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Abstract Glycosylation is themost abundant and complex pro-
tein modification, and can have a profound structural and func-
tional effect on the conjugate. The oligosaccharide fraction is
recognized to be involved in multiple biological processes, and
to affect proteins physical properties, and has consequentially
been labeled a critical quality attribute of biopharmaceuticals.
Additionally, due to recent advances in analytical methods and
analysis software, glycosylation is targeted in the search for
disease biomarkers for early diagnosis and patient stratification.
Biofluids such as saliva, serum or plasma are of great use in this
regard, as they are easily accessible and can provide relevant
glycosylation information. Thus, as the assessment of protein
glycosylation is becoming a major element in clinical and bio-
pharmaceutical research, this review aims to convey the current
state of knowledge on the N-glycosylation of the major plasma
glycoproteins alpha-1-acid glycoprotein, alpha-1-antitrypsin, al-
pha-1B-glycoprotein, alpha-2-HS-glycoprotein, alpha-2-macro-
globulin, antithrombin-III, apolipoprotein B-100, apolipoprotein
D, apolipoprotein F, beta-2-glycoprotein 1, ceruloplasmin, fi-
brinogen, immunoglobulin (Ig) A, IgG, IgM, haptoglobin,
hemopexin, histidine-rich glycoprotein, kininogen-1,

serotransferrin, vitronectin, and zinc-alpha-2-glycoprotein. In
addition, the less abundant immunoglobulins D and E are in-
cluded because of their major relevance in immunology and
biopharmaceutical research. Where available, the glycosylation
is described in a site-specific manner. In the discussion, we put
the glycosylation of individual proteins into perspective and
speculate how the individual proteins may contribute to a total
plasmaN-glycosylation profile determined at the released glycan
level.
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Introduction

Protein glycosylation is recognized to be involved in a multitude
of biological processes such as receptor interaction, immune
response, protein secretion and transport [1–6]. In addition, gly-
cosylation affects protein properties such as solubility, stability
and folding [7–10]. A given protein can have multiple sites of
glycosylation, and its glycoforms can differ by site occupancy
(macroheterogeneity) and occupying glycan structures
(microheterogeneity) [11–13]. The biosynthetic pathways lead-
ing up to this variety of glycans depend on multiple parameters
and can be influenced by many factors including genetic regu-
lation, the availability of nucleotide sugars, the time spent in the
endoplasmic reticulum and Golgi apparatus, as well as the ac-
cessibility of a particular glycosylation site [10, 14–17].

Protein glycosylation can differ between persons, but is re-
markably stable per individual [18]. It is only when the homeo-
stasis of a person changes, by lifestyle or pathological condi-
tions, that the glycosylation will change notably [19]. Large
studies comprising thousands of individuals have identified gly-
cosylation to correlate with age, sex and lifestyle [14, 20, 21].
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Examples of such changes are the increase in bisection and
decrease of galactosylation and sialylation of IgG with age
[19, 20, 22–24].

At the same time, specific studies based on smaller sample
sets have revealed changes of glycosylation in various diseases,
inflammatory states, congenital disorders of glycosylation
(CDGs), but also throughout pregnancy where an increase in
galactosylation and sialylation, as well as a decrease in bisection
was reported [25–28]. In addition, specific glycoforms can be
targeted by viruses or bacteria or serve as a pro- or anti-
inflammatory signal [29–33]. All of this opens up the possibility
to use glycans as an early biomarker for disease or to assist
personalized medicine by patient stratification [34, 35].

Recent advances in chromatographic separation, mass
spectrometry, robotization and automated data processing al-
low the rapid analysis of glycosylation, and facilitate the de-
velopment of novel biomarkers [36–39]. While the glycosyl-
ation analysis of an easily obtainable biofluid like plasma can
be of considerable interest to a clinical situation, the interpre-
tation of data may be complicated when analyzing a complex
protein mixture. For example, when analyzing total plasma N-
glycosylation (TPNG) of a clinical cohort at the released gly-
can level, it is not directly apparent whether an observed
change originates from a change in relative protein abun-
dance, in the relative glycoforms of a specific protein, or
whether it reflects a general regulatory effect influencing the
glycosylation of many different glycoproteins. We expect that
a better understanding of the glycosylation of individual pro-
teins of human plasma will help to put total plasma N-
glycomic changes into perspective.

As the previous review on plasma protein N-glycosylation
originates from 2008 [40], we here strive to convey the current
state of knowledge on the subject, including a larger number
of proteins. The proteins described in this review were select-
ed based on their plasma levels, additionally including the
immunoglobulin family due to its major clinical and biophar-
maceutical interest. The 24 glycoproteins covered in this re-
view account for approximately 30 mg/mL of the 70–75 mg/
mL of the total plasma protein concentration, thus
representing most of the human TPNG (albumin is present
at levels of 40 mg/mL but is not glycosylated) [41–43].

Furthermore, we tried to limit our review to human plasma
and serum but we also reported findings coming from other
biological fluids when information complementary information
could be added. The N-glycosylation of the proteins is reported
both on a general level and, where available, with site specific
information about glycan composition, glycan structure and oc-
cupancy. The information is condensed in Table 1, and a sche-
matic representation of the relative protein contribution to each
specific glycan composition is reported in Fig. 1.

Throughout the text, Oxford nomenclature has been used to
annotate individual glycan structures or compositions with A
giving the number of antennae, F for the fucose (location

specific), B for bisecting N-acetylglucosamine, G for galac-
toses and S for sialic acids. The number directly after the letter
indicates the quantity of the specific features and the number
in parenthesis its linkage. UniProt numbering was used for
sequence and site identification.

Alpha-1-acid glycoprotein (P02763; P19652)

Alpha-1-acid glycoprotein (AGP), also known as
orosmucoid-1, is a 201 amino acid glycoprotein, which in-
cludes an 18 amino acid signal peptide. The molecular weight
of the bare protein is 23.5 kDa, but the carbohydrate content
leads to observed masses around 41–43 kDa [44]. Two iso-
forms are found in plasma (AGP1 and AGP2 encoded by
ORM1 and ORM2 respectively), differing in 22 amino acids
[44]. The protein is expressed by the liver and secreted in a
monomeric form into the circulation, where it is observed in
concentrations between 0.36 and 1.46 mg/mL with a mean of
0.77 mg/mL, men having slightly higher levels than women
[204, 205]. The concentration of AGP has been reported to
increase with age in females but not in males. Being an acute
phase protein, its serum concentration rises in response to
inflammatory stimuli, potentially increasing the concentration
two- to four-fold [205].

The main functions of AGP are acute phase negative mod-
ulation of the complement system and transport of lipophilic
compounds, both of these heavily modulated by the glycosyl-
ation of the protein [206, 207]. The immunomodulatory func-
tion is expected to be via interaction with selectins at a given
site of injury (with sialyl-Lewis X as ligand), and inhibiting
local complement deposition by charge and receptor compe-
tition [207]. As AGP may be used to transport lipophilic and
acidic drugs to a site of injury, it is regarded as a good target
for therapeutic development [206].

Glycosylation

AGP has five N-linked glycosylation sites, namely Asn33,
Asn56, Asn72, Asn93 and Asn103. Overall, the glycosylation
was determined to mainly consist of fully sialylated tri- and
tetraantennary structures, with potential antennary
fucosylation in the form of sialyl-Lewis X [44, 45]. Site spe-
cific glycosylation was determined by high-performance (HP)
liquid chromatography (LC)-electrospray ionization (ESI)-
mass spectrometry (MS) and matrix assisted laser
desorption/ionization (MALDI)-time-of-flight (TOF)-MS of
tryptic glycopeptides [46]. Asn33 mainly contains the
triantennary structure A3G3S3 (60 %) together with its
antennary fucosylated variant A3FG3S3 (20 %), as well as
some non-complete sialylated glycoforms (A3G3S2,
12.5 %). Asn56 contains similar structures (A3G3S3, 55 %;
A3FG3S3, 12.5 %; A3G3S2, 10 %) and a fraction of
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diantennary glycans (A2G2S2, 22.5%). Asn72 is occupied by
a higher level of antennarity, having, next to its triantennary
glycans (A3G3S3, 15 %), a number of tetraantennary compo-
sitions (A4G4S4, 30 %; A4G4S3, 15 %; A4G4S2, 10 %;
A4FG4S3, 5 %; A4FG4S4, 5 %). A similar situation is seen
at Asn93 (A4G4S4, 22.5 %; A4G4S3, 20 %; A3G3S3,
17.5 %; A4FG4S4, 7.5 %; A4FG4S3, 7.5 %; A3FG3S3,
7.5 %; A4G4S2, 7.5 %) and Asn103 (A4G4S4, 45 %;
A3G3S3, 20 %; A4G4S2, 10 %; A4G4S3, 7.5 %;
A3FG3S3, 5 %) [45, 46] (Table 1).

The glycosylation of AGP changes considerably with vary-
ing conditions. For instance, during the early stages of an
acute-phase immune response the levels of fucosylated gly-
cans (sialyl-Lewis X) increase significantly [45, 47–49],
which continues to increase throughout the acute phase im-
mune response [50]. In rheumatoid arthritis both fucosylation
and sialylation have shown to increase significantly [51].

Alpha-1-antitrypsin (P01009)

Alpha-1-antitrypsin (AAT), also known as alpha-1-protease in-
hibitor, alpha-1-antiproteinase or serpin A1, consists of 418 ami-
no acids (including a 24 amino acid signal peptide) with an
apparent mass of 51 kDa (including glycosylation). It is mainly
produced in the liver by hepatocytes, but is also synthesized in
monocytes, intestinal epithelial cells, and in the cornea [52,
208–211]. Due to its small size and polar properties, the glyco-
protein can easily move into tissue fluids [52]. In healthy indi-
viduals, a plasma level of approximately 1.1 mg/mL is found,
but the concentration can increase three- to four-fold during
inflammation [212–215]. AAT occurs as three different amino
acid sequences, of which the first is set as the standard sequence.
Form 2 differs in the amino acid sequence 356–418 and form 3
lacks the amino acid sequence 307–418.

AAT inhibits a wide range of serine proteases, protecting
tissues from enzymatic attacks [216]. Neutrophil elastase is its
prime target, thereby preventing proteolytic destruction of
elastase in the tissue of the lower respiratory tract
(emphysema) [217]. It has been shown that AAT has anti-
inflammatory properties and therefore it could potentially be
used as a therapeutic agent for rheumatoid arthritis and type 1
diabetes [218, 219].

Glycosylation

Three N-glycosylation sites have been identified on AAT, lo-
cated at Asn70, Asn107 and Asn271 [52–54]. MALDI-TOF-
MS analysis on released glycans revealed mainly di- and
triantennary complex type species. Isoelectric focusing fur-
thermore revealed eight different charge isoforms of AAT, of
which isoform 4 (M4) and isoform 6 (M6) were the most
abundant ones. Of M4, the most pronounced glycans wereT
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diantennary disialylated (A2G2S2) and triantennary
trisialylated (A3G3S3) with a ratio of 2:1. Isoform M6 was
mainly occupied with A2G2S2 structures [55].

LC-MS/MS analysis on tryptic glycopeptides treated with
various specific exoglycosidases enabled a precise determina-
tion of the glycosylation in a site-specific manner [54]. Asn70
and Asn271 mainly contain diantennary disialylated
(A2(2)G2(4)S2(6)) structures (91.3 and 99.3 % respectively),
while core fucosylation (F(6)A2(2)G2(4)S2(6)) is less abundant
(8.6 and 0.7% respectively). Asn107 shows the highest variabil-
ity of the sites, containing diantennary disialylated species
A2(2)G2(4)S2(6), 52.5 %, with possible core fucosylation
F(6)A2(2)G2(4)S2(6), 1.5 %), and 29.5 % triantennary
trisialylated species A3(2,4,2)G3(4)S3(6,3,6)) with possible
antennary fucosylation (A3(2,4,2)F(3)G3(4)S3(6,3,6), 16.7 %
(Table 1). In addition, a small fraction of Asn107 is
tetraantennary fully sialylated with potential antennary
fucosylation. Interestingly, the diantennary structures contained
mainly (α1-6-linked) core-fucosylation, while on triantennary
structures the fucose was mainly detected as sialyl-Lewis X on
the β1-4-linked N-acetylglucosamine of the α1-3-arm [54].

In a non-site-specific study, the glycosylation of AAT has
been associated with physiological parameters such as BMI,
cholesterol, glucose and insulin level. The same study showed
that the changes in glycosylation could be found related to age
and sex [56]. Furthermore, additional AAT isoelectric isoforms
were identified in CDG-I (CDG-Ia and CDG-Ic) i.e. non-,

mono- and diglycosylation across the three sites. A clear pattern
could be found for which sites were occupied, as only Asn70
was occupied in the monoglycosylated form, and Asn70 and
Asn271 were occupied in the diglycosylated isoform [57].

Alpha-1B-glycoprotein (P04217)

Alpha-1B-glycoprotein (A1BG) is a 474 amino acid polypep-
tide with an apparent mass of 63 kDa (including glycosylation)
[58]. The protein consists of five repetitive domains that show
high homology with known immunoglobulin heavy and light
chain variable domains, making the protein part of the immuno-
globulin superfamily. A1BG ismainly produced in the liver, and
is secreted to plasma to levels of approximately 0.22mg/mL [58,
220]. The overall function of the protein is still unknown, but it
has been found to bind cysteine-rich secretory protein 3
(CRISP3) [221], and has been associated with breast, liver, pan-
creas and bladder cancer, as well as with steroid-resistant ne-
phrotic syndrome [222–226]. In addition, it has recently been
proposed as an autoantigen in rheumatoid arthritis [227].

Glycosylation

In A1BG, the N-glycosylation consensus motif (Asn-X-Ser/
Thr) has been found at four locations Asn44, Asn179,
Asn363, and Asn371 [58]. The occupancy of these sites has

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

R
e
la

ti
v
e
 a

b
u

n
d

a
n

c
e

Alpha-1-acid glycoprotein Alpha-1-antitrypsin

Alpha-1B-glycoprotein Alpha-2-HS-glycoprotein

Alpha-2-macrogobulin Antithrombin-III

Apolipoprotein B-100 Apolipoprotein D

Apolipoprotein F Beta-2-glycoprotein 1

Ceruloplasmin Fibrinogen

Haptoglobin Hemopexin

Histdine-rich glycoprotein Kininogen-1

Seroransferrin Vitronectin

Zinc-alpha-2-glycoprotein Immunoglobulin A

Immunoglobulin D Immunoglobulin E

Immunoglobulin G Immunoglobulin M

Fig. 1 Schematic representation of the relative protein contribution to
each specific glycan composition. To obtain these numbers, the
contribution of a glycan composition to the total glycan pool of a given
protein was multiplied by the abundance of that protein as well as the
number of glycosylation sites confirmed to be occupied. Protein
concentrations were taken from large studies when available and a

mean value was calculated from the reported ranges otherwise. The
molecular mass used is as reported by SDS-PAGE for the glycoproteins
or calculated from the phenotype distribution for haptoglobin. The
general Oxford notation was used for naming the glycan structures. For
details on the calculation see Supplementary Table 1
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been verified by deglycosylated peptide LC-MS(/MS) and
LC-Fourier transform ion cyclotron resonance (FTICR)-MS,
but degrees of occupancy remain unknown [59, 60]. In addi-
tion, overall or site-specific glycosylation analysis also has not
been performed for A1BG as of yet, although one source
reports blood derived high-density lipoprotein (HDL)-associ-
ated A1BG Asn363 to be (at least) glycosylated with
diantennary nonfucosylated monosialylated species [61]. Al-
so, while not necessarily predictive for plasma glycoprotein
glycosylation, in cerebrospinal fluid (CSF) Asn44 was shown
to contain nonfucosylated di- (96 %) and triantennary (4 %)
structures with at least one sialic acid [62]. Little is known
about the changes in glycosylation of A1BG with disease.

Alpha-2-HS-glycoprotein (P02765)

Alpha-2-HS-glycoprotein (A2HSG), also known as fetuin-A,
alpha-2-Z-globulin, ba-alpha-2-glycoprotein and alpha-2-
Heremans-Schmid-glycoprotein, is a 367 amino acids (18
amino acid signal peptide), 51–67 kDa glycoprotein [63, 64,
228]. It is built up from an A-chain (282 amino acids) and B-
chain (27 amino acids) with a linker sequence (40 amino
acids) [135, 229]. Originating from the liver, the protein is
found at plasma levels of 0.3–0.6 mg/mL [229]. A2HSG acts
at several sites and in a wide variety of (patho)physiological
processes in the human system. Prominent functions include
the scavenging of phosphate and free calcium, thereby
preventing calcification, as well as binding and protecting
matrix metalloproteases. In addition, the protein is known to
bind the insulin receptor [230–233].

Increased levels of A2HSG are associated with obesity and
type 2 diabetes mellitus [234]. On the other hand, decreased
levels of A2HSG are found to cause several negative growth
effects [230]. Furthermore, the protein has shown to protect a
fetus from the maternal immune system by inhibition of tumor
necrosis factor [231, 235]

Glycosylation

The A-chain of A2HSG contains two N-glycosylation sites at
Asn156 and Asn176, as well as two O-glycosylation sites at
Thr256 and Thr270 [63]. The B-chain contains one core 1 O-
glycan on Ser346, and no N-glycans [64]. Exoglycosidase
treatment has reported 6.2 sialic acids to be present per
A2HSG molecule, of which 2.5 are α2-3-linked and 3.7 are
α2-6-linked [65]. Sequentially, four galactoses in β1-4-link-
age were released from N-acetylglucosamines, pointing to-
wards two diantennary N-glycans in addition to the O-glyco-
sylation [65]. LC-ESI-MS experiments have confirmed these
findings, reporting around 96 % A2G2S2 glycosylation to be
present on A2HSG [66]. Furthermore, low levels of

fucosylated glycans were observed, at least on Asn156 [66,
67].

Differential abundance of Asn156 glycopeptides has been
shown in pancreatic cancer and pancreatitis, with increased
levels of fully sialylated triantennary glycans with or without
fucose, and a decrease in the A2G2S2 structure in pancreatitis
[68].

Alpha-2-macroglobulin (P01023)

Alpha-2-macroglobulin (alpha2M), also known as C3 or PZP-
like alpha-2-macroglobulin domain-containing protein 5, is a
1474 amino acid (23 amino acid signal peptide) 720 kDa
(glycosylated) glycoprotein consisting of four similar
180 kDa subunits (160 kDa without glycosylation) which
are linked by disulfide bridges [69]. It is produced by the liver
and present at plasma levels of approximately 1.2 mg/mL
[236]. The main function of alpha2M is to bait and trap pro-
teinases [69]. To do this, the protein contains a bait peptide
sequence known to interact with many common plasma pro-
teases such as trypsin, chymotrypsin, and various others in the
complement system. Upon proteolysis, a conformation
change in alpha2M traps the causative protease and the com-
plex is subsequently cleared from the plasma [237–239].

Glycosylation

Eight N-glycosylation sites have been identified on each
alpha2M subunit at Asn55, Asn70, Asn247, Asn396,
Asn410, Asn869, Asn991 and Asn1424 [59, 60, 67, 69–71].
The total pool of alpha2M-derived glycans was analyzed by
LC-fluorescence with exoglycosidase digestion. This revealed
a high abundance of diantennary structures, both non-
fucosylated (55 %) and core-fucosylated (30 %), which are
mainly mono- and disialylated (A2G2S2, A2G2S1,
FA2G2S2, FA2G2S2) [72]. In addition, Man5-7 type struc-
tures was detected as well (8%) as species with a lower degree
of galactosylation and sialylation. Low levels of triantennary
structures have also been identified [72].

Interestingly, the high-mannose type glycans have been
shown to specifically occur at Asn869 with a relative abun-
dance of approximately 70 %, the other 30 % being FA1G1S1
[72]. This high-mannose type glycosylation is likely the
means by which alpha2M interacts with mannose-binding lec-
tin (MBL) to target proteases present on the surface of invad-
ing microorganisms [72]. The Asn869 occupancy ratio sug-
gests that each alpha2M tetramer contains three oligomannose
glycosylated Asn869 sites and one FA1G1S1, although this is
speculative [72]. The other N-glycosylation sites mainly con-
tain complex type glycans and glycoproteomic analysis sug-
gests that the core-fucosylated species are present to at least
some degree at specific sites Asn55 and Asn1424 [67].
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Changes in the glycosylation of alpha2M have been asso-
ciated with autoimmune diseases and cancer. Site occupancy
in particular has been linked with systemic lupus erythemato-
sus, while a compositional change has been described in mul-
tiple sclerosis [73, 74].

Antithrombin-III (P01008)

Antithrombin-III (AT-III, generally referred to as antithrom-
bin), encoded by the SERPINC1 gene, is a single chain 464
amino acid (32 amino acid signal peptide) protein of approx-
imately 58 kDa, of which 17 % are carbohydrates [240–242].
It is part of the serine protease inhibitor family. The concen-
tration of antithrombin in blood was found to be 0.15 mg/mL
[243]. The protein can be found in an α and β form which
differ in the number of occupied glycosylation sites and of
which α is 10–20 times more abundant [75]. Antithrombin
participates in the regulation of blood coagulation by
inactivating thrombin, factor IXa, Xa, XIa, XIIa, and other
serine proteases [244]. Its function is enhanced by heparin
and heparan sulfate [76, 245, 246]. Several thrombosis disor-
ders are associated with antithrombin deficiency (ATD), both
inherited and acquired. Type I ATD shows reduced concentra-
tions of antithrombin, while type II ATD generally shows
normal concentrations with reduced heparin binding and thus
lower functionality [247].

Glycosylation

The sequence of antithrombin shows four potential N-glyco-
sylation sites: Asn128, Asn167, Asn187 and Asn224. The α
form is fully glycosylated, while the β form is not glycosyl-
ated at Asn167 [77, 78]. The β form binds heparin more
efficiently and thus shows an enhanced anticoagulant effect.
Several studies suggest that the Asn-X-Thr motif of Asn128,
Asn187 and Asn224 are in general glycosylated more easily
than the Asn-X-Ser motif of Asn167 [79–81].

The glycans present on AT-III are mainly of the
diantennary complex type without core fucose, bearing one
(0–30 %) or two (70–100 %) α2-6-linked sialic acids, as it
was established using chemical and enzymatic methods [82,
83]. Using MALDI and LC-ESI-MS these findings have been
confirmed in a site-specific manner [75, 76, 84, 85].β-ATwas
exclusively decorated with three diantennary fully sialylated
structures (A2G2S2, 4.2 %), with trace amounts of core fu-
cose on one of the glycan (FA2G2S2, 1.3 %). At Asn128 and
Asn224 of α-AT, only the A2G2S1 and A2G2S2 structures
were identified. At Asn167, occupied only in the α form of
AT-III, A3G3S3 has additionally been detected, whereas
Asn187 showed the most variability, bearing also a minor
amount of fucose (FA2G2S2). Furthermore, at Asn187 some
A3G3S2 has been observed. All glycoforms other than

A2G2S2 are mentioned to be minor, although no relative or
absolute quantification has been performed [75, 76, 84, 85].

A mutation associated with type II antithrombin deficiency
(K241E), although not adjacent to a glycosylation consensus
sequence, was found to result in decreased heparin binding
due to the presence of core fucose [86].

Apolipoprotein B-100 (P04114)

Apolipoprotein (Apo) B-100 is a 550 kDa 4560 amino acid
protein (4536 amino acids without the signal peptide, corre-
sponding to a theoretical mass of 513 kDa without glycosyl-
ation) found in low density and very low density lipoproteins
(LDL and VLDL) [248, 249]. A shorter isoform found in
chylomicrons, named Apo B-48, is coded by the same gene,
but contains only 48 % of Apo B-100 sequence [250, 251].
Apo B-100 is exclusively synthetized by the liver, while Apo
B-48 is synthetized in the small intestine [252]. Apo B-100 is
found in plasma at concentrations of approximately 0.5 mg/
mL (0.88 to 0.97 mmol) [34, 212, 253, 254]. The protein has a
major role in the assembly of VLDL and lipoproteins, and
transports the majority of plasma cholesterol [255–257]. It
can be covalently linked to Apo A to form the lipoprotein(a)
particle. Apo A itself is a low abundant plasma glycoprotein
possessing one N-glycosylation site located at Asn263 (main-
ly occupied by diantennary mono- and disialylatedN-glycans)
[87, 258].

In coronary heart disease, the ratio of LDL-Apo A/B-100 is
used for estimating the risk of acute myocardial infarction
[253]. Apo B-100 and Apo B-48 mutations caused by
APOB100 andMTP (microsomal triglyceride transfer protein)
gene defects are associated with metabolic disorders like
abetalipoproteinaemia, hypobetalipoproteinemia and hyper-
cholesterolemia [259–261].

Glycosylation

Apo B-100 is highly glycosylated, and contains 19 potential
N-glycosylation sites located at Asn34, Asn185, Asn983,
Asn1368, Asn1377, Asn1523, Asn2239, Asn2560,
Asn2779, Asn2982, Asn3101, Asn3224, Asn3336,
Asn3358, Asn3411, Asn3465, Asn3895, Asn4237 and
Asn4431. Of these, 17 are reported occupied by diantennary
complex type glycans, as well as by high mannose and hybrid
type structures [11, 87]. LC-fluorescence with exoglycosidase
digestion has revealed the major glycans to be A2G2S1(6)
(29.2 %), A2G2S2(6) (23.6 %), A2G2 (7.2 %), Man9
(8.6 %) and Man5 (6.9 %) [87]. In addition, low levels of
the Man6-8 have been reported. Most of the sialic acids were
α2-6-linked (91 %) [87].

A site specific analysis of the glycosylation has been per-
formed by LC-ESI-MS(/MS) on tryptic and chymotryptic
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glycopeptides [11]. It was shown that the high mannose type
glycans were mainly present on sites Asn185, Asn1368,
Asn1377, Asn3336 and Asn3358, while the complex type
(mono- and disialylated diantennary) glycans were located at
Asn983, Asn2239, Asn2779, Asn2982, Asn3101, Asn3224,
Asn3465, Asn3895, Asn4237 and Asn4431. Ans3895 is ex-
ceptional in this regard, as triantennary compositions have
been observed as well. The largest variation is present on sites
Asn1523 and Asn3411, as these display oligomannose, hybrid
and complex structures. Asn3411, the nearest N-glycosylation
site to the receptor of the LDL-binding site shows degrees of
fucosylation. Asn34 and Asn2560 are not reported to be gly-
cosylated [11].

The role of the glycans structures in LDL and/or Apo B-
100 has been examined in several studies but their exact func-
tion is still unknown, although its degree of sialylation might
serve the atherogenic properties of LDLs [87–90].

Apolipoprotein D (P05090)

Apolipoprotein D (Apo D), also referred to as thin line poly-
peptide, is a small glycoprotein of 189 amino acids (with a
signal peptide of 20 amino acids), with a molecular weight
varying between 19 and 32 kDa depending on its glycosyla-
tion [262, 263]. While it shares their name, it does in fact not
resemble other apolipoproteins, and shares more homology
with the lipocalin protein family [264]. It was originally as-
similated to the apolipoprotein family due to its early associ-
ation with lipid transport. Apo D is mainly synthetized in
fibroblasts and to a lesser extent in the liver and intestine,
where the other apolipoproteins are usually produced [265].
Its plasma levels are approximately 0.1 mg/mL [266, 267].
The common form of Apo D in plasma is a monomer, al-
though it can also exist as a heterodimer linked to apolipopro-
tein A-2 via a disulfide bridge.

Apo D can form complexes with lecithin cholesterol acyl-
transferase and is implicated in the transport and transforma-
tion of lipids [264, 268–270]. It has been reported to have a
potential role in colorectal cancer [265]. In addition, the pro-
tein is present at high concentrations in the cyst fluid where its
concentration can be 500 times higher than in plasma, which
can be associated with an increased risk of breast cancer
[271–273]. Apo D has a tendency to accumulate in CSF and
peripheral nerves of patients with Alzheimer’s disease and
other neurodegenerative conditions [274, 275]. A positive cor-
relation between age and Apo D levels has been reported in
females, but not in men [276, 277].

Glycosylation

Two glycosylation sites have been reported and confirmed for
Apo D, namely Asn65 and Asn98 [59, 60, 91]. These are

mainly occupied by complex type N-glycans ranging from
diantennary to tetraantennary structures, with potential elon-
gation of the antennae in the form of N-acetyllactosamine
(LacNAc) repeats [91]. LC-MSwith exoglycosidase digestion
has revealed the most abundant glycoforms per site as well.
Asn65 mainly contains nonfucosylated triantennary structures
with full sialylation (A3G3S3), less abundant signals includ-
ing di- and tetraantennary species with high degrees of
sialylation (A2G2S2; A4G4S4). Contrarily, Asn98 predomi-
nantly contains fucosylated species, also ranging from di- to
tetraantennary, here the main signal being diantennary
(A2FG2S2) [62, 67, 91, 92]. Treatment with β-galactosidase
failed to trim one antenna of its galactosylation, strongly sug-
gesting the presence of the antennary fucosylation, known to
prevent this digestion [91, 93]. Studies have shown the impli-
cation of Apo D in conditions like Alzheimer’s disease but no
information about the role of glycosylation has been reported
yet.

Apolipoprotein F (Q13790)

Apolipoprotein F (Apo F), also called lipid transfer inhibitor
protein (LTIP), is a glycoprotein with an apparent mass of
29 kDa. The polypeptide chain of 326 amino acids is proc-
essed, with the first 165 amino acids being the signal peptide
and the propeptide, resulting in a theoretical mass of 17.4 kDa
for the peptide backbone of the mature protein [278]. Apo F is
expressed in the liver and is secreted in plasma to concentra-
tions of 0.07 mg/mL in females and 0.10 mg/mL in males [94,
278, 279]. The protein regulates cholesterol transport, inhibits
cholesteryl ester transfer protein (CETP), and is found in com-
bination with lipoproteins of all subclasses (high density, low
density and very low density lipoproteins (HDL, LDL,
VLDL)) as well as with apolipoproteins A1 and A2 [279,
280].

Glycosylation

Three potential N-glycosylation sites of Apo F are located at
Asn118, Asn139 and Asn267, as well as one O-glycosylation
site at Thr291 [94, 95]. Asn118 and Asn139 are glycosylated
with high-mannose structures, as proven by exoglycosidase
treatment, but will not contribute to plasma glycosylation as
they are part of the proprotein [95]. Asn267, on the other hand,
is not sensitive to this treatment, suggesting that it would con-
tain complex-typeN-glycans [95]. The presence of sialic acids
on the protein has been indicated by sialidase treatment with
western blotting as readout [94]. However, asO-glycanase has
also shown the presence of O-glycans on the protein, it is
unclear whether the sialylation arises from the N- or O-glyco-
sylation [94]. In CSF, theO-glycans on Thr291 are reported to
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be of core 1 or 8 type [96]. No disease-related information is
available with regard to the glycosylation of Apo F.

Beta-2-glycoprotein 1 (P02749)

Beta-2-glycoprotein 1 (B2GPI) is also called apolipoprotein
H, APC inhibitor, activated protein C-binding protein, and
anticardiolipin cofactor. It is a 50 kDa (including around
19 % carbohydrate content) 345 amino acid single polypep-
tide chain (with a signal peptide of 19 amino acid) belonging
to the complement control protein (CCP) superfamily [97]. It
consists of five similar CCP domains of approximately 60
amino acids [281]. B2GPI is mostly synthetized in hepato-
cytes and is found in blood at around 0.2 mg/mL [282]. The
main function of B2GPI is the scavenging of negatively
charged compounds such as DNA, sialylated glycoproteins,
and (phospho)lipids, which may otherwise induce unwanted
coagulation and platelet aggregation [283–285]. The precise
binding properties of the protein depend on the conformation,
i.e. open or closed, which is proposed to be dependent on the
glycosylation [98, 99, 286].

The serum level of B2GPI increases with age, and is re-
duced during pregnancy and for patients suffering from stroke
and myocardial infarctions [98, 287]. Additionally, it is the
major antigen in antiphospholipid syndrome [98, 99].

Glycosylation

B2GPI possesses four theoretical N-glycosylation sites at
Asn162, Asn183, Asn193 and Asn253, as well as an O-gly-
cosylation site at Thr149 [97, 98, 100, 101]. The N-glycosyl-
ation sites have been confirmed by crystallography (finding
attached N-acetylglucosamines and mannoses) as well as by
deglycosylated Lys-C peptide reverse phase (RP)-LC-MS af-
ter lectin capture [59, 101]. Generally, the glycosylation of
B2GPI is of the di- and triantennary type containing high
levels of sialylation, with minor amounts of fucosylation
[99]. Site-specific information is available only for Asn162
and Asn193 [99].

Glycopeptide LC-ESI-quadrupole (Q)-TOF-MS revealed
the glycosylation of Asn162 to be 67 % diantennary
disialylated (A2G2S2) and 22 % triantennary trisialylated
(A3G3S3), minor species including the di- and triantennary
species lacking one sialic acid (5 and 3 % respectively) [99].
The Asn193 site showed the same compositions, but with a
higher level of triantennary species (35 %) and a correspond-
ing lower percentage of diantennary species (49 %). Minor
species again include the incompletely sialylated variants (8
and 7 % for the di- and triantennary species respectively) [99].
The findings were confirmed by MALDI-QTOF-MS, al-
though a lower degree of sialylation was observed. This dif-
ference is likely due to the tendency of MALDI ionization to

induce in-source and metastable decay of sialylated glycan
species [99, 102]. For the two noncharacterized N-glycosyla-
tion sites (Asn183 and Asn253) di- and triantennary glycans
are expected as well, given the 19% of the total protein weight
being attributed to the carbohydrate content [101].

Patients suffering from antiphospholipid syndrome (APS)
showed a decrease in the amount triantennary sialylated gly-
cans, and thus a relative increase in diantennary fully
sialylated ones. This effect was particularly pronounced for
Asn162 [99].

Ceruloplasmin (P00450)

Ceruloplasmin (CP), also called ferroxidase, is a 132 kDa
(120 kDa without glycosylation) 1065 amino acid (19 of
which are signal peptide) glycoprotein synthesized by the liver
[103]. It consists of a single polypeptide chain, and belongs to
the multicopper oxidase family [103]. Concentrations for CP
range from 0.15 to 0.96 mg/mL with a mean of 0.36 mg/mL,
while elevated levels have been reported upon inflammatory
stimulation [34, 288, 289]. CP can bind six to seven atoms of
copper, in this manner containing and transporting 95% of the
copper found in plasma. The main function of the protein,
however, is in iron metabolism. CP has ferroxidase activity
oxidizing Fe2+ to Fe3+ without releasing radical oxygen spe-
cies, while also facilitating iron transport across the cell mem-
brane [103].

Glycosylation

Of the seven potential CP N-glycosylation sites Asn138,
Asn227, Asn358, Asn397, Asn588, Asn762 and Asn926, four
(Asn138, Asn358, Asn397, and Asn762) are confirmed to be
glycosylated [59]. The remaining sites (Asn227, Asn588, and
Asn926) are all in a β-strand within a hydrophobic region,
potentially preventing site occupation [103]. NMR spectros-
copy has revealed the overall CP glycan species to be
sialylated diantennary A2(2)G2(4)S2(6) and sialylated
triantennary A2(2,2,4)G4(4)S3(6,6,3/6). Partial core
fucosylation has been found for the diantennary species, while
of the triantennary species the α2-3-linked sialic acid-
containing arm can be α1-3-fucosylated to form sialyl-Lewis
X [104].

For the confirmed N-glycosylation sites, tryptic glycopep-
tide LC-ESI-MS(/MS) was used to study the site-specific gly-
cosylation on a compositional level, and relatively similar
ratios of di- and triantennary glycan species were found across
the sites [105]. Asn138 is mainly occupied by the diantennary
structures A2G2S2 (49 %) and FA2G2S2 (26 %), followed by
the triantennary structures A3G3S3 (12 %) and A3FG3S3
(10 %). Small amounts of difucosylated species have been
detected as well (FA3FG3S3, 3 %). Asn358 contains a higher
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abundance of diantennary species (A2G2S2 83 %, and
FA2G2S2 12 %), the triantennary species A3G3S3 only ac-
counting for 5 %. For Asn397 the main glycan is A2G2S2
(73 %), followed by A3G3S3 (17 %), A3FG3S3 (6 %) and
FA2G2S2 (4%). Analysis of Asn762 showed the main glycan
to be A2G2S2 as well (46 %), with the additional composi-
tions A3G3S3 (20 %), FA2G2S2 (16 %), A3FG3S3 (13 %),
FA3FG3S3 (2 %), A4G4S4 (1 %) and A4FG4S4 (1 %) [105].
No information about the glycosylation of human ceruloplas-
min in disease was found with the preparation of this review.

Fibrinogen (P02671; P02675; P02679)

Fibrinogen is a 340 kDa glycoprotein that is synthesized in the
liver by hepatocytes, and plays a key role in blood clotting
[290, 291]. The protein consists of two sets of three different
polypeptide chains named the α-chain (610 amino acids), β-
chain (461 amino acids), and γ-chain (411 amino acids), ar-
ranged in a α2β2γ2 hexamer linked by disulfide bonds [106,
292, 293]. In plasma, fibrinogen is typically found at concen-
trations of 2–6 mg/mL with a mean of 3 mg/mL, with women
having slightly higher levels, and it is also present in platelets,
lymph nodes, and interstitial fluid [106, 293–296].

Fibrinogen is cleaved by thrombin into fibrin, one of the
essential components of blood clots after injury [106, 291,
297]. Furthermore, it acts as a cofactor in platelet aggregation,
assists rebuilding of epithelium, and can protect against infec-
tions in interferon γ (IFNγ)-mediated hemorrhage [106, 298,
299]. In addition, the protein can facilitate the immune re-
sponse via the innate and T-cell pathways [300–303].

Glycosylation

The α-chain of fibrinogen is not N-glycosylated, even though
it harbors two potential N-glycosylation sites at Asn453 and
Asn686. The β- and γ-chain are N-glycosylated at Asn394
and Asn78, respectively [106–108]. By MALDI-TOF-MS
and HPLC with exoglycosidase digestion, the predominant
glycan structures present on these chains were found to be
A2G2S1 (53 %) and A2G2S2 (33 %). Sialic acids are mainly
α2-6-linked, but a degree of α2-3-linkage has been reported
as well depending on the source or analytical method [109,
110]. Bisecting N-acetylglucosamine and core fucosylation
are found in minor quantities [110]. Comparisons between
plasma and serum N-glycan profiles revealed that fibrinogen
could contribute for 22 % to the total intensity of the
diantennary monosialylated structures (A2G2S1) [110].

Site-specific analysis showed diantennary glycans with ze-
ro, one or two sialic acids on Asn394 (β-chain) and Asn78 (γ-
chain) [107]. The glycosylation sites have been confirmed in
studies at the level of deglycosylated glycopeptides, showing
occupancy of Asn394 of the β-chain and Asn78 of the γ-

chain, and surprisingly on the α-chain Asn686 as well [59,
60, 70, 108]. The β-chain glycosylation site has furthermore
been observed in a core-fucose targeted study [67]. In addition
to N-glycosylation, all fibrinogen chains may carry O-glycans
[107].

The general degree of sialylation may be influencing the
solubility of fibrinogen, and thereby play a crucial role in
blood clotting processes resulting in different fiber structures.
[111–115]. In the Asahi mutant of the γ-chain, Asn334 has
been reported to contain an additional N-glycosylation site
[116]. Patients exhibiting the Asahi variant of fibrinogen
displayed abnormally long blood clothing time, suggesting
that the effect induced by that extra glycosylation site disturbs
the fibrin polymerization process [116, 117].

Haptoglobin (P00738)

Haptoglobin (Hp) is a 406 amino acid (18 amino acid signal
peptide) acute-phase glycoprotein with a peptide backbone of
45 kDa. It is synthesized in the liver by hepatocytes as a single
polypeptide chain and is also found in skin [304, 305]. During
its synthesis, Hp is cleaved into a light α chain and a heavy β
chain that are connected via disulfide bonds. Two variants of
the α chain originating from the sequence Val19-Gln160 and
differing by the subsequence Glu38-Pro96 can exist, α1 hav-
ing this subsequence once while α2 has it twice, resulting in α
chains of 83 or 142 amino acids with a respective molecular
mass of 9 and 16 kDa. The 40 kDa β chain is made of 245
amino acids originating from the sequence Ile162-Asn406
[306, 307]. The combination of different allelic variants of
the α chain (α1 and α2) with β chain(s) creates the polymor-
phism observed in Hp. There are three major Hp phenotypes
called Hp1-1, Hp2-1 and Hp2-2. They have a configuration of
(α1β)2, (α

1β)2 + (α2β)n=0, 1, 2, … and (α2β)n=3, 4, 5, …, re-
spectively, which are observed at different ratios among eth-
nicities [118, 308–310]. Caucasians have around 13% of phe-
notype Hp1-1, 46 % of Hp2-1 and 41 % of Hp2-2. Hp is
typically found at a plasma levels in the range of 0.6–
2.3 mg/mL with a mean of 1.32 mg/mL [118]. Elevated Hp
levels have been reported with inflammation and malignant
diseases [308, 311, 312]. It should be taken into account that
the concentration as well as the molecular mass including
glycosylation may vary among phenotypes (86–900 kDa)
[118]. The half-life of Hp is found to be on average four days.

The major function of Hp is to protect tissues from oxida-
tive damage by capturing hemoglobin [307, 313]. It has been
reported that Hp polymorphism has an effect on its physiolog-
ical properties, for instance Hp1-1 binds hemoglobin stronger
than Hp2-2 [314]. Certain diseases seem to be dependent on
the polymorphism, as individuals with the Hp1-1 phenotype
seem to have a higher concentration of induced antibodies in
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their plasma after vaccination, infections or liver diseases
compared to the other phenotypes [118, 310].

Glycosylation

FourN-glycosylation sites have been identified on theβ-chain
of Hp, located at Asn184, Asn207, Asn211 and Asn241
[119–121]. Analysis with (nano-)RPLC-ESI-MS/MS and
MALDI-MS/MS of Hp glycopeptides (trypsin and GluC) re-
vealed that all sites are occupied by complex type N-glycans
[119, 120]. The site occupancy for Asn184 was determined at
97.7 %, Asn207 at 97.4 %, Asn211 at 98.5 % and Asn241 had
a site occupancy of 95.8 %. Treatment with α2-3-sialidase
showed that the sialic acids were mainly α2-6-linked, while
β1-4-galactosidase treatment revealed that only antennary
fucosylation was present, which was in agreement with the
obtained collision-induced dissociation (CID) fragmentation
spectra [120].

Two recent studies showed some discrepancies in the rela-
tive abundances for the identified sites. For example, Asn184
was found to contain mainly diantennary species with two
sialic acids (A2G2S2, 88 and 46 %), followed by diantennary
monosialylated (A2G2S1, 7 and 38 %) and triantennary
disialylated (A3G3S2, 4 and 3 %) glycans. A low percentage
of fucosylation was identified (A3FG2S2, 1 and 3 %;
A3FG3S2, 0.3 and 1 %) [119, 120].

A possible reason for discrepancies at Asn207/Asn211 is
that the first study did not differentiate the two N-glycosyla-
tion sites (Asn207 and Asn211) on the same peptide backbone
that showed 7 different combinations. The major combina-
tions were 1) one diantennary fully sialylated (A2G2S2) and
one triantennary disialylated (A3G3S2, 45 %), 2) two
diantennary disialylated glycans (A2G2S2, 30 %), and
3) one diantennary fully sialylated (A2G2S2) and one
triantennary disialylated and fucosylated (A3FG3S2, 12 %).
The combination of a diantennary monosialylated (A2G2S1)
with a diantennary disialylated glycan (A2G2S2) accounted
for 6 %, the diantennary and triantennary fully sialylated spe-
cies (A2G2S2 and A3G3S3) for 5 %, and the remaining com-
binations accounted for approximately 1 % in total [119]. The
second study reported the glycoforms for each site separately
due to an additional GluC protease treatment. Asn207 seems
to contain mainly A2G2S2 (47 %) and A2G2S1 (39 %),
followed byA3G3S1 (7%) next to someminor tetraantennary
and fucosylated species. Interestingly, glycosylation site
Asn211 appears to have a higher degree of triantennary spe-
cies, with A2G2S2 (40 %), A3G3S3 (29 %), A3FG3S3
(21 %), and A3G3S2 (10 %) [120].

The two studies report that Asn241 carries mainly
diantennary glycans, A2G2S2 being the most abundant vari-
ant with 87 and 47 % (values reported in the two separate
studies), followed by A2G2S1 (4 and 26 %), A3G3S1 (n.d.
and 10 %), A3G3S2 (6 and 8 %), A3G3S3 (n.d. and 4 %) and

A2FG2S1 (<1 and 2 %). Low levels of tetraantennary species
have been detected as well, with and without fucosylation
varying from mono- to tetrasialylated [119, 120].

Both studies evaluated the glycosylation of Hp in patients
with liver cirrhosis (LCH) and hepatocellular carcinoma
(HCC). No difference in site occupancy could be observed
between healthy and disease, but the number of detected
glycoforms was increased (healthy 34 glycoforms, LCH 56
glycoforms, HCC 62 glycoforms) [120]. Increased branching
and fucosylation were reported, with species carrying up to
five fucoses [119, 121]. Furthermore an increase in sialylation
was noticeable for the glycopeptide containing N-glycosyla-
tion sites Asn207 and Asn211 [119]. Those carbohydrate
structures have been reported in another study along with
some new ones but they were not quantified [13].

Furthermore, core-fucosylation was identified on the N-
glycosylation site Asn184 [122]. Diantennary disialylated
structures contained core-fucosylation (FA2G2S2) instead of
antennary fucosylation. Several reports reveal that
fucosylation plays an important role in many diseases such
as pancreatic cancer, LCH and HCC [123, 124]. Another re-
cent study examined the galectin-1 binding ability of Hp in the
sera of metastatic breast cancer patients, where the binding
was twice as strong, possibly due to a difference in glycoforms
[125, 126].

It is interesting to see that two studies from the same year
report different glycosylation patterns for Hp [119, 120]. This
might be caused by a different ethnicity of the sample donors,
as one study has been performed in China and the other in the
United States, two geographical regions that have been report-
ed to have different phenotype distributions [118]. That dif-
ference has not yet been taken into account in glycomics
studies.

Hemopexin (P02790)

Hemopexin (HPX), also known as beta-1B-glycoprotein, is a
462 amino acid (23 are part of the signal peptide) single poly-
peptide chain plasma glycoprotein with a peptide backbone of
51 kDa and an apparent mass ranging from 57 to 80 kDa
depending on its glycosylation [315–317]. The protein is
mainly expressed by the liver and found in serum at levels
of 0.8 mg/mL in adults, while levels in newborns have been
measured around 20 % of that value [318, 319]. It is also
expressed in the central nervous system, in the retina and in
the peripheral nerves. The protein structure is controlled by six
disulfide bridges next to its glycosylation [316]. HPX is an
acute phase response glycoprotein, capable of binding heme
with the highest known affinity of all plasma proteins. When a
heme is captured, the complex can be recovered from plasma
by the HPX receptor (such as found on the membrane of liver
parenchymal cells) leading to internalization, catabolization of
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the heme and recycling of the proteins involved. After the
process, HPX is free to return to the circulation. HPX is found
to be expressed in large quantities in case of inflammation, a
state in which heme is highly abundant in plasma. As heme
would otherwise induce oxidative stress, the function of HPX
can be described as antioxidant [316].

Glycosylation

HPX contains five confirmed N-glycosylation sites located at
Asn64, Asn187, Asn240, Asn246 and Asn453 [59, 60, 70,
127–130]. In general, plasma HPX N-glycosylation consists
mainly of diantennary structures with high levels of
galactosylation, while low levels of triantennary and
fucosylated structures have also been reported [67, 121,
131–133]. The degree of sialylation of the protein remains to
be fully investigated, but lectin capturing of α2-6-sialylated
HPX glycopeptides followed by LC-MS(/MS) analysis has
revealed the presence of fully sialylated antennae and only
low levels of monosialylated diantennary glycans [68]. Com-
bining the information, the main glycan composition on HPX
is expected to be A2G2S2. Site-specific characterization has
been achieved on a compositional level for N-glycosylation
sites Asn64, Asn187 and Asn453, each of them showing sim-
i lar ra t ios of glycoforms (85–94 % diantennary
nonfucosylated, 4–7 % diantennary fucosylated, as well as
low levels of triantennary structures) [62, 121]. Asn240 and
Asn246 remain uncharacterized, likely due to their close prox-
imity. The antennarity and the degree of fucosylation (core
and antennary) have been reported to increase with LCH and
HCC [134]. Notably, HPX also contains two O-glycosylation
sites (Thr24 and Thr29) one of which is located on the N-
terminal threonine (after removal of the signal peptide), and
a potential minor O-glycosylation in the Ser30-Thr40 region
[62, 127, 130].

Histidine-rich glycoprotein (P04196)

Histidine-rich glycoprotein (HRG), also called histidine-
proline-rich glycoprotein (HPRG), has an apparent molecular
mass of 72 kDa (peptide backbone of 60 kDa) and consists of
525 amino acid (507 without the signal peptide) [320, 321].
The protein occurs in plasma at concentrations of 0.1–
0.15mg/mL, and is mainly produced by the liver parenchymal
cells although some reports suggest synthesis in immune cells
as well [322–325]. Levels in newborns are only approximate-
ly 20 % of those in adults [326]. HRG is known to regulate
immunity, coagulation and angiogenesis [327]. To achieve
this, it interacts with many different ligands including heme,
heparin, plasminogen, fibrinogen, thrombospondin and im-
munoglobulin G, as well as many cell surface receptors and
divalent cations such as Zn2+ [325]. It is a negative acute

phase protein, showing decreased plasma levels during in-
flammation, injury or pregnancy [328].

Glycosylation

HRG is expected to have a large degree of glycosylation, as
14 % of the protein weight (around 10 kDa) has been attrib-
uted to the oligosaccharide portion [135]. Three N-glycosyla-
tion sites have been confirmed by glycoproteomic analysis,
located at Asn63, Asn125 and Asn344 [60, 70]. Another gly-
cosylation site is theoretically present at Asn345, but the direct
vicinity with the site Asn344 may sterically hinder its occu-
pation and additionally complicates its analysis. Interestingly,
a common polymorphism can induce a new glycosylation site
at Asn202 by replacing a proline by a serine at position 204,
creating the motif Asn-X-Ser, and N-glycanase treatment re-
vealed a mass difference of 2 kDa attributed to the new
Asn202 carbohydrate compared to the unmodified form of
HRG [136]. The sequence Asn87-Asp-Cys found in HRG
has been reported to contain glycosylation (in bovine protein
C) but no clear evidence of its presence has yet been made for
human HRG [137, 138]. With regard to the classical sites,
little is known, and to the best of our knowledge, neither site
occupancy nor relative abundance of glycan structures have
been studied. However, if a carbohydrate mass of 10 kDa
needs to be distributed across three glycosylation sites, the
average site would contain glycans of over 3300 Da (putting
them into the tri- and tetraantennary range with high levels of
galactosylation, sialylation and/or fucosylation). No reports
about changes in glycosylation under disease conditions were
found for HRG.

Kininogen-1 (P01042)

Kininogen-1, also called alpha-2-thiol proteinase inhibitor,
Fitzgerald factor, high-molecular-weight kininogen
(HMWK) or Williams-Fitzgerald-Flaujeac factor, has a single
polypeptide chain of 644 amino acid (18 belonging to the
signal peptide) and approximates 114 kDa apparent molecular
mass (while its theoretical mass without glycosylation is
70 kDa) [139]. Kininogen can be cleaved into six different
subchains called kininogen-1 heavy chain, T-kinin (Ile-Ser-
bradykinin), bradykinin (kallidin I), lysyl-bradykinin (kallidin
II), kininogen-1 light chain, and low molecular weight
growth-promoting factor. In its intact form, the protein is a
cysteine proteinase inhibitor, implicated in blood coagulation
and inflammatory response and it can bind calcium, while the
individual subchains can have many other functions
[329–332]. Kininogen is mainly synthetized in the liver to
plasma concentrations of 55–100 μg/mL, where it is mostly
found in complex with prekallikrein or factor XI to position
the coagulation factors near factor XII [331, 333–336].
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Glycosylation

Kininogen has four N-linked glycosylation sites at Asn48,
Asn169, Asn205, Asn294 (all of which remain on the
kininogen-1 heavy chain after cleavage) and eight O-linked
glycans at sites Thr401, Thr533, Thr542, Thr546, Thr557,
Thr571, Ser577 and Thr628 [59, 60, 62, 70, 139]. While no
overall or site-specific glycosylation analysis has been per-
formed yet, core-fucosylation has been reported for sites
Asn48, Asn205 and Asn294 on the basis of RP LC-MSn after
capturing with L. culinaris lectin [67]. In addition, two-
dimensional gel electrophoresis, with staining for triantennary
structures carrying sialyl-Lewis X has demonstrated the natu-
ral presence of this epitope on the protein, as well as its up-
regulation in patients with stomach cancer [140]. Kininogen is
expected to be highly glycosylated by large N- and O-glycan
structures, as the observed protein mass is more than 40 kDa
higher than the mass calculated from the amino acid sequence.
Kininogen glycosylation changes due to diseases have not yet
been described.

Serotransferrin (P02787)

Serotransferrin (STF), also known as transferrin, β1 metal
binding globulin or siderophilin, is a 698 amino acid protein
(19 amino acids of which are signal peptide) with a molecular
mass of approximately 77 kDa (without glycosylation) [8,
337]. The protein consists of two globular domains, the N-
lobe and the C-lobe which divided into two subdomains each
(N1, N2, C1 and C2). The twomain domains are connected by
a short linker peptide [337–339]. The N-lobe is 336 amino
acids in size and spans from Val25 to Glu347, while the C-
lobe is 343 amino acids long and ranges from Val361 to
Lys683 [337]. The lobes can interact to form a hydrophilic
metal ion binding site [337]. STF is mostly produced by he-
patocytes, although other tissues have also shown expression,
albeit at significantly lower amounts [337]. The plasma con-
centration is highly stable from the age of 2 years on, with a
range between 2 and 3 mg/mL [337, 340]. Levels may in-
crease during pregnancy up to 5 mg/mL [141].

STF is an iron binding protein and it regulates iron levels in
biological fluids. It can bind two Fe3+ ions and transport those
throughout the body, avoiding the toxicity of free radical for-
mation that may be caused by free Fe3+ ions [337]. Iron is
essential for DNA replication as it is a co-factor of ribonucle-
otide reductase [341]. Several studies have shown that the
number of transferrin receptors at the surface of cells was
closely correlated with their proliferation state and their iron
status [142, 342]. In addition, STF has been associated with
several diseases like atransferrinemia and cardiovascular dis-
eases [337]. In inflammation and allergic reactions, the STF
levels are found to be significantly reduced in plasma [337].

The protein has also shown potential as a therapeutic agent.
For instance, oxidative damage caused by radiotherapy can be
reduced by infusion with apo-transferrin [343]. The proprie-
ties of STF and its receptor can be exploited to deliver drugs
specifically into the brain and cancer cells [344]. Additionally,
conjugates consisting of the protein and a drug have been
shown to yield high specific cytotoxicity (e.g. Tf-ADR versus

HeLa, HL-60 and H-MESO-1 cell lines) [344, 345].

Glycosylation

STF has two N-glycosylation sites located at Asn432 and
Asn630 and a potential minor site at Asn491 (Asn-X-Cys)
[8, 59, 141, 143, 144]. Around 6 % of the total weight of the
protein is due to the carbohydrate content [142]. Lectin mo-
bility (ConA – Sepharose column) followed by sequential
exoglycosidase treatments on two STF samples of healthy
patients showed that, overall, the main glycans are A2G2S2
(96–97 %), FA2G2S2 (2–3 %) and A3G3S2 (1 %) [145]. The
glycosylation per site has been studied using nano-LC-ESI-
MS combined with exoglycosidase treatment [143, 144]. The
sites at Asn432 and Asn630 proved to be the main contribu-
tors to the total glycome, while the non-standard glycosylation
site at Asn491 was glycosylated at a level of approximately
2 % [143, 144].

The glycans present on Asn432 are A2G2S2 (93.5 %),
A3G3S2 (2.5 %), A2G2S1 (2.4 %) and A2FG2S2 (1.6 %),
while Asn630 contains A2G2S2 (85.9 %), FA2G2S2 (6.9 %),
A2FG2S2 (2.8 %), A2G2S1 (2.2 %), A3G3S2 (1.0 %), as
well as some lower abundant species with increased
fucosylation [143, 144]. The fucosylated antenna is most like-
ly of sialyl-Lewis X type (at the α1-3-linked arm, β1-4-linked
antenna) as it was shown by NMR spectroscopy of material
purified from the amniotic fluid of pregnant women [146]. A
single type of glycosylation was detected on the minor glyco-
sylation site at Asn491, namely A2G2S2 [143]. STF N-gly-
cosylation has been investigated in other biologic fluids like
CSF, where similar structures have been found along with
some disease-related ones [8, 147].

The glycosylation of STF has shown to be different across
fluids and phenotypes with the abundance of A2G2S2 being
significantly reduced in human amniotic fluid (55 %) or in the
plasma of hepatoma patients (37–63 %) [145, 146]. The per-
centage of triantennary structures is largely increased in am-
niotic fluid to 32 %, while the abundance of triantennary
structures in the serum of hepatoma patients ranges from 21
to 63 % [145, 146]. Abnormal isoforms of serotransferrin,
especially variation in the sialic acid content, are a very sen-
sitive and reliable biomarkers of many CDGs, and potentially
for idiopathic normal pressure hydrocephalus (iNPH) patients
[147, 148]. Isoelectric focusing (IEF) of serotransferrin is the
first test used to rapidly reveal N-glycosylation related CDGs
while apolipoprotein C-III is the protein of choice for the test

Glycoconj J (2016) 33:309–343 325



of O-glycosylation related CDGs [149, 150]. Interestingly,
carbohydrate deficient STF levels can also be used as indica-
tor of heavy alcohol usage, even post mortem [8, 151].

Vitronectin (P04004)

Vitronectin (VN), also called S-protein, serum spreading fac-
tor, or V75, is a 459 amino acid 52.4 kDamember of the pexin
family and of the adhesive glycoproteins group [346–349].
The apparent molecular mass of 75 kDa is due to post trans-
lational modifications including glycosylation. VN is mainly
produced in the liver and it is found in plasma at concentration
of 0.2–0.4 mg/mL, where it is mostly present in monomeric or
dimeric form [34, 348]. VN is also found in other body fluids
such as seminal plasma, urine, amniotic fluid, CSF, broncho-
alveolar lavage fluid and in platelets [348].

VN is an adhesive glycoprotein, and shows a role in blood
coagulation, extracellular matrix binding, regulation of cell
adhesion and spreading, and innate immunity [346, 347]. It
also protects the membrane from the damages caused by the
terminal cytolytic complement pathway. Underexpression of
the protein has been correlated with liver conditions like fi-
brosis, while elevated levels have been reported in inflamma-
tory states [350–352]. VN is also found to be implicated in
HCC where specific glycoforms have been identified [152].

Glycosylation

Three N-glycosylation sites have been identified in VN at
Asn86, Asn169 and Asn242 by LC-MS(/MS) [59, 70]. With-
out site specificity, the major VN carbohydrate forms reported
by LC-fluorescence are diantennary and triantennary complex
type glycans, with a low percentage of hybrid structures [153].
Sialic acids are mainly found α2-6-linked, as determined by
sialidase and acid treatments, followed by NMR. About 19 %
α2-3-linkage has been detected on the α1-6-arm of the
diantennary structures and on the β1-6-linked N-
acetyllactosamine of the α1-3-arm of triantennary structures.
Core fucosylation of vitronectin accounts for 7.9 % [153].

When looking at the glycosylation in a site-specific manner
by trypsin digestion and LC-ESI-MS(/MS) analysis, Asn86
shows mainly A2G2S2 species (45 %), as well as A3G3S3
(33 %) and A3FG3S3 (20 %) [152]. At Asn169, a higher
variety of glycan structures are observed. Next to the fully
sialylated diantennary structures (A2G2S2, 76 %) and its
monosialylated variant (6 %), around 18 % sialylated hybrid
structures have been detected (ranging from 3 to 5 mannoses).
Asn242 bears diantennary di- and monosialylated N-glycans
(A2G2S2, 50 %; A2G2S1, 20 %), with possible core fucose
on the fully sialylated variant (FA2G2S2, 10 %). In addition,
triantennary fully sialylated structures have been detectedwith
and without fucose (A3G3S3, 10 %; FA3G3S3, 10 %) [152].

Core fucosylation of VN has been reported at Asn242 in
healthy individuals and on Asn86 in HCC patients [67]. Hy-
brid type and fucosylated glycans of VN have been reported to
increase in patients suffering from HCC and other cancers,
and thus shows potential as biomarker [152, 154]. A possible
explanation for the increase of hybrid type glycans is that the
alpha mannosidase in the Golgi apparatus is suppressed in
HCC [17].

Zinc-alpha-2-glycoprotein (P25311)

Zinc-alpha-2-glycoprotein (ZAG, not to be confused with
ZAG which is the short name of its AZGP1 gene), also abbre-
viated Zn-alpha-2-glycoprotein or Zn-alpha-2-GP, is a 41 kDa
glycoprotein (15 % of the mass being carbohydrate) compris-
ing a single 298 amino acid chain (20 amino acid signal pep-
tide), with two intra-chain disulfide bridges [155, 353, 354].
The protein is produced by the liver and occurs in plasma at
concentrations around 0.03–0.11 mg/mL with a mean at
0.05 mg/mL. As with many plasma glycoproteins, the func-
tions of ZAG are diverse. The protein has been shown to
interact with the beta-3-adrenoreceptor on adipocyte cells, in-
ducing the depletion of fatty acids [355]. While its serum
variant originates from hepatocytes, ZAG is expressed in
many cell types including adipose tissue, buccal cells and
prostate epithelial cells, and occurs in many body fluids like
seminal fluid where its concentration is six time higher than in
serum [355]. Functions of the on-site produced ZAG include
fertilization, melanin production, regulation of the immune
response, and many others. In addition, the serum concentra-
tion of ZAG shows a large increase in various types of cancer,
making it a particularly good biomarker for female breast and
male prostatic carcinomas [355].

Glycosylation

Four N-glycosylation sites have been detected on ZAG at
Asn109, Asn112, Asn128 and Asn259 [59, 60, 70, 129,
156, 157]. For three of the sites (Asn112, Asn128 and
Asn259) proton nuclear magnetic resonance (1H-NMR) spec-
troscopy has revealed the major N-glycan structure to be
diantennary and disialylated A2(2)G2(4)S2(6) [155]. For
Asn259 specifically, partial sialylation (90 %) of the α1-6-
linked antenna has been reported. The general presence of
diantennary N-glycans, and the sialylation thereof, has been
verified by proteomic experiments, but to date no extensive
study has been made on its glycan microheterogeneity [96,
158]. Asn109 and Asn128 have for instance been suggested
to carry in part core fucosylated N-glycans, but this has hith-
erto remained unconfirmed [67]. No information about the
effect of diseases on ZAG glycosylation was found in
literature.
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Immunoglobulins

Immunoglobulins (Igs) are a major component of the adaptive
immune system [159]. There are five distinct classes in
humans (IgA, IgD, IgE, IgG and IgM), which all share com-
mon components. Generally, immunoglobulins consist of two
heavy chains and two light chains. These chains contain one
variable part (HL or VL, respectively) and three or more con-
stant domains on the heavy chain (CHn), or one on the light
chain (CL). Furthermore, immunoglobulins can be subdivided
into a fragment antigen-binding (Fab) and a fragment crystal-
lizable (Fc) portion. The Fab domain consists of the VH and
VL domains and the adjacent N-terminal constant CH1/CL

domain. The Fc domain is built up of the remainder of the
heavy chains. Immunoglobulins thus contain two Fab do-
mains per Fc domain. Each immunoglobulin has its own spe-
cific heavy chains (α, δ, ε, γ or μ) which are joined by one or
more disulfide bridges. The light chain can occur in two var-
iants (λ and κ) that are shared by all immunoglobulins. Some
immunoglobulins additionally contain a flexible hinge region
between the CH1 and CH2 domains (IgA, IgD and IgG). The
remaining immunoglobulins (IgE and IgM) have a rigid Ig
domain instead of a hinge region. Immunoglobulin N-linked
glycosylation occurs mostly on the heavy chains, accounting
for between 2 and 14 % of the protein weight. However, the
light chain can also contain N- and O-linked glycans [159].

Immunoglobulin A (P01876; P01877)

Immunoglobulin alpha (IgA) is an antibody that exists in two
subclasses (IgA1 and IgA2), and in both mono- and dimeric
form. Compared to IgA2, IgA1 contains a 13 amino acid
extended hinge region, which is heavily O-glycosylated
[356, 357]. Serum IgA consists mostly of the 160 kDa IgA
monomer (mIgA), has a concentration of 2.62 mg/mL (of
which approximately 90 % is IgA1), and is produced by the
bone marrow [357, 358]. Secretory IgA (sIgA) is observed at
mucosal surfaces and produced locally, mainly occurring as a
dimer of two mIgA units and a set of two connecting peptides,
the J-chain and the secretory component [356, 358]. Secretory
IgA is a key player in the immune defense at mucosal sur-
faces. Pathogenic microorganisms are prevented from
attaching to the mucosal surface by sIgA surrounding the
pathogen, which is then repelled by the mucosal surface due
to the high abundance of hydrophilic amino acids and glyco-
sylation [356]. The precise role of IgA in the circulation is not
clear.

Glycosylation

IgA is N-glycosylated at Asn144 (IgA1) and Asn131 (IgA2)
in the CH2 domain as well as at Asn340 (IgA1) and Asn327

(IgA2) and in the tail piece domain [160]. IgA2 contains two
additional N-glycosylation sites at Asn47 of the CH1 domain
and at Asn205 of the CH2 domain [160]. While glycosylation
studies have been performed for IgA1, the glycosylation of
IgA2 remains to be characterized.

The main N-glycans present on IgA1 as detected by hydro-
philic interaction liquid chromatography (HILIC)-HPLC with
exoglycosidase digestion are diantennary disialylated
(A2G2S2, 24 %), diantennary monosialylated (A2G2S1,
20 %) and fucosylated diantennary bisected disialylated
(FA2BG2S2, 14 %) [161]. The amount of nonsialylated gly-
cans detected was marginal, being at levels for total IgA of
6 % for the Fc region and 2 % for the Fab region [161]. A site-
specific study showed that the fucosylated glycans are mostly
present on the Asn340 site [162]. Furthermore it was shown
that the main glycoform on the IgA1 Asn144 containing gly-
copeptide was A2G2S1, while the Asn340 containing glyco-
peptide carried mainly the FA2G2S2 [163].

The role of N-glycosylation of IgA in diseases is not well
understood. The glycan might have an influence on the bind-
ing of IgA to the FcαR receptor, although this finding was not
validated in a later study [161, 164]. Binding to the FcαR
receptor can induce a pro- or anti-inflammatory response
[165]. In addition, the presence or absence of sialic acids on
the glycans may influence the clearance of IgA from the cir-
culation by the asialoglycoprotein receptor [159].

Immunoglobulin D (P01880)

Immunoglobulin delta (IgD) has, compared to the other im-
munoglobulins, a rather long hinge region of 64 amino acids
resulting in a total apparent mass of 175 kDa. The average
concentration of IgD in plasma is 0.03 mg/mL, but it can
range from <0.003 to 0.4 mg/mL without any clear sex or
age dependence [359–361]. Compared to the other immuno-
globulins, it has a short half-life of 2.8 days [362]. IgD can be
found in a secreted isoform (sIgD), as well as membrane
bound on immature B cells [363]. The protein is involved in
immunity and inflammation, by binding to respiratory bacte-
ria, resulting in clearance [32].

Glycosylation

Three N-glycosylation sites have been identified on the heavy
chain of IgD, located at Asn225, Asn316 and Asn367, as well
as seven O-glycosylation sites at Ser109, Ser110, Thr113,
Thr126, Thr127, Thr131 and Thr132 [166–168]. HILIC-
HPLC analysis with exoglycosidase digestion on released
IgD N-glycans revealed a mixture of high mannose and com-
plex type glycosylation. The total pool contained 35 % core
fucosylation, <1 % terminal N-acetylglucosamine, 33 % bi-
section, 20 % terminal galactosylation and 31.5 %
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monosialylation and 21.5 % disialylation (sialic acids being
α2-6-linked). The most abundant glycoforms detected were
Man8 (14.4 %), Man9 (13.5 %), FA2G2S2 (7.6%), FA2G2S1
(7.3 %), FA2BG2S2 (6.5 %) and A2G2S1 (6.1 %). Interest-
ingly, monoglucosylated Man8 and Man9 (Man8Glc,
Man9Glc; 2.4 %, 3.3 %) were observed as well [169]. The
high mannose glycans were preferably found at the Asn225
site, while the complex type glycans were abundant at Asn316
and Asn367 [168]. The absence of glycans at Asn225 has
been shown to completely inhibit the secretion of IgD [170].

Immunoglobulin E (P01854)

Immunoglobulin epsilon (IgE) is a 188 kDa antibody lacking
a hinge region, but that instead contains an extra C domain in
its heavy chain [364]. The protein exists as a membrane-
bound receptor form and in a soluble form [365]. IgE has a
serum concentration of around 0.3 μg/mL, making it the low-
est abundant immunoglobulin [366]. No in-depth study has
yet been performed to elucidate where IgE is synthesized
[364]. The primary function of IgE is the induction of an
anti-parasitic immune response by activation of mast cells
and basophils through the FcɛRI receptor [367]. This mecha-
nism is also proposed to play a role in the formation of allergic
responses [366, 368].

Glycosylation

Carbohydrates form 12 % of the IgE molecular mass, making
it the most glycosylated antibody in plasma [171]. The protein
contains six N-glycosylation sites, located at Asn21, Asn49,
Asn99, Asn146, Asn252 and Asn275 [172]. An additional
potential site at Asn264 was not found to be glycosylated
[173]. HILIC-HPLC with exoglycosidase digestion of 2-
aminobenzamide-labeled glycans showed the overall species
to be mainly core-fucosylated diantennary with either one
sialic acid (FA2G2S1) or two (FA2G2S2) (18 and 25 % re-
spectively) [169]. These glycans have, to lesser extent, been
found in non-fucosylated form (A2G2S1, 11 %; A2G2S2,
11 %), and with bisecting N-acetylglucosamine (FA2BG2S1,
8.2 %). In addition, 14.2 % of the glycan pool proved to be
high-mannose type (mainly Man5) [169].

By performing site-specific analysis by LC-MS/MS of
tryptic glycopeptides, it was found that Asn21mainly contains
FA2G2S1 (30 %), FA2BG2S1 (30 %), FA2G2S2 (15 %) and
FA2BG2S2 (10 %), while Asn49 is occupied by FA2G2S2
(30 %), FA2G2S1 (18 %), FA2BG2S2 (15 %), and
FA2BG2S1 (15 %) [173]. Asn99 contains FA2G2S2 (40 %),
FA2G2S1 (20 %) and bisected species in lower relative abun-
dance (<10 %). Asn146 is glycosylated by FA2G2S2 (50 %),
FA2BG2S2 (30 %), and around 10 % of FA2G2S1, while
Asn252 is highly bisected, mainly containing FA2BG2S1

(35 %) and FA2BG2S2 (25 %), as well as a lesser amount
of the nonbisected species FA2G2S2 (15 %) and FA2G2S1
(10%) [173]. Interestingly, the Asn275 site almost exclusively
shows oligomannosidic structures, the main species being
Man5 (50 %), but higher numbers of mannoses are found as
well (Man6, 15 %; Man7, 10 %; Man8, 10 %; Man9, 5 %)
[171, 173].

In the same study, IgE from hyperimmune donors was seen
to be similarly glycosylated as normal IgE, while IgE derived
from monoclonal myelomas showed the loss of bisection and
a drastic appearance of triantennary structures (up to 50 % per
site) [173]. There is evidence that IgE glycosylation is impor-
tant in binding to the FcϵRI receptor and can be implicated in
the initiation of anaphylaxis [174, 175]. In contrast, other
sources indicate that the glycans in the Fc region are only
minor contributors to the binding of IgE to the FcϵRI receptor
[176].

Immunoglobulin G (P01857; P01859; P01860;

P01861)

Immunoglobulin gamma (IgG) is a glycoprotein with a total
molecular mass of approximately 150 kDa [159, 177]. The
light chain consists of a domain covering the variable region
(VL) as well as a constant (CL) domain. The heavy chain
contains four domains with one domain which comprises the
variable region (HL) followed by three constant domains:
CH1, CH2 and CH3. Each light chain is paired with the HL

and CH1 domain of the heavy chain to form a Fab portion,
whilst CH2 and CH3 domains of the two heavy chains together
form the Fc portion. Between the two Fab portions and the Fc
portion a flexible hinge region is positioned, which makes it
possible for the two Fab arms tomove individually [159, 364].
The antibody is highly stable with a half-life of approximately
12 days [369, 370]. Based on the amino acid sequence of the
constant regions of the heavy chains, IgGs can be divided into
four subclasses namely, IgG1 (P01857), IgG2 (P01859), IgG3
(P01860) and IgG4 (P01861) [371, 372]. Notably, IgG3 has a
larger hinge region (62 amino acids) compared to the other
subclasses (12 amino acids).

During a secondary immune response IgG is secreted in
high amounts by B cells [373]. In healthy individuals the
concentration of IgG in serum is between 7 and 18 mg/mL
[374]. The average subclass-specific concentrations in plasma
are reported as 5.03 mg/mL for IgG1, 3.42 mg/mL for IgG2,
0.58 mg/mL for IgG3 and 0.38 mg/mL for IgG4 [375]. IgG
molecules are important for activating the complement system
through the classical pathway (antibody-triggered) as well as
binding to specific receptors on macrophages and neutrophils
[364, 373]. The IgG subclasses differ in their ability to activate
the complement system. The primary activators of the com-
plement system are IgG1 and IgG3, whereas IgG2 can also
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activate it at a lower level. IgG4, on the other hand, is not
capable of activating the complement system [364]. Further-
more, IgG molecules are the only antibodies that can pass
from a mother to her child via the placenta, and maternal
IgG has been shown to gradually decrease throughout preg-
nancy [364, 376, 377].

The majority of therapeutic antibodies is derived from
IgG1, where the glycosylation plays an important role for their
function [35, 364, 377–380].

Glycosylation

Glycosylation can occur on both the Fc and Fab portions of
the IgG molecules [178]. The Fc region has been extensively
studied with a highly conserved N-glycosylation site in the
CH2 domain at Asn297. Notably, this site may have a different
number for different IgG subclasses and variants [178].

Another possible N-glycosylation site may be found at
Asn322 of IgG3 although no occupation has yet been de-
scribed [178]. The Fab portion is known to be N-glycosylated
in 15–25 % of the cases [179].

The overall glycosylation of IgG has been the subject of
many studies using a variety of different methods [24]. In a
recent glycosylation MALDI-TOF-MS study on a released
glycan level, the most abundant glycans were complex types,
i.e. FA2G1 (31 %), FA2G2 (23 %), FA2G2S1(6) (13 %), FA2
(10 %) and FA2BG1 (5 %) [180]. Only a small portion of the
glycans were found to be high mannose (0.21 %), of which
Man8 (0.06 %) was the most abundant, followed by Man9
(0.05 %). Overall, 92 % of the total IgG pool was core-
fucosylated, 13 % bisected, 18 % monosialylated and 3 %
disialylated. Twelve percent of the glycans contained α2-6-
linked sialic acids, against 0.2 % α2-3-sialylated species
[180]. These findings are in agreement with previously report-
ed sialylation values obtained by lectin interaction [181]. Next
to the study of overall IgG glycosylation, differences between
the Fab and Fc have also been studied by MALDI-TOF-MS
after affinity capturing of the different regions [180]. The Fc
region shows a similar profile as the total IgG profile, albeit
with a lesser degree of sialylation. FA2G1 (32 %) was again
the most pronounced glycan, followed by FA2G2 (27 %),
FA2G2S1(6) (15 %), FA2 (9 %) and FA2BG1 (5 %), while
the amount of highmannose type species was found to be very
low (0.1 %). In contrast to Fc, the Fab region showed a sig-
nificantly higher degree of sialylation, with 40 % of the spe-
cies being monosialylated, and 52 % being disialylated. Also
bisection and highmannose species were seen to be higher (45
and 4 % respectively). Specific compositions included
FA2BG2S1(6) as most abundant with 21 %, followed by
A2G2S2(6) (17 %), FA2BG2S2(6) (16 %), FA2G2S2(6)
(16 %) and FA2G2S1(6) (10 %). For the high mannose types
Man6 was the most abundant with 1.2 % followed by Man8
(1.0 %) and M5 (0.7 %) [180].

Affinity capturing followed by LC-MS with CID and
electron-transfer dissociation (ETD) fragmentation of tryptic
IgG glycopeptides revealed that the various IgG subclasses are
similarly glycosylated, but with some notable differences
[182, 183]. IgG1 tends to show higher galactosylation than
the other subclasses, whereas IgG2 shows the highest degree
of core-fucosylation and IgG3 the least. IgG4 was found more
difficult to study due to its relatively low abundance [182].
Another study examined the O-glycosylation of IgG3 in the
hinge region, revealing that the threonine sites (T) in the three
repeated peptide sequences (CPRCPEPKSCDTPPP) are par-
tially occupied with core 1-type O-glycans [184].

A vast body of literature exists describing disease-
associated changes of IgG glycosylation, as well as the regu-
lation and immunological effects of such glycosylation chang-
es. In the following, only a very concise view of this field will
be given, and we would like to refer the interested reader to
more specialized reviews [177, 185, 186].

IgG glycosylation has been strongly associated with age,
with a negative correlation between age and galactosylation
[19, 20, 187, 188]. IgG FA2 seems to have a strong pro-
inflammatory effect through various mechanisms, e.g. the lec-
tin pathway of the complement system [19, 188, 189]. In-
creased levels of FA2 glycans and/or lowered levels of
FA2G2 glycans is found in many diseases, including rheuma-
toid arthritis, Crohn’s disease, granulomatosis with polyangi-
itis, tuberculosis, HIVandmyositis [189–193]. Several studies
revealed that core-fucosylation is an important factor in the
binding capacity of the Fc region to the FcϒRIIIa receptor
[194, 195]. The lack of core-fucosylation suggests improve-
ment in the binding extensively resulting in a higher degree of
antibody-dependent cell mediated cytotoxicity (ADCC) re-
ceptor [194, 195]. The presence of sialic acids is able to reduce
the binding capacity of the antibody to the FcϒRIIIa receptor,
as a consequence the activity of ADCC is decreased and anti-
inflammatory effects are enhanced, although this only appears
to be the case for α2-6-linked sialylation [33, 178, 196, 197].
Interestingly, during pregnancy the glycosylation also appears
to change, especially in the Fc region where the levels of
galactosylation and sialylation increase [28, 198–200] . This
might be to suppress the immune response of the mother
against her child [198]. Alterations in glycosylation have also
been reported to occur in a subclass specific level, for example
in patient suffering from hepatocellular carcinoma, cirrhosis,
or myositis [190].

Immunoglobulin M (P01871)

Immunoglobulin mu (IgM) is a 970 kDa (in pentameric form)
antibody, consisting of five 190 kDa subunits (of 452 amino
acids) [159, 364, 381]. The protein can be membrane-bound
on the B1- and B2-cells where they are produced [382], or
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secreted into blood at plasma concentrations of 0.5–2.5 mg/
mL [374]. In circulation, IgM exists either as a pentamer with
coupling J-chain, or occasionally as hexamer lacking the J-
chain [383]. No hinge region has been reported for the immu-
noglobulin, but it contains an extra C domain instead [364]. In
total, pentameric IgM consists of 10 heavy chains, 10 light
chains and 1 J-chain, arranged in a mushroom-shaped mole-
cule, leading up to being the largest antibody in human plasma
by far [384].

IgM antibodies are an early and main activator of the clas-
sical complement pathway [364], but also play a role in ho-
meostasis, inflammation, infection, atherosclerosis and auto-
immunity [381]. The protein is additionally involved in apo-
ptosis [381], as absence of IgM shows a three- to four-fold
decrease in apoptotic cell uptake by macrophages [385]. Fur-
thermore, IgM has been described in several studies regarding
acute coronary syndromes and cardiovascular diseases, where
an elevated urine excretion of IgM has been reported [386,
387]. The presence of glycans on non-antigen bound IgMmay
also assist the agglutination of virus particles present in serum
via viral lectin hemagglutinins [159].

Glycosylation

IgM contains N-glycosylation sites at Asn46, Asn209,
Asn272, Asn279 and Asn439, of which Asn439 is only
17 % occupied [159, 201, 202]. HILIC-HPLC-MS has shown
the overallN-glycosylation to bemainly diantennary with core
fucosylation, either with- or without bisecting N-
acetylglucosamine (FA2BG2S1, 26 %; FA2G2S1, 19 %),
followed by the oligomannose compositions Man6 and
Man5 (10 and 6 %, respectively) [202]. By lectin capturing,
the high-mannose compositions have been attributed to
Asn297 and Asn439, leaving the complex type glycosylation
to be found at Asn209 and Asn272 [159, 203]. Interestingly,
the partially occupied Asn439 shows larger high-mannose
structures (Man6-8) than site Asn297 (Man5-6), suggesting
that the former is difficult to access by both the dolichol pre-
cursor and the mannosidases required for trimming of the
structure. Depending on the source, Asn46 can be occupied
by either oligomannose or complex type N-glycans [159,
203].

Discussion

Here we present an overview of the N-glycosylation of 24
major plasma glycoproteins. It has been shown for many of
these proteins that glycosylation changes are implicated in
serious pathological states such as cancers, autoimmune dis-
eases and CDG and that their glycosylation pattern could be
used as biomarkers, prognostic tools or even as anchor points
for targeted treatments [15, 35, 148, 388, 389]. These findings

have resulted in an increasing interest in the glycosylation
analysis of easily accessible biofluids such as plasma, and
many correlations have been established between disease
(states) and the abundance of specific glycosylation traits. Re-
cent advances in sample preparation methods, separation tech-
niques, mass spectrometry, and the development of robotized
platforms are easing routine analysis of the total plasma N-
glycome and allow the screening of large cohorts in reason-
able times, thus enhancing the possibilities to search for puta-
tive biomarkers and predictions tools [38, 109, 390–392].
This, however, requires that the observed differences in gly-
cosylation can be interpreted in a biologically meaningful
manner, and traced back to changes in the levels of glycosyl-
ated proteins, and to possible glycosylation changes of specif-
ic proteins.

The information contained in this review stems from many
sources and methodologies.When exploring protein glycosyl-
ation to its full complexity, this comprises the occupancy per
site and the relative abundances of glycoforms present per site,
as well as information on linkages and isomer distribution. No
single analysis method is capable of providing all this infor-
mation in a comprehensive manner, let alone on a complex
sample such as human plasma. Consequently, different levels
of detail are available with respect to the glycosylation of the
major glycoproteins that make up human plasma. Analysis
methods encountered in this review are very diverse, includ-
ing NMR, lectin capturing, LC-fluorescence, as well as sever-
al mass spectrometric methods [72, 390, 393]. NMR has prov-
en definitive for providing structural features of a glycan, but
is limited by sample throughput and amount of material need-
ed, as well as by its inability to characterize multiple species
present in a complex sample [390]. Mass spectrometric
methods applied in bottom-up studies of glycopeptides gener-
ally only provide glycosylation information on a composition-
al level, but may in addition provide site-specific glycosyla-
tion information by revealing the amino acid sequence as well
as glycan attachment site [182]. As such, high-throughput
mass spectrometric screening methods have been used to
identify and confirm many of the glycosylation sites in human
plasma, although the use of deglycosylated peptides has
prevented characterization of the glycans themselves [59, 60,
67]. A particularly successful combination of methodologies
for in-depth study of glycosylation has proven to be LC-MS(/
MS) with exoglycosidase digestion and/or lectin capturing,
which has been used to study a fair number of the proteins
covered in this review [110, 169].

Well-studied proteins covered in this review include alpha-
1-acid glycoprotein, alpha-1-antitrypsin, haptoglobin,
serotransferrin, vitronectin, and IgG, while others such as
histidine-rich glycoprotein and kininogen-1 still remain to be
studied at the most basic level (Table 1). Overall characteriza-
tion reveals a high degree of galactosylation and sialylation
across the plasma N-glycome, the most abundant species for
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most sites having full coverage of all their antennae. Next to
receptor interaction and charge induction, the terminal sialic
acids are known to play a large role in determining the half-life
of proteins, and less than full sialylation would lead to hepatic
clearance via the asialoglycoprotein receptor [394].

Specifically, the major detected glycan species are A2G2S2
and its monosialylated variant (Fig. 1, Table 1), with β1-2-
linked antennary N-acetylglucosamines, β1-4-linked galac-
toses, and α2-6-linked N-acetylneuraminic acids [104, 155].
These are found on the majority of glycoproteins, and are
particularly abundant on serotransferrin, fibrinogen, cerulo-
plasmin and alpha-2-macroglobulin. Potential fucosylation
for these diantennary structures mostly occurs inα1-6-linkage
on the core N-acetylglucosamine.

The more truncated N-glycosylation, i.e. lack of sialic acid
termini and incomplete galactosylation, is reserved for immu-
noglobulin G, and to lesser extent apolipoprotein B-100 [11,
180]. Interestingly, immunoglobulin G is the only major plas-
ma protein we have found to contain core-fucosylation as well
as incomplete galactosylation/sialylation, meaning that the
TPNG species FA2, FA2G1 and FA2G2 predominantly reflect
the glycosylation of this protein [180]. Similarly, immuno-
globulin M is the major carrier of the bisected species
FA2BG2S1, with IgG and the lowly abundant immunoglobu-
lin E contributing to the expression of this compositional gly-
can to a lesser extent [169, 180, 202].

The high mannose type glycosylation is also differentially
distributed. Whereas the lower size oligomannose structures
Man5 and Man6 are distributed across alpha-2-macroglobu-
lin, apolipoprotein B-100 and immunoglobulin M, the larger
structure Man9 mainly originating from apolipoprotein B-100

[11, 72, 202]. In addition, the high mannose structures have
been reported on the Fab portion of IgG [180].

Tri- and tetraantennary structures are found in lower abun-
dance than the diantennary structures, and have some discern-
ing features. Whereas diantennary glycans are mainly
sialylated with an α2-6-linkage, for the triantennary species
on average one in three sialic acids is α2-3-linked [54]. Fur-
thermore, potential fucosylation is predominantly α1-3-
antennary, and located at the α2-3-sialylated antenna to form
sialyl Lewis X, which itself is favored on the β1-4-linked N-
acetylglucosamine of theα1-3-branch [54]. These fucosylated
and non-fucosylated triantennary glycans are commonly
expressed in minor amounts for sites that also have
diantennary glycosylation (examples including alpha-1-
antitrypsin and ceruloplasmin), but represent the most abun-
dant glycosylation type for alpha-1-acid glycoprotein. Among
the proteins covered in this review alpha-1-acid glycoprotein
also stands out by expressing tetraantennary N-glycan species
(also with potential sialyl-Lewis X). Other candidates likely to
contain the larger tri- and tetraantennary structures are
kininogen-1 and histidine-rich glycoprotein (judged by the
difference between apparent and calculated mass), but this
has not been confirmed yet, possibly due to the technical dif-
ficulty associated with the analysis of these glycosylations.

When combining the contributions of the 24 major glyco-
proteins covered in this review to calculate a theoretical total
plasmaN-glycome, a remarkable congruence is observed with
a TPNG profile registered for N-glycans released from human
plasma (Figs. 1 and 2). Truncated fucosylated diantennary
structures, mono- and disialylated diantennaries, as well as
tri- and tetraantennary structures and their relative
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Fig. 2 Typical reflectron positive mode MALDI-TOF-MS spectrum of
the total N-glycosylation of pooled human plasma after enzymatic N-
glycan release, ethyl esterification, and hydrophilic-interaction liquid
chromatography (HILIC) enrichment [109]. Glycan species are
assigned as [M+Na]+ on basis of the reviewed plasma structures. Where
multiple options are possible, the most abundant has been used for
assignment. Sialic acid orientation is on basis of observed mass after
ethyl esterification, while the other linkages are presumed on basis of

literature. For fucosylation, diantennary structures are reported to
mostly carry an α1-6-linked fucose on the reducing end N-
acetylglucosamine, while tri- and tetraantennary structures are reported
to mostly have α1-3-linked antennary fucosylation in the form of Lewis
X (or sialyl-Lewis X when the antenna carries anα2-3-linked sialic acid).
For the tri- and tetraantennary structures, antennae representation has
been simplified for readability purposes
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fucosylation are roughly in the correct ratios when compared
to MALDI-TOF-MS with sialic acid-linkage-specific stabili-
zation. The differences between the theoretical and measured
N-glycome could be due to variations in the sample types or
origins used in each study, as we have seen that phenotypes
could occur at different ratios among ethnicities, but also due
to the approximations in the protein concentrations that are
often values averaged from multiple papers, or even to the
remaining low abundant glycoproteins not covered by this
review, although they should only account for a few percent
of the TPNG.

In all, we expect the knowledge gathered in this review to
facilitate the clinical interpretation of plasma-wide glycosyla-
tion analysis. This review underlines the necessity for further
protein-specific glycosylation analysis to fill the still consid-
erable gaps in our understanding.
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