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Abstract

Yersinia pestis, the bacterial causative agent of plague, remains an important threat to

human health. Plague is a rodent-borne disease that has historically shown an outstanding

ability to colonize and persist across different species, habitats, and environments while pro-

voking sporadic cases, outbreaks, and deadly global epidemics among humans. Between

September and November 2017, an outbreak of urban pneumonic plague was declared in

Madagascar, which refocused the attention of the scientific community on this ancient

human scourge. Given recent trends and plague’s resilience to control in the wild, its high

fatality rate in humans without early treatment, and its capacity to disrupt social and
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healthcare systems, human plague should be considered as a neglected threat. A workshop

was held in Paris in July 2018 to review current knowledge about plague and to identify the

scientific research priorities to eradicate plague as a human threat. It was concluded that an

urgent commitment is needed to develop and fund a strong research agenda aiming to fill

the current knowledge gaps structured around 4 main axes: (i) an improved understanding

of the ecological interactions among the reservoir, vector, pathogen, and environment; (ii)

human and societal responses; (iii) improved diagnostic tools and case management; and

(iv) vaccine development. These axes should be cross-cutting, translational, and focused

on delivering context-specific strategies. Results of this research should feed a global con-

trol and prevention strategy within a “One Health” approach.

Author summary

The historical aspect of plague makes for fascinating reading, due to its capacity to disrupt

human society and its socioeconomic and cultural impacts throughout human history.

We argue that the Madagascar outbreak in 2017 is a tipping point in human plague epide-

miology and a call to elevate research priorities on plague as a matter of some urgency. In

contrast with what occurred with the Ebola virus disease crisis in West Africa between

2013 and 2015 and the new coronaviruses (the emergence of severe acute respiratory syn-

drome coronavirus [SARS-CoV] and Middle East respiratory syndrome coronavirus

[MERS-CoV] as early warnings of the current severe acute respiratory syndrome corona-

virus 2 [SARS-CoV-2] pandemic), we have an opportunity to act preventively and enable

evidence-based measures to avoid major health crises due to plague outbreaks in the near

future.

Introduction

Plague is a bacterial rodent-borne disease caused by Yersinia pestis, a gram-negative bacillus

member of the Enterobacteriaceae family. As a zoonosis, it is first and foremost a rodent dis-

ease with complex zoonotic/epizootic cycles that may occasionally be transmitted to humans,

whereby it can cause sporadic cases, outbreaks, or even large epidemics (Fig 1). Bubonic plague

is the most common clinical presentation among humans. Bubonic forms may evolve to septi-

caemic disease, and 1% to 3% of cases develop a secondary pneumonic plague [1–3]. Second-

ary pneumonic plague forms may be transmitted from person to person through respiratory

droplets, which can result in primary pneumonic plague. Without intensive treatment, the

lethality of septicaemic and pneumonic plague is almost 100% between 1 and 4 days following

the onset of symptoms [1–3].

Plague has marked human history in a unique way during at least 3 historical pandemics.

The first described pandemic was the Justinian epidemic (6th–7th centuries), whereas the sec-

ond spanned from the 14th century to the 19th century in Europe [4, 5], including the Black

Death period (1,347–1,351 BC) that wiped out an estimated 30% to 40% of the European pop-

ulation, constituting its deadliest recorded epidemic. The third pandemic of plague emerged

from its natural cradle in the Yunnan province (China) in the mid-19th century [6]. Because

of the expansion of the shipping industry, this third wave established sustained Y. pestis epizo-

otic cycles worldwide, including in the United States, South America, Madagascar, and other

areas previously free of plague. Plague is currently endemic in restricted areas where it has
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been present for several hundred or even thousands of years (China, Kyrgyzstan, Kazakhstan,

Russia, and Mongolia), or just a hundred years (Peru, the US, Madagascar, and some areas in

Africa) [5, 7, 8]. Although in the mid-20th century human cases were mostly reported from

Asia, with a steadily decreasing trend, a sharp increase of cases in Africa was observed during

the 1980s to the 2000s, which now make up the majority of total cases [4]. Between 2013 and

2018, 2,886 cases and 504 deaths have been notified to WHO (with a reported case fatality of

17.5%), of which 95% derive from sub-Saharan Africa, mainly in Madagascar and the Ituri

region of the Democratic Republic of Congo (DRC) [8]. Occasional scattered cases of human

plague are regularly declared in China, Mongolia, the Russian Federation, Kyrgyzstan, Peru,

Bolivia, Uganda, Tanzania, and the US [7–9]. Nowadays, Y. pestis remains present in at least

33 countries (where signs of activity have been detected in the last 30 years). More than 30 dif-

ferent flea vectors have been suspected to play a role in transmission, and over 200 mammals

(mainly rodents and lagomorphs) have been reported to be infected by Y. pestis, including

potential reservoir hosts, in different parts of the world. Table 1 exemplifies this diversity.

However, the commensal rats (Rattus rattus and R. norvegicus) and their flea (Xenopsylla

Fig 1. Epizootic/enzootic cycle of Y. pestis. Caption credit: Ben Ari MT, Neerinckx S, Gage KL, Kreppel K, Laudisoit A, Leirs H, et al. Plague and Climate: Scales
Matter. PLoS Pathog. 2011; 7:e1002160 [49].

https://doi.org/10.1371/journal.pntd.0008251.g001
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Table 1. Main vectors and hosts identified in countries where human plague has been declared between 2013 and 2018�.

Country Declared human plague cases 2013–2018�� Recognized main host(s) Described vectors involved in zoonotic/epizootic cycles

DRC [7] 410 Arvicanthis abyssinicus
Mastomys natalensis
Lemniscomys striatus
Rattus rattus
Mus minutoides

Dinopsyllus lypusus
Ctenophthalmus cabirus
Ctenophthalmus phyris
Xenopsylla brasiliensis

Madagascar [7,100,108] 2,323 R. rattus
R. norvegicus
Suncus murinus

X. cheopis
X. brasiliensis
Synopsyllus fonquerniei

Uganda [7,56] 22
Arvicanthis niloticus
Mastomys spp.
Crocidura spp.

X. cheopis
X. brasiliensis
C. cabirus
D. lypusus

United Republic of Tanzania
[7]

36 R. rattus
M. natalensis
A. abyssinicus

X. cheopis
X. brasilensis
D. lypusus

Bolivia [7,98] 3 R. rattus
Graomys griseoflavus
Galea musteloides

X. cheopis

Peru [98] 40 R. rattus
R. norvegicus
Sciurus stramineus
Akodon mollis
Cavia porcellus
Aegialomys xanthaeolus
Oryzomys andinus

Polygenis litargus
X. cheopis
Hectopsylla spp.
Tiamastus cavicola

US [25, 109] 40 Cynomys gunnisoni
Cynomys ludovicianus
Onychomys leucogaster
Otospermophilus
variegatus
Otospermophilus beecheyi
Callospermophilus lateralis
Urocitellus beldingi
Eutamias spp.
Microtus californicus

Oropsylla hirsuta
Oropsylla montana
Opisocrostis spp.
Diamanus montanus
Hoplopsyllus anomalus

China [6,7] 5 Marmota himalayana
Marmota caudata
Rattus flavipectus
Urocitellus undulatus
Spermophilus dauricus
Eothenomys miletus
Apodemus chevrieri
Meriones unguiculatus
Microtus brandti
Microtus fustus

Callopsylla dolabris
Oropsylla silantiewi

Kyrgyzstan [6,110] 1 Marmota baibacina
Microtus gregalis
Microtus carruthersi
M. caudata

Callopsylla caspia
O. silantiewi
Citellophyllus tesquorom

Russia Federation [110] 1 Spermophilus pygmaeus
Meriones meridianus
Ochotona pallasi pricei
U. undulatus
S. dauricus
Spermophilus musicus
Microtus arvalis

C. caspia
Neopsylla setosa
Neopsylla laeviceps
X. conformis
Paradoxopsyllus scorodumovi

(Continued)
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cheopis) are currently considered the most important hosts and vector involved in human out-

breaks. Other hosts and vectors are involved in human transmission in different regions. Over-

all, plague is largely a disease of wild mammals, killing susceptible rodent species, cats, camels,

and other mammals when the disease spills over from rodent reservoir host species. The main-

tenance of Y. pestis in nature, and from where it spreads to cause human outbreaks, renders it

almost impossible to eradicate.

Plague once again grasped the attention of the scientific community when an outbreak of

pneumonic plague was declared in Madagascar in September 2017, primarily striking the capi-

tal Antananarivo and the main seaport of Toamasina. A total of 1,878 clinically suspected

pneumonic plague cases were identified [10]. This episode should be considered an echo of the

third pandemic, which first established plague in Madagascar [11].

Pneumonic plague outbreaks with human-to-human transmission are fortunately relatively

rare, probably due to the estimated low basic reproduction number (R0) between 1.2 and 1.4

[12, 13]. Besides the recent outbreak in Madagascar, minor episodes of pneumonic plague

have been described in recent years in the US [13], Madagascar [14, 15], India [16], DRC

[17,18], Uganda [19], Peru [20], and China [21]. However, large and deadly outbreaks of pneu-

monic plague have occurred, most notably in Manchuria, where more than 60,000 estimated

deaths occurred between 1910 and 1911 [3, 22], highlighting that R0 of pneumonic plague

depends on the specific situation and interaction of vulnerable population as has been showed

during the analysis of more recent outbreaks [15] and past outbreaks [3]. Therefore, given the

high lethality, the capacity for social disruption, increasing connectivity between endemic and

rural areas, and international transport, plague should be considered a neglected threat that

needs renewed attention.

This article is based on the conclusions of a workshop held by international plague experts

in Paris in July 2018 that had the main goal of drafting a roadmap on plague research priorities,

expanding the scope and contents of a short report published elsewhere [23]. With this pur-

pose, we summarize the current knowledge about plague and identify the priority gaps to be

filled based on the exchange of knowledge and experiences during the meeting and a system-

atic review of published plague literature. Here, we report the main conclusions of the discus-

sions at this meeting.

Which hosts and vectors should be targeted for human plague
control?

It is important to point out that the true number of species implicated in plague transmission

—the true composition of reservoirs and accidental hosts—is unknown [24]. Therefore, one

major challenge in the management and prevention of plague is to identify the flea vector(s)

Table 1. (Continued)

Country Declared human plague cases 2013–2018�� Recognized main host(s) Described vectors involved in zoonotic/epizootic cycles

Mongolia [7,110–113] 5 Marmota sibirica
Rhombomys opimus
M. unguiculatus
Allactaga sibirica
Cardiocranius paradoxus

O. silantiewi

�A comprehensive review of hosts and vectors involved or suspected to be involved in plague transmission would need an entire article or chapter of a book. The aim of

this table is to highlight the outstanding ability of Y. pestis to evolve in different hosts and vectors.
��From: Bertherat E. Plague around the world in 2019. Weekly Epidemiological Report. 2019;25:289–292 [8].

Abbreviation: DRC, Democratic Republic of Congo

https://doi.org/10.1371/journal.pntd.0008251.t001
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and small mammal reservoir(s) in different parts of the world where plague has long been

established. In most plague foci, several vectors and reservoirs are implicated in plague trans-

mission and persistence; however, in some plague foci, there is limited research and only par-

tial knowledge of the vector and reservoir species involved. Different vectors and hosts

(including intermediary hosts between wild and domestic animals) have been described in dis-

parate settings and ecological conditions: from equatorial forests in the DRC to arid regions in

central Asia. Since the management priority has normally been to control human plague by

preventing transmission to humans, researchers have tended to focus on the interface between

humans and flea vectors, while the interactions between sylvatic and commensal small mam-

mals, vectors, and landscape ecology have received relatively little attention. Factors responsi-

ble for epizootic spread (episodic amplification within and between mammal species) vary in

different settings, and reservoirs may be multiple or unique. Domestic mammals and some

atypical vectors could play a bridge role between wild hosts and the human environment. In

the US, the increase of intermediary hosts populations of the grasshopper mouse (Onychomys

leucogaster) is thought to enhance the connectivity between primary hosts populations of prai-

rie dogs (Cynomys ludovicianus), the risk of plague outbreaks in the wild [25], and in turn the

chances of human transmission. Although fleas have been assumed to constitute the main

drivers of host-to-human transmission, this may depend on different contexts. In Madagascar,

X. cheopis is predominantly found on black rats living in houses, while Synopsyllus fonquerniei

is found on the fur or within burrows of black rats living outside houses but also in open bio-

topes and forests, where it may parasitize endemic insectivores and rodents [26], with a syner-

gistic role on plague persistence [27]. Similar situations may be found across other plague-

endemic areas, thus highlighting the diversity of hosts and vectors as a key factor for plague

persistence in the wild. In fact, Y. pestis has been detected in a large number of fleas (Table 1)

and other ectoparasites; their roles throughout plague-endemic regions of the world remain

unclear. A recent study suggests that inter-human transmission through ectoparasites (Pulex

irritans and Pediculus humanus) may have played a predominant role during the historical

Black Death Pandemic [28]. In fact, both of these ectoparasites are capable of carrying Y. pestis

[29, 30]. Furthermore, it has been pointed out that specific so-called vectors are acting as true

hosts, since they are able to carry Y. pestis for weeks.

Current data indicate that host and vector population structures and hotspots of plague

have a crucial influence on plague epidemiology. It has been suggested that the balance

between resistant hosts (those able to harbour Y. pestis with no apparent ill effect) and suscep-

tible host (those able to tolerate Y. pestis for only short periods and eventually succumb to the

effects of the bacteria) is important for plague persistence in the wild or resurgence among

humans, and susceptible hosts [24]. For instance, modelling and empirical data fromMadagas-

car indicate that rat genetic population structure (the balance between susceptible and resistant

hosts) plays a crucial role [31–35] as modelled by topography (see below). This model may also

be applied between different species, including multi-host and intra-host interactions. Finally,

the implication of amoebae as biotic reservoirs has recently received some experimental and

field-based support and therefore deserves consideration [36].

The persistence of plague in the wild or the onset of plague among humans may be related

to the internal dynamics of enzootic (maintenance in the wild)/epizootic cycles. This has been

well documented in Kazakhstan, where threshold densities of great gerbils (Rhombomys opi-

mus) and fleas are correlated with persistence of plague in the wild or resurgence of plague in

humans, respectively [37, 38]. Empirical observations elsewhere corroborate this complex

dynamic, which should in turn help us to understand the ability of Y. pestis to regularly emerge

in areas where plague has been silent for years. A further question to explore is the capacity of
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Y. pestis to survive in soil or post-mortem tissues and contribute to further transmission, as a

potential link to enzootic and even epizootic cycles [39, 40].

The understanding of the biology of host-vector-pathogen interaction and proximity to

humans would aid development of specific control strategies, and to address apparently simple

but not well-answered questions, such as the relative efficacy of using domestic flea control on

its own or in combination with rodent control or reservoir host vaccination. Mechanisms of

host and vector control more commonly involve the combined use of flea and rodent control,

or community-based interventions such as encouraging behavioural changes or environmental

interventions (e.g., improved hygiene and sanitation). The use of chemicals to eliminate fleas or

rodents requires the surveillance of physiological resistance mechanisms in flea/rodent popula-

tions and the identification of biochemical or genetic markers of resistance as well as the charac-

terization of mechanisms involved and their environmental and genetic determinants. Studies

on X. cheopis insecticide resistance have already been carried out in different situations [41, 42].

However, information on other flea species is most often missing. Beyond insecticides, rodenti-

cides, and the problem of resistance, innovative tools and methods for flea and rodent control

must be proposed, tested, and validated in the field, including nontoxic solutions and strategies

(i.e., physical methods like cellulose glue-based products for flea control).

The implementation of rodent or vector control measures should also be carefully evalu-

ated, given the complexity of rodent/vector interactions in different settings. For instance,

experience in Peru has suggested that reducing the population of particular rodent species

may in turn act as a risk factor for increasing intra- and interspecific contact rates among

rodent species and with the human population, leading to a resurgence in human plague cases.

Similar observations have been made with other rodent/mammal-borne diseases, such as lep-

tospirosis [43] and bovine tuberculosis [44], whereby host control (rats and badgers, respec-

tively) can lead to increased movement by those animals remaining, facilitating disease spread

and higher disease prevalence. This strongly suggests that applying universal measures may be

counterproductive in different scenarios.

Besides the use of insecticides or rodenticides, there are specific human behaviours that

could be modified to avoid proliferation of domestic hosts or the chances of contact with

infected vectors. Some behavioural factors that favour the transmission of Y. pestis to humans

are well known in on-going plague surveillance programmes. In Peru, plague cases have been

correlated to human activities, e.g., domestic breeding of guinea pigs within people’s homes,

the storage of harvest in unsealed conditions, and the poor hygienic living conditions of tem-

porary workers [45]. In Madagascar, a close link exists between seasonality of human plague

and the movement of rats between houses and rice fields related to the harvesting season and

the use of slash-and-burn cultivation [26, 46]. During the 2004 outbreak in DRC [47], inter-

human pneumonic plague transmission could be favoured by the housing conditions of gold

and diamond mine workers.

What are the drivers of human plague?

Drivers of human plague include contextual factors that influence host and vector population

dynamics and human behaviours that may increase the chances of exposure and infection.

Such factors mainly include altitude, temperature, rainfall, biome, geography, and anthropo-

genic environmental changes through deforestation, agricultural expansion, cropping systems,

activities and patterns, climate change, urbanisation, and the introduction of non-native inva-

sive species.

For instance, in the DRC an increase of plague was observed after the introduction of Rattus

spp. into the wild combined with the introduction of new crops to replace cattle farming [47].
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In Madagascar, R. rattus was introduced centuries before the arrival of Y. pestis, most probably

through the Arabian trade network in the Indian Ocean, which was flourishing from the mid-

dle of the first millennium [48]. Climate is considered to have a major impact on plague inci-

dence [49]. Rainfall and temperature have correlated with the increase or decrease of gerbils or

vector populations in Kazakhstan [37], and rainfall was linked to human plague occurrence in

Uganda [50], which, in turn, strongly influences the abundance of small mammals [51], thus

increasing the probability of epizootic cycles. Studies in the US have shown relationships with

El Niño episodes and the effects of rainfall on host populations and temperature on vector sur-

vival [52, 53]. Similarly, El Niño episodes have been considered an early warning in Peru [45]

and Madagascar [54]. Temperature anomalies and altitude have been related to plague occur-

rence in Madagascar [55]. Temperature and humidity influence the differential development

and survival of the 2 main flea vectors (X. cheopis and S. fonquerniei) involved in plague trans-

mission in Madagascar (where plague shows a clear seasonal pattern) [27]. There is a clear

interplay between plague occurrence, human behaviours, climate, and landscape in a number

of contexts [56–59]. Data fromMadagascar suggest that geography shaped the genetic diversity

of hosts (rats) and Y. pestis as a result of the relative population isolation, which may play an

important role for Y. pestis persistence, through the reintroduction of new strains of hosts and/

or the pathogen between different areas [60–62]. Furthermore, geography and landscape may

influence the risk and directionality of plague spread through their hosts [63]. The confirma-

tion of the drivers of plague should help to better map the risk of plague, to improve surveil-

lance, preparedness, and focused interventions.

The connection between rural and urban areas is a major concern to avoid urban out-

breaks. The reduction or discontinuation of surveillance programmes and the exacerbation of

poverty and poor sanitation are important factors in the emergence of human cases. The 2017

outbreak in Madagascar raises the question of whether specific determinants exist for bubonic

or pneumonic outbreaks: climatic oscillations with earlier seasonal slash-and-burn farming

practices, a lack of vigilance from the health authorities leading to the absence of efficient com-

munication to the population and lower healthcare standards and surveillance systems. How-

ever, only human population density has been consistently related to the risks of human to

human transmission of pneumonic plague. No specific strains of Y. pestis have been associated

with particular virulence factors or tropism for pneumonic forms.

Which new diagnostic tools for plague are needed?

TheWHO gold standard for plague diagnosis remains the bacterial culture. However, culture

is not feasible in most of the settings in which plague occurs as proper handling of samples is

sometimes difficult, and the results are not immediately available (minimum 4 days). In addi-

tion, isolation of Y. pestis is hampered by administration of antibiotics prior to sampling.

Therefore, case management is essentially based upon symptomatic diagnosis, which is specific

to endemic areas with bubonic forms. Pneumonic cases pose particular diagnostic challenges,

since it is rarely suspected during the initial stages of an outbreak. Initial symptoms of pneu-

monic plague without an evident bubo (lymph node swelling) are nonspecific. Collection of

high-quality sputum from suspected pneumonic plague patients is particularly difficult to

obtain, more so than aspirates of bubo, and even if good quality sputum is obtained, the pro-

cessing stage of this material, polymicrobial, and complex specimen is technically problematic.

As a result, the yield from sputum examination and cultivation is very low.

The rapid diagnostic test (RDT) as point of care (POC) strategy was implemented in Mada-

gascar in 2002 in primary care facilities based in the “endemic districts” together with informa-

tion provided to community health workers. This RDT has been widely used and improved
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the specificity of diagnosis, resulting in a drop in the number of suspected cases of bubonic

plague [64]. The RDT is based on monoclonal antibodies against the F1 capsular antigen of Y.

pestis. F1 detection in samples collected directly from bubonic aspirate are processed and inter-

preted by the healthcare workers. The combination of bacteriological methods and F1 ELISA

have positive and negative predictive values of 90.6% and 86.7%, respectively [65]. However,

this RDT was evaluated during the Madagascar pneumonic plague outbreak of 2017, and the

sensitivity and specificity for sputum samples was limited; further analysis is on-going. Con-

ventional PCR targeting pla [66, 67] and caf1 genes [68, 69] has also been used for investiga-

tions in the past. In the context of the Madagascar outbreak, a new algorithm based on real

time (targeting pla, caf1 genes) and conventional PCR (targeting inv1100, caf1 and pla) has been

implemented to ensure a rapid and reliable diagnostic [10]. Serology based on anti-F1 capsular

antigen-specific immunoglobulins (IgG/IgM) [70] is used for prevalence surveys among

humans, mammals, and post-outbreak investigations, but it may have questionable value in

pneumonic plague. Therefore, rapid and reliable diagnostic tests are necessary for both

bubonic and pneumonic plague for an efficient outbreak response.

Different plague diagnostic options have been proposed, from improvement of culture

methods to appropriate molecular methodologies. Proposed methods are summarized in

Box 1.

Box 1. Proposed improved plague diagnostic methods

1. Improve the yield of Y. pestis culture

i. Better sample collection, transport, and processing (homogenization)

ii. Developing more selective media for cultivation from sputum and bubo aspirates

2. To improve the sensitivity and specificity of RDT

i. More adequate protocols for more efficient F1 antigen release

ii. To develop a second generation of RDT through the inclusion of additional antigens

3. New nucleic acid–based tools

i. Quantification of DNA in sputum samples

ii. PCR-based detection in blood

iii. PCR for saliva

4. Upgrade serological testing methods through the inclusion of more antigens

and/or alternative to current ELISA methods

In addition, especially for pneumonic plague, capabilities for differential diagnostic

should be improved, and the use of new techniques such as metagenomics in sputum

could help to estimate the true magnitude of an outbreak. The use of these diagnostic

tools among animals (domestic or wild) as sentinel surveillance mechanisms should also

be considered.
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How can plague surveillance and case management be improved?

Surveillance of plague is of utmost importance in endemic regions, first for early case detection

and treatment (which is related to favourable outcome); second, for early warning of human

plague occurrence or outbreaks; and, third, for more accurate quantification of the disease

burden and geographical distribution. Most human plague cases are currently occurring in

underpopulated and remote areas with particularly difficult access. True case numbers of

human plague may be underestimated in some areas, especially in areas with weak health sys-

tems and unstable social and political situations, like in the DRC. Therefore, the accuracy of

current surveillance systems for human plague cases is still uncertain, to which is added the

existence of pauci-symptomatic or asymptomatic cases suggested by some sero-surveillance

studies [71]. However, plague surveillance should be integrated into regular surveillance sys-

tems of common diseases in impoverished regions, and therefore general improvement of the

Health Information System is needed, since plague is not usually the leading health issue.

Plague surveillance should integrate human, climate, and animal surveillances as well as a

combination of passive or active case detection depending on the scenarios, the season, or the

early warning signs. A central question regarding surveillance is identifying which reservoir

hosts and vectors are the most appropriate for sentinel surveillance. Once again, the answer

may be different in different settings. Classical pre-outbreak deaths among hosts (rats or other

rodents), which typically indicates an explosive spread of an epizootic cycle, is not systemati-

cally observed and may even be an exception perpetuated by classical accounts [72]. Experi-

ences in Peru pointed out the utility of some domestic animals, like dogs or cats, as sentinel

indicators of an increased risk of infection. Some studies found a predictive plague occurrence

value of seroprevalence among certain mammals [73, 74].

Cases may arise in a community with a high degree of stigma linked to plague and therefore

be hidden from local authorities. Changing deeply rooted cultural behaviours may be difficult

and increase the risk of outbreak by delaying health care-seeking behaviours and making

access to healthcare centres difficult. Community-based surveillance systems by community

health workers or networks of community-based key informants have been used to increase

awareness and as early warning systems for different diseases, including plague in Madagascar.

As with other infectious diseases, when cases arise in areas or countries where plague is not

usually reported or with uncommon clinical forms (i.e., pneumonic plague), a lack of suspi-

cion may lead to a critical delay in notification, as it was reported during the early stages of the

2017 outbreak in Madagascar.

Early detection, diagnosis, and treatment are crucial for a favourable outcome and depend

on an efficient surveillance system. A number of treatment protocols have been used to treat

plague (Table 2); however, only a small randomized trial including gentamycin and doxycy-

cline has been conducted [75]. Different therapeutic choices have been based on empirical

observations or animal models. The most widely recommended treatment is a high dose of

streptomycin, resulting in effective clinical responses in both bubonic and pneumonic plague

[1, 2]. However, streptomycin has side effects such as deafness and renal toxicity, and the

administration to children and pregnant women is problematic. The administration protocol

(intramuscular) remains a logistical and material challenge in resource-poor settings, as well as

in the context of an outbreak. In addition, streptomycin is often not available as it is no longer

used as a first-line treatment of tuberculosis. As shown during the recent plague outbreak in

Madagascar, the lack of specific clinical and laboratory diagnostics for pneumonic plague was

responsible for an important number of misdiagnoses leading to an overestimate of the magni-

tude of the outbreak [10] and, consequently, inadequate treatment of severe community-

acquired respiratory infections with streptomycin. The situation was worsened by the lack of
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resources to carry out rapid and specific exclusion diagnostics for other pathogens. During an

investigation of pneumonic plague in Ituri, DRC, it was found that leptospirosis cases were

included as suspected plague cases [76]. On the other hand, healthcare providers should be

trained to provide chemoprophylaxis to decrease secondary cases and should be equipped to

avoid nosocomial infections.

These experiences indicate that validation of therapeutic alternatives are needed. A number

of different alternatives to streptomycin have been empirically suggested (see Table 2). Clinical

trials need to be set up during outbreaks to evaluate these therapeutic alternatives. New guide-

lines from the Ministry of Public Health of Madagascar are now recommending the combina-

tion of levofloxacin and gentamycin for hospitalized pulmonary cases. They also give the

possibility to switch to other treatments after the acute phase (switch to ciprofloxacin after the

early phase of streptomycin treated cases). Gentamycin, fluoroquinolones, chloramphenicol,

doxycycline, and trimethoprim-sulfamethoxazole are different alternatives used in different

settings, which generally result in good clinical outcomes [1, 7, 77]. A well-established first-

line treatment for suspected pneumonic plague needs to be established that is affordable, is

Table 2. Current treatment protocol (WHO and CDC recommendations)�.

Antibiotic Dose Duration Remarks Way of
administration

Streptomycin 15 mg/kg/dose 7 days Maximum 1 g per day IM

Gentamycin 5 mg/kg/d 7 days Once daily IM or IV

Doxycycline 100 mg/12 h 7 to 10
days

Initially a loading dose of 200 mg/12 h the first day IV or PO

Tetracycline 2 g/d 7 to 10
days

Initially loading dose of 2 g IV or PO

Levofloxacin 500 to 750 mg
daily

7 to 10
days

Once-daily special indication for high tissue penetration IV or PO

Ciprofloxacin 400 mg/12 h 7 to 10
days

PO

Chloramphenicol 50 to 100 mg/
kg/d

10 days Indicated in cases for high tissue penetration IV or PO

Dose may be reduced to 25 to 30 mg/kg/d depending on clinical response to reduce the
risk of bone marrow suppression

Cotrimoxazole 1 g/4–6 h 10 days Not indicated as first choice PO

Initial loading dose of 2–4 g

Approved
combinations

Gentamycin
+ doxycycline

See above

Gentamycin
+ levofloxacin

See above

Postexposure
prophylaxis

Doxycycline 100 mg/12 h PO

Cotrimoxazole ND

Ciprofloxacin 500 mg/12 h

Modified from: Mead PS. Yersinia Species (Including Plague). In: Mandell, Douglas, and Bennett’s. Principles and practice of infectious diseases, 8th Edition;

2015. pp. 2607–2618 [2].

Abbreviations: CDC, Centers for Disease Control and Prevention; IM, intramuscular; IV, intravenous; ND, not defined; PO, by mouth

https://doi.org/10.1371/journal.pntd.0008251.t002
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orally administered, has few side effects, is continuously available, and has a wide spectrum of

activity to target other community-acquired respiratory diseases.

The possibility of Y. pestis to exchange resistant coding plasmids with other members of the

Enterobacteriaceae family, which can easily carry almost any sort of drug resistance, is a seri-

ous threat [78]. Y. pestis has been shown to be sensitive to antibiotics in strains isolated from

humans; however, 3 unrelated strains have been isolated from hosts and vectors in Madagascar

which carried plasmid transmitted resistance to streptomycin and other drugs [79, 80]. The

extreme virulence of Y. pestis further stresses the need to set up reliable monitoring of suscepti-

bility to treatment.

What are the gaps in knowledge about Y. pestis biology?

Although much is known about specific virulence factors of Y. pestis [81, 82], further technical

development regarding specific prevention or therapeutic tools or drugs has not occurred,

which would require a deeper understanding of the underlying biology of Y. pestis. For

instance, current data indicate that the degree of blockage of the biofilm in the flea’s gut is vec-

tor specific and is responsible for the biofilm-dependent transmission efficiency of infected

vectors—or the ability to carry Y. pestis over days or weeks—and a key step in Y. pestis trans-

missibility [83, 84]. Drugs targeting the biofilm formation in the guts of flea vectors could be a

promising strategy.

One interesting avenue of research is genetic expression studies of Y. pestis, which may help

to understand pathogen-vector-host interactions and their persistence [85]. An example of

this approach is the identification of 10 conserved genes that lead Y. pestis to survive in soil

and post-mortem tissues. This suggests that this pathway plays a relevant role in Y. pestis per-

sistence [86]. In fact, the study of the interplay of pathogenicity and evolution has given impor-

tant insights about Y. pestis biology. The combination of gene acquisition (through horizontal

exchange) and loss in natural populations of Y. pestis explains their outstanding adaptability to

different hosts, vectors, and environments [6, 87]. The high virulence of Y. pestis could be a

result of an adaptive response to generate particularly high levels of bacteraemia in order to

ensure transmissibility between hosts and vectors [88]. With respect to hosts and vectors, an

interesting area to explore is to ascertain the selective process that plague has exerted upon

mammal populations [89], including humans [90]. The selection of resistant hosts or interme-

diate-susceptible hosts in a suitable region is a mechanism of establishment and long-term per-

sistence of Y. pestis. In turn, this may provide insights on the pathophysiology of plague,

through the determination of specific alleles or genotypes, selected by natural pressure of

plague which may confer natural resistance. The natural cellular immune response to human

pulmonary cases during acute, early, and convalescent phases of the infection in particular is

not well understood. Mice models suggest a local immunosuppression effect that may explain

the lack of immune response in early stages and the rapid progression of this clinical form

[91].

The practical results of this research could be specific drugs that may prevent Y. pestis

spread in the wild or humans, new antibiotics or better shaped control, and prevention mea-

sures based on the knowledge of their intimate biological cycle, e.g., the development of more

adequate therapies or prophylaxis strategies through the development of vaccines. In this

sense, vaccines against Y. pestis have been developed since the early identification of the patho-

gen. A live attenuated vaccine (EV76) was developed and used in Madagascar and introduced

in Vietnam, Indonesia, and in the former USSR [92]. Due to the significant side effects and the

need of revaccination, its use was abandoned once the number of cases fell. Its Russian

EV-NIIEG derivative is still used in Asia and Russia [93]. A number of other candidates are
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under investigation, including whole-cell–based or subunit-based DNA vaccines—attenuated

or with live carriers—combining different recombinant antigens and with molecular adjuvants

[94]. To date, no phase III clinical trial has been carried out. However, rF1V and SV1 vaccines

successfully passed phase II trials; WHO recently provided guidance for phase III evaluation in

the field [95]. Given the current extent of human plague, a human vaccine candidate should be

effective for immediate distribution in an outbreak context and be effective against pulmonary

forms. One promising strategy could be reservoir host vaccination campaigns particularly as

vaccination of reservoir hosts is a tried and tested strategy for many zoonotic diseases such as

wild foxes for rabies in Europe [96] and livestock for leptospirosis in New Zealand [97].

To sum up, for human plague control, 3 operational targets have been defined for Y. pestis

biology research: (1) identify molecular targets susceptible for drug development in addition

to the currently used antibiotics, (2) improve our understanding of the underlying molecular

mechanisms of Y. pestis ability to spread and persist over centuries in different eco-epidemio-

logical settings, and (3) improve our understanding of the immune response to plague that

may pave the way for vaccine development and better diagnostic tools.

Discussion

The horrifying impact of plague during the 14th century is still hard to forget as it is reflected

in European folklore, language, and literature. The 2017 Madagascar outbreak should be taken

as a serious warning and confirms that plague remains a human threat. However, given this

fatal past background and recognized virulence, it is striking to realize that plague is mostly

seen as an historical curiosity. It is alarming, indeed, that the most basic tools for control and

prevention of plague, such as curative and preventive treatments and vaccines, are still pending

adequate validation. This is not related to the lack of robust candidates but to the fact that

plague has been a neglected disease during recent decades. Peculiarly, recent plague vaccine

development and its funding has long been motivated more by the desire to fight plague as a

potential bioterrorism weapon rather than as a public health problem in endemic countries.

This is in stark contrast with the accelerated development of Ebola and SARS-CoV-2 vaccines.

Nevertheless, given the diversity of hosts and vectors involved in different parts of the

world where plague is endemic, context-specific research is still lacking, particularly in plague-

affected low- and middle-income countries. The contrasts in ecological dynamics of vectors

and reservoir hosts involved in different locations where plague circulates are remarkable. For

instance, in Madagascar, R. rattus has been recognized as the only relevant host during regular

and sustained zoonotic and epizootic cycles, whereas in South America, a surprisingly large

range of small mammals has been described to carry Y. pestis [98]. It is clear that the knowl-

edge of the dynamics of enzootic and epizootic cycles remains fragmented and poorly under-

stood. Indeed, while animal–human transmission is usually investigated following emergence

episodes, it is most important to understand the biological cycle of Y. pestis in the environment

in between 2 successive outbreaks. The seasonality of plague in Madagascar makes this envi-

ronmental setup well-adapted to conduct such research programs.

Plague foci contexts may be rather different between those where the disease occurs or has

until recently occurred in a regular and rather predictable pattern (Madagascar, DRC, Peru,

Kazakhstan, etc.) or where it is a mostly incidental phenomenon (US, China, Libya, Zambia,

Algeria). Furthermore, there are scenarios in which sporadic cases emerge from a contact

within a current epizootic focus, or those of a major outbreaks or epidemics. Indeed, plague

has a natural tendency to progress, disperse, and eventually, to expand to other regions, as it

was observed during the 1990s in Madagascar when plague was established in the city harbour

of Mahajanga [99]. This urban focus was sustained by the Asian house shrew (Suncus murinus)
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but transmitted to humans through the black rat (R. rattus), which exemplifies the surprising

adaptability of Y. pestis [100]. In this sense, it is important to note the nature of Y. pestis as a

“generalist” pathogen, demonstrated by its ability to evolve across different environments, vec-

tors, and hosts, facilitating its capacity to move from one region, context, or scenario to

another, or even the emergence or re-emergence in previously free areas or where human

plague has not been observed for decades, as it has been already observed in North and East

Africa [101–103]. The apparent unpredictability of plague re-occurrence and emergence high-

lights how much about the eco-epidemiology of plague remains poorly understood, and this

should be a matter of great concern for public health officials. Studies during on-going out-

breaks may provide important insights about the epidemic dynamics of human plague.

More context-specific research should be framed in a translational strategy in order to pro-

duce appropriate tools, devices, and policies. Translational research should be considered in

their 2 widely used meanings: the “bench-to-bedside” process—which involves applying

knowledge from basic sciences to produce new medicines, diagnostic tools, and treatment

options for patients—and from a public health perspective whereby work focuses on health-

care delivery systems to improve health services research and to have a primary outcome of

new policies and practices. In the case of plague, new drugs, vaccines, and diagnostic devices

are clearly needed.

Furthermore, more research on the surveillance, ecology, and human behavioural interven-

tions is urgently required. Special efforts should be made to obtain community engagement

towards the public health response. To this end, social scientists and anthropologists can pro-

vide invaluable insights that can mitigate distrust, increase cooperation, and improve commu-

nity communication. This cross-cutting research should be linked to the paradigm of One

Health (Fig 2), which is grounded in the recognition that human, animal, and environmental

health are interdependent. Human plague is a good example of this interdependence where

improving human living conditions in plague-endemic areas through environmental and

behavioural interventions might be the most effective way to avoid human plague cases as well

as reduce environmental degradation to improve ecosystem resilience. The Ebola crisis in

West Africa in 2013–2015 shows the capacity of deadly diseases, like human plague, to disrupt

Fig 2. “One Health” integrative approach. KAP, Knowledge, Attitudes and Practices.

https://doi.org/10.1371/journal.pntd.0008251.g002
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societies and health systems [104, 105], as we are experiencing with the current COVID-19

pandemic. Growing urbanization, environmental/climate change, and population mobility

increase the chances of such phenomena. In summary, we ascertained the main axes of

research that should be prioritized for plague prevention and control: (i) an improved under-

standing of the ecological interactions among the reservoir, vector, pathogen, and environ-

ment; (ii) human and societal responses; (iii) improved diagnostic tools and case management;

and (iv) vaccine development.

Accordingly, as a final point highlighted from the Paris workshop, plague research needs an

inter-and transdisciplinary approach that involves molecular biologists, immunologists, clini-

cians, epidemiologists, public health specialists, veterinarians, zoologists, entomologists, math-

ematical modelling specialists, ecologists, anthropologists, and social scientists. Even in

emergency situations, the involvement of anthropologists and social scientists has been consid-

ered increasingly relevant [106, 107]. An example of such a cross-cutting research could be the

identification of reservoir hosts to be targeted for the development and implementation of

wildlife vaccination programmes. As was suggested during the workshop, to make human

plague history has 2 complementary meanings: a history with a happy end or to make plague a

relic of the past.
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Key learning points

• The number of human plague cases by current surveillance systems may be

underestimated.

• The actual knowledge of vectors and reservoirs implicated in plague transmission and

accidental hosts is far from complete.

• The interplay between plague occurrence, human behaviours, climate, and landscape

is undeniable.
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