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Abstract— Human pose as a query modality is an alternative
and rich experience for image and video retrieval. We present a
novel approach for the task of human pose retrieval, and make
the following contributions: first, we introduce ‘deep poselets’
for pose-sensitive detection of various body parts, that are
built on convolutional neural network (CNN) features. These
deep poselets significantly outperform previous instantiations of
Berkeley poselets [2]. Second, using these detector responses, we
construct a pose representation that is suitable for pose search,
and show that pose retrieval performance exceeds previous
methods by a factor of two. The compared methods include
Bag of visual words [24], Berkeley poselets [2] and Human pose
estimation algorithms [28]. All the methods are quantitatively
evaluated on a large dataset of images built from a number
of standard benchmarks together with frames from Hollywood
movies.

I. INTRODUCTION

As an atomic unit of gesture and action, pose is an

important aspect of human communication. Accordingly it

has been the focus of many works [6], [10], [14], [17],

[20], [23], [27], [28] in the recent past. With the exponential

growth of videos and images online, it has become very

critical to develop interfaces which allow easy access to

human pose. Figure 1 illustrates an example pose retrieval.

As shown in the figure, a pose search system aims to retrieve

people in a similar pose to the query irrespective of the

gender of the person, color of the clothing, the type of clothes

worn or the clutter and crowd in which the person is standing.

In this work, we propose a novel approach to pose search

using ‘deep poselets’. ‘Deep poselets’ can be described as

classifiers which detect a subset of body parts in a specific

pose. The response of these deep poselets are used to con-

struct a feature representation of the pose, which is used for

the pose retrieval. The main contributions of this work are,

(a) demonstrating that explicitly clustering the pose space of

arms is useful for encoding the pose, (b) demonstrating that

a similar architecture to ImageNet-CNN [18] is able to work

on the unrelated task of poselet classification, (c) finding

areas in the image that have high probability of deep poselets

being present, and thereby improving their performance, and

(d) empirically demonstrating that deep poselet based pose

search outperforms competing methods.

The pose search task was originally proposed by Ferrari et

al. [9] where it was demonstrated on a database containing

six episodes of the popular TV show ‘Buffy the Vampire

Slayer’. In their work, first, all the people in a frame are

detected using an upper body detector, and a human pose

Clutter Clothing Color 

Query 

Fig. 1. Pose Search: For the query image (top-left corner), the pose
search system retrieves people in the database who are in the same pose as
the query image. The system has to be invariant to the color and type of
the clothes, the clutter in the background and presence of other people in
the image. (Best viewed in color)

estimation (HPE) algorithm is run on the detected upper

bodies. Using the marginals computed during the inference,

a feature representation is constructed for the pose. The work

by Jammalamadaka et al. [16] extended [9] by demonstrating

pose search on 3.1 Million frames taken from 22 Hollywood

movies. In [16], a HPE algorithm is used to estimate pose

and a very low dimensional feature vector is built using the

angles of the various body parts. Furthermore, the algorithm

proposed by Jammalamadaka et al. [15] detects wrong pose

estimates, and hence is able to filter them out.

The pose retrieval methods of [9], [16], [15] use HPE al-

gorithms. Among the many HPE algorithms, pictorial struc-

tures [8] based methods [6], [10], [28] in particular are very

popular. Methods such as [20] have integrated a modified

version of Berkeley poselets [2] with pictorial structures,

while other methods such as [23] have used the poselets for

inferring the pose. With the success of convolutional neural

networks, a few methods [25] have been proposed using

CNN architectures. The work by Gkioxari et al. [13] is the

closest to ours. Both our approach and [13] use body part

detectors which are sensitive to pose. While the main focus

of [13] is on key point detection, ours is on implicit pose



encoding. Further, while we train CNN features specifically

for body part detection task using CNNs, Gkioxari et al. [13]

have used HOG features. Even though the performance of

HPE is improving, it is not good enough to be used as base

technology for tasks such as action recognition and pose

retrieval. A single mistake by the algorithm, say a mistaken

wrist position, renders the whole pose estimate wrong. Our

proposed approach addresses this by softly encoding several

locations for each body part.

Deep poselets, inspired by poselets [2], model a subset of

parts (e.g, left upper and lower arm) appearing in a particular

pose. The key difference between [2] and our method is

that [2] is for person detection, and ours is for pose detection.

The different poselet types in [2] are derived from data by

randomly selecting a large number of potential candidates,

and then successively pruning them using various heuristics.

Several such classifiers are trained with the objective of

detecting a person. All these classifiers are then run on

a test image. Based on the relative locations between the

detections, the location of the person is estimated. In our ap-

proach, we obtain specific poselets and the positive instances

belonging to them using a data driven process described in

section II-A. Given the poselets and instances belonging to

them, a classifier is trained to discriminate positive instances

from the negatives ones. The features for these classifiers are

learnt using CNNs. CNNs have significantly improved the

performance of image classification [4], [12], [18] on the

challenging ImageNet dataset [3]. Motivated by Razavian

et al. [22], we use an architecture similar to [18] to learn

features. The details of the feature extraction and training

are described in section II-C. During the detection stage,

mutually exclusive poselet types (e.g., those corresponding to

the left arm) fire at the locations with a significant overlap in

their detections. This conflict is resolved by spatial reasoning,

described in section III. Using these deep poselets and their

detection scores, a representation for a pose is constructed.

The representation is then used to perform pose search as

described in section IV. In the experimental section V, we

evaluate both the deep poselet method and the pose search

method by comparing them with relevant baselines.

II. DEEP POSELETS

In this work, a deep poselet is defined as a model which

consists of subset of the seven body parts present in a

particular pose. The seven body parts used are the left and

the right upper arms, the left and the right lower arms, the

left and right hip, and the head. Figure 2 illustrates a few

example deep poselets.

A. Deep poselet discovery

The deep poselet framework can be understood as a

discretization of the pose space, where each state is captured

by one deep poselet. We formulate this discretization as a

data driven process by clustering the body joints. Clustering

all the body parts jointly needs huge amounts of data to

fully represent the pose space. Instead we cluster on seven

subset of body parts, where subset i is represented by Si.

(2) 
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Fig. 2. Discovered deep poselets: Six deep poselets and instances
belonging to them are shown. For each deep poselet, an average image
marked with stickman and example instances are displayed. A deep poselet
is composed of subset of body parts in a particular pose as indicated by the
stick figure on the average image. The body parts and their poses in each
example instance matches its corresponding deep poselet.

The seven subsets used are (1) the left arm and the left hip,

(2) the left arm, left hip, and the head, (3) the left arm and

the right hip, (4) the right arm and the right hip, (5) the right

arm, right hip, and the head, (6) the right arm and the left

hip, and (7) all body parts minus the head. The left and the

right arm are modelled, in three different spatial contexts,

by the subsets {S1, S2, S3} and {S4, S5, S6} respectively.

These three spatial contexts are (a) itself, (b) with torso, and

(c) with head and torso. The subset S7 models both the arms

and captures the popular poses in the database. The resultant

cluster means form an atomic unit of pose and a combination

of them describes an upper body pose. Since the body parts

modelled by a subset Si can only take one of N distinct poses

and clustering algorithms give unique means, these cluster

means are mutually exclusive to each other.

Clustering each subset Si is performed in the following

way. First the dataset is preprocessed by computing a bound-

ing box of the person from the stickman annotation. This

bounding box is then expanded by extents learnt from the

data such that all possible human poses, with their various ar-

ticulations and extensions of body parts, are contained within

the expanded bounding box. Next, body parts annotations

of subset Si are x-y normalized with the dimensions of

the expanded bounding box. These normalized coordinates

are concatenated and passed onto a K-means algorithm for

clustering. The cluster means are taken as the canonical deep

poselets. In our experiments, a total of 122 deep poselets are

obtained. Figure 2 illustrates a few deep poselets discovered

using the above process.

While it is sensible to consider the samples belonging to

the deep poselet cluster as positive samples, some of these are

perceptually dissimilar to the cluster mean. Further, there are

samples whose membership is perceptually ambiguous. Thus

for a deep poselet, each sample is classified as belonging

to positive class, negative class or ignore class using body

part angle (angle made by a body part with the image axis).



The samples belonging to ignore class are neither considered

while training nor while testing. The classification is done

using the following procedure: (a) All the samples whose

individual part angles do not deviate by more than τ1 from

the canonical deep poselet are taken as positive samples,

(b) All the samples whose individual part angles deviate

by more than τ2 degrees from the canonical deep poselet

are considered as negative samples, and (c) Finally all the

samples whose individual part angles deviate by less than τ2
degrees but with at-least one part which deviates between τ1
and τ2 degrees are considered as ignore class. Using cross

validation, the thresholds τ1 and τ2 are set at 20 and 30
degrees respectively.

B. Expected poselet area (EPA)

As deep poselets use CNNs, the sliding window approach

for locating the body parts is very expensive during test time.

Previous CNN based methods for image classification have

solved this problem by using unsupervised object proposal

methods like objectness [1] and selective search [26]. Unfor-

tunately, poselets are not whole objects but parts of a specific

object (e.g, arms as part of human). Thus the above object

proposal methods are not useful for the task. We solve this

problem by finding the ‘expected poselet area (EPA)’ in an

image. EPA gives the highly probable location of the deep

poselet within the bounding box of the person.

Deep poselets typically occur in a localized region within

expanded bounding box. For example, a deep poselet mod-

elling the left arm typically lies in the left half of the bound-

ing box. We term this localized region as ‘expected poselet

area’. The search space of the deep poselet can be restricted

to this ‘expected poselet area’ which improves both the

performance and time complexity. The extent of the EPA of a

deep poselet is learnt from the positives in the training data.

This is done by taking 5 percentile and 95 percentile of the

normalized coordinates (normalized w.r.t expanded bounding

box) as the extent of EPA respectively. Experiments show

that over 95% of the positive instances are encompassed by

expected poselet area. While EPA encompasses the positives

instance well, it also has background area within it. Thus the

ground truth area can be any of the possible sub-windows

of the EPA. A way to deal with this would be to search for

the true detection in the EPA over all possible scales and

locations. We simplify the search procedure by fixing the

scale of deep poselet to 90% of the EPA and translations to

9 equally spaced sub-windows.

C. Training

As mentioned before, each deep poselet models a subset of

parts in a specific pose. We train a discriminative classifier

which can tell apart image regions belonging to this deep

poselet from other image regions. We use linear SVMs

to train the deep poselets. For the features, we use the

representations from CNNs. Convolutional neural networks,

first proposed by Lecun et al. [19], model an object as

composition of patterns starting from edges to higher level

parts like faces. A CNN consists of convolutional layers,

pooling layers and fully connected layers. A convolutional

layer consists of K 3-D filters which are applied to the input

to obtain K feature maps. At each location of the feature

map, a nonlinear function called a neuron activation function

is applied. The convolutional layers are followed by pooling

layers which pool the inputs in a local neighbourhood and

typically down-sample the input, thus introducing translation

invariance. Finally, fully connected layers take input from all

the neurons of the previous layer and act as the reasoning

units. Taking input from such a wide context helps in making

better informed decisions about the class labels. The network

is trained using the back propagation algorithm. In our ex-

periments, we use the implementation of the ImageNet-CNN

network by Donahue et al. [4]. The ImageNet-CNN [18] is

a deep neural network with five convolutional layers and

three fully connected layers. Below, the feature extraction

and training are explained

1) Feature Extraction: The nine sub-windows of the EPA

are passed through ImageNet-CNN in a feed forward manner

and the feature maps of the fifth pooling layer (pool5), the

first and the second fully connected layers (fc6 and fc7

respectively) are noted. From these three feature maps, the

best performing one (details in section V) is used as the

representation for the deep poselet.

Further, we fine-tune the ImageNet-CNN to the task

of poselet classification so that the CNN takes an image

region as input and outputs the poselet class label or back-

ground. For fine-tuning, the last fully connected layer of

the ImageNet-CNN is replaced by a 123 (122 deep poselets

and a background class) neuron fully connected layer. The

weights of the newly added layer are randomly initialized.

The weights of the rest of the layers are initialized from the

ImageNet-CNN [4]. It has been observed that the sample

strength ratio between the largest poselet class and the

smallest poselet class is 80. To compensate for this skew,

the data of the classes with low strength are augmented

by their translated versions. The original learning rates are

decreased by a factor of 10 so that the existing weights do not

significantly change. For the first two fully connected layers,

a dropout rate of 0.5 is used. For training the network, the

cuda-convnet software is used.

2) Learning SVMs: The SVM training follows an iterative

procedure. After extracting the feature representations from

the nine sub-windows of all EPAs, an initial linear SVM

model is trained. For this, all the sub-windows are given

the same label as the EPA. Using this initial SVM, the best

scoring sub-windows are selected and a new SVM model is

trained. This process is repeated until the AP on validation

set converges. In practice, it is found that three iterations

suffice. Empirically, this procedure improved the AP by 7%
over the method in which the candidate window is used as-is

for training. This procedure is reminiscent of best positive

bounding box selection used in Felzenswalb et al. [7].

D. Testing

Given a test image, it is processed using the human de-

tector algorithm to obtain upper body detections. Each upper
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Fig. 3. Spatial reasoning: For a given test sample, three deep poselet
detections and their scores are shown as belonging to the area marked by
an orange rectangle. Detections 1 and 3 are partially correct as the pose
of the left upper arm matches that of the test sample. Detection 2 is the
correct one. Typically many such deep poselet detections, often mutually
exclusive, have significant overlap. Using spatial reasoning, these detections
are rescored such that correct ones (detection 2) get a score of nearly 1 and
the partially or totally incorrect ones (detection 1 and 3) get a score of nearly
0. The image also shows that area around the left arm (orange rectangle) has
15 unique deep poselets while area around the right arm (pink rectangle)
has 13 unique deep poselets.

body detection is then transformed to obtain the expanded

bounding box. For each deep poselet, the corresponding

EPA (expected poselet area) is computed using the learnt

transformation (section II-B). The EPA is then divided into

nine equally spaced sub-windows with the scale of each sub-

window at 90% of EPA. Each sub-window is passed onto the

deep poselet model to obtain a score. The sub-window with

the best score is noted as the deep poselet detection.

III. SPATIAL REASONING

On an image with a person in it, typically most of the deep

poselets fire, when only a few of them are correct. Many

of these deep poselet detections significantly overlap, while

being mutually exclusive. Figure 3 illustrates this behavior. In

the figure, three deep poselet detections corresponding to the

left arm are displayed. Clearly they are mutually exclusive

because the arm can be present in only one of the three poses

represented by them. This conflict is resolved by rescoring

the deep poselet detections using other mutually exclusive

deep poselet detections as context. The expected outcome

is that the correct detections (detection 2 in the figure 3)

have a score of nearly 1 and incorrect ones (detections 1
and 3 in the figure 3) have a score of nearly 0. For this

rescoring, a RBF kernel based regression model [5] is learnt

for each deep poselet type P . The input to this model is

a feature vector comprising of calibrated scores of the P ’s

own detection and its mutually exclusive deep poselets and

the output is the new score. For training, the above feature

is provided as input and the binary label of the deep poselet

detection is provided as target value. Given a test sample,

first all the deep poselets are run on the sample and then the

above regression models are applied to rescore each deep

poselet detection. Below the procedure for calibration and

finding mutually exclusive poselets are described.

Calibration: Calibration ensures that scores of various

deep poselets are comparable. This is achieved by mapping

the scores of all deep poselets to the [0, 1] interval. We use the

method proposed by Platt [21], in which a logistic regression

model is learnt with the deep poselet score as input. Let

X ∈ R be the scores of the deep poselet detections D. A

mapping σ : X → Y where X,Y ∈ R is learnt. The function

σ(x) is parameterized by w0, w1 and is given by,

σ(x) =
1

1 + e(w1x+w0)
. (1)

Mutually exclusive deep poselets: For each deep poselet

type P , a mutually exclusive poselet is defined as one which

occupies the same area in the person bounding box. For

example, the three detections in figure 3, which are mutually

exclusive, occupy the same area. The following procedure is

used to find the mutually exclusive deep poselets. First the

‘expected poselet areas’ (section II-C) of all the 122 deep

poselets are collected. These deep poselets are then clustered

using the cluster partitioning algorithm proposed by Ferrari

et al. [11]. The algorithm returned 31 clusters, where poselets

in each cluster form a mutually exclusive set.

IV. POSE SEARCH

In this section, we first describe our pose search approach.

We then review three standard retrieval methods for the pose

search task. Later in the paper (section V-C), we compare

the proposed pose search method against standard retrieval

schemes described below. All the methods below take an

expanded bounding box as input.

Our pose search approach: Given a test image, all the

deep poselets are run on it using the procedure described

in section II-D and the detection scores are noted. All the

deep poselet detections are clustered by the person to which

they belong. These deep poselet detections are then rescored

using spatial reasoning (section III). Finally a feature vector

of K dimensions, where K is the number of deep poselet

detectors, is constructed by max pooling the detections. The

feature is then l2 normalized. Thus for each upper body in

the dataset, a feature vector is constructed.

Given a query image, a feature representation is created

using the method described above and it is compared against

all the samples in the dataset using Euclidean distance. The

samples in the dataset are sorted by distance and presented

to the user.

Bag-of-visual words models [24]: Given a training data

composed of images with people in various poses, the SIFT

features are extracted at the key points and 1000 visual

words are obtained. Given a test upper body detection, the

SIFT features are extracted in the expanded bounding box

and bag of words representation is obtained using the visual

words computed from the training data. This representation



Dataset Train Validation Test Total

H3D dataset [2] 238 0 0 238

ETH PASCAL dataset [6] 0 0 548 548

Buffy stickmen dataset [10] 747 0 0 747

Buffy stickmen-2 dataset [15] 396 0 0 396

Movie stickmen dataset [15] 1098 491 2172 3756

FLIC [23] 2724 2279 0 5003

Total 5198 2764 2720 10682

TABLE I

THE CONTRIBUTIONS OF VARIOUS DATASETS BEFORE ADDING THE

FLIPPED VERSIONS.

  

Fig. 4. Images from the dataset: These images show the pose variation
in the dataset.

is then compared against all the images in the database. The

distances or similarity scores are sorted to obtain the ranked

list.

Human pose estimator [28]: Following the method pro-

posed by Jammalamadaka et al. [16], the HPE algorithms are

used for the pose search task as described below. First the

pose estimation algorithm [28] is run on all the expanded

versions of the upper body detections in the database to

obtain the pose estimates. This HPE algorithm gives the

locations of various body joints by efficiently searching over

multiple scales and all possible translations. For each pose

estimate, the sine and cosine of upper and lower parts of both

the arms are extracted to form a pose representation. Given a

test upper body bounding box, the above procedure is applied

to obtain the pose representation. It is then compared against

all the instances in the database and the ranked list is obtained

after sorting the scores.

Berkeley poselets [2]: Here, all the poselet classifiers are

run on an image to obtain poselet detections. These poselet

detections are then pooled into clusters based on the person

bounding box, and are max pooled to obtain a description

of the human pose. The above procedure is applied on the

database and the representations are stored. Given the query

sample the above representation is obtained and is compared

against all the samples in the database. The ranked list is

obtained by sorting the scores.

Layer Before fine tuning After fine tuning

pool5 67.5 69.5

fc6 59.7 69.6

fc7 47.4 69.6

TABLE II

PERFORMANCE OF FIVE RANDOMLY CHOSEN DEEP POSELETS ON

VARIOUS CNN FEATURES OVER THE TEST DATA.

V. EXPERIMENTS

In this section, we present the experimental evaluation

of the deep poselet method and the pose search method.

First the data used for both the tasks is described in detail.

Then the experimental setup and results for the deep poselet

method and pose search method are described.

A. Data

Training deep poselet classifiers require moderately large

amounts of data. We thus pool several existing datasets to

create training and test data for deep poselets and pose

search. The datasets used are Buffy stickmen dataset [10],

ETH PASCAL dataset [6], the H3D dataset [2], Buffy

stickmen-2 dataset [15], Movie stickmen dataset [15] and

FLIC dataset [23]. Each of these datasets contains images

and stick figure annotations of the humans. Figure 4 shows

some examples from these datasets. For the convenience of

pose search method, we consider only those annotations in

which all parts are visible. For a partially occluded person,

defining a positive instance for retrieval is ambiguous. In all,

there are 10, 682 fully visible annotations. The statistics are

given in the Table I. To further enhance the dataset size,

each image and annotation is horizontally flipped effectively

doubling the corpus to 21, 364 stickmen. Using the stickman

annotations, the bounding box of the upper body is con-

structed and transformed into the expanded bounding box.

To understand the efficacy of various pose representation

schemes, the ground truth bounding box is assumed.

The combined dataset of 21, 364 samples is divided into

training, validation and test datasets. The training dataset

consists of Buffy stickmen dataset [10], H3D dataset [2],

Buffy-stickmen II dataset [15], five movies from the movie

stickmen dataset [15] and twenty movies from FLIC

dataset [23]. The validation dataset consists of one movie

from movie stickmen dataset [15] and ten movies from FLIC

dataset [23]. The testing dataset consists of ETH pascal

dataset [6] and the remaining five movies from the movie

stickmen dataset [15]. This division of data ensures that

training and testing datasets have no overlap in movies

and helps in evaluating the methods on unseen data. The

individual contributions of various datasets to the train,

validation and test data are given in table I.

B. Deep Poselets

Given a set of deep poselet detections and ground truth

bounding boxes, the deep poselet performance is reported in

terms of average precision (AP) in the following way. First

all the deep poselet detections in an image are compared

against the ground truth bounding boxes using the intersec-

tion over union measure (IOU). All the detections which
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Fig. 5. Deep poselets vs HOG poselets: The graphs show the performance of three deep poselets on test data. The red curve in each graph corresponds
to HOG poselet while the green curve corresponds to the deep poselet. As can be seen, the deep poselet outperforms the HOG poselet.

Method AP-test

HOG poselets 32.6

Deep poselets before fine-tuning 48.6

Deep poselets after fine-tuning 56.0

TABLE III

COMPARISON BETWEEN HOG AND DEEP POSELETS (CNN-FEATURES)

ON THE TEST DATA.

have more 0.35 IOU, a value used in [2], are considered as

positive. All the detections are then sorted in the decreasing

order of score and AP is calculated using the labels.

Deep poselets: Using the procedure described in sec-

tion II-C, deep poselets are trained using CNN features

extracted from the ImageNet network [4], before and after

fine-tuning it. The hyper-parameters are set using 3-fold cross

validation. We experiment with the features from last pooling

layer (pool5), the first (fc6) and second (fc7) fully connected

layers. Table II shows the performance of deep poselets using

features from different layers averaged over five randomly

chosen deep poselets on the testset. For deep poselets using

features before fine tuning the network, the last pooling layer

(pool5) works best. This is expected as the network is trained

on a very different task of object detection. For the deep

poselets using the features after fine tuning the network, the

features from second fully connected layer (fc7) works best.

The deep poselets using features after fine tuning consistently

outperform those which use features before fine tuning.

HOG poselets: To baseline the performance of the deep

poselets, we compare it with poselets which use HOG

features. In this method, a linear SVM is trained using the

standard hard-negative mining approach [7]. For the positive

samples, the HOG feature is extracted in the bounding

box. For the negative samples, the HOG feature of all

possible bounding boxes in scale and translation space are

considered. Given a test sample, the classifier is run on all

scales and locations. All the detections which are above a

pre-determined threshold (95% recall on the training data)

are deemed as positive detections. Further, all the poselet

detections which do not overlap more than 0.35 IOU with

the ‘expected poselet area’ (section II-C) are discarded. This

step improves the average AP by 10%.

Table III shows the performances of HOG poselets and

deep poselets. These values are averaged across all the 122
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BOW [24]:      14.2

Berkeley
Poselets [2]: 15.3

HPE [28]:       17.5

Ours:              34.6

Fig. 6. Posesearch performance: The distribution of query performances
by various retrieval methods are shown. Each bar in the graph shows the
percentage of queries (Y-axis) having an average precision (X-axis). Thus
the more the number of queries on the right side of the graph the better
the method. This is also reflected by the mean of the distribution (mAP) of
various methods given in the top right corner. It is clear that the proposed
method significantly outperforms other methods.

Methods #Dimension mAP

Bag of Visual Words [24] 1000 14.2

Berkeley Poselets [2] 150 15.3

Human Pose Estimation [28] 8 17.5

Ours - Deep Poselets 122 32.9
+ Spatial Reasoning 122 34.6

TABLE IV

POSE SEARCH PERFORMANCE (MAP) AND POSE REPRESENTATION’S

DIMENSIONS OF VARIOUS METHODS.

classifiers. It is apparent from the numbers that deep poselets

outperform the HOG poselets. It is also observed that out

of 122 deep poselets, 118 of them using features before

fine-tuning and 120 of them using features after fine-tuning

outperform the HOG poselets. Figure 5 compares the AP

curves of HOG poselets and deep poselets. Figure 7 shows

the example detections of three deep poselets. As illustrated

in the figure, the performance of the deep poselet improves

with more training data.
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Fig. 7. Top deep poselet detections: Three deep poselets and top detections by them are shown. For each deep poselet, every fifth detection is displayed.
In the top 50 detections, while there are no mistakes in deep poselet (a), there are 4 mistakes in deep poselet (b) and 20 mistakes in deep poselet (c). In
the deep poselets (b) and (c), the first mistakes occur at ranks 20 and 10 respectively. It can be seen that the performance of deep poselets improve as the
number of training samples increases.

C. Pose search

Given a query image, the feature representation is com-

puted and its similarity score or distance is computed with

all samples in the test data. These scores are then sorted to

obtain a ranked list. The label for each sample in this list,

which indicates if the sample has a similar pose as the query,

is determined using the part angles as described in section II-

A. Using the ranked list and labels, average precision (AP)

is calculated. Each sample in the test data is used as a query

to retrieve the results, thus evaluating the various retrieval

methods on a total of 5440 queries, the size of test data. The

pose search task is evaluated using mean average precision

(mAP), which is the average of APs over all the queries.

Table IV shows the mAPs of various methods over all

the queries and the dimension of the pose representation. As

is evident, the proposed approach, with a mAP of 34.6%
significantly outperforms other methods with the best of

them at 17.5%. The table also shows that applying spatial

reasoning has improved the mAP from 32.9% to 34.6%, an

improvement of 1.7%. Figure 6, which shows the distribution

of pose search APs over all the queries, gives an insight into

our method’s better performance. Our method performs ex-

tremely well and outperforms other methods on queries such

as query 3 in figure 8 with APs in the excess of 50%. Such

queries have low intra-class variation and high frequency.

The second mode on the right in figure 6 corresponds to

these poses. On queries with rare poses, our method gives

better APs, while other methods post near zero APs. Few

examples queries and their top retrievals are displayed in

figure 8.

Each class of methods used for baselining in table 6 have

weaknesses, analysis of which is presented here.

Bag of visual words [24]: While these methods perform

very well for general object retrieval, their performance on

pose search suffers because, (a) the loss of geometric context

when histogramming the visual words, (b) distracting SIFT

detections on clothes, and (c) disproportionately small area

of arms and legs with respect to the rest of the bounding box.

Our method overcomes this problem by learning to ignore

distracting patterns like clothing and identifying the key areas

in the bounding box where the arms and outline of the human

are present.

Berkeley poselets [2]: A pose sensitive poselet describes

the body pose of a person. For example, a poselet corre-

sponding to the whole left arm in a certain pose is pose

sensitive while that of face and shoulder is not. A scan

through the set of poselets detected by [2] shows that most

of the detected poselets are not pose sensitive. This renders

the method incapable of detecting the human pose. While,

in theory, this method is capable of discovering poselets

which model the arms in various poses, it would output far

more pose-insensitive poselets. Our method and [13] output

a compact set of entirely pose sensitive poselets.

Human pose estimators (HPE) [28]: Most HPE algo-

rithms are modelled as a CRF and the pose estimate is

obtained by inferring a maximum a posteriori estimate. Typ-

ically maximum a posteriori estimation algorithms decide on

one particular location for each body part and can potentially

make a wrong choice. Clearly this affects the pose retrieval

as a mistake in one part effectively renders this detection

useless and can potentially worsens the performance of the

retrieval system. Our method solves this by taking into ac-

count several likely alternative locations, while constructing

a representation for the pose. Soft coding of pose is the key

to the performance of our algorithm.
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Fig. 8. Example retrievals: Top retrievals and AP curves for three queries are displayed. For the top retrievals every fifth sample from the top in retrieved
list is displayed. The first mistake occurs at ranks 11, 4 and 33 respectively for the above queries.

VI. CONCLUSIONS

In this work, we successfully demonstrated a novel ap-

proach for image and video search using pose as a query

modality. We have shown that pose space can be discretized

by using ‘pose-sensitive’ deep poselets. These deep poselet

detectors model a subset of body parts in a particular pose.

We have shown that using the state-of-the-art CNN [4]

features, these detectors perform very well. They have been

used as a basic building blocks in constructing a feature

representation for pose. We then empirically demonstrated

that our pose retrieval method outperforms other competing

pose retrieval methods by a factor of 2.
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