CVCs. Such an increase is therefore ex-
pected when analyzing continuous conversational (i.e.,
meaningful) speech instead of logatomes employed in the
current study. However, the influence of the specific intrinsic
variations investigated in this study on conversational speech
has yet to be quantified. Variations in conversational speech
are considerably larger than recordings under controlled situ-
ations, as speaking rate and effort are subject to frequent
changes. Therefore, experiments comparable with our ap-
proach would require a database with labeled phonemes and
variabilities, which does not yet exist to our knowledge. For
the creation of suitable databases, problems such as the am-
biguous labeling of phonemes are further aggravated in the
presence of strong variations in spoken language, as, e.g.,
Schriberg et al. (1984) have shown for transcription of chil-
dren’s speech.

By relating recognition scores obtained for different
sources of variability and various SNRs, effects of changed
speaking style were expressed in terms of SNR changes.
Naturally, these results are valid for medium speech intelli-
gibility only, as for very high SNRs a degradation of 2 dB
will have a minor impact on performance, while stronger
degradations are obtained when speaking style or dialect is
varied (Meyer et al., 2006).

In future research, the impact of intrinsic variation on
automatic speech recognition will be assessed and compared
to the results obtained with human listening experiments.
Such a comparison has been performed earlier (Lippmann,
1997; Sroka and Braida, 2005; ten Bosch and Kirchhoff,
2007; Cooke and Scharenborg, 2008) with the aim of quan-
tifying the gap between HSR and ASR, and the ultimate goal
of bridging this gap (i.e., improving ASR) by employing
principles that are at work in the human auditory system.
While in other studies the focus was laid on extrinsic factors
that severely degrade ASR (such as, e.g., the influence of
cut-off frequencies of high- and lowpass filtered maskers or
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the non-stationarity of masking noises) we hope to highlight
weaknesses of current ASR systems when speech with intrin-
sic variation represented in the OLLO speech corpus is to be
recognized. The results may then be used to improve the
robustness of ASR systems against such variation.

VI. SUMMARY AND CONCLUSIONS

The most important conclusions from this work can be
summarized as follows:

(1) The Oldenburg Logatome speech corpus (OLLO) was
introduced, and results from human listening tests were
reported in terms of error rates and transmission rates of
characteristic speech features. The database consists of
simple VCV and CVC utterances and covers several
speech-intrinsic variabilities. It is available for research
purposes for human and automatic speech recognition.

(2) Speech-intrinsic variabilities such as speaking rate, effort
and style, and dialect affect the recognition performance
of human listeners. High speaking effort produces in-
creased intelligibility and a better transmission of place-
of-articulation information compared to normally spoken
logatomes, while fast speaking rate or soft speaking style
results in increases of phoneme errors by 30% and 70%,
respectively (even if the effect of speech level was com-
pensated for). Speech with dialect or accent results in an
increase of the error rates by up to a factor of two. The
average relative increase of error rates due to intrinsic
variations was found to be 23% (rate, effort, and style)
and 51% (dialect and accent).

(3) To better quantify the effect of intrinsic variabilities, a
direct comparison to extrinsic variations (i.e., change in
SNR) is possible because the same listeners and speech
materials are employed. The presence of varied speaking
rate, effort or style corresponds in average to a decrease
in SNR of 1.4 dB for a stationary, speech-shaped mask-
ing noise (assuming medium speech intelligibility). For
dialect and accent, the equivalent decrease in SNR was
found to be 2.7 dB. For each individual intrinsic variabil-
ity, the equivalent SNR degradation amounts to up to 5.5
dB, with standard deviations across variabilities of 6.2
dB (for rate, effort or style) and 9.4 dB (for dialect and
accent), respectively.

(4) The analysis of consonant scores based on articulatory
features (AFs) showed that the place of articulation is the
least robust AF for the variabilities analyzed in this
study. On the other hand, the recognition of voiced vs.
unvoiced sounds was less affected by changes in speak-
ing style, effort and rate. The strongest effects on conso-
nant recognition and the classification of articulatory fea-
tures (for the experiment with varying rate, effort and
style) resulted from the choice of speaker and the intrin-
sic variations, while the choice of listener induced only
small but significant effects.

(5) The phoneme recognition rate was found to correlate
with a simple measure of spectral distance to the mask-
ing noise (r=0.74), i.e., the spectral characteristics of the
masker play an important role in phoneme recognition,
which is in line with earlier studies. We also observed
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that error rates are significantly related to the properties
of those alternative phonemes that are spectrally close.
This effect was found to be slightly stronger for vowels
(r=-0.69) than for consonants (r=-0.61).

(6) While consonant recognition scores reported here coin-
cide well with data from Grant and Walden (1996), dif-
ferences of up to 12 dB were found across studies in
terms of the SNR corresponding to 50% intelligibility
(Miller and Nicely, 1955; Sroka and Braida, 2005;
Phatak and Allen, 2007). Our findings of correlations
between recognition rates and phoneme-noise distance
can account for parts of these differences [and hence
confirm findings of Phatak and Allen (2007)]. However,
more factors (such as, e.g., the number of response alter-
natives, the number of phonemes and coarticulation ef-
fects in the presented speech items, and the selection and
speaking style of the speaker) obviously contribute to the
differences across studies. The Oldenburg Logatome
Corpus employed here avoids some of these (unwanted)
variability effects by using a fixed word format and pro-
viding a number of different speaking styles with the
same respective talker. It therefore produces phoneme
scores that are in between the extreme high and low
scores found in the literature.
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APPENDIX A: ASR EXPERIMENTS FOR PHONEME
SELECTION

An ASR experiment was performed with the aim of
identifying the consonants that result in high error rates and
therefore should be included in the OLLO database. Spectro-
temporal ASR features (Kleinschmidt and Gelbart, 2002)
served as input to a non-linear neural network (multi-layer
perceptron, MLP) that was trained and tested using a
phoneme-labeled speech database (TIMIT). Results were
analyzed on a frame-by-frame basis and phonemes were
sorted by their relative error rate. The corresponding confu-
sion matrix is shown in Fig. 7. The phonemes that were
selected based on this experiment are highlighted in the fig-
ure.

APPENDIX B: ASR EXPERIMENTS FOR SPEAKER
SELECTION

Since HSR experiments could not be performed with the
complete OLLO database, test sets were compiled to inves-
tigate different sources of variability. Earlier studies have
shown that the intelligibility of speech strongly depends on
the choice of speaker (Barker and Cooke, 2007). Hence, a
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FIG. 7. Phoneme confusion matrix obtained in an ASR experiment. In this
row-normalized CM, black color denotes unity and white color corresponds
to chance performance. The eight consonant phonemes that were selected to
be included in the OLLO database based on this experiment are marked with
arrows.

selection procedure was carried out to avoid the use of
speaker data that produces very high or low scores compared
to those for the complete data set. In order to find speaker
sets that are representative for the complete database, a stan-
dard ASR system was trained with all utterances from 49
speakers and tested with the speech data of the remaining
speaker. The ASR system used Mel-frequency cepstral coef-
ficient (MFCC) features and a Hidden Markov Model clas-
sifier. This procedure was performed for all speakers in the
corpus; the four speakers selected for Set RES produced an
average score in the same range as the average score mea-
sures for all speakers without dialect (84.3% vs. 84.1%).
Similarly, the scores of ten speakers (one male and one fe-
male speaker from each dialect region) included in Set DA
were comparable to the score averaged over all 50 speakers
(75.4% vs. 75.8%, respectively).

APPENDIX C: SNR CALCULATION

For such short utterances as logatomes, the adjustment
and interpretation of the SNR is not a trivial issue because
the short-term level derived from each logatome varies con-
siderably across logatomes even if exactly the same record-
ing conditions are used (i.e., technical conditions, speaker,
speech rate, speech effort, etc.). Obviously, the reliability of
the short-term level as an estimate of the “true” speech level
decreases with decreasing duration of the speech segment.
One option for a more valid speech level measure as an input
to the SNR measure would therefore be to use the average
power of all speech samples in the database, since the long-
term SNR has been shown by the Articulation Index and the
Speech Intelligibility Index to be a reliable measure for av-
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erage speech intelligibility. Using such a long-term speech
level, changes in the recording conditions (e.g., variations of
the distance between speaker and microphone) can be reli-
ably detected and compensated for. On the other hand, the
short-term rms level of a single utterance is an easily com-
putable local measure that does not rely on the (statistical)
properties of the remaining speech corpus and captures best
the properties of the individual speech item. Hence, the
short-term SNR is very popular in speech research and has
been used, e.g., in other studies that make use of CV utter-
ances in noise (as, e.g., Cooke and Scharenborg, 2008).
However, due to the large statistical uncertainty with short
speech segments, the intelligibility obtained from short VCV
and CVC combinations varies considerably across speech
items in a way not predictable from the variability of the
short-term SNR and only partially predictable from the long-
term SNR (Kollmeier, 1990), which compensates for slow
variations of the recording conditions. Since these variations
were already controlled and compensated for during the re-
cording of the OLLO speech corpus and for the sake of sim-
plicity and compatibility with recent studies, we used the
short-term SNR derived from each single utterance through-
out this study.

For measurements with Sets DA and SNR, the SNR was
calculated by relating the root-mean-square (rms) value of
the speech segments of each audio signal and the rms value
of a masking noise of equal length. A simple voice detection
algorithm based on an energy criterion was used to extract
connected speech segments. Random control samples were
chosen to control proper functioning of that algorithm. For
utterances from Set RES, a different SNR calculation scheme
was applied: In this case, the rms levels of the whole utter-
ance (including silence) and a noise segment of equal length
were used to adjust the SNR. Since the length of silence
before and after each logatome is 500 ms and because the
variation of temporal spread of identical logatomes is rela-
tively small, this corresponds to a fixed offset, which was
found to be 3.8 dB, compared to the SNR calculation scheme
mentioned above. For clarity, the SNR values for Set RES
are converted to the first mentioned method.
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