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Abstract. The geographic pattern of human risk for infection with Borrelia burgdorferi sensu stricto, the tick-borne
pathogen that causes Lyme disease, was mapped for the eastern United States. The map is based on standardized field
sampling in 304 sites of the density of Ixodes scapularis host-seeking nymphs infected with B. burgdorferi, which is closely
associated with human infection risk. Risk factors for the presence and density of infected nymphs were used to model
a continuous 8 km + 8 km resolution predictive surface of human risk, including confidence intervals for each pixel.
Discontinuous Lyme disease risk foci were identified in the Northeast and upper Midwest, with a transitional zone includ-
ing sites with uninfected I. scapularis populations. Given frequent under- and over-diagnoses of Lyme disease, this map
could act as a tool to guide surveillance, control, and prevention efforts and act as a baseline for studies tracking the
spread of infection.

INTRODUCTION

Lyme disease, the most prevalent vector-borne disease in the
United States is caused by Borrelia burgdorferi sensu stricto, a
tick-borne spirochete. In the eastern United States, the bacte-
rium is maintained in a horizontal transmission cycle between
its vector, the black legged tick Ixodes scapularis, and vertebrate
reservoir host species. Humans are incidental hosts, acquiring
the pathogen through tick bites. Most patients develop a dis-
tinctive rash, erythema migrans, which is accompanied by flu-
like symptoms such as fatigue, headache, mild stiff neck, joint
and muscle aches, and fever.1 In some untreated cases, symp-
toms of disseminated disease involving neurologic, cardiac, or
articular complications, may develop weeks or months after
exposure.2 Since initially described in Lyme, Connecticut,3 the
disease has steadily increased in incidence and expanded its
geographic range,4 causing a regional epidemic in the eastern
United States and southeastern Canada.
Accurate information on spatial patterns of human risk of

exposure to infected ticks is essential for the public to make
personal protection decisions and for efficient allocation of
public health resources. Delineation of Lyme disease-endemic
areas also assists local medical communities in considering a
diagnosis of tick-borne disease. Accurate and timely diagnosis
is critical as delay may lead to severe disease requiring more
aggressive treatment.5 On the other hand, overuse of antibiot-
ics sometimes results in serious negative outcomes, potentially
including death.6,7 Considering the 2.7 million diagnostic assays
for B. burgdorferi that are conducted annually in the United
States,8 even a small proportion of false positive results could
dwarf the number of reported cases (�20,000 cases/year4) and
result in a skewed distribution of case reports. Finally, accurate
information on local exposure risk can guide the use of antimi-
crobial prophylaxis for the prevention of Lyme disease after a

recognized tick bite, currently recommended where tick infec-
tion prevalence is greater than 20%.9

The Lyme disease case definition currently adopted by the
Centers for Disease Control and Prevention (CDC) consid-
ers endemic those counties with at least two confirmed, locally
acquired cases or in which established populations of a known
tick vector are infected with B. burgdorferi.10 However, sig-
nificant Lyme disease underreporting and misdiagnosis4 and
geographic expansion in vector distribution limit the reliabil-
ity of using past human cases to predict risk. In addition, the
variable interval between time of exposure to infected ticks
and manifestation of symptoms confounds the precise deter-
mination of exposure location, and can result in the incorrect
association of cases with specific counties. Acarological risk, as
measured by the density of infected host-seeking I. scapularis

nymphs has been previously found to be positively correlated
to Lyme disease incidence on a regional scale11 and is free of
some of the biases involved in human case reporting.
The use of geographic information systems and remote

sensing techniques to map vector-borne diseases has evolved
significantly over the past 25 years. The convergence of factors
such as the availability of multi-temporal satellite data and
sophisticated statistical and image processing algorithms have
provided the necessary tools to generate predictive surfaces
of disease risk based on vector or human case data that can
be used to guide prevention and interventions (reviewed in
Reference 12).
We developed an acarological risk map for Lyme disease

based on standardized field sampling to estimate the density
of B. burgdorferi-infected host-seeking nymphal I. scapularis
throughout the range of the tick. We focused on the nymphal
stage because it is the only tick life stage that has a significant
role as a vector forB. burgdorferi in eastern North America11,13

as a result of its small size, propensity to feed to repletion on
humans, and summer host-seeking activity. Building on our
previous research to identify the environmental predictors for
the density of ticks,14 here we assess environmental predictors
for nymphal infection prevalence and combine them to model
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a continuous predictive surface of human risk of exposure to
infected ticks independent of human case reports.

METHODS

Tick sampling scheme. The study area included the con-
tinental United States east of the 100th meridian (37 states),
encompassing the known I. scapularis distribution.15 A spa-
tially stratified random design was applied by overlaying a
two-degree sampling grid across the study area; state parks or
other publicly accessible forested areas were randomly selected
within each grid cell. A total of 304 sites were sampled between
2004 and 2007, 30 of which were repeatedly sampled in 2 to
4 years, resulting in a total of 348 site-year samples. No infec-
tion data were available for four sites resulting in 344 site-years.
Within each site, we measured relative nymphal density by
drag sampling16 of closed-canopy deciduous forest along five
200 m transects. To capture the host-seeking phenology of
I. scapularis nymphs, we visited sites a median of five times
during late spring and summer (range: 1–6), when nymphs
actively seek their hosts in the northeastern United States.17

Sampling was performed between 19 May and 27 August in
2004, 9May and 4October in 2005, 10May and 30 September in
2006, and 8May and 4August 2007. In 2007, data on tick density
was not collected; therefore, only infection prevalence data
are reported. Additional details of the sampling methodology
are described in a previous publication with focus on modeling
the distribution of host-seeking nymphs.14

Tick processing and calculation of the density of infected

I. scapularis nymphs (DIN). The dependent variable in the
analysis to follow is the annual mean density of infected
nymphs per 1,000 m2. This was derived from multiplying the
density of nymphs per 1,000 m2 by the infection prevalence at
each site-year. The estimated annual mean density of nymphs
per 1,000 m2 was derived by 1) calculating the mean number of
I. scapularis nymphs collected per visit by averaging the col-
lections from the five transects; 2) representing the observed
phenology at a site by plotting the mean number of nymphs per
visit by time; 3) calculating the area under phenology curve; and
4) dividing this area by the total numberofdays elapsedbetween
the first and last sampling visit at a site for a given year.14

Following ammonium hydroxide total DNA extraction, the
presence of B. burgdorferiDNAwas determined for all I. scap-
ularis nymphs in 344 of the sites/years by polymerase chain
reaction amplification of a portion of the 16S rRNA gene with
species-specific primers.18

Infection prevalence was calculated for each collection
site-year by dividing the total number of B. burgdorferi-
positive nymphs by the total number tested at each site-year.
The prevalence estimate at each site was used to calculate
the density of infected nymphs, regardless of sample size. We
assumed infection prevalence did not vary over one trans-
mission season.
Environmental covariates. The environmental covariates

evaluated as predictors of the density of infected nymphs
were selected from among those found to be associated with
the density of host-seeking I. scapularis nymphs,14 in addition
to landscape metrics describing forest fragmentation patterns
that we hypothesized to be indirectly associated with nymphal
infection prevalence with B. burgdorferi. Smaller forest
fragments have been linked to higher abundance and infection
prevalence of nymphal I. scapularis.19,20

Factors potentially influencing I. scapularis nymphal density.

Our previous model of nymphal density14 assessed a large
number of variables (Supplementary Technical Appendix).
On the basis of the best predictive model for the density of
nymphs, we included in the current model elevation, mean
vapor pressure deficit (VPDm), the annual amplitude of the
maximum temperature cycle (TMAXaa), the annual phase
of the minimum temperature cycle (TMINap), the annual
amplitude of the normalized difference vegetation index
(squared, NDVIaa), and an autocovariate term that accounts
for the expectation of sites closer in space to be more similar
to one another than sites farther apart.14

Factors potentially influencing B. burgdorferi nymphal

infection. We used data derived from the 30 m resolution 2001
National Land Cover Database (NLCD21) to characterize
spatial patterns in the distribution of deciduous and mixed
deciduous-evergreen forest cover and fragmentation in 8 km +

8 km cells centered on each of our sampling sites. Each cell
included 71,111 30 m NLCD pixels, and we calculated the
following fragmentation metrics using Fragstats (version 3.3,
Amherst,MA): total area, proportion of the landscape occupied
by deciduous-mixed forest, number of deciduous-mixed forest
patches, total linear edge between deciduous-mixed forest and
other land cover types, proportion of the landscape occupied
by the largest deciduous-mixed forest patch, mean deciduous-
mixed forest patch area, average Euclidean distance between
nearest-neighbor deciduous-mixed forest patches, an index of
total aggregation of deciduous-mixed forest patches, an index
of mean edge/area ratio for deciduous-mixed forest classes,
and perimeter-area fractal dimension. We also calculated
Shannon’s and Simpson’s diversity indices using all classes
included in the 2001 NLCD (N ¼ 27) independently, but
collapsing deciduous andmixed forest.
After preprocessing the data, the values of the environmen-

tal data sets corresponding to each site were extracted for the
point location of each site from the closest 8 km + 8 kmpixel.
Model development. We developed a zero-inflated negative

binomial (ZINB) regression model for the expected density
of infected I. scapularis nymphs using environmental covari-
ates as predictors (countreg procedures, SAS software, SAS
Institute Inc., Cary, NC). The ZINB regression model is used
for data that appears to have a negative binomial distribution
with an excess number of zero-valued observations. The ZINB
regression model simultaneously uses a logistic function to
model the process that is generating the excess zeros and a
negative binomial regression function to model the process
that is generating the remaining data.22

We used a modified forward stepwise procedure to select
the variables to include in the model. We initially included all
variables present in the model for the density of host-seeking
nymphs14 and subsequently added a single variable to either
the logistic or the negative binomial components of the model.
At each step, we identified the best fit model as the one where
all variables were significant (P < 0.05) and had the low-
est Akaike information criterion. Variables were added until
there were no improvements in themodel fit.
Risk map generation. The acarological risk map was devel-

oped by running the selected regression model using the values
of the environmental predictors at each pixel location. In addi-
tion to presenting a continuous surface of acarological risk, we
generated confidence bands for the predicted surface. A con-
fidence band (CB) essentially estimates the 95% confidence
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interval (CI) for the entire range of expected values produced
by the regression function. In contrast with simple regression
models, for which a closed form solution can be calculated for
the joint distribution of regression parameters, such closed
form solution is not readily available for the ZINB. Therefore,
we used bootstrap simulations to generate CIs for each density
estimate produced in our analysis. Collectively, these bootstrap
CIs form an estimate of the confidence band or confidence
surface for the regression function.Togenerate theseCIs, a total
of 10,000 pseudo-samples of size 344 were created by randomly
selecting (with replacement) from the data set used to do the
original analysis. The ZINB regression model used for the
original analysis was applied to each pseudo-sample, result-
ing in estimates of density of infected nymphs for every pixel.
By ranking the estimates for a pixel and identifying the 5th
and 95th percentiles, an empirical estimate for the upper
and lower bootstrap confidence surface was obtained for the
original estimates of our regression model. High-risk areas
were defined as those for which the lower bound of the
95% CB was larger than a threshold number of infected
nymphs and low risk were those for which the upper bound
of the 95% CB was smaller than the threshold number of
infected nymphs. Transitional areas were defined as those nei-
ther in the high nor low risk categories. A range of thresholds
were examined and the one that maximized the sensitivity of
the model was selected for the final risk map (Supplementary
Figure S1).

RESULTS

Density of I. scapularis nymphs per 1,000 m2. A total of
5,332 I. scapularis nymphs were collected at 94 sites (107
site-years) out of 304 sites (344 site-years) (30.1%) sampled
between 2004 and 2006, with yearly totals in positive sites
ranging from 1 to 506. The weighted mean density of host-
seeking nymphs per 1,000 m2 was 3.28 (s.d. 10.53), ranging
from 0 to 101.29 (Supplementary Table 1). Two population foci
were identified in the Northeast and upper Midwest, with no
nymphs collected between these two regions (in and around
Ohio). A map and details of the nymphal density data have
been previously published.14

The DIN per 1,000 m2 was derived for each site-year by mul-
tiplying the annual mean density of host-seeking I. scapularis

nymphs (DON) by the infection prevalence at each site-year.
Mean DIN was 0.64 (s.d. 2.24), ranging from 0 to 18.62
(Figure 1). Two discontinuous acarological risk foci were iden-
tified, one from northern Virginia to southern Maine and one
in the upper Midwest, centered in Wisconsin and Minnesota.
The density of infected nymphs per 1,000 m2 was not signifi-
cantly different between the two foci or between sites with high
and low density of nymphs, split at the median (Mann-Whitney
two-sample statistic,P< 0.05).
The ZINB model for the density of infected host-seeking

I. scapularis nymphs with the lowest Akaike information cri-
terion and for which all covariates were significant (P < 0.05)
included elevation, VPDm, and TMINaa as predictors for the
absence of infected nymphs. The spatial autocovariate term
and the proportion of the landscape occupied by the largest
deciduous-mixed forest patch were significant positive pre-
dictors for the density of infected nymphs in positive sites
(Table 1). No spatial autocorrelation was detected in the resid-
uals of the regressionmodel (Moran’s I Z¼�1.28,P¼ 0.19).

A threshold of 0.3 infected nymphs per 1,000 m2 was
selected to define high- and low-risk areas; the model’s sensi-
tivity was maximized using this threshold, although retaining
a high model specificity and overall accuracy (Supplementary
Figure S1). Of the 344 site-years sampled, 279 were classified
with 95% confidence using this threshold, 62 as high risk and
217 as low risk (Figure 2), with just three high-risk sites mis-
classified as low risk. Accuracy and precision metrics are pre-
sented in Table 2.
Borrelia burgdorferi nymphal infection prevalence. Ixodes

scapularis nymphs from 92 of the sites (5,328 nymphs; 4
nymphs from 2 sites could not be processed) were tested for the
presence of B. burgdorferi DNA. Overall infection prevalence
was 0.20 (1,044 positive nymphs/5,328 nymphs tested). At least
one positive nymph was collected in 50 sites (61 site-years). Of
the remaining 42 sites, in only 4 sites we sampled > 14 nymphs,
which we estimated as the threshold to be 95% confident
that the site is negative based on the binomial probability
distribution. Two of these sites were located along the Illinois-
Indiana border and two along the New York-Vermont border
(Figure 3).
We selected a subsample of sites with a minimum of 100

nymphs per sampling year to examine spatial and temporal
patterns in infection prevalence (Figure 4). We used a bino-
mial log-likelihood probability function to estimate 95% CIs
for each prevalence estimate.

DISCUSSION

Climate and landscape-based modeling of Lyme disease
acarological risk revealed two discontinuous population foci

TABLE 1

Zero-inflated negative binomial model of the density of infected
host-seeking Ixodes scapularis nymphs

Estimate Std error t value Pr > jtj

Zero Inflated
Intercept 1.20 0.70 1.83 0.07
Elevation 4.07 1.06 3.38 < 0.001
Vapor pressure deficit mean 5.32 1.43 3.72 < 0.001
TMIN annual phase 2.24 0.66 3.41 < 0.001
Negative Binomial
Intercept �0.82 0.44 �7.86 0.06
Autocovariate term 0.64 0.16 4.04 < 0.0001
Largest forest patch index 0.62 0.22 2.82 < 0.001

TMIN ¼ monthly minimum temperature.

TABLE 2

Accuracy and precision of the binary risk classification of the sites
identified as high and low risk, excluding the sites classified as being
in the transition zone*

Observed

High risk Low risk

Predicted High risk 39 23 62
Low risk 3 214 217

42 237 279

Accuracy 0.91
Sensitivity 0.93
Specificity 0.90
Positive predictive value (precision) 0.63
Negative predictive value 0.99

*Observed high-risk sites were those in which at least 0.3 infected nymphs per 1,000 m2

were collected; observed low-risk sites were those in which< 0.3 infected nymphs per 1,000m2

were collected; predicted high-risk sites were those in which the lower limit of the bootstrap
95% confidence interval (CI) was higher than 0.3; predicted low risk sites were those in which
the upper limit of the 95% bootstrap CI was< 0.3.
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for both B. burgdorferi and I. scapularis, one in the Northeast
and one in the upper Midwest. The ZINB modeling approach
allowed for the identification of separate sets of variables for
predicting presence/absence and density of infected nymphs.

Lower elevation, low vapor pressure deficit, and low sea-
sonal extremes in minimum temperature were associated with
the presence of infected nymphs. No nymphs were collected
above a threshold elevation of 510 m. The less fragmented

FIGURE 1. Predicted and observed density of infected host-seeking Ixodes scapularis nymphs (DIN)/1,000 m2.

FIGURE 2. Statistically significant high- and low-risk areas. High risk: 95% probability that at least 0.3 infected nymphs will be collected per
1,000 m2; low risk: 95% probability that< 0.3 infected nymphs will be collected per 1,000 m2; transitional area: risk cannot be ascertained with 95%
confidence (confidence interval includes 0.3); true high risk: > 0.3 infected nymphs collected in a predicted high-risk area; true low risk: < 0.3
infected nymphs collected in a predicted low-risk area; false high risk: < 0.3 infected nymphs collected in a predicted high-risk area; false low risk:
> 0.3 infected nymphs collected in a predicted low-risk area.
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landscapes were associated with higher densities of infected
nymphs in positive sites. The density of infected nymphs was
also associated with the density of infected nymphs in nearby
sites, as representedby the autocovariate term.The spatial depen-
dency captured by this term is likely caused by recent and ongo-
ing population expansion of I. scapularis from past refuges in the

Northeast23 and the upperMidwest24 following environmental
changes such as reforestation, suburbanization, and reintroduc-
tion of deer.25 The inclusion of an autocovariate term captures
an important feature of this ongoing expansion, that is, the so far
unrealized occupation of all suitable habitats by I. scapularis, a
consequence of constraints on dispersal or establishment.26

FIGURE 3. Infection status of sites where at least one I. scapularis nymph was collected. Sites where at least 14 nymphs were collected between
2004 and 2006 are highlighted. With this sample size and assuming infection prevalence of 0.20, it is estimated with 95% confidence that at least one
infected nymph would have been collected were the site positive.

FIGURE 4. Borrelia burgdorferi prevalence estimates in nymphal I scapularis for sites repeatedly sampled with a minimum of 100 nymphs
collected in each of the sampled years. We used a binomial log-likelihood probability function to estimate 95% confidence intervals for each
prevalence estimate.
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The absence of host-seeking nymphs infected with B. burg-

dorferi in the southern portion of the range of I. scapularis

is consistent with previous studies.27,28 Although I. scapularis

populations are present in this region, the nymphs have an
altered feeding behavior presumably adapted to lizards and
skinks and cannot be readily sampled by the drag cloth collect-
ing method.14 Because this method is directly correlated with
human contact with host-seeking ticks, it is considered a direct
measure of risk for tick bites.11,29 The absence of infected host-
seeking nymphal I. scapularis in most southern states suggests
that reported cases from this region may be mostly caused by
either misdiagnosis or travel to an endemic area.
The threshold for classifying areas into low and high risk

was selected to maximize the sensitivity of the model, given
the high potential cost of underestimating risk of infection.
Using this threshold, the final model had 91% accuracy, 93%
sensitivity, and 90% specificity. The model predicted the pres-
ence of infected nymphs in some negative sites for which other
sources indicate emerging risk, such as eastern Maine,30 the
Illinois/Indiana border,24,31 the New York/Vermont border,32

southwesternMichigan,33 and eastern North Dakota (Vaughan
J, personal communication). The density of infected nymphs
was often underestimated by the model in these regions, and
bootstrap CIs often included the threshold value for infected
nymphs, therefore the sites could not be assigned to a 95%
confidence risk category. Uninfected I. scapularis populations
were also identified along two of these putative expansion
fronts (Illinois/Indiana and New York/Vermont), consistent
with a pattern of initial tick spread followed by the spread of
B. burgdorferi.34 An alternative invasion pattern was detected
in Michigan,33 where low-prevalence B. burgdorferi infection
was detected in other tick species and in wildlife at inland
sites before the arrival of I. scapularis. The authors suggested
a cryptic B. burgdorferi transmission cycle by other vector-
competent tick species in the absence of I. scapularis. Further
studies are warranted to evaluate the accuracy of the predic-
tive model and to describe the patterns and processes driving
the expansion of I. scapularis andB. burgdorferi.
The model performed poorly in western Pennsylvania,

underestimating the density of infected nymphs at Parker
Dam State Park in northern Clearfield County and in Presque
Isle State Park in Erie County. Borrelia burgdorferi was previ-
ously detected in Peromyscus leucopus in Elk County, north
of Clearfield County,35 and both I. scapularis and B. burgdor-

feri were previously reported in Erie County.36 Low estimated
density of infected nymphs at these sites is caused by their iso-
lation from other high-density sites, resulting in low values of
the autocovariate term. In addition, Parker Dam State Park’s
high elevation (490 m), near the limit of the nymphal distri-
bution identified by our study (510 m), further reduced the
density estimate for this site. The isolation of these infected
tick populations suggests a separate Lyme disease focus
from the known northeastern and midwestern foci37; further
study is needed to determine the extent of these isolated
Pennsylvania foci.
The spatial pattern of infected nymphs was highly consis-

tent with the distribution of all nymphs found in our previ-
ous model,14 suggesting that nymphal density, rather than
infection prevalence, drives the spatial patterns in acarologi-
cal risk. No obvious spatial structure was detected in the dis-
tribution of nymphal infection prevalence (Figure 4). However,
low precision of the infection prevalence estimates because of

small sample sizes at the site level limit any inferences beyond
a regional level.
The probability of finding nymphs was driven by elevation,

VPDm, and seasonal variation in temperature. These variables
were selected for use in the current model because of their pre-
dictive value for the density of I. scapularis nymphs.12 The den-
sity of host-seeking ticks of Lyme disease vectors in Europe
has been found to decrease with increasing elevation38,39; the
extent to which this effect is caused by temperature remains
to be determined. The strong predictive power of VPD on the
density of host-seeking nymphs is consistent with other stud-
ies.40–42 Water stress and high temperatures are hypothesized
to regulate tick populations by decreasing tick survival during
off-host periods43 and regulating host-seeking activity.44–47

Seasonality in temperature has also been an important
predictor in other studies of the distribution of vectors and
disease,48 including tick-borne diseases.49 Temporal Fourier
analysis captures both the extremes in temperature and the
rates of fall cooling and spring warming. Extreme winter tem-
peratures can limit the northern distribution of ticks by directly
killing the ticks,43,50 inhibiting host-seeking activity,44,46,47 or lim-
iting the availability of hosts.51 The high rate of fall cooling can
also affect tick population dynamics by limiting the time avail-
able for larvae to find a host in the fall, thus entering diapause
unfed,52 which potentially increases their mortality rate.52 On
the other hand, high rates of spring warming may have an
opposite effect, because it would result in faster accumulation
of degree-days for development, potentially leading to earlier
egg deposition and larval emergence.51

Previous studies identified a positive link between forest frag-
mentation and both tick density and infection prevalence.19,20

Extensive data mining of our dataset did not identify any sig-
nificant landscape predictors of nymphal infection prevalence
(results not shown), and the only landscape predictor included
in the final regression model reflected a negative, rather than
positive, link between forest fragmentation and the density of
infected nymphs. The larger spatial extent and coarser spatial
scale of this study may partially explain differences with previ-
ous studies.53 Forest fragmentation metrics were calculated for
each 8 km + 8 km pixels in this work, although previous stud-
ies focused on a scale of a few hectares19 to 0.5 km.20 At the
resolution of our study, highly urbanized or agricultural areas
appear as highly fragmented pixels, whereas lower fragmen-
tation is linked to more forested areas that typically support
I. scapularis populations. A limitation of this study is that sam-
pling was limited to natural areas to standardize sampling at
a continental scale. However, human risk for Lyme disease
appears to be peridomestic, at least in the northeastern United
States.54,55 More studies on the associations between the
density of infected nymphs and human risk at different scales
are warranted.
In terms of public health applications, the lack of spatial

structure in nymphal infection prevalence, combined with the
difficulty in accurately estimating prevalence with small sam-
ple sizes, brings into question the validity of using an exact
prevalence threshold to guide clinical decisions on treatment,
such as the current recommendation of tick-bite prophy-
laxis when infection prevalence is > 0.2.9 Our results indicate
that the presence of any number of infected nymphs may be
considered sufficient to recommend post-exposure prophy-
laxis. Infected nymphs were found in 92.3% of the sites where
a threshold of 14 nymphs per 1,000m2were collected.
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The construction of an accurate map showing the spatial
distribution and density of I. scapularis in the United States
has been limited by the use of non-standardized, county-
based data on the distribution of I. scapularis,15 the map-
ping of all I. scapularis life stages,56,57 and the absence of
data on nymphal infection with B. burgdorferi.14 The Lyme
disease risk map that we present here is based on standard-
ized sampling of infected host-seeking I. scapularis nymphs,
the primary vector stage of B. burgdorferi for humans through-
out the geographic range of the species. Although the large
spatial extent of this map necessarily limits its spatial resolu-
tion and localized studies are warranted in some focal areas,
our map makes new contributions to surveillance, prevention,
and control programs. Specifically, this risk map can assist
in surveillance and control programs by identifying regions
where human cases are expected and may assist treatment
decisions such as the use of antimicrobial prophylaxis follow-
ing a tick bite. Finally, this map provides an essential base-
line for tracking spread of the infection from areas endemic
in 2004–2007.
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