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Human proximity suppresses 
fish recruitment by altering 
mangrove‑associated odour cues
Rohan M. Brooker1,2*, Angelia L. Seyfferth3, Alesia Hunter3, Jennifer M. Sneed4, 
Danielle L. Dixson2 & Mark E. Hay5

Human‑driven threats to coastal marine communities could potentially affect chemically mediated 
behaviours that have evolved to facilitate crucial ecological processes. Chemical cues and their 
importance remain inadequately understood in marine systems, but cues from coastal vegetation 
can provide sensory information guiding aquatic animals to key resources or habitats. In the tropics, 
mangroves are a ubiquitous component of healthy coastal ecosystems, associated with a range of 
habitats from river mouths to coral reefs. Because mangrove leaf litter is a predictable cue to coastal 
habitats, chemical information from mangrove leaves could provide a source of settlement cues for 
coastal fishes, drawing larvae towards shallow benthic habitats or inducing settlement. In choice 
assays, juvenile fishes from the Caribbean (Belize) and Indo‑Pacific (Fiji) were attracted to cues from 
mangroves leaves and were more attracted to cues from mangroves distant from human settlement. 
In the field, experimental reefs supplemented with mangrove leaves grown away from humans 
attracted more fish recruits from a greater diversity of species than reefs supplemented with leaves 
grown near humans. Together, this suggests that human use of coastal areas alters natural chemical 
cues, negatively affecting the behavioural responses of larval fishes and potentially suppressing 
recruitment. Overall, our findings highlight the critical links that exist between marine and terrestrial 
habitats, and the importance of considering these in the broader conservation and management of 
coastal ecosystems.

Connectivity between emergent coastal vegetation and subtidal marine ecosystems can play a crucial environ-
mental role, mediating productivity, community composition, and ecosystem  functioning1–3. However, many 
coastal habitats, both above and below water, are rapidly changing due to anthropogenic pressure; becoming 
degraded, fragmented, and less  biodiverse4–6, with the e�ects of these impacts o�en  unclear7,8. �us, identi-
fying the ecological links between associated ecosystems is essential for e�ective conservation and resource 
 management9,10. While human-driven changes to coastal landscapes are o�en clearly apparent, for instance the 
conversion of wild areas to agriculture or urban environments, the consequences of these actions for adjacent 
marine systems is generally less obvious. However, even small changes to land use can alter coastal marine envi-
ronments; for instance, pollutants and nutrients in runo� that alter marine chemistry can a�ect the behaviour 
of marine  animals11–13. Because ecological processes that can enhance or decrease coastal resilience are o�en 
behaviourally driven and mediated by chemosensory  cues14,15, subtle changes to the chemosensory environment 
could appreciably a�ect ecosystem function and dynamics.

A diverse array of aquatic taxa has evolved acute chemosensory systems, with waterborne chemicals providing 
a rich source of environmental  information15. �ese chemical cues can mediate a range of important behavioural 
processes, informing foraging  patterns16,  navigation17, predator–prey  dynamics18, habitat  selection14, and inter-
species  interactions19. For species with an initial planktonic life stage, such as most �shes and marine inverte-
brates, chemoreception can play an especially important role, helping to orient larvae and juveniles towards key 
habitats and facilitating recruitment  processes20. Because chemical signals in�uence critical ecological processes, 
it is crucial that we know cue sources and consequences. Information cues o�en have a marine origin, such as 
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the odour of corals, seaweeds, or  conspeci�cs14,21. However, due to the intimate relationship between coastal 
plant communities and marine habitats, some marine species respond to cues from emergent, or even non-
aquatic coastal  vegetation22,23. How such cues may be a�ected by coastal development is inadequately under-
stood. Because coastal plant communities are being lost, or altered, at alarming  rates24–26, and produce chemical 
cues that are critical for coastal marine species and communities, understanding the sources of these cues and 
processes a�ected by them is both timely and crucial.

Along tropical and subtropical coastlines, mangrove forests comprise one of the most ubiquitous plant com-
munities. �ese salt-tolerant plants represent globally important ecosystems, providing habitat for communities 
of terrestrial, estuarine, and marine  organisms27, including the juvenile stages of aquatic species that migrate 
elsewhere as adults, such as to nearby coral  reefs28. In addition to facilitating biodiversity, mangroves seques-
ter carbon, provide coastal protection, build land, accumulate and assimilate pollutants, and stabilize water 
 conditions29. Several aspects of mangrove ecology suggest they could provide recruitment cues for coastal �shes, 
including �sh species associated with fringing and lagoonal coral reefs. �e worldwide distribution of tropical 
mangroves largely overlaps that of reef building scleractinian  corals30, with mangroves growing in oligotrophic 
areas with limited freshwater input o�en occurring alongside fringing coral reefs and associated  habitats28,31–33. 
In addition, numerous ‘coral reef �shes’ are in fact, multi-habitat species, with the juveniles and adults of many 
also associated with  mangroves34. Finally, while mangroves hold leaves year-round, they continuously drop some 
leaves with rates of litter fall o�en peaking in warmer, or wetter  months35,36, overlapping with periods of high 
recruitment by reef  �shes37,38. �us, standing plants could produce cues to mark coastal systems, degraded leaves 
that sink could provide similar cues, and leaves dri�ing from shore could provide a trail of cues leading back to 
the shallow, structurally complex benthic environments essential for post-settlement survival of coastal �shes.

If this is the case, variations in the chemical composition of mangroves or their decomposing litter could 
alter the sensory information subsequently released. Globally, mangrove ecosystems are at high risk, reducing 
in area at rates equal to, or greater than, coral reefs and  rainforests25,39. Documented mangrove losses over the 
last quarter of the twentieth century were consistently between 35–86%, with stands becoming smaller, more 
fragmented, and less biodiverse due to the combined e�ects of agriculture, aquaculture, tourism, urban develop-
ment and  overexploitation25,40,41. While recent analysis suggests that rates of loss have substantially slowed in the 
twenty-�rst  century42,43, the future of mangrove ecosystems remains uncertain. Pollution is also a major cause 
of mangrove deterioration, with many of the chemicals present in sewage, runo�, and other direct inputs (e.g. 
nitrates, phosphates, and heavy metals) reducing mangrove growth and  condition44,45. As mangroves naturally 
accumulate compounds from their environments, many pollutants are incorporated into the plant’s  tissues46. 
�ese then have the potential to be subsequently remobilized when those tissues degrade, with greater bioavail-
ability than those held in  sediments47. �e presence of pollutants will also alter the microbial community associ-
ated with the water column, sediment, and plant  material44,48, which could further impact litter decomposition 
and associated chemical cues.

Given that environmental chemicals can in�uence the behaviour of marine larvae and that anthropogenic 
impacts to mangroves are likely altering marine chemistry, it is critical to determine if and how mangroves medi-
ate juvenile recruitment, and if this role is compromised due to anthropogenic activities. To this end we examined, 
(1) if juvenile �shes are attracted to the odour of mangrove leaf litter, (2) how this varied among di�erent leaf 
types, (3) if juvenile �shes distinguished between litter collected near versus remote from human settlements, 
and (4) if these behavioural responses re�ected patterns of recruitment under �eld conditions.

Results
Do chemical cues from mangroves attract reef fishes? To assess whether di�erent mangrove odours 
in�uenced the behaviour of juvenile reef �shes, and whether response patterns were generalizable between spe-
cies or geographic locations, we conducted a series of paired-choice experiments in a two-channel choice �ume. 
�ese experiments were conducted in both Fiji (South Paci�c Ocean) and Belize (Western Atlantic Ocean), with 
two common reef-associated �sh species used per location; Chromis viridis and Dascyllus reticulatus in Fiji and 
�alassoma bifasciatum and Stegastes partitus in Belize. All four �shes exhibited similar responses to the odour 
of mangrove leaves (Fig. 1a–d). All four species preferred the odour of young leaves over blank seawater, no spe-
cies distinguished between the odour of young green and old yellow leaves still on the tree, and all four preferred 
the odour of senescent, submerged leaves to young leaves collected from the tree.

When presented with senescent mangrove leaves from a site with human development versus senescent 
leaves from a site with limited human development both Belizean species preferred the odour of those from 
the undeveloped location (Fig. 2a, b). �is preference was also seen towards water collected from each site. 
Interestingly, when leaves from both sites were treated to remove the associated microbial �lm the one labrid 
tested, T. bifasciatum, ceased to distinguish between odours; however, whether this is due to di�erences in the 
microbiome or is related to the treatment itself is not clear Similarly, the one Fijian species tested, D. reticulatus, 
preferred water from undeveloped locations in two separate comparisons; Suva (developed) versus Nukulau 
Island (undeveloped), and Korovou (developed) versus Namuka (undeveloped). �is preference was extended 
to the odour of senescent leaves from Namuka versus those from Korovou, but not for leaves from Nukulau 
versus those from Suva (Fig. 2c).

Do mangrove chemical cues influence settlement site selection? To test whether the odour of 
decaying mangrove leaves from sites near human development vs those from sites with limited human develop-
ment in�uenced natural patterns of �sh settlement we conducted an experiment in Belize using constructed 
patch reefs that contained either NaOCl-treated or unmodi�ed leaves from the developed or undeveloped loca-
tion along with a control containing no leaves. NaOCl treatment reduced the microbial load on the leaves. Nine 
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�sh species settled onto the experimental patch reef sets: Canthigaster rostrata, Gymnothorax moringa, Halicho-
eres bivittatus, Pomacanthus arcuatus, a Scarus sp., Stegastes adustus, Stegastes leucostictus, S. partitus, and T. 
bifasciatum. However, T. bifasciatum was by far the most common settler accounting for 88.6% of �sh recorded 
(101 �sh out of 114). Treatment had a signi�cant e�ect on settlement (Fig. 3), with both total settlement and 
the diversity of settlers signi�cantly higher on patch reefs containing unmodi�ed undeveloped leaves than those 
containing unmodi�ed leaves from the developed location. Total settlement was also signi�cantly higher on 
both the control reefs and those containing treated leaves from the undeveloped site than to reefs containing the 
unmodi�ed leaves from developed sites. �ere was no di�erence in either variable between the treated leaves 
from the undeveloped and developed site. However, as in the paired choice experiment results above, it is pos-
sible the treatment itself had an e�ect.

Discussion
Mangrove-associated chemical cues in�uenced the behaviour of multiple species of settlement-stage �shes in 
both the Caribbean and tropical Paci�c with our �ndings suggesting that these cues are diminished or reversed 
by mangrove proximity to humans. �is was true for mangroves growing adjacent to a large city (Suva, Fiji 
with a population of ~ 170,000), but also for those growing on South Water Cay, Belize (an island of ~ 0.06 km2 
comprised primarily of tourist resorts). �is suggests that even sparse human populations on isolated islands 
may suppress the e�ectiveness of chemical cues that �shes use to �nd and recruit to appropriate coastal habitats. 
�us, humans not only remove adult �sh and brood-stock by �shing but may also be indirectly suppressing the 

Figure 1.  Results of paired-choice trials in Belize and Fiji testing the responses of two �sh species in each 
region to the odour of mangroves leaves at di�erent stages of growth and decay. Belizean species were (a) 
�alassoma bifasciatum, (b) Stegastes partitus. Fijian species were (c) Chromis viridis, and (d) Dascyllus 
reticulatus. �ree comparisons were conducted; either (i) young leaves vs. blank sea water, (ii) young leaves 
vs. old leaves from the plants, or (iii) young leaves vs. decaying leaves from beneath the plants. Boxplots show 
median values (horizontal lines), interquartile range (boxes), and minimum and maximum values (whiskers). 
p values are displayed below each comparison, calculated using either a paired-sample t-test or paired-sample 
Wilcoxon test. n = number of �sh per comparison.
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ability of local �sh populations to recover via interference with the chemical cues that organisms use to identify 
suitable habitat choices during recruitment.

For coastal �shes, an ability to identify and orientate towards mangroves would be invaluable as mangrove 
roots, detritus, and associated benthic communities create structural complexity and habitat diversity where 
this may otherwise be limited, o�ering shelter from predators, increasing the abundance of food resources, 
and reducing competition. As the distribution of mangrove stands o�en overlaps that of corals and other ses-
sile invertebrates within oligotrophic environments, the innate ability to recognize mangrove cues would likely 
prove valuable for �shes that associate with a range of shallow habitats, but especially those species that recruit 
to mangroves as juveniles and move to reefs as they  mature28,34,49. Our choice experiments demonstrated that 
�sh species associated with both reefs and rubble were attracted to mangrove odours, likely due to the close 
relationship between these habitats and mangroves at the study sites. Fishes were not simply responding to novel 
chemical cues; all four species distinguished between leaves at di�erent stages of growth and decay, while two 
of the three tested distinguished between those collected near versus far from humans. �us, the attraction for 
mangrove odour and the ability to distinguish nuances of this odour seems to have been selected for among dif-
ferent species from at least two families occupying di�erent oceans. Recruiting reef species may use numerous 
 odours20, as well as other sensory modes (e.g. vision and  hearing50) to select recruitment sites; decaying plant 

Figure 2.  Results of paired-choice trials in Belize and Fiji testing the responses of �sh species in each region 
to the odour of mangroves leaves or water collected from sites with human development vs limited human 
development. Belizean species were (a) �alassoma bifasciatum, (b) Stegastes partitus. �e sole Fijian species was 
Dascyllus reticulatus (c). For both Belizean species three comparisons were conducted; either (1) decaying leaves 
from an undeveloped site (Twin Cays) vs. decaying leaves from a developed site (South Water Cay), (2) decaying 
leaves from each site treated with NaOCl, and (3) water from each site. For D. reticulatus, Comparison A tested 
responses to either decaying leaves or water from an undeveloped site (Nukulau Island) or developed site (Suva). 
Comparison B tested responses to either decaying leaves or water from a second undeveloped site (Namuka) or 
developed site (Korovou). Boxplots and statistical procedures are as in Fig. 1.
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material may act as a sensory ‘booster’ in tandem with other sensory cues, increasing the likelihood that larvae 
will identify appropriate habitats.

�e similar behavioural responses observed between locations suggests that human activities have a general-
ized e�ect on recruiting �shes in that they can initiate an avoidance behaviour. In Fiji, our developed sampling 
locations were close to the capital city of Suva, within several miles of a �shing port, an industrial area, and dense 
urban development. In contrast, activities at the developed Belizean site of South Water Cay consisted primarily 
of tourist resorts and associated boat tra�c. Our low-impact sites were more similar between locations, with little 
human activity occurring near collection sites. �e similar behavioural responses observed highlight the need to 
identify the underlying causes of these negative chemical cues and determine the concentrations at which their 
presence has an adverse e�ect on �sh behaviour.

Di�erences in the composition of the chemical cues produced as leaf litter breaks down could involve a num-
ber of pathways. For instance, chemicals may accumulate from the environment that are subsequently released 
as leaves decay or cues may di�er due to environmental e�ects on leaf microbiomes. While the chemical com-
position of the leaves used in our behavioural experiments was not tested, there is some evidence that this can 
vary between sites occupied and unoccupied by humans. For instance, both Cu and Zn were 4–5 times higher in 
leaves subsequently obtained from the developed site, South Water Cay, compared to the undeveloped site, Twin 
Cays, Belize (Supplementary Table S1). Because the presence of toxic metals can directly impact the health of 
aquatic  environments51, excess amounts of these or other pollutants in mangrove leaves from the developed site 
could have repelled �shes directly, or indirectly via e�ects on associated microbes. Treating leaves with NaOCl to 
reduce the microbial load on the leaves had a variable e�ect on both behaviour and settlement in Belize. While 
it is possible that the treatment itself had some e�ect, in behavioural assays the labrid, �alassoma bifasciatum 
ceased to di�erentiate between leaves from each site while the pomacentrid, Stegastes partitus, continued to prefer 
leaves from the undeveloped site. �e variable responses between species suggests that, while broad trends are 
consistent, subtle di�erences in how species or families perceive and respond to these cues exist. In the �eld, both 
total settlement and settler species richness did not di�er between NaOCl-treated leaves from sites with versus 
without humans but did di�er between these sites for untreated leaves. �e increased settlement on arti�cial patch 
reefs in Belize that contained NaOCl-treated leaves from the developed site compared to untreated leaves from 
the developed site suggests that microbes associated with the developed site may be deterring �sh recruitment, 
although the treatment itself may have also had an e�ect. Little is known about the relationship between microbial 
communities and �sh recruitment, however, it is well established that bacterial bio�lms and the chemicals they 
produce act as settlement cues for many invertebrate larvae  (see52), and in some cases both juvenile �shes and 
coral larvae respond similarly to chemical  cues14. Analysis of microbiomes from decaying leaves from each site 
in Belize found 20 OTUs in signi�cantly higher relative abundances on leaves from the developed site (p < 0.001, 

Figure 3.  Results of a patch reef experiment testing whether the odour of mangrove leaves collected near 
human development (from South Water Cay) vs those from near limited human development (Twin Cays) 
in�uenced natural patterns of �sh settlement in Belize. Patch reef treatments were: empty control (EC), leaves 
from the undeveloped site (LU), treated leaves from the undeveloped site (TLU), leaves from the developed 
site (LD), and treated leaves from the developed site (TLD). Values displayed are for total settlement or species 
number residualised with respect to even distribution within the replicate (n = 18 per treatment). Letters indicate 
signi�cant di�erences as determined by post hoc multiple comparisons (p < 0.05; see Supplementary Tables S2, 
S3). Boxplots are as in Fig. 1.
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Supplementary Fig. S1). �ese include sulfate-reducing taxa as well as copiotrophic taxa that are o�en associated 
with shi�s in marine microbial communities exposed to anthropogenic nutrient  enrichment53.

�at mangrove-associated chemicals provide recruitment cues for �shes and that these cues are modi�ed by 
even modest-scale human occupation of nearby sites highlight the importance of incorporating the impacts of 
terrestrial landscapes into marine spatial planning and management, and indicate the value of implementing 
management strategies that limit the amount or type of chemicals entering the marine environment via terres-
trial sources. Additional work of value would include determining the importance of these cues relative to other 
biological and hydrodynamic processes as well as the chemicals to which the juvenile �shes are responding. In 
addition, future work should examine the role of mangrove odours and related chemical cues on the settlement 
and behaviour of mangrove specialist species, in particular those of ecological or economic importance. How-
ever, that we found behavioural responses to mangrove leaves in species not tightly associated with mangroves 
highlights that mangroves provide critical cues and habitats for a range of juvenile �shes and that their continuing 
losses a�ect not only mangrove systems, but also adjacent communities such as coral reefs.

Methods
Study sites and species. Portions of this study were conducted within the Western Atlantic (Belize) and 
portions within the South Paci�c (Fiji). In Fiji, work was conducted in January–February 2015, while most 
work in Belize occurred in June 2015 with some additional sampling (for leaf chemical analysis, see Supplemen-
tary Materials) in March 2016. In Belize, laboratory and �eld-based work was conducted at the Smithsonian’s 
Research Station at Carrie Bow Cay (16° 48′ 9.8316″ N, 88° 4′ 54.8148″ W) using �shes from Carrie Bow Cay and 
plant material collected from neighbouring islands, while in Fiji, laboratory-based experiments were conducted 
using �shes and plant material collected from reefs and islands o�shore from Labasa, Vanua Levu (16° 23′ 08.5″ 
S, 179° 19′ 52.5″ E) and surrounding the capital city of Suva, Viti Levu (18° 9′ 1.8432″ S, 178° 27′ 13.392″ E). 
Laboratory-based behavioural work focused on two common �sh species associated with fringing reefs at each 
location; the bluehead wrasse, �alassoma bifasciatum, and bicolor damsel�sh, Stegastes partitus, in Belize, and 
the blue-green chromis, Chromis viridis, and two stripe damsel�sh, Dascyllus reticulatus, in Fiji. In each location, 
these species were selected due to the high number of recruits present during the study period. �ese species 
are common in reef and non-reef habitats near mangrove forests and associate with microhabitats such as corals 
and other reef  invertebrates34.

Do chemical cues from mangroves attract reef fishes? To assess the e�ects of odours from man-
groves on reef �shes, we conducted choice assays using a two-channel �ume (13 cm length × 4 cm width)54 in 
which individual �sh were presented with two parallel water �ows, each containing di�erent chemical cues. In 
the �ume, each water mass remained separated on either side of the main chamber without producing turbu-
lence or eddies. Water was gravity fed into the �ume at equivalent volumes (100 ml min−1) from both sources, 
with dye tests conducted to con�rm that the two water sources continued to exhibit parallel water �ow. Recently 
settled �sh (1.5–2 cm total length) were collected by hand from reefs not associated with mangroves using nets 
and clove oil and held in aerated tanks until experimentation. Trials occurred within 6–24 h of collection with 
all �sh used observed actively swimming and interacting with their environment prior to each trial. All replicates 
used unique individual �sh and none were used in multiple assays. For each trial, a �sh was placed into the centre 
of the �ume at the downstream end. Following a two-minute habituation period, the position of the �sh (le� or 
right side of chamber) was recorded at �ve-second intervals for a period of two-minutes. �e source of water to 
each side of the chamber was then reversed and the chamber was allowed to �ush for a one-minute period. �en, 
a second two-minute habituation and two-minute test period were conducted. �is controlled for any side pref-
erence �sh may be exhibiting within the �ume. Due to logistical constraints, the tester was aware of the cues 
being tested. For each test, signi�cant di�erences in time spent in each water source were determined using 
either paired-sample t-tests, or Wilcoxon signed-rank tests if data did not met the assumption of normality. All 
analyses of paired-choice data were conducted using  R55. Fish that remained on one side during the habituation 
and test periods were considered to not be exhibiting normal exploratory behaviour and so were excluded from 
the subsequent analysis (Supplementary Table S5)56.

To assess whether �shes were attracted to odours from mangroves, we soaked 15 leaves (~ 10 cm L from tip 
to base × 6 cm width at widest point of blade) in 20 L of untreated seawater for a period of 2 h; and tested �sh 
behavioural responses to this water versus the same water but without the leaves. In Belize, all water was taken 
from the Carrie Bow Cay seawater system (the intake for this water is located approximately 25 m seaward from 
the island); in Fiji, all baseline water was from collections made at least 1 km from any reef or land. For this, and 
all subsequent tests, treatment water was used within 4 h of production to limit deterioration of odour molecules. 
In both Belize and Fiji, Rhizophora spp. mangroves were used to produce leaf chemical cues. Mangroves from this 
circumtropical genus were dominant at all sites, forming large coastal and o�shore stands. In Belize, the genus 
is represented by Rhizophora mangle57, while in Fiji, it is represented by R. stylosa, R. samoensis, and a hybrid 
of both, R. x selala58. In Fiji, plants were only distinguished to genus due to their overlapping distributions and 
morphological and genetic similarity.

A�er determining that mangrove cues were attractive to all four species of reef �sh tested, we also evaluated 
whether �shes were di�erentially attracted to (1) young (green) versus old (yellow) leaves collected while still 
on the plants, and (2) young leaves from the plants versus submerged, decaying leaves that had fallen from the 
plants and were collected as leaf litter at a depth of ~ 50 cm below standing plants. Latex gloves were worn dur-
ing collection to reduce altering leaf microbial communities. In Belize, all �shes for these trials were collected 
from the Carrie Bow Cay reef, with leaves collected from the neighbouring Twin Cays (16° 49′ 43.2″ N, 88° 06′ 
14.1″ W). In Fiji, �shes were either collected o� shore from Labasa (C. viridis, young versus submerged leaves) or 
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from fringing reef to the east of Suva (18° 08′ 45.7″ S, 178° 22′ 45.5″ E) (C. viridis, young versus older leaves and 
young leaves versus blank seawater; D. reticulatus, all trials). Leaves were either collected from o�shore stands 
near Labasa or stands inshore from the Suva fringing reef.

We also assessed whether attraction to odours from senescent, submerged mangrove leaves di�ered depend-
ing on whether these leaves were collected beneath mangroves near human settlements or beneath mangroves 
remote from human settlements. Sites near versus remote from human settlements were determined based on 
proximity to anthropogenic development. In Fiji, developed sites were mangrove stands near central Suva city 
(18° 9′ 22.432″ S, 178° 26′ 47.468″ E) and the village of Korovou (18° 7′ 12.55″ S, 178° 25′ 51.269″ E). Unde-
veloped sites were: Nukulau Island (18° 10′ 27.632″ S, 178° 31′ 5.646″ E) and Namuka (18° 08′ 06.2 "S, 178° 21′ 
22.8″ E). In Belize, the largely uninhabited Twin Cays was the undeveloped site while the neighbouring, and 
more populated, South Water Cay was the developed site (16° 49′ 43.2″ N, 88° 06′ 14.1″ W). �ese islands were 
approximately 2 km apart at their shortest distance. In addition to testing responses to leaves, we also tested the 
responses of �shes towards water collected at each of the leaf collection sites. Water was collected in 15 L con-
tainers and used within 4 h of collection. Water from each site did not di�er in clarity or colour based on visual 
inspection. Fishes for comparison one (Suva vs Nukulau) were collected from the fringing reef near Makuluva 
Island (18° 11′ 17.9″ S, 178° 30′ 57.3″ E), while �shes for comparison two (Korovou vs Namuka) were collected 
from fringing reef to the east of Suva as above.

Do mangrove chemical cues influence settlement site selection? At Carrie Bow Cay, three groups 
of �ve patch reefs (i.e., 15 in all) were built in a large, sandy area 40 m from shore and 100 m from the near-
est reef, with each group of �ve patch reefs comprising one replicate block of treatments. For each block, the 
�ve patch reefs were arranged in a circle with each patch reef 1.5 m from its adjacent patch reefs. Each block 
was separated from the other two blocks by ≥ 15 m. Each patch reef was approximately 40 cm in diameter and 
consisted of equal parts coral rubble and live Acropora prolifera coral surrounding a stimulus emission device 
(SED)59. SEDs were rectangular plastic containers (L = 15 cm, W = 10, H = 10) with opaque mesh sides and top 
that allowed dispersal of the odour of the mangrove leaf litter inside. Materials used to make the reefs obscured 
the SEDs from view. �e �ve treatments included; a control containing an empty SED (empty control = EC), 
unmodi�ed mangrove leaves from the undeveloped site (leaves unmodi�ed = LU), unmodi�ed mangrove leaves 
from the developed site (LD), mangrove leaves from the undeveloped site treated to reduce the microbial bio�lm 
(TLU), and mangrove leaves from the developed site treated to reduce the microbial bio�lm (TLD). Treatment to 
remove the original leaf-associated microbiome consisted of spraying leaves with the bactericidal agent sodium 
hypochlorite (NaOCl) diluted to 0.005% with deionized water until saturated and holding these in a sterile con-
tainer for 10-min. Leaves were then �ushed with seawater until no chemical odour could be detected. �e order 
and position of treatments within each patch reef block was randomised between each trial. �is experiment 
was repeated for six consecutive nights during June 2015 yielding n = 18 per treatment (i.e. three replicates per 
treatment per night for six nights). Patch reefs were built each a�ernoon prior to sunset. �e following morning 
at 0630 h, all �sh recruits on each patch reef were identi�ed and counted. All �sh were removed from each patch 
reef and released onto nearby reef areas. To identify di�erence in settlement site selection while accounting for 
spatial and temporal variation in recruitment, total settlement and the total number of settler species to each 
patch reef was converted to a replicate residual for each block of treatments. �is was done by dividing total 
settlement or species for all patch reefs in a block by �ve to give the expected numbers of settlers or species per 
reef if distributed evenly. Residual settlement and species for each patch reef equalled the actual minus expected 
settlement and species. As settlement data did not meet parametric assumptions, a Kruskal–Wallis rank sum 
test was used to determine whether residual settlement varied between treatments, with Dunn’s tests of multiple 
comparisons used for post hoc analysis. For species data, a one-way ANOVA was used with post hoc analysis 
conducted using Tukey’s HSD tests. All analyses of patch reef data were conducted using  R55.

Potential drivers of the behavioural patterns observed. Following the behavioural components of 
this study, we collected leaves from each site and analysed these for di�erences in elemental composition and 
in the community composition of their microbiomes. Because leaves for chemical analysis were not collected 
synchronous with our behavioural assays and because leaves for both components were from only one devel-
oped and one undeveloped site (Twin Cay and South Water Cay in Belize), we view these as preliminary data 
indicating possible drivers of the behavioural patterns we observed. Results from these e�orts are presented in 
the Supplementary Materials.

Ethics approval. All work using animals was approved by the Georgia Institute of Technology and Univer-
sity of Delaware ethics committees and followed relevant guidelines and regulations.

Data availability
All data and code used to conduct the analysis in this manuscript is available at: https ://doi.org/10.5281/zenod 
o.42841 08.
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