
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:11402  | https://doi.org/10.1038/s41598-022-15016-w

www.nature.com/scientificreports

Human pointing motion 
during interaction 
with an autonomous blimp
Mengxue Hou, Qiuyang Tao & Fumin Zhang*

We investigate the interaction between a human and a miniature autonomous blimp using a wand 
as pointing device. The wand movement generated by the human is followed by the blimp through a 
tracking controller. The Vector Integration to Endpoint (VITE) model, previously applied to human–
computer interface (HCI), has been applied to model the human generated wand movement when 
interacting with the blimp. We show that the closed-loop human–blimp dynamics are exponentially 
stable. Similar to HCI using computer mouse, overshoot motion of the blimp has been observed. 
The VITE model can be viewed as a special reset controller used by the human to generate wand 
movements that effectively reduce the overshoot of blimp motion. Moreover, we have observed 
undershoot motion of the blimp due to its inertia. The asymptotic stability of the human–blimp 
dynamics is beneficial towards tolerating the undershoot motion of the blimp.

Human pointing motion is one of the major means of indicating intentions. Human pointing devices, such as 
the computer mouse, are ubiquitous in modern computers. Pointing motion has been leveraged in human–robot 
interaction (HRI) as a natural and effective way to communicate with  robots1–6.

Unmanned aerial vehicles (UAVs) are gaining popularity for indoor surveillance, delivery, and warehouse 
monitoring, where they are required to operate in close proximity to human. In this context, human needs to 
interact with UAVs in effective ways, and pointing motion should be considered as a preferred method of interac-
tion. Some recent studies have reported promising results on the interaction between human and quadrotors and 
 drones7–10 leveraging pointing  motions11,12. However, these interactions are constrained by safety concerns for 
the human operator, and there is a lack of mathematical modeling for the pointing device movements generated 
by the human during the interaction.

The Georgia Tech Miniature Autonomous Blimp (GT-MAB) is a lighter-than-air UAV developed for indoor 
applications in human-occupied environments. It consists of a saucer-shaped envelope filled with Helium, and a 
gondola attached to the envelope. The envelope makes GT-MAB naturally cushioned, not posing any safety threat 
to human. Furthermore, GT-MAB keeps itself aloft without the need for consistent propulsion, due to the buoy-
ancy of the envelope. Therefore, its endurance can be several magnitudes longer than that of a heavier-than-air 
 UAV13. Hence GT-MAB is well-suited for carrying out HRI experiments, which often requires the UAV to operate 
in close proximity to human, and also desires sustained airborne presence to perform repetitive  missions14–18.

This paper investigates the interactions between a human and the GT-MAB in close proximity, taking advan-
tage of the safety and extended flight time. The human uses a marked wand as the pointing device, which is 
traced by a localization system. A feedback controller on the GT-MAB achieves tracking of the human pointing 
motion. Other than our conference  paper19, we have not found similar investigations of human interaction with 
robotic blimps using a pointing device in the literature.

Through experimental data collected, we proceed to analyze the wand motion generated by human to control 
blimp movements. Previous  works11,12 on human–UAV interaction have not employed mathematical models for 
human pointing motion. We apply the VITE model, previously applied to model human motion during interac-
tion with a computer  mouse20–22 to model the wand movements. The experimental data verifies that the VITE 
model is able to capture the major features in human generated wand movement during the interaction with GT-
MAB. On the other hand, our study has shown difference between the motion of the GT-MAB and a computer 
mouse. Due to inertia, the GT-MAB can not react instantaneously when human changes the direction of wand 
movement. This has caused the initial response of the blimp movement being away from the target position, 
which demonstrates a perceivable undershoot in blimp motion. Through theoretical analysis, we can show that 
the closed-loop dynamics of human–blimp interaction is exponentially stable. The stability indicates that the 
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undershoot blimp motion can be tolerated by the human. Furthermore, the GT-MAB tends to bypass the target 
position more easily than a mouse cursor displayed on a monitor. We discover that the VITE model may serve 
as a reset controller used by the human to reduce the overshoot of the blimp motion. This work is a significant 
extension to our conference  paper19, where we show preliminary results on modeling human pointing motion 
with the VITE model, and provide stability analysis. This work presents validation of modeling the pointing 
motion using the VITE model with experiment data collected by more human subjects. Further, we establish a 
connection between the reset control method and the VITE model, and discuss the benefits and limitations of 
the VITE model as a feedback controller with resetting operator, comparing with a linear feedback control law. 
These discoveries have not been reported in our conference  paper19, as well as the literature reviewed.

The rest of the paper is organized as follows. “Background: VITE model” section provides a brief introduction 
on the background of modeling human pointing behavior. The problem formulation is presented in “Problem 
formulation” section. “Stability analysis” section presents stability analysis of the closed-loop system. Experiment 
setting and experiment results are shown in “Parameter identification and validation” section, and the discussion 
on human behavior analysis is presented in “Human behavior analysis” section. “Conclusion” section describes 
the conclusion of the paper based on the experiment results.

Background: VITE model
The VITE model is a second order dynamic model for human pointing  motion20. Consider a human controls 
the position of a pointing device, such as a computer mouse, which displays a visible pointer such as a cursor 
on a monitor. We assume the human intends to move the pointer to a desired location. Let y(t) represent the 
position of the pointing device under human control. Let u(t) represent the perceived position of the pointer, rt 
denote the desired position of the pointer, then rt − u(t) represents a difference vector describing the difference 
between the displayed pointer position and the desired position. The VITE model describes the motion of the 
pointing device as follows:

where η(t) represents an internal state describing how the human perceives the difference vector, which cumu-
latively integrates the difference vectors over time with a constant gain γ . The operator [·]+d  is used to switch the 
pointing motion off when the displayed pointer bypass its target. It is defined by the following equation

where d defines the direction from the pointer to the target position at initial time t = 0. The parameter g is 
called the go signal, which is a feedback gain describing how the internal state η(t) results in the pointer motion 
y(t). The signature property of the VITE model is that the displayed pointer tends to move beyond the target, 
generating an overshoot. This has been confirmed to agree with human behaviors by experimental work on 
human pointing  motion22,23.

The pointing task is modeled as a feedback control that generates the wand position as the input to the 
blimp system. The blimp position is the output that will be controlled to a desired position. This is considered 
as an output regulation problem for controller design. The VITE model is viewed as a feedback control law that 
produces the wand position y(t) based on the difference vector r(t)− u(t) . In the context of human computer 
interface using a computer mouse, the human drives the displayed cursor position u(t) to the target position 
rt , by controlling the position of the mouse y(t). We notice that the VITE model bears similarity with the reset 
controller in control theory  literature24,25. Comparing to regular feedback controllers, a reset controller typi-
cally defines a reset condition. At the time that the reset condition is met, the control effort is set to zero. The 
control effort of the reset controller switches back to non-zero values if the reset condition is not met. Due to 
the switching condition in  (2), the VITE model can be viewed as a variant of the reset controller. However, the 
human considers the pointing task fulfilled when the reset condition is satisfied, and the control effort y(t) stays 
at zero for all time after the reset condition is met. It is known that a reset controller might reduce overshoot in 
the step response of a feedback control  system26. However, such effect has not been reported in human robot 
interaction through pointing motion.

Problem formulation
We investigate human pointing motion when interacting with the GT-MAB. as illustrated by Fig. 1. The human 
operator observes blimp position and then moves a marked wand with its position followed by the GT-MAB. 
The human will control the blimp towards a target position that is unknown to the blimp. We perform a series 
of pointing experiments where data on the wand movements and blimp movements are collected.

To simplify the dynamics model, we introduce the Assumption 1  in19, that the horizontal position of the 
target that the human specifies is the same as the horizontal position of the blimp. Due to this Assumption, we 
use y(t) to represent the vertical location of the wand, u(t) to represent the vertical position of the blimp, and 
r(t) to represent the vertical location of the target. We will then attempt to model the human pointing motion 
using the VITE model.

Assumption 1 We assume that when interacting with the blimp, the wand movements can be modeled by (1).

(1)
{

η̇(t) = γ (−η(t)+ rt − u(t))
ẏ(t) = g[η(t)]+d

,

(2)[v]+d =

{

v, if�v, d� ≥ 0
0, otherwise

,
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Remark 1 It has been shown that human exhibits similar motions when reaching and pointing with their arms, 
mouse pointers and other  devices27. VITE model has been adopted for modeling human pointing motion in 
many existing work on HCI, e.g.21. Hence we assume that the human blimp interaction behavior can be described 
by the VITE model as well. Experimental justification of this assumption is provided in Section Parameter 
identification and validation.

From our previous  work14, the vertical motion of GT-MAB can be described as

where m = mRB +mAz , mRB and mAz are the rigid-body mass of the blimp and the added mass for the vertical 
motion. The term Fz(t) = Du̇(t) where D is the aerodynamic drag coefficient for the vertical movement. As 
justified in our previous  paper28, D can be well approximated as a positive constant for indoor miniature blimps. 
The term fz(t) represents the thrust force in the vertical direction.

Feedback controllers are implemented to control the position and heading of the blimp. For convenience, 
GT-MAB keeps the same heading angle through the entire experiment, and the reference setpoint for horizontal 
movement is set to a fixed position, so that it will remain at the same horizontal position throughout the experi-
ment. Setpoint of the vertical motion is set to the height of the wand, thus enabling the blimp to track position 
of the wand. The height controller can be described as fz(t) = kpe(t), where e(t) = y(t) − u(t) represents the dif-
ference between the height of the blimp and the height of the wand. kp > 0 denotes the feedback gain. The blimp 
dynamics and the human pointing dynamics are connected to form a closed-loop feedback system as shown in 
Fig. 1. The first objective of this paper is formulated as the following problem:

Problem 1 Prove that the closed-loop system formed by the human pointing dynamics and the blimp dynamics 
is asymptotically stable.

Concerns on stability might not be of high priority for human computer interface because mouse movement 
is agile. For the GT-MAB, however, due to inertia and air drags, the bimp might not react instantaneously to 
wand movement. A theoretical justification of the asymptotic stability of the closed-loop system will ensure that 
the human–blimp interaction experiments can be carried with meaningful and predictable results.

After collecting the wand movement data from the experiments, we will identify the parameters of the VITE 
model for each human subject. The parameters of the VITE model include the unknown gains g , γ , and the 
unknown reference target positions rt . The problem is formulated as follows:

Problem 2 Given a set of wand trajectories, denoted as y(t) collected from multiple experiments, identify the 
unknown VITE parameters g , γ , and the unknown reference signal rt.

Solution to this problem will also be used to justify that the VITE model can capture the features of human 
pointing motion in the context of human–blimp interaction.

We have noticed that the VITE model can be viewed as a reset controller used by the human to reduce the 
difference between the blimp position and the target position. Given many possible feedback controllers that are 
able to achieve the same goal, we are interested to know why the VITE model was adopted by human. Specifically, 
we formulate the following problem to compare the VITE model with a linear feedback law:

Problem 3 Identify the benefits and limitations of the VITE model as a reset controller in the context of human 
blimp interaction, comparing to a linear feedback controller without the reset operator.

Stability analysis
In this section, we show that the closed-loop dynamics formed by the VITE model and the blimp dynamics are 
asymptotically stable. We assume that the target position is located at the origin, and blimp’s initial position is 
lower than the target position. Detailed description and justification of this assumption is provided  in19.

Given the blimp dynamics described in (3), and the human pointing motion dynamics as in (1), we introduce 
an augmented state x ∈ R

4 , where elements of x are defined as 
[

x1 x2 x3 x4
]T

�
[

u η u̇ y
]T

, then the closed-
loop system dynamics can be written as

(3)mü(t)+ Fz(t) = fz(t),

Figure 1.  Block diagram of the closed-loop dynamics. Human generates wand movement y(t) while observing 
blimp movement u(t).
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where x+2  denotes the non-negative portion of x2 , that is, x+2 = x2 when x2 ≥ 0 , and x2 = 0 when x2 < 0 . The 
closed loop dynamics has the following equilibrium set: E = {x3 = 0, and x1 = x4 = −x2, and x2 ≤ 0}.

We will now examine the stability of the closed-loop system dynamics in (4) considering two cases, 
the first case where x2 ≥ 0 , and the second case x2 < 0 . In both cases, the system dynamics is linear, 
while a switch in system dynamics happens when x2 goes from x2 > 0 to x2 < 0 . Define a vector z ∈ R

4 as 
z =

[

x1 − x4 x1 + x2 x3 x+2
]T

. In the case where x2 ≥ 0 , the dynamics for z is

In the case where x2 < 0 , z4 = x+2 = 0 . Thus, ż4 = 0 , and the dynamics of z can be described as

For the first case, the following Lemma holds.

Lemma 1 The closed-loop system ż = A1z is exponentially stable if kp >
g(D+γm)(γ 2+D)−γD2−mγ 2D

D .

Proof We will prove the above lemma using Routh’s stability criterion. The characteristic polynomial is

The matrix A1 is Hurwitz if the first column of the Routh array is positive. Denote the first column of the 
Routh array as a0, a1, b1, c1, d1 . a0, a1, b1 and d1 are guaranteed to be positive given any choice of D, γ , g , kp . If 

kp >
g(D+γm)(γ 2+D)−γ 2−mγ 2D

D  , then c1 > 0 and the system is stable by the Routh stability criteria.   �

Now consider the second case where x2 < 0 . In this case, z4 has already converge to zero, we will consider the 
stability of the subsystem ˙̃z = Ã2z̃ , where z̃ = [z1, z2, z3]

T , Ã2 is the third order leading principal submatrix of A2.

Lemma 2 The subsystem ˙̃z = Ã2z̃ is exponentially stable for all H , g , γ , kp > 0.

Proof The characteristic polynomial is det(�I − A2) = �
3 + (Dm + γ )�2 +

Dγ+kp
m �+

kpγ

m . For all 
Dωz , g , γ , kp > 0 , the first column of the Routh array is positive. Therefore, the closed-loop system is exponen-
tially stable.   �

The above two Lemmas lead to the following Theorem. Detailed proof can be found  in19.

Theorem 1 For the system dynamics (4), with kp >
g(D+γm)(γ 2+D)−γD2−mγ 2D

D  , if the states start from x2 > 0 , the 
states will exponentially converge to the equilibrium set E.

Parameter identification and validation
In this section, we describe the experiment setting for human blimp interaction, and process the experimental 
data to justify Assumption 1 and to identify the unknown parameters of the VITE model. The stability of the 
closed-loop system is verified wit the parameters identified from the experimental data.

Experiment setting and data processing. Participants Five unpaid participants (2 female, mean age 
24 years old) are recruited for the study, all with normal eyesight, and all practiced to be familiar with GT-MAB 
dynamics.

Task We asked the participant to determine two target positions at different heights at their will, and then drive a 
GT-MAB from its initial position to the first target position by moving the wand. Once the participant is satisfied 
with the blimp position, he/she will change the direction of wand movement and drive the blimp towards the 
second target position. The participant was asked to keep repeating this task for 60 s. One video of the experi-
ment can be found at https:// youtu. be/ 4JavP aOVKio. Note that in some of the experiments, Assumption 1  in19 

(4)ẋ =









x3
−γ (x1 + x2)

−D
mx3 +

kp
m (x4 − x1)

gx+2









,

ż =









0 0 1 − g
0 − γ 1 0

−
kp
m 0 − D

m 0
0 − γ 0 0









z := A1z.

ż =









0 0 1 0
0 − γ 1 0

−
kp
m 0 − D

m 0
0 0 0 0









z := A2z.

(5)det(�I − A1) = �
4 +

(

D

m
+ γ

)

�
3 +

(

γ
D

m
+

kp

m

)

�
2 +

γ kp

m
�+

gkpγ

m
.

https://youtu.be/4JavPaOVKio
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is violated. Due to the wind disturbance, the blimp may have horizontal displacement, even though a horizontal 
station keep feedback control law is implemented.

Facilities The experiment took place in a space that is 8 m long, 7.5 m wide, and 3.5 m high. Flex13 cameras from 
OptiTrack are installed on the walls, at about 3.5 m height. Reflective markers are attached on the top of GT-MAB 
envelope as well as on the tip of the wand, so that the OptiTrack system can detect and record position of the 
wand and the blimp. The OptiTrack system captures the trajectory of the blimp and the wand at 10 Hz sampling 
frequency. Control commands are sent to the GT-MAB via wireless communication enabled by the XBee device. 
The blimp controller is implemented using MATLAB at 10 Hz, on a Core i-7 2.93 GHz PC with 16GB RAM. The 
blimp and wand trajectories are logged as they are captured by the OptiTrack system.

Considering the limited coverage of OptiTrack cameras, the human and the blimp will stay inside a 4 m long, 
4 m wide, and 2 m high space during the experiment. The starting position of blimp is about 1 m away from the 
human, and is about 1.5 m high, while the horizontal target position of the blimp will be the same as the starting 
position, and the vertical target position will be between 0.5 m and 2 m. Figure 2 (Left) shows a demonstration 
of the experiment settings.

Data preprocessing It has been shown that when human performs the pointing motion, the pointer velocity 
data is  noisy29. To address this issue, we filter the wand velocity using a Savitzky–Golay filter with a 4th order 
polynomial and a window size of 81 (8 s), and calculate the smoothed wand trajectory by integrating the filtered 
velocity. The smoothed wand trajectory, denoted as ỹ(t) , is used as the input data for solving the parameter 
identification problem.

We divide the smoothed wand trajectory ỹ(t) into several going-up and going-down segments, according to 
the movement of the wand. Since the trial is considered to be finished once the human stops moving the wand, 
indicating that the human is satisfied with the blimp height, the time interval of the experiment can be divided 
into [T−

1 ,T+
1 ] , [T−

2 ,T+
2 ], . . . , [T−

N ,T+
N ] based on the up/down motion of the wand, where T−

n  and T+
n  denote the 

starting and ending time of the nth trial, T+
n−1 = T−

n  . The ending time of each trial is the timestep when the 
wand stops moving, ˙̃y(t) = 0 . In each set of experiment data, we delete the data points that do not belong to a 
complete trial. Figure 2 (Right) shows one set of blimp and wand trajectories divided into up/down sections.

Parameter estimation
Let �u = {n ∈ Z| ˙̃y(t) > 0, t ∈ [T−

n ,T+
n ]} represent the set of all going-up sections. Similarly, let 

�d = {n ∈ Z| ˙̃y(t) < 0, t ∈ [T−
n ,T+

n ]} denote the set of going-down sections. Let rt,u and rt,d denote the target 
position of all the going-up sections and going-down sections respectively. We represent the set of unknown 
parameters in the VITE model as � = [ĝ , γ̂ , r̂t,u, r̂t,d] . Given a set of parameters � as well as the actual blimp 
trajectory u(t) from the experiment, a simulated wand trajectory ŷ(t) can be derived from the following initial 
value problem, where the wand trajectory is simulated by the VITE model. Further, at the start and the end of 
each segment, since the human stops moving the wand, the human internal state must be zero.

Figure 2.  (Left): Demonstration of experiment settings. OptiTrack camera system is installed on the walls 
to measure GT-MAB and wand trajectories. The horizontal position of human is about 1 m away from the 
horizontal position of GT-MAB. (Right): Blimp trajectory and wand trajectories collected from the experiment.
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Hence we formulate the parameter identification problem as a constrained optimization problem. The optimiza-
tion problem is minimizing the difference between the simulated and the smoothed wand wand trajectory. To 
solve the optimization problem, we convert the terminal constraint that the human internal state is zero to a 
penalty term in the cost function, as follows:

where β ∈ R is a parameter chosen to balance the penalty term and the modeling error. We set β = 50 , and 
solve the above optimization problem using the interior point  method30. Since the cost function is non-convex 
with respect to the parameters, we apply the global optimization  technique31 to avoid the solution converging 
to a local minimum.

The identified parameters are given in Table 1. We identify the VITE model parameters γ̂ , ĝ for both partici-
pants. The two participants perform the pointing motion with different model parameters. Further, the identified 
parameters of each of the participants in different trials show consistency, which is indicated by the small variance 
of the identified parameters in different experiments.

Justification of Assumption 1. To verify whether the VITE model is applicable to human blimp interac-
tion, we divide the up/down sections into two sets, the training set and the testing set. The training set is the set 
of complete going-up and going-down segments in the first 35 s, while the test set contains the rest of the trajec-
tory. We first compare the smoothed wand trajectory in experiment with the wand trajectory simulated by the 
VITE model with the identified parameters. Since the VITE model is a second order dynamical system, we also 
compare the smoothed wand velocity in experiment with the VITE model simulated wand velocity.

Justification using the wand position data The Root Mean Square Error (RMSE) between the true and the 
simulated wand trajectory and its variance is given in Table 1. For the two participants, the RMSE for the training 
set is less than 7.2% of the total change-of-height of the blimp throughout the experiment. The RMSE of the test 
set is larger than the training set, and is about 11.6% of the total change-of-height of the blimp. The small RMSE 
and the low variance indicate that the VITE model can accurately describe the human blimp interaction, and it 
can correctly predicts the human behavior. Figure 3 (Left) shows one set of comparison between the measured 
and the reconstructed wand trajectory. It can be seen that the two trajectories match well in both the training and 
the test set. This indicates that the VITE model simulated trajectory is able to describe and predict the human 
pointing behavior in human blimp interaction.

Justification using the wand velocity data We also provide justification of the VITE model by computing the 
RMSE between the true and simulated wand velocity. The RMSE is given in Table 1. The RMSE for the training 
set is less than 8.5% of the maximum wand velocity throughout the experiment, while the RMSE is less than 
15.2% of the maximum wand velocity in the test set. Figure 3 (Right) shows one set of the measured, smoothed 
and simulated wand velocity, where the simulated wand velocity is computed by ĝη(t) . It can be seen that the 
simulated wand velocity matches with the smoothed wand velocity, which shows that the VITE model can quali-
tatively reproduce the wand velocity. The VITE model matches with the wand velocity better at the beginning 
of each segment, in the acceleration phase. There is relatively larger error when the blimp is about to reach the 
target position, and the human decelerates the wand. One possible explanation for the modeling error in the 
deceleration phase is that in the experiment, human is not given a specific target position. Hence the participant 
does not pay attention to the accuracy of the pointing motion, and tends to drive the blimp towards the target 
with higher speed than the VITE model predicts.

From the error analysis, we observe that the human blimp interaction can be described and predicted by the 
VITE model. This is an expected outcome since the VITE model describes a general relationship between the 
distance from the target to the pointer and the neural commands of muscles contraction for human pointing 
motion in different interfaces.

(6)

˙̂η(t) =

{

γ̂ (−η̂(t)+ r̂t,u − u(t)), if n ∈ �u

γ̂ (−η̂(t)+ r̂t,d − u(t)), if n ∈ �d
,

˙̂y(t) = ĝ[η̂(t)]+d ,

ŷ(0) = ỹ(0),

η̂(T−
n ) = 0, n ∈ �u ∪�d.

(7)

min
�

∑

n∈�u

∫ T+
n

T−
n

(ỹ(t)− ŷ(t))2dt +
∑

n∈�d

∫ T+
n

T−
n

(ỹ(t)− ŷ(t))2dt + β
∑

n∈�u∪�d

η̂(T+
n )2

s.t. ˙̂η(t) =

{

γ̂ (−η̂(t)+ r̂t,u − u(t)), if n ∈ �u

γ̂ (−η̂(t)+ r̂t,d − u(t)) if n ∈ �d
,

˙̂y(t) = ĝ[η̂(t)]+d ,

ŷ(0) = ỹ(0),

η̂(T−
n ) = 0, n ∈ �u ∪�d,



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:11402  | https://doi.org/10.1038/s41598-022-15016-w

www.nature.com/scientificreports/

Human behavior analysis
In this section, we describe human and blimp behaviors during the experiments. We will compare these behaviors 
with the behaivors observed in human computer interface experiments. In order to describe observations of the 
experiment, we use the following visualization techniques in existing literature on HCI:

Time-series plots We plot the wand position and velocity over time, to describe the human behavior in time.

Phase space plots The phase space trajectory describes the evolution of the system state in the VITE model with 
respect to the system input, which is the blimp position.

 Wand and blimp movements. Figure 2 (Right) shows one set of experimental data. We observe that the 
human moves the wand towards the target with accelerated motion at the beginning. As the blimp goes near the 
target position, the human slows down the pointing motion, until he/she is satisfied with the blimp position. 
After the human stops moving the wand, the blimp slows down, and keeps moving up/down for a short period 
of time before its speed reduces to zero.

As shown in Fig. 4, comparing to the identified target position with the blimp trajectory, the stopping posi-
tion of the blimp in each going up/down segment goes over the identified target position. This overshoot can be 
explained by the VITE model. Let’s take one going-up segment as an example. Suppose the internal state has not 
reached zero, then the human internal state can be described by integrating the system input,

Suppose at time step t ′ , u(t′) reaches rt . This is the timestep that the input to (8) goes to zero, meaning that 
the human stops accelerating the wand. However, at this timestep, ẏ(t′) = g[η(t′)]+d > 0 , since the human 

(8)η(t) =

t
∫

0

γ exp(−γ (t − τ))(rt − u(τ ))dτ .

Table 1.  Identified parameters and RMSE between the actual and simulated wand trajectory. S1–S5 represent 
the two human participants, while D1–D15 are the 15 datasets collected in the experiments. traj RMSEm shows 
the RMSE between the true and the simulated wand trajectory in the training set, and traj RMSEt presents 
the RMSE in the test set (in m). traj Varm and traj Vart are the variance of the difference between the true and 
the simulated wand trajectory, for the training set and the test set, respectively. Similarly, vel RMSEm and vel 
RMSEt shows the RMSE between the true and the simulated wand velocity, in the training set and the test set, 
respectively (in m/s).

γ̂ ĝ traj RMSEm traj Varm traj RMSEt traj Vart vel RMSEm vel RMSEt

S1

D1 0.4010 0.2333 0.1057 0.0131 0.2228 0.0121 0.0100 0.0241

D2 0.6584 0.2189 0.0571 0.0020 0.0576 0.0026 1.376e
−4 0.0083

D3 0.5318 0.1768 0.0912 0.0038 0.1421 0.0062 0.0104 0.0363

Mean 0.5304 0.2097 0.0847 – 0.1408 – 0.0068 0.0229

Var. 0.0166 8.62e
−4 – – – – – –

S2

D4 0.3973 0.3618 0.0241 5.7729e
−4 0.0280 7.7702e

−4 0.0030 0.0104

D5 0.4341 0.2906 0.0615 0.0019 0.0731 0.0037 0.0067 0.0095

D6 0.4208 0.2371 0.0426 0.0015 0.0465 0.0023 0.0039 0.0070

Mean 0.4174 0.2965 0.0543 – 0.0492 – 0.0045 0.0090

Var. 3.4723e
−4 0.0039 – – – – – –

S3

D7 0.2784 0.2001 0.0937 0.0084 0.0876 0.0074 0.0024 0.0387

D8 0.3102 0.2456 0.0743 0.0036 0.0906 9.6341e
−4 0.0031 0.0009

D9 0.3031 0.2093 0.0575 0.0032 0.0720 0.0043 0.0035 0.0042

Mean 0.2972 0.2183 0.0752 – 0.0834 – 0.0030 0.0158

Var. 2.78e
−4

5.78e
−4 – – – – – –

S4

D10 0.3711 0.3183 0.1074 0.0113 0.1387 0.0045 0.0040 0.0107

D11 0.8962 0.6536 0.1118 0.0103 0.2231 0.0633 0.0193 0.0463

D12 0.4012 0.2466 0.1491 0.0041 0.0928 0.0087 0.0092 0.0085

Mean 0.5562 0.4062 0.1228 – 0.1515 – 0.0108 0.0218

Var. 0.0869 0.0472 – – – – – –

S5

D13 1.5950 0.2087 0.0755 0.0046 0.0801 0.0023 0.0024 0.0031

D14 1.2490 0.2949 0.0471 0.0020 0.1533 0.0038 0.0049 0.0135

D15 1.1645 0.2341 0.0678 0.0040 0.0774 0.0021 0.0022 0.0109

Mean 1.3362 0.2459 0.0635 – 0.1036 – 0.0032 0.0092

Var. 0.0520 0.0020 – – – – – –
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acceleration is positive, rt − u(t) > 0,∀t ∈ [0, t ′) . Hence the human does not stop the wand movements when 
the blimp reaches the target position. Instead, when human stops moving the wand, the blimp has already moved 
over the target position. This explains the overshoot observed in Fig. 4.

Moreover, we observe an “undershoot”in the blimp trajectory. Figure 5 (Left) shows the trajectories of the 
closed-loop pointing system. The human internal state is plotted against the blimp position. From the plot, It 
can be seen that the blimp first move in the opposite direction of the target position, i.e., in the going-up seg-
ments, the blimp first goes down before going up towards the equilibrium set. The system state first moves in the 
“wrong”initial direction, but then it eventually reverses course and reaches the desired steady state. As shown in 

Figure 3.  (Left): Comparison between the measured and the simulated wand trajectory. (Right): Comparison 
between the measured wand velocity computed from differentiating the trajectory data, the smoothed wand 
velocity, and the simulated velocity (dataset 5).

Figure 4.  Comparison between the identified target position and the blimp trajectory. The blue and red solid 
lines show the blimp trajectory in the going-up/down segments, respectively, and the blue and red dashed lines 
show the identified target position for the going-up/down segments.
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Fig. 5 (Right), since the blimp is a second-order system, direction change will take more time than a computer 
mouse. Hence, after the human stops the wand and switches to the next target, the blimp takes additional time 
to reduce its speed to zero, before changing its direction to go to the next target. At the initial time of each going-
up/down segment, the initial condition of the blimp is not zero. The wrong initial direction of the blimp is the 
natural response of the blimp driven by the system’s initial states. Since the closed-loop system is exponentially 
stable, the blimp catches up with the wand trajectory after a short period of time, as shown in Fig. 5 (Right).

The initial response in the “wrong”direction is an undesirable effect in practice. In human blimp interaction 
experiments, the user might get confused whether the blimp has finished reaching the previous target, and may 
suspect that the blimp is malfunctioning. In such cases, incorporating feedback from the blimp in reaction to 
the human user may provide better interaction  experience18.

Benefit and limitation of the VITE model. We refer to the VITE model without the reset term as the 
baseline controller, ÿ(t) = gγ (−η(t)+ rt − u(t)). It is easy to prove that the equilibrium of the closed-loop 
system formed by the base controller and the blimp is the origin. When the blimp reaches the target position, 
we have u = rt . In this section, we aim to identify the benefits and limitations of the VITE model by comparing 
it against the baseline controller.

Compared with the baseline controller, the major benefit of the VITE model is that it reduces the overshoot of 
blimp motion. Figure 6 shows comparison between the tracking error of using the VITE model and the baseline 
controller to track a fixed target position. Under the VITE control, the blimp motion settles at the equilibrium 
much faster than the baseline controller, with significantly less overshoot. It has been theoretically justified that 
the reset controller reduces overshoot and settling time of a system under  control25.

However, the equilibrium of the closed-loop system formed by the VITE model and the blimp is not the ori-
gin. Once the reset condition η = 0 is satisfied, the human perceives the task finished, and stops wand movement. 
Therefore, the VITE model will not drive the tracking error to zero. On the other hand, the baseline controller 
will drive the blimp position to the origin, achieving better accuracy than using the VITE model.

The use of the reset controller indicates that when interacting with the blimp, human prefers to fulfill the 
task in shorter time with less overshoot while sacrificing accuracy. This phenomenon is also seen in pointing 
motion across various interfaces, i.e. HCI using a  mouse29. The human adopts a two-phase mechanism to fulfill 
the pointing motion, the surge phase and the corrective phase. The surge phase denotes the initial movement 
towards the target. In this phase human points in an accelerated motion. After the pointer is adjacent to the 
target, human uses a slower corrective motion to let the tracking error reach  zero32.

Conclusion
We investigate interaction between a human user and an autonomous blimp by letting the human control the 
position of the blimp through wand movements. We verify that the VITE model can describe human generated 
wand motion when interacting with the blimp. We show that the closed-loop system describing the human–blimp 
interaction is exponentially stable. The exponential stability tolerates the undershoot behavior of the blimp 
caused by its inertia. Moreover, the study suggests that the VITE model, as a special reset controller, reduces the 
overshoot of the blimp motion in human–blimp interaction.

Figure 5.  (Left): The internal state trajectory (dataset 3). Black circles show the initial state of the system. The 
blue and red straight lines are the equilibrium set of the going-up/down segments. The identified target position 
of the going-up/down segments is shown by the blue/red star. (Right): Blimp and wand trajectory. As shown 
in the zoomed-in plot, after the human stops moving the wand and switch the target position, the blimp takes 
additional time to change its direction. This results in the “wrong”initial response of the closed-loop system.
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