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Introduction
Liver cancer has a global incidence of  approximately 850,000 cases and represents the fourth leading cause of  

cancer-related mortality (1). Hepatocellular carcinoma (HCC) accounts for 80%–85% of all cases of  primary 

liver cancer, while cholangiocarcinoma (CCA) accounts for most of  the remaining of  cases (2, 3). Survival 

is poor in both major types of  primary liver cancer, with a 5-year survival rate as low as 15% (2, 3). The lack 

of  effective therapeutics in liver cancers and the high failure rate of  the vast majority of  drugs to date led 

some investigators to hypothesize that HCC is “not druggable” (4). While multiple somatic alterations were 

identified in HCC, the vast majority of  molecular/targeted agents tested to date have shown minimal if  any 

significant clinical benefit (4). As an example, sorafenib, a poorly tolerated multikinase inhibitor approved for 

HCC, improves survival by only 3 months at the cost of  severe side effects (5). Similar to clinical outcomes in 

HCC, and in spite of  next-generation sequencing (NGS) efforts to elucidate molecular pathways in CCA (6), 

no targeted agent is part of  the first-line therapy for CCA. A possible explanation for the lack of  activity of  

targeted agents may be the presence of  intratumor genetic heterogeneity (7). First recognized in primary renal 

carcinomas, genetic heterogeneity has now been reported in most solid tumors, including HCC and CCA 

(7–10). A hypothesized, but never demonstrated, the assumption is that intratumor genetic heterogeneity 

causes and perhaps could even predict drug response heterogeneity.

Liver cancer is the fourth leading cause of cancer-related mortality and is distinguished by a 

relative paucity of chemotherapy options. It has been hypothesized that intratumor genetic 

heterogeneity may contribute to the high failure rate of chemotherapy. Here, we evaluated 

functional heterogeneity in a cohort of primary human liver cancer organoid lines. Each primary 

human liver cancer surgical specimen was used to generate multiple cancer organoid lines, obtained 

from distinct regions of the tumor. A total of 27 liver cancer lines were established and tested with 

129 cancer drugs, generating 3,483 cell survival data points. We found a rich intratumor, functional 

(drug response) heterogeneity in our liver cancer patients. Furthermore, we established that the 

majority of drugs were either ine�ective, or e�ective only in select organoid lines. In contrast, we 

found that a subset of drugs appeared pan-e�ective, displaying at least moderate activity in the 

majority of these cancer organoid lines. These drugs, which are FDA approved for indications other 

than liver cancers, deserve further consideration as either systemic or local therapeutics. Of note, 

molecular profiles, obtained for a reduced sample set, did not correlate with the drug response 

heterogeneity of liver cancer organoid lines. Taken together, these findings lay the foundation for 

in-depth studies of pan-e�ective drugs, as well as for functional personalized oncology approaches. 

Lastly, these functional studies demonstrate the utility of cancer organoid drug testing as part of a 

drug discovery pipeline.
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Functional diagnostics describes a category of  techniques to enable experimental drug testing on live 

cancer cells obtained from a patient, with the goal of  informing drug choice (8). While precision oncology 

is often defined based on NGS of  cancer exomes, the incomplete understanding of  the genotype-to-phe-

notype relationship limits the clinical value of  a genome sequence on its own (11). Carefully character-

ized functional diagnostics could address this limitation. Initial efforts, however, have been limited by lack 

of  standard study designs, assay formats, assay reproducibility and accuracy, the number of  drugs used 

(typically small), and the type of  drugs used (typically standard chemotherapeutics) (11). Patient-derived 

xenograft (PDX) models can also be utilized for cancer drug screening, either to characterize activity of  

new lead compounds, or in a personalized fashion to identify best chemotherapy for a specific patient (11). 

Unfortunately, liver cancers tend to display relatively low engraftment rates, rendering liver cancer PDX 

models impractical for functional diagnostics (12).

Next-generation functional diagnostics — including patient-derived organoids (PDOs) — have been 

recently developed (13–15). In contrast to prior studies, here we establish PDO lines from multiple dis-

tinct regions of  each liver cancer. We test 129 cancer drugs on PDO lines from 5 patients. We show that 

liver cancers display intrapatient and interpatient functional heterogeneity. Most notably, our methodology 

identifies drugs that are pan-effective across all liver cancer lines and that are already FDA approved for 

other indications. Additionally, we estimate correlations in our data and implement principal component 

analysis (PCA) based on cancer exomes, transcriptomes, and drug response data for one of  the patient sam-

ples. Finally, we compare our results to publicly available data repositories, including The Cancer Genome 

Atlas (TCGA), and find that gene expression of  the PDO lines clusters with a subgroup of  CCA patients 

identified in a recent study (16).

Results
Establishment of  PDO lines from distinct regions of  liver tumors. Recently, PDOs were successfully established 

from primary liver cancers, and their histologic, genetic, and transcriptomic profiles mirrored the corre-

sponding primary human tumors (17). We established PDOs from a human intrahepatic CCA. In line 

with our focus on biological replicates obtained from the same cancer tissue, we cut the resection piece 

into 20 tissue slices as shown in Figure 1A. PDOs were established according to published protocols (18). 

As shown in Figure 1B, we noted an epithelial organoid appearance of  cystic growth starting on day 2 

after plating. To identify the cellular source of  the cystic PDO structure observed in white-light images, we 

chose an epithelial marker (EPCAM), the bile duct markers cytokeratin 19 and 7 (CK19 and CK7) (19), the 

mucin marker mucicarmin (20–22), as well as the stem cell markers LGR5 and SOX9. We found that both 

the primary tumor (Figure 1C) and the matched PDOs (Figure 1D) displayed similar staining for all mark-

ers tested (Figure 1, E and F). Similarly, 7 distinct regions from the same surgical specimen of  a human 

HCC were utilized to establish 7 matched PDOs. We utilized markers for epithelial tissues (EPCAM), 

stemness (LGR5), liver origin (CK19), and hepatocyte-specific markers (AFP and HepPar1). As shown in 

Supplemental Figure 1 (supplemental material available online with this article; https://doi.org/10.1172/

jci.insight.121490DS1), we confirmed that the PDO cultures displayed marker profiles similar to the origi-

nal primary human tumors.

Drug testing and effect quantification in a PDO line. Initial drug testing experiments were performed on one 

CCA PDO line, with a 9-drug panel, at a typical high-throughput drug screening concentration of 10 μM 

(23). For a positive control, we used 10% Triton X-100, while for a negative control we used DMSO at the 

same concentration (10 mM) used to dissolve the drugs. As shown in Figure 2, we observed that some drug 

treatments altered the shape of cystic PDO structures (from intact structures, to reduction of cyst size to their 

disappearance), as recently described (17). We tested cisplatin and gemcitabine, because they are first-line CCA 

therapeutics. We found that cisplatin had no effect on PDOs, while gemcitabine had a moderate effect (Figure 2 

and Supplemental Figure 2). Please note that the viability measurements were verified in 3 different PDO lines 

(CCA8-5 in Figure 2A, CCA23-3 in Figure 2B, and CCA28-3 in Figure 2C, and Supplemental Figure 2). We 

then expanded the study to include National Cancer Institute (NCI) set VII, a 129 FDA-approved cancer drug 

library (https://wiki.nci.nih.gov/display/NCIDTPdata/Compound+Sets). In this drug library, we found that 

bortezomib, a first-generation proteasome inhibitor, exhibited excellent cancer inhibitory effects (Figure 2B). 

Next, we noted that combination therapies did not display additive effects on PDOs (Figure 2C). To better 

quantify the killing effect of this larger library of drugs, we employed CellTiter-Glo (an ATP-based cytotoxicity 

assay). The Z factor for the CellTiter-Glo assay was found to be 0.84 for the 9-drug panel screening, which is 
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excellent for high-throughput drug screening (24). Supplemental Table 1 illustrates a typical color-coded viabil-

ity readout (the drug indices — Supplemental Table 2). Note that the vast majority of drugs were ineffective, 

while 9 of the 129 drugs tested demonstrated over 95% killing activity. Using this method, we confirmed that 

the effect of combination therapy is similar to that of the more efficacious of the individual drugs (Supple-

mental Table 3). Of note, these assays reflect the direct, cell-intrinsic action of the drugs, and do not include 

complex in vivo interactions.

High-throughput drug screening in a large cohort of  liver cancer PDO lines. We collected 1 additional human 

primary HCC and 2 additional human primary CCA surgical specimens, for a total of  5 primary liver 

cancers, and established various numbers of  PDOs (3–7) from each (Table 1). Next, all 27 liver cancer 

PDOs were treated with drugs. The experiment produced 27 viability readings (one per PDO) for each 

of  the 129 drugs, for a total of  3,483 data points (Figure 3A and Supplemental Table 4). Thirteen drugs 

showed more than 90% killing across all 27 liver cancer PDO lines (red cells at the top of  the heatmap in 

Figure 1. Establishment of multiregion organoid lines from a primary human liver cancer. (A) A cancer resection piece was cut into 20 tissue slices. 

The white-yellow appearance of the tissue in most of the slices was found to be fibrotic, intrahepatic cholangiocarcinoma. These tissue slices were 

utilized for histological, tissue banking, organoid establishment, and other analyses. (B) Bright-light images of PDOs established from CCA8. Cystic 

patient–derived organoid (PDO) structures were recognized starting on day 2 (D, day; P, passage). A representative cystic PDO was photographed from 

D1 to D10, at which point the culture was split. Representative images for this PDO culture are shown at P3 as well as P6. (C and D) Immunofluores-

cence staining of primary human cancer tissue and a matched PDO established from the same tissue slice for EPCAM (epithelial marker), CK19 (bile 

duct marker), and LGR5 and SOX9 (stem cell markers). DAPI was used to stain nuclei. (E and F) Primary human cancer tissue and a matched PDO 

established from the same tissue slice was used for hematoxylin and eosin staining as well as for immunohistochemistry (CK7 is a bile duct marker, 

and mucicarmine is a mucin marker). Scale bars: 200 μm (B) and 100 μm (C–F).
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Figure 3A and to the far left in Figure 3B, which shows the mean and variance in drug response). Of  these 

drugs, 4 (daunorubicin, ceritinib, doxorubicin, and mitomycin) had at least one PDO with suboptimal 

response. The remaining 9 drugs were pan-effective across the PDO lines (Table 2 shows the response to 

7 pan-effective drugs). These 9 pan-effective drugs belong to 5 classes of  antineoplastic agents (histone 

deacetylase [HDAC] inhibitors, proteasome inhibitors, DNA topoisomerase II inhibitors, protein transla-

tion inhibitors, and RNA synthesis inhibitors; Table 3). Only 2 out of  these 9 pan-effective drugs had ever 

been tested as systemic chemotherapy in liver cancers (panobinostat and bortezomib, Table 3) and only 1 

in CCA (bortezomib). One agent, idarubicin, has been tested as local, liver-directed therapy (transarterial 

chemoembolization [TACE]). In addition to screening at a concentration of  10 μM, we performed 10-fold 

dilutions for plicamycin and idarubicin. The concentration of  drugs were 10 μM, 1 μM, 0.1 μM, 0.01 μM, 

and 0.001 μM. Based on these data, we calculated IC
50

 concentrations (Figure 3C). For plicamycin, except 

for CCA8-6, all PDO lines showed similar IC
50

 doses. For idarubicin, the IC
50

 range was much larger, 

from 2.5 nM in HCC 26-7 to 6.9 μM in 28-3. Intratumor responses were also variable; for example, for 

HCC26, the IC
50

 for 26-7 was 2.5 nM, while for 26-5 it was 0.9 μM. These results demonstrate inter- and 

intratumor heterogeneity in drug response.

Figure 2. Low-throughput and high-throughput drug testing in cancer organoid lines and treatment e�cacy determination, and summary of human 

primary liver cancer specimens, demographics, and laboratory derivation of sister PDO lines. (A) A panel of 7 cancer drugs at a concentration of 10 μM, 

along with negative control (0.1% DMSO) and a positive control (10% Triton X-100), were used on a PDO line. The PDO treated with cisplatin appeared 

identical to the negative control, consistent with no drug e�cacy. Gemcitabine stalls PDO growth, but does not kill cells. We verified that gemcitabine 

does not induce cell death through additional studies, as described in Supplemental Figure 2. (B) Cisplatin allows unrestricted growth of cancer PDOs — 

as demonstrated by continuously expanding cystic PDO structures — while gemcitabine had a cytostatic e�ect. The e�cacy of bortezomib, a proteasome 

inhibitor, was validated in a time-course experiment. The cystic PDO structures were e�ectively prevented from maintaining their shape or expanding in 

size. (C) The most frequently used clinical drug combinations for CCA were used on a CCA PDO line. As shown, gemcitabine plus cisplatin had the same 

e�ect as gemcitabine alone. Similarly, in all 8 combinations tested, the overall e�cacy was similar to that of the more e�cacious of the 2 drugs used in 

combination. Scale bars: 200 μm (A) and 400 μm (B and C).
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Interpatient functional heterogeneity — the identification of  interpatient-divergent drugs. Several drugs were 

effective in only a subgroup of  PDO lines. For example, we noted that dasatinib, previously reported as 

efficacious in a set of  liver cancer organoids (17), was only moderately effective (survival of  less than 15%) 

in only 3 of  27 liver cancer lines (Supplemental Figure 5). To investigate interpatient-divergent drugs, we 

averaged the drug effects across all PDOs established from each cancer. This mean cell viability per patient 

is an estimate of  how the tumor, as a whole, would respond to a certain drug. We demonstrate these data 

using a heatmap, with the order of  cancers and the order of  drugs determined by unsupervised hierarchical 

clustering (Figure 4A and Supplemental Table 6). The vast majority of  drugs had poor overall effect (blue 

rows). However, some drugs had variable interpatient effects (Supplemental Table 7). Note that while some 

interpatient-divergent drugs are efficacious in just one cancer (such as ceritinib and valrubicin in HCC25), 

others are effective in a majority of  cancers, but not in all of  them (such as ponatinib or sorafenib).

The identification of  intratumor-divergent drugs. A number of  drugs were selectively effective against a 

subset of  PDOs derived from individual patients and therefore displayed intrapatient drug response het-

erogeneity. We calculated the variation of  drug response of  PDO lines derived from individual patients 

represented by the deviation from mean drug effect (Figure 4B and Supplemental Table 6). Targeted 

drugs, such as tyrosine kinase inhibitors (TKIs; crizotinib, sorafenib, and others) were well represented as 

intratumor-divergent drugs. Next, we focused on patient CCA8 and performed in-depth analysis of  all 6 

PDO lines derived from this tumor. Several drugs displayed uniform killing effects over the 6 PDOs, while 

others had substantially divergent effects. Most drugs had a similar effect over the 6 PDOs, as evinced by 

the low standard deviation (blue color in Figure 4B). Of  note, drugs that displayed low standard devia-

tion in terms of  effects on cancer cells are either equally effective (such as ixazomib and carfilzomib), or 

equally ineffective (such as thalidomide and gefitinib, Supplemental Table 8). The drugs displayed in red 

in Figure 4B have large variation (Supplemental Table 9). For example, belinostat demonstrated moderate 

activity (25% survival) in 1 of  the 6 PDO lines and generally poor activity (mean 54% survival) in the 

other 5. Dasatinib, previously reported as efficacious in a liver cancer organoid drug testing study (17), 

was efficacious in 3 of  the 6 (mean 14% survival), displayed moderate activity in 2 of  the 6 (mean 25% 

survival), and poor activity in 1 of  the 6 PDO (59% survival). Gemcitabine showed moderate activity in 1 

of  the 6 (24% survival) and poor activity in 5 of  the 6 (mean 69% survival) PDO lines. Some drugs, such 

as ceritinib, demonstrated a sharp difference between high activity in 3 of  the 6 (mean 1% survival) and 

almost no activity (mean 80% survival) in the remaining 3 of  the 6 PDOs. These drugs presumably have 

organoid-dependent targets rather than nonspecific cytotoxic effects.

We used variance component analysis to quantify the importance of  within-tumor versus between-tu-

mor factors responsible for drug response heterogeneity (see Methods section). We found that 73% of  

the variance in the whole drug screen is attributed to between-tumor variation and 27% to within-tumor 

variation. Globally ineffective drugs, described as those with greater than 80% mean viability (n = 69), 

have a low overall variance, and only 7% of  it is explained by the between-tumor variation. For the TKIs, 

we estimated that 80% of  the variance comes from between-tumor variability and 20% from within-tumor 

variability. A summary of  the variance component analysis can be found in Table 4.

Table 1. Summary of human primary liver cancer specimens, demographics, and laboratory derivation of sister PDO lines 

Lab ID Disease Age Sex Race Predisposing PDO Lines

CCA8 iCCA 63 female hispanic None 6

CCA23 iCCA 60 female white None 5

CCA28 iCCA 57 female white None 6

HCC25 HCC 71 male white HCV 3

HCC26 HCC 69 female white HCV 7

Total 27

A total of 5 primary liver cancers were included in the study. Of these, 3 were cholangiocarcinomas (CCA8, -23, and -28) and 2 were hepatocellular cancers 

(HCC25 and -26). Each cancer specimen was processed as demonstrated in Figure 1 and Supplemental Figure 1. All 3 cholangiocarcinomas were intrahepatic 

(iCCA). As shown, there were no predisposing conditions (such as primary sclerosing cholangitis) for any of the CCAs. Both HCCs occurred in a background 

of fibrosis/cirrhosis secondary to chronic hepatitis C infection (HCV). The number of lines established from geographically distinct areas of each cancer 

specimen is shown. A total of 27 PDO cancer lines were established from the 5 human primary liver cancers.
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PDO drug response data compared to publicly available data repositories. Genomics of  Drug Response 

Data in Cancer (GDSC), and the Cancer Cell Line Encyclopedia (CCLE), are large-scale, publicly 

available data repositories with drug response data for various cell lines. The IC
50

 and area under the 

curve (AUC) measurements from these 2 data repositories have been shown to be in good agreement 

(25). Here, we compared the drug response data for the 27 PDOs to the CCA and HCC cell lines in 

the GDSC and CCLE. From CCLE, we obtained the data for all of  the available CCA and HCC cell 

lines (n = 20) that were tested using drugs in our screen (11 drugs) (26). A list of  the cell lines and 

drugs can be found in Supplemental Table 10. The highest dose that the drugs in the CCLE data set 

were tested at is 8 μM. Recall that our drug response data are for 10 μM. The cell viability has been 

calculated in the CCLE using treatment with DMSO as negative control and treatment with MG132 

as positive control. The correlation matrix for the drug response of  the cell lines (Supplemental Figure 

4A) and the visualization of  the first 2 principle components (Supplemental Figure 4B) highlight the 

drug response discrepancy. For the most part, the PDOs and the cell lines form distinct clusters. Inter-

estingly, the drug response of  C3A (an HCC cell line) clusters together with the drug response of  the 

PDOs (Supplemental Figure 4A) using a minimal variance clustering method. Specifically, the pan-ef-

fective drug panobinostat had a good killing effect on the cell lines and PDOs (mean 5% survival). 

Meanwhile, the intertumor-divergent drug sorafenib had poor killing effect on the cell lines (mean 76% 

survival). Similarly, from GDSC, we obtained available data for CCA and HCC cell lines (n = 16) that 

were tested with drugs in our data set (29 unique drugs) (27). A list of  the cell lines and drugs can be 

found in Supplemental Table 10. The drugs olaparib and afatinib have 2 different drug identification 

Figure 3. The identification of drugs that are pan-e�ective in a large cohort of 27 primary liver cancer PDO lines. (A) Color-coded heatmap of drug killing 

e�ects for 129 drugs (y axis; the indices of 129 drugs are in Supplemental Table 4) over 27 primary liver cancer PDO lines (x axis). The color scale is shown 

at the bottom of the figure, from blue (100% cell viability) to red (0% cell viability). The heatmap is organized with pan-e�ective drugs at the top of the 

figure. Color-coded values are the mean of 3 technical replicates. (B) The median cell viability across each of the 27 PDO lines was calculated for each drug 

and displayed in a box-and-whisker plot along with the variance. Thirteen drugs (to the far left in this panel) were found to induce an average cell viability 

across the 27 lines of less than 10%. (C) IC
50

 calculation for 2 of the pan-e�ective drugs, idarubicin and plicamycin, and for 22 organoids out of 27 from the 

5 patients. The upper subpanel is the log-scale IC
50

 for 2 patients, CCA23 and HCC26; the lower subpanel shows the IC
50

 drug dose for each line from the 5 

patients. Drug screening was performed in triplicate.
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numbers with distinct drug response data in the GDSC; both drug responses were included in our anal-

ysis. The drugs in the GDSC are tested at various concentrations; we used the highest available drug 

dose (which in these data ranges from 0.5 to 16 μM). To obtain a cell viability measurement we used 

the mean intensity from experiments with blank wells (wells with no drugs and no cells) as positive 

control and the mean intensity of  experiments with cell lines treated with DMSO as negative control. 

The correlation matrix for the drug response of  the cell lines (Supplemental Figure 5A) showed that 

2 of  the PDOs, CCA8-6 and HCC25-1, cluster with the HCC cell lines JHH-1, JHH-2, and SNU-182. 

Additionally, the visualization of  the first 2 principle components (Supplemental Figure 5B) showed 

that the cell lines TGBC1TKB (a biliary tract cancer cell line) and SNU-449 (an HCC cell line) cluster 

with the PDOs (using the k-means algorithm, with k = 3). The cell lines (n = 6) in the top cluster on the 

x axis in Figure 5A had a poor correlation to the drug response of  the PDOs. Furthermore, the PDO 

HCC25-2 does not cluster with the remaining PDOs. On the individual-drug level, the intratumor-di-

vergent drug doxorubicin had a good killing effect on the majority of  PDOs and cell lines (mean 14% 

survival). Lastly, the interpatient-divergent drug belinostat (mean 43% survival) had a good killing 

effect on the cell lines (mean 11% survival).

Exome and RNA sequencing. In order to understand whether molecular correlates could predict drug 

response, we performed whole-exome sequencing (WES) as well as RNA sequencing on the 6 distinct PDO 

lines from patient CCA8. Targeted regions were sequenced with an average depth of  141× coverage, and 

98% of  the exome sequenced to at least 20× depth (Supplemental Table 11). While understudied in human 

CCA, genetic intratumor heterogeneity has been recognized in other human cancers, such as renal cell 

carcinoma and HCC (7, 8, 10). We found that 2 of  the 6 PDOs (CCA8-7 and CCA8-11) displayed a frame-

shift mutation in fibroblast growth factor receptor 1 (FGFR1). The other 4 did not display any mutations 

Table 2. Seven pan-effective drugs tested across all 27 primary liver cancer PDO lines

Liver Cancer PDO Line Ixazomib Romidepsin Carfilzomib Bortezomib Plicamycin Idarubicin Panobinostat

CCA8

8-5 1 0% 2% 1% 1% 3% 5% 0%

8-6 2 0% 2% 0% 2% 4% 7% 6%

8-7 3 0% 3% 2% 6% 5% 4% 9%

8-9 4 0% 1% 0% 0% 1% 1% 1%

8-10 5 1% 0% 1% 0% 3% 5% 5%

8-11 6 0% 3% 0% 3% 5% 11% 5%

CCA23

23-4 7 0% 1% 0% 0% 1% 3% 4%

23-3 8 0% 2% 5% 6% 4% 3% 7%

23-6 9 0% 1% 1% 2% 4% 5% 2%

23-5 10 2% 1% 3% 2% 2% 4% 0%

23-1 11 0% 1% 3% 2% 2% 2% 7%

CCA28

28-3 12 5% 1% 10% 6% 4% 5% 13%

28-4 13 5% 2% 6% 4% 9% 12% 10%

28-5 14 7% 3% 8% 4% 13% 27% 9%

28-6 15 4% 3% 5% 6% 11% 11% 9%

28-7 16 6% 2% 9% 6% 6% 7% 9%

28-8 17 2% 1% 9% 10% 4% 6% 22%

HCC25

25-1 18 0% 3% 4% 0% 11% 10% 2%

25-2 19 4% 0% 0% 6% 2% 7% 1%

25-3 20 0% 1% 0% 0% 4% 7% 1%

HCC26

26-2 21 3% 7% 6% 2% 12% 17% 4%

26-3 22 5% 2% 9% 8% 3% 12% 7%

26-4 23 3% 1% 9% 6% 4% 7% 9%

26-5 24 1% 1% 3% 4% 4% 5% 8%

26-6 25 3% 4% 3% 5% 12% 10% 13%

26-7 26 3% 1% 5% 7% 3% 6% 9%

26-8 27 0% 1% 2% 0% 4% 4% 2%

Four drugs from the original list of 13 drugs were removed because there was at least one resistant line for each of them (blue or white squares in Figure 3A 

at the top of the panel). The table lists the median cancer cell viability across all 27 cancer lines at 96 hours after treatment was applied.

 

https://doi.org/10.1172/jci.insight.121490
https://insight.jci.org/articles/view/121490#sd
https://insight.jci.org/articles/view/121490#sd
https://insight.jci.org/articles/view/121490#sd


8insight.jci.org   https://doi.org/10.1172/jci.insight.121490

R E S E A R C H  A R T I C L E

in FGFR1. These findings predict that CCA8-7 and CCA8-11 would respond to ponatinib, a multikinase 

inhibitor, while the other 4 PDOs that do not display this mutation would not respond to ponatinib. Indeed, 

at a screening concentration of  10 μM, CCA8-7 and CCA8-11 were killed by ponatinib (Figure 6). These 

findings suggest that mutational profiles are able to predict response to targeted therapeutics. Nonetheless, 

at decreasing concentrations of  ponatinib, CCA8-7 and CCA8-11 lose response (Figure 6). The calculated 

IC
50

 for CCA8-7 was 4.22 μM and for CCA8-11 it was 7.78 μM (Supplemental Figure 3). The published 

maximum serum concentration (Cmax) from the FDA for ponatinib, however, is 0.137 μM. The implica-

tion is that while CCA8-7 and CCA8-11 respond to ponatinib at a high screening concentration of  10 μM 

(as predicted by WES), there would be no response in vivo at Cmax concentrations.

Out of  the known targets of  the TKIs in our screen, only the FGFR1 mutation described above was 

found in the 6 PDO lines. Additional mutations reported in CCA (28, 29) were found in our patient 

data. All PDOs have KMT2C and PTCHD3 mutations, CCA8-10 has FMN2 and USP2 mutations, 

PDOs CCA8-6 and CCA8-10 have ARID1B mutations, CCA8-10 and CCA8-11 have RTK mutations, 

and CCA8-5, CCA8-9, CCA8-10, and CCA8-11 have HDAC5 mutations. These mutations do not have 

known therapeutic targets.

Comparison of  gene expression and functional response in patient CCA8. A univariate linear regression used to test 

for pairwise significant correlation (with Bonferroni’s correction for multiple testing of genes and drugs) did not 

reveal any significant correlations between individual coding somatic DNA variants or expression levels of indi-

vidual genes, and response profiles for each drug, across the 6 PDOs. A heatmap of the drug response for the 6 

PDO lines from patient CCA8 with hierarchical clustering is illustrated in Figure 5A. The results show that the 

following regions cluster: CCA8-7 and CCA8-11, CCA8-5 and CCA8-10, CCA8-6 and CCA8-9. A heatmap of  

the gene expression data for the same PDO lines is in Figure 5B. Interestingly, for these data, the regions CCA8-7 

and CCA8-11, CCA8-5 and CCA8-10 also cluster together. These data suggest that gene expression could indi-

cate which PDO lines would respond in similar ways to drug treatments. Additionally, we performed PCA of  

the drug response, gene expression, and somatic mutations, with results presented in the supplemental material.

Finally, we compared the gene expression data from the 6 PDOs from patient CCA8 to TCGA. TCGA 

has 36 patient samples for CCA (classified as TCGA-CHOL), which were in part analyzed in a recent study 

(16). As in Farshidfar et al. (16), we excluded from our analysis 541 genes that are associated with normal 

Table 3. Clinical trial information for 7 pan-effective drugs

Class Drug Clinical Trials Trial No.

HDAC Inhibitor

Romidepsin 
HCC - No

CCA - No

Panobinostat
HCC - Yes NCT00873002, NCT00823290

CCA - No

Proteasome Inhibitor

Ixazomib HCC - No

CCA - No

Bortezomib HCC - Yes NCT00083226, NCT00077441

CCA - Yes NCT00085410, NCT03345303

Carfilzomib HCC - No

CCA - No

DNA Top2 Inhibitor

Idarubicin HCC - Yes NCT02185768, NCT01040559, 

NCT02028949, NCT02870010

CCA - No

Daunorubicin HCC - No

CCA - No

Topotecan HCC - Yes NCT00002515, NCT02267213

CCA - No

RNA Synthesis Inhibitor

Plicamycin HCC - No

CCA - No

These 7 drugs are part of 4 families of drugs. Note that the list does not contain any tyrosine kinase inhibitor. Searches for clinical trials were performed at 

clinicaltrials.gov with the following key words: “drug name” AND (“liver cancer” OR “hepatocellular” OR “HCC” OR “CCA” OR “cholangiocarcinoma” OR “bile 

duct”). The names of the clinical trials are listed in orange if the trials are not actively recruiting and in blue if trials are actively recruiting (as of January 2018).
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liver function. Figure 7 shows that the gene expression (fragments per kilobase of  transcript per million 

reads, FPKM) of  the mean of  the 6 PDOs for patient CCA8 cluster with 8 of  the TCGA samples. Notably, 

this cluster is similar (including 4 out of  5 patients) to the one identified as group II, a group enriched in 

extrahepatic or perihilar CCA (16).

Discussion
Intratumor genetic heterogeneity has been demonstrated in several cancers (7–10). To our knowledge, our 

study is the first to report intratumor drug response heterogeneity in any solid human cancer. We have 

shown that the 129 cancer drugs tested on 27 primary liver cancer organoid lines can be broadly classified 

into 4 classes (Supplemental Table 12). A small group of  drugs were found to be pan-effective. Although 

Figure 4. The identification of drugs with interpatient and intrapatient divergent e�ects. (A) Heatmap of drug response for each of the 5 cancers 

(x axis) across 129 drugs (y axis). The mean cell viability measurement for each patient-drug pair is shown. Drug testing was performed at a screen-

ing concentration of 10 μM. Index values at the right refer to individual drugs (described in Supplemental Table 4). The red color represents good 

killing e�ect (low cell viability after drug treatment) and blue represents poor killing e�ect (high cell viability after drug testing). The cluster of drugs 

represented in red at the top of the figure includes the 7 pan-e�ective drugs described in Figure 3. (B) Heatmap similar to that in A but showing the 

standard deviation of cell viability for each patient-drug combination (see drug order in Supplemental Table 4). Here, blue signifies low intracancer 

standard deviation and red signifies high intracancer standard deviation of drug e�ect.

 

Table 4. Variance component analysis 

Groups based on drug function No. of drugs Intervariance Intravariance

Cytotoxic drugs 66 52% 48%

Kinase inhibitor 29 80% 20%

Others 34 77% 23%

Groups based on viability data

Mean survival <80% 60 67% 33%

Mean survival >80% 69 7% 93%

Table shows how much of the variability in the data (shown here for 5 different groups of drugs) is attributed to intrapatient versus interpatient variability.
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these analyses reflect cell-intrinsic sensitivity to drugs and therefore may not reflect complex in vivo inter-

actions, the identification of  these class I type of  drugs may constitute the first step in a rational strategy 

of  drug selection, repurposing, or discovery. We also found a number of  drugs that displayed intrapatient 

functional divergence (class II) (Figure 4B). This functional heterogeneity within patients supports the 

use of  PDO lines derived from distinct regions of  the cancer. Furthermore, we found a group of  drugs 

that displayed significant interpatient divergence (class III). These drugs appeared effective in 1 or more 

human cancers, but not in all (Figure 4A and Supplemental Tables 7 and 12). Interestingly, 2 of  the top 

interpatient-divergent drugs (sorafenib and gemcitabine) are in clinical use for CCA and HCC. The fact 

that some patients appear to respond, while others do not, suggests a possible role for organoid-based 

functional testing in informing drug choice for liver cancer patients. Lastly, we found that most drugs 

were generally ineffective (class IV). One could speculate that treatment with these drugs would result in 

selection for tumor regions corresponding to drug-resistant sublines. Of  note, TKIs (such as lapatinib and 

axitinib, Supplemental Table 12) were well represented in this class of  drugs.

Figure 5. Comparing gene expression to drug response in patient CCA8. Heatmaps generated for patient CCA8 using hierarchical clustering agglom-

eration (minimal variance method) for (A) the cell viability data (with the 129 drugs on the y axis and the color bar representing the survival fraction), 

and (B) the gene expression data for the 100 genes with the greatest variance in the expression level (shown here as the log
2
 of the fragments per 

kilobase of transcript per million reads [FPKM], with the color bar representing the standard score that shows if the expression is above [yellow] or 

below [blue] the mean). In both data sets, the following 2 PDO pairs clustered together: CCA8-7 and CCA8-11, and CCA8-5 and CCA8-10.
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The development of  new oncology drugs typically starts with preclinical models (30). This 

approach, pioneered at the NCI in the 1950s, aimed to test new drug leads on in vitro cancer models. 

After 1985, the growing realization that human solid cancers are molecularly heterogeneous led to the 

development and utilization of  60 human cell lines for drug testing in oncology (the NCI-60) (30). 

Here, we present evidence of  functional heterogeneity, even within the same cancer. For example, we 

found that dasatinib, recently reported as effective in a liver cancer organoid study (17), was effective 

(survival of  less than 15%) in only 3 out of  27 PDO lines. In comparing a subset of  the drug response 

of  the 27 PDOs in this study to publicly available cell line drug response data (Supplemental Figures 

4 and 5), we found a vast diversity in their responses (the exception being the pan-effective drug pano-

binostat that was represented in the CCLE data repository). These findings suggest an explanation for 

why drug candidates with promising preclinical results obtained in several cell lines or cancer PDO 

lines could nevertheless fail in clinical practice. By extension, the current study along with other pub-

lished studies argue that cancer organoid lines established from large cohorts of  patients may become 

a valuable resource for go/no-go decisions early in the typically expensive cancer drug development 

pipelines (31). In addition, the organoid platform may serve as part of  a drug repurposing strategy. 

Drug repurposing strategies are well known in diverse areas of  medicine, including oncology (32, 33). 

Repurposing is attractive because of  the anticipated reduction in costs and acceleration of  develop-

ment timelines (31).

The analysis of  the gene expression data set for patient CCA8 with the publicly available data from 

TCGA revealed that it was representative of  a previously identified subgroup of  CCA patients (Figure 

7) (34). Furthermore, our analysis using hierarchical clustering agglomeration (Figure 5) indicates that 

Figure 6. Response to ponatinib in CCA8 organoid lines. At a concentration of 10 μM (first row from the top), ponatinib was e�ective in CCA8-7 and 

CCA8-11 (note the destruction of the cystic structure), and ine�ective in the other 3 lines. The response of CCA8-7 and CCA8-11 was lost at 1 μM and lower 

concentrations. Scale bar: 400 μm. Please see the text and Supplemental Figure 3 for IC
50

 curves and calculations.
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Figure 7. The gene expression from 

patient CCA8 clusters with a subset 

of patients from TCGA. Heatmap of 

the gene expression (the log
2
 of the 

FPKM on the y axis with the color 

bar representing the deviation from 

the mean, Z score, as in Figure 5B) 

for the cholangiocarcinoma sample 

set from TCGA (n = 36) compared 

with the mean gene expression of 

the 6 PDOs from patient CCA8. The 

hierarchical clustering agglomeration 

(using Pearson’s correlation and the 

minimal variance method) was based 

on the 1,000 genes with the greatest 

variance after excluding 541 normal 

liver genes as was done in Farshidfar 

et al. (16). Four main sample clusters 

were observed. The gene expression 

for patient CCA8 clusters with 8 of 

the samples from the TCGA.
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gene expression may be suggestive of  drug response for patient CCA8. However, our data set did not 

enable the identification of  correlations between molecular and functional heterogeneity. It is formally 

possible that a larger number of  PDOs for which all 3 sets of  data (exome, transcriptome, and drug 

response) are collected may allow correlative analyses. It should be noted that, in a clinical setting, 

for technical and cost reasons only a limited number of  PDOs can be generated from an individual 

patient cancer with the purpose of  informing treatment. Therefore, the constraint imposed by limited 

sample size is unlikely to be overcome in a patient-specific clinical scenario. Alternatively, it is possible 

that numerous factors on the tumor, individual, and population levels contribute to complex biology 

underlying a cancer’s susceptibility to various anticancer agents, resulting in a mathematically impossi-

ble predictive task. The implications are that cancer behaviors (including when treated with drugs) are 

still incompletely understood and that our current genetic and transcriptomic strategies require further 

development and analysis to allow accurate predictions.

Finally, these data support the concept of  multiple cancer biopsy protocols to ensure that functional 

intratumor heterogeneity is well represented in a PDO-driven platform. For example, as shown in Figure 

6, depending on the site of  the biopsy, the patient would have been diagnosed (or not) as carrying an 

FGFR1 mutation. However, in terms of  predicting response to the pan-effective drugs discovered here, 

no known genetic alteration (mutational or otherwise) predicts the response of  human cancers to pro-

teasome inhibitors (35, 36). Furthermore, early transcriptomic biomarkers of  sensitivity to proteasome 

inhibitors had not yet been clinically validated (35–37). In addition, HDAC inhibitors also appear to be 

pan-effective, which is mechanistically plausible given that chromatin-modifying genes were found in 

one of  our earlier studies as top mutated genes in CCA (38). Similar to proteasome inhibitors, HDAC 

inhibitors also lack genetic tests that can predict response. In addition, RNA sequencing and WES have 

not been useful to predict response to microtubule inhibitors, DNA topoisomerase 2 inhibitors, or the 

“Others” class, since the mechanism of  action for these drugs is generally not DNA mutation specific. 

In an effort to address these obstacles, we developed this multiple region biopsy protocol and combined 

it with a PDO drug testing platform with the aim of  informing chemotherapy choices in a patient-indi-

vidualized manner. Further studies will elucidate the correct balance between drug pan-effectiveness and 

utility of  personalized drug testing for select group of  patients.

Methods
Human tissue. Fresh human HCC or CCA tissue was obtained from the Johns Hopkins Hospital (JHH), 

under an IRB-approved informed consent. A diagnosis of  HCC or CCA was performed by JHH patholo-

gists, in accord with current standards in the field.

Establishment of  PDOs from human HCC and CCA. Resection liver tissue (HCC or CCA) obtained from 

patients was minced into small pieces measuring approximately 9 mm3. Tissue was then rinsed 3 times with 

DMEM supplemented with 1% FBS at 4°C in 50-ml Falcon tubes. The tissue was then dissociated with col-

lagenase (2 mg/ml, Sigma-Aldrich) supplemented with DNAse 1 (0.1 mg/ml in DMEM, Sigma-Aldrich) 

at 37°C. Digestion was stopped by adding cold DMEM supplemented with 10% FBS. Cells were filtered, 

washed by centrifugation, and then counted. After mixing with growth factor–reduced Matrigel (Corning, 

catalog 356231), cells were seeded into 24-well plates. After the Matrigel solidified within 15 minutes, 

warm organoid culture medium was added.

PDO medium. Medium reported previously for normal liver organoids and liver cancer organoids was 

adapted for use in the current study (13, 18). The PDO medium is Advanced DMEM/F12 supplemented 

with 1× HEPES, 1× GlutaMax (Invitrogen), 1× primocin (InvivoGen), 1× B27 Supplement (Gibco), 1× N-2 

Supplement (Gibco), 30% Wnt-conditioned medium, 20% Rspondin-conditioned medium, 0.5 μM A83-01 

(Tocris), 0.05 μg/ml EGF (Sigma-Aldrich), 0.1 μg/ml FGF-10, 0.03 μg/ml HGF (Peprotech), 12.5 μM FSK 

(LC Laboratories), 0.01 μM gastrin (Sigma-Aldrich), 0.1 μg/ml noggin (Peprotech), 1.25 mM N-acetylcyste-

ine (Sigma-Aldrich), and 12.5 mM nicotinamide (Sigma-Aldrich). For initial establishment of  the PDOs, we 

used 50% (vol/vol) Wnt-conditioned medium and 30% (vol/vol) Rspondin-conditioned medium in the first 

week, 10 μM Y27632 (LC Laboratories) was added at the PDO establishment and passage step.

WES and analysis. Total DNA was extracted from PDOs with Qiagen DNA kits (catalog 69504). 

We used 1.5 μg DNA for WES with an Agilent V5 capture probe set and sequenced using an Illumi-

na HiSeq 2000 platform. The sequences of  each sample were generated as 90- to 100-bp paired-end 

reads, and for each sample, approximately 10 Gb of  unique sequence was generated. Standard quality 
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control procedures were applied. Tumor-normal pair read alignment and variant identification, using 

SAMtools and GATK, were performed using standard parameters. A somatic variant was considered 

present in a tissue sample if  it was present in at least 10% of  reads. Using somatic coding (missense, 

nonsense, and canonical splice site) variations only, we performed phylogenetic tree estimation, using 

the maximum parsimony method with default settings in MEGA7 (39).

High-throughput drug screening of  CCA PDOs. A panel of  129 anticancer compounds (the NCI-Ap-

proved Oncology Drugs Set VII) was utilized. PDOs were plated in 96-well or 384-well plates and cul-

tured for 3 days. Next, media were changed with drug-containing media. The initial screen was performed 

at a concentration of  10 μM. After 4 days, cell viability was determined in each well with CellTiter-Glo 

(catalog G7572, Promega) following the manufacturer’s instructions. Luminescent signal was measured 

with a plate reader (PerkinElmer EnVision Plate Reader). Drugs that induced less than 50% viability 

were chosen for future studies. IC
50

 experiments were performed at 10 μM, 1 μM, 100 nM, 10 nM, and 1 

nM. All drug screens were performed with experimental triplicates.

Variance component analysis. Variance component models describe the distributions of  random variables 

in structured populations where subgroups have distinct means but share a common variance. These mod-

els provide a framework for hypothesis testing and provide unbiased estimates of  variances. Most com-

monly, populations refer to individuals and the structure arises from families. Here, the population refers 

to organoids from a distinct tumor region treated with a specific drug, and the structure arises because 

subsets of  organoids are from a single patient. The observation of  organoids i from patient t is denoted y
ti
. 

The variance component model considers nested hypotheses for y
ti
, stated in terms of  hypotheses H

0
 and H

1
 

equivalent to models M
0
 (the null model assumes equal means and equal variance) and M

1
 (the alternative 

model assumes the variance is shared):

     Equation 1.

The null hypothesis, M
0
, specifies that survival is independently, identically distributed for each organ-

oid, with a mean μ
0
 and variance  shared across all tumors. The alternative hypothesis, M

1
, introduces a 

tumor-dependent mean, μ
t
. The tumors continue to share the same within-tumor variance, . Testing H

0
 

versus H
1
 is accomplished using 1-way analysis of  variance (ANOVA).

Statistics. Using linear regression, we found no significant correlation between drug response and gene 

expression at a family-wise error rate of  0.05 (equivalent to a single-test P value of  0.05 divided by the num-

ber of  gene-drug combinations, 1.9 × 10–8).

We quantified the proportion of  the variance in the drug response data that was attributed to intra-

patient versus interpatient variability (see the previous Methods section Variance component analysis). We 

examined the cell survival data using both arithmetic and log scales. We concluded that the errors in the 

data are likely constant from sample to sample and thus we chose to use the arithmetic scale in our analysis. 

The hypotheses testing was carried using 1-way ANOVA. If  the null hypothesis was rejected, the variance 

was decomposed into intra- and interpatient variance (see Table 4).

The gene expression from patient CCA8, shown in Figure 5B and Figure 7, is presented using the stan-

dard score, Z score, which shows how many standard deviations from the mean the data are. To minimize 

the outlier effect, we used log
2
 of  the FPKM data.

All clustering agglomeration was conducted with Pearson’s correlation coefficients using the minimal 

variance method for hierarchical clustering, which minimizes the total within-cluster variance (also known 

as Ward’s method).

Study approval. Collection of  the specimens for this study was approved by the IRB of  the Johns Hop-

kins University School of  Medicine.
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