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Human-Robot Co-Carrying Using Visual and Force

Sensing
Xinbo Yu, Member, IEEE, Wei He, Senior Member, IEEE, Qing Li, Yanan Li, Member, IEEE, Bin Li

Abstract—In this paper, we propose a hybrid framework
using visual and force sensing for human-robot co-carrying
tasks. Visual sensing is utilized to obtain human motion and
an observer is designed for estimating control input of human,
which generates robot’s desired motion towards human’s in-
tended motion. An adaptive impedance-based control strategy
is proposed for trajectory tracking with neural networks (NNs)
used to compensate for uncertainties in robot’s dynamics. Motion
synchronization is achieved and this approach yields a stable
and efficient interaction behavior between human and robot,
decreases human control effort and avoids interference to human
during the interaction. The proposed framework is validated by
a co-carrying task in simulations and experiments.

Index Terms—Human-robot collaboration, Motion synchro-
nization, Observer, Neural networks, Visual and force sensing.

I. INTRODUCTION

Physical interaction of human and robot (pHRI) in shared

environments and joint tasks poses many challenges [1]. There

exist extensive applications of pHRI found in service and

industrial areas including assembly, rehabilitation [2] and

so on [3]. Co-carrying tasks, which rely on complementary

advantages of human and robot, cannot be accomplished

individually by a single human or robot. Coupled relationships

between robot, transported object and human bring difficulties

in analyzing behaviours of both human and robot. In this

paper, the focus of interest is using vision and force sensing

together to enable human and robot collaboratively to perform

a co-carrying task. For this purpose, robot should have the

following abilities:

1) measure human motion and estimate human motion

intention for achieving motion synchronization;

2) measure external force on robot gripper and regulate

interaction force for achieving safe interaction;

3) carry out human-in-the-loop control strategy considering

system uncertainties.
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How to understand human sensorimotor behavior is a key for

robot to achieve compliant interaction in pHRI. Robot can take

a “follower” role in pHRI without knowing human motion in-

tention. However, passive control of robot may disturb human

behaviors, affect human trust or bring human more burden

in co-transporting tasks. In [4], online neural networks are

employed to estimate human motion intention which is defined

as the human’s desired trajectory, and less human efforts are

required with the proposed method. In [5], human motion

intention is estimated by observing robot control effort without

force sensors. A switching control scheme is developed that

changes between impedance control and interaction control. In

[6], human motion intention is deemed as the current human

motion, without considering the future motion estimation.

Human muscle activity measurements encode the information

about human motion, and provide robot with online feedback

information. Based on this idea, human motion intention also

can be defined as continuously time-varying force or torque

[7]. In our paper, we regard human motion intention as

moving target position which leads to a continuous trajectory.

A related work can be found in [8], which can provide a

desired trajectory based on the interaction force in pHRI

without constant human guidance and results in reduction

in human control effort. Most of these studies in the field

of motion intention estimation have only focused on direct

interaction rather than indirect pHRI, i.e. through an object in

co-carrying tasks. Complicated coupled relationships between

human, object and robot bring more difficulties in estimating

human motion intention. Therefore one purpose of our work is

to estimate human motion intention in co-carrying tasks with

indirect interaction.

Controller design in pHRI has received considerable at-

tentions in recent years [9]–[16]. A remarkable issue is that

accurate robot’s dynamics are extremely difficult to obtain

from the engineering point of view [17]. However, it is critical

to acquire sufficient information about robot’s dynamics for

achieving precise torque control [18]–[21]. In [22], an adaptive

impedance control of dual-arm robots is proposed where

neural networks (NNs) are utilized to compensate for uncertain

dynamics. In [23], human-like adaptive controller is proposed

for compensating for disturbance and dynamics without force

sensing, and it is derived from minimizing control effort and

error. In conclusion, uncertainty compensation is an important

component in controller design [24]–[29], and also plays a key

role in pHRI [30].

Joint tasks have been extensively studied in the field of

pHRI [31]. In [32], authors design a control strategy which

allows a humanoid robot to perform a complex co-carrying
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task with human, and robot can guess human motion to

proactively participate to the task. Human stiffness estimation

is also an increasingly important area in co-carrying tasks. In

[33], weight least-squares estimation is employed to estimate

virtual stiffness, which is included in the complete set of task-

parameterized Gaussian mixture model. This model can be

used for impedance-based behaviors transfer. A related work

can be found in [34], where authors proposed an approach

considering probabilistic stiffness estimation, and encoding

robot behavior in the task involving physical contact with the

human. In [35], unknown grasp pose of human is identified,

and online estimation of relative kinematics is derived by least

square method. In the subsequent works, the authors consider

that the object dynamics are unknown in co-transporting tasks,

so they propose an identification strategy of object dynamics in

the condition that inputs satisfy persistence of excitation (PE)

[36]. However, most of research relies on force information in

human control input. In [37], a hybrid controller combining

visual servoing and impedance controller is considered in the

task of joint carrying and a “ball-on-plate” system is employed

to validate the effectiveness of this controller. In [38], an

observer is designed to estimate control input of human, and

motion synchronization in a direct pHRI scenario is achieved

without requiring force sensory information at the interaction

point. Inspired by the aforementioned works [37] and [38],

visual servoing and observer are employed in our controller

design. Visual servoing is utilized to obtain human motion and

observer is used in estimating control input of human. A hybrid

framework including visual and force sensing is proposed for

human-robot co-carrying tasks. In [39], a companion robot

is designed to switch between the visual servoing and force

servoing modes, different from our framework using visual and

force sensing to estimate the human motion intention. In [40],

[41], robots learn the teaching-learning-collaboration model

and predict human motion through learning by demonstrations

or using historical data for training, while our method requires

neither of them. Based on previous discussions, we highlight

our contributions as follows:

1) A hybrid framework using visual and force sensing is

proposed for human-robot co-carrying tasks, enabling

the robot to proactively follow its human partner and

reduce their control effort;

2) A force observer is designed to estimate human force

without using the force sensor, and human motion in-

tention is obtained by minimizing the estimated force.

The proposed framework includes both visual and force

sensing, and a controller combining visual servoing control

and impedance control is designed, so we call it “hybrid”.

The rest of the paper is presented as follows: Section II

presents robot and object dynamics, and control inputs of

human and robot are analyzed; Section III introduces the

proposed method; Section IV and Section V evaluate its

performance by simulations and experiments; Section VI and

Section VII conclude this work and discuss future works.

II. PROBLEM FORMULATION

A. System description

We consider a co-carrying task where human and robot

transport a rigid object as depicted in Fig. 1. All vectors and

matrices are defined in the fixed coordinate frame of robot

{R}, of which the origin is at the robot’s mass center.
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Fig. 1: Human-robot co-carrying task.

The dynamics of an n link robot is given by:

Mr(xr)ẍr + Cr(xr, ẋr)ẋr +Gr(xr) = ur − fr (1)

where Mr(xr) ∈ R
n×n, Cr(xr, ẋr) ∈ R

n×n, Gr(xr) ∈ R
n

denote mass matrix, Coriolis and centripetal matrix, gravity

vector in robot’s dynamics, respectively; xr, ẋr, ẍr ∈ R
n

denote position, velocity and acceleration vectors of robot

gripper, respectively; fr ∈ R
n denotes external force on the

robot measured by a force sensor or calculated based on torque

sensors, and ur ∈ R
n×n denotes the control input of robot.

Similarly, the dynamics of an n dimension transported object

can be described as follows:

Mo(xo)ẍo + Co(xo, ẋo)ẋo +Go(xo) = fh + fr (2)

where Mo(xo) ∈ R
n×n, Co(xo, ẋo) ∈ R

n×n and Go(xo) ∈
R

n denote mass matrix, Coriolis and centripetal matrix and

gravity vector in object’s dynamics, respectively; and xo, ẋo

and ẍo ∈ R
n denote position, velocity and acceleration vectors

of object’s mass center; fh ∈ R
n denotes the external force at

the grasp point onto the transported object.

B. Control input

1) Control input of human: In this work, control input of

human is defined as fh in object dynamics model (2). We

describe it as a simplified stiffness model as follows:

fh = −Kh(xh − xe) (3)

where Kh ∈ R
n×n denotes the stiffness matrix of human

arm, xh ∈ R
n denotes human position, i.e., position vector

of human hand which contacts with the transported object,

xe ∈ R
n denotes human motion intention.

We can see that if robot knows human motion intention xe

in real time and moves towards the desired motion xd accord-

ing to xe, the co-carrying task can be performed successfully

and actively. According to (3), if fh, xh and Kh are obtained,

xe can be calculated. Before we design a tracking control

algorithm for robot, some issues should be addressed about

how to acquire fh, xh and Kh:
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1) In a scenario where it is infeasible to directly measure

human force, how we can obtain fh should be consid-

ered;

2) There are differences between xh and xr when human

and robot collaborate to transport the object, so how we

obtain xh should be addressed;

3) Without knowledge of human stiffness Kh, an effective

estimation method to obtain xe should be proposed.

2) Control input of robot: Different from the definition of

control input of human, control input of robot is ur rather

than the external force fr on the object. In view of control

objective, the control input of robot is designed as follows:

ur = urf + urb + uri (4)

where urf denotes the feedforward input for compensating

for robot’s dynamics, urb denotes the feedback input for

tracking the desired trajectory xd, and uri denotes the input

for compensating for the interaction force. We can design

corresponding inputs as follows:

urf = Mr(xr)ẍd + Cr(xr, ẋr)ẋd +Gr(xr)

urb = −KP (xr − xd)−KD(ẋr − ẋd) +KQsgn(ẋr − ẋd)

uri = fr + ((ẋr − ẋd)
T )+(ẋh − ẋd)f̂h (5)

where KP denotes the proportional gain matrix, and KD de-

notes the differential gain matrix, which can be interpreted as

stiffness and damping matrices in impedance control. KQ will

be explained subsequently in stability analysis. ((ẋr− ẋd)
T )+

denotes the Moore-Penrose inverse of (ẋr − ẋd)
T , and sgn(·)

returns a vector with the signs of the corresponding elements

of the vector (·). To address uncertainties in robot’s dynamics,

neural networks (NNs) are employed to compensate for them.

And we design the weight adaptive law as follows:

˙̂
θi = −Γi[Si(Zi)(ẋri − ẋdi) + σiθ̂i], i = 1, 2, ..., n (6)

where θ̂i denotes weight estimates of NN, Γi = ΓT
i denotes

a positive definite matrix and σi denotes small positive con-

stants. Zi=[xT
r , ẋT

r , ẋT
d , ẍT

d ] denotes the input of NN, Si(Zi)
denotes basis functions, and θ̂TS(Z) is used to estimate

θ∗TS(Z) as below

θ∗TS(Z) = (Mr(xr)ẍd + Cr(xr, ẋr)ẋd +Gr(xr))− ε(Z)
(7)

where θ∗i denotes actual weight of NN, and the estimation

error vector ε(Z) stays in bounds over the compact set Ωε,

∀Z ∈ Ωε, ||ε(Z)|| < ε̄, with ε̄ as a positive constant. Then we

develop adaptive NN as follows:

urNN = θ̂TS(Z)−KP (xr − xd)−KD(ẋr − ẋd) + fr

+KQsgn(ẋr − ẋd) + ((ẋr − ẋd)
T )+(ẋh − ẋd)f̂h

(8)

Substituting (8) to (1), we can obtain the closed-loop error

dynamics:

Mr(xr)ë+ (Cr(xr, ẋr) +KD)ė+KP e = −θ∗TS(Z)−

ε(Z) + θ̂TS(Z) +KQsgn(e) + (ėT )+(ẋh − ẋd)f̂h (9)

where e ∈ R
n denotes the tracking error between xr and xd.

In (8), if we set xd as xe, which means that robot is aware of

human motion intention, robot can conduct synchronous and

active collaboration with human partner in the co-transporting

task. If we want to update xd relative to xe, we need to obtain

human motion xh by visual sensing according to analysis in

Section III.

III. SENSING, OBSERVER DESIGN AND HUMAN MOTION

INTENTION ESTIMATION

A. Visual sensing and force sensing

1) Visual sensing: We use a visual sensor to obtain human

motion xh in our work. xh obtained by the visual sensor

should be transformed into robot coordinate {R} for further

controller design. Calibration systems are employed to obtain

the relationship between robot coordinate {R} and camera

coordinate {K}, so a calibration board is fixed on the robot’s

end-effector. The transformation matrix R
KT denotes the cam-

era coordinate with respect to robot reference coordinate,

matrix R
ET denotes the robot’s end-effector coordinate with

respect to robot reference coordinate, matrix E
CT denotes

the calibration board coordinate with respect to robot’s end-

effector coordinate, and matrix C
KT denotes camera coordinate

with respect to calibration board coordinate. The transforma-

tion matrix R
KT can be obtained as follows:

R
KT =R

E T ·EC T ·CK T =R
E T ·EC T · (KC T )−1 (10)

which can be rewritten as follows:

E
CT = (RET )

−1 ·RK T ·KC T (11)

Considering that E
CT has no change when robot is in different

poses, transformed coordinate matrices in two different poses

are given as follows:

(RET1)
−1 ·RK T ·KC T1 = (RET2)

−1 ·RK T ·KC T2 (12)

where 1 and 2 denote two different poses. Then we rewrite

(12) as follows:

R
ET2 · (

R
ET1)

−1 ·RK T =R
K T ·KC T2 · (

K
C T1)

−1 (13)

where we define that

X =R
K T,A =R

E T2 · (
R
ET1)

−1, B =K
C T2 · (

K
C T1)

−1 (14)

where we can utilize a numerical method to solve X in

AX = XB. Solving X is not the focus. In particular we

use the well-known method in [42] to obtain R
KT . By fixing

the calibration board at the human hand position on the object,

we can transform human motion from camera coordinate {K}
to robot reference coordinate {R}:

Rxh =R
K T ·K xh (15)

where Kxh denotes the human motion in camera coordinate

{K}, and Rxh denotes the human motion in robot reference

coordinate {R}, respectively. We notice that in practical ap-

plications, moving average filter should be utilized because

calibration board may not be recognized during a task. Filters

can provide predicted data x̂h,n+k if detected signals xh,n+k
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are missing:

x̂h,n+k =
1

N + 1

N
∑

i=0

xh,n−i (16)

2) Force sensing: A force sensor is mounted on the robot

gripper, and calibration systems are utilized to obtain the

relationship between robot reference coordinate {R} and force

sensor coordinate {F}. The transformation matrix R
FT denotes

force sensor coordinate with respect to robot reference coordi-

nate, matrix E
FT denotes force sensor coordinate with respect

to robot’s end-effector coordinate, and matrix R
ET denotes

robot’s end-effector coordinate with respect to robot reference

coordinate, so R
FT can be transformed as follows:

R
FT =R

E T ·EF T (17)

Then we transform control input of human from force sensor

coordinate {F} to robot reference coordinate {R}:

Rfr =R
F T ·F fr (18)

where F fr denotes the external force in force sensor coordi-

nate {F}, and Rfr denotes the external force in robot reference

coordinate {R}, respectively. Moving average filters similar to

that in (16) are designed to obtain smooth force data, and limit

breadth filter is utilized to deal with disturbances from external

environment and mechanical friction.

B. Observer design and human motion intention estimation

For estimating control input of human fh, we develop an

observer in this section, which provides feasibility in scenarios

where it is inconvenient to directly measure human force. We

rewrite (2) in state-space form as follows:

δ̇ = M1δ +N1fh +N1(fr +Go(xo))

δ = [xo, ẋo]
T ,M1 =

[

0n 1n
0n −Mo(xo)

−1Co(xo, ẋo)

]

N1 = [0n,Mo(xo)
−1] (19)

where 0n denotes a matrix with all zero elements, and 1n de-

notes an identity matrix. Object position x0 can be calculated

based on the relationship between human motion xh and robot

gripper position xr as follows:

xo = xh +
xr − xh

2
(20)

We design the following observer as:

˙̂
δ = M1δ̂ +N1f̂h +N1(fr +Go)− L(δ̂ − δ) (21)

where δ̂, f̂h denote the estimates of δ, fh, respectively. And

L denotes a positive definite matrix. We rewrite the human’s

control input (3) as follows:

fh = −Kh(xh − xe) = −Khxh +Khxe = −Khxh +Ah

(22)

where we define Ah = Khxe and neither human motion

intention xe nor human stiffness Kh is known for robot. From

(22), we can obtain that

f̂h = −K̂hxh + Âh (23)

where Â and K̂h denote the estimates of A and Kh, respec-

tively. From (22) and (23), we obtain f̃h as follows:

f̃h = −K̃hxh + Ãh (24)

where •̃ denotes the estimation error of •, i.e., •̃ = •̂ − •.

From (21) and (19), we obtain the observation error system

as follows:

˙̃
δ = M1δ̃ +N1f̃h − Lδ̃ (25)

And we design the following updating law for parameters in

(23):

˙̂
Ah = −NT

1 δ̃ + βf̂h − (ẋh − ẋd)

˙̂
Kh = (NT

1 δ̃ − βf̂h + (ẋh − ẋd))x
T
h (26)

where β denotes a positive constant. When f̂h is obtained, xd

can be calculated by the following updating law:

ẋd = βf̂h (27)

Human motion intention xe can be estimated based on control

input of human fh, and control input of human fh has been

estimated by our proposed observer, so xe can be estimated.

We set the robot’s desired trajectory xd in (8) based on the

updating law (27), which means that robot is estimating the

human motion intention online, i.e., xd is generated towards

xe. For better illustrating control and observer design, a block

diagram is given in Fig. 2. Although a human-robot co-

carrying task is studied as a specific application, the proposed

method can be extended to other scenarios of physical human-

robot interaction that rely on force and visual sensing, such

as human-robot collaborative assembly, tele-operation, sawing,

etc.
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Fig. 2: The proposed control structure.

IV. SIMULATIONS

A. Simulation settings

We consider a scenario where human and robot perform co-

transporting tasks in X − Y plane. The object is chosen as a

0.1m long board which is located parallel to X-axis. In this

task, rotation is not considered and only translational motion

is involved. A human hand grasps one end of the board, and

the other end of the board is held by the robot gripper. The
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task objective is to move the object from an initial position to

a target position.

We consider the robot as a simple two-link manipulator,

where the length and mass of the first link are set as

0.3443m, 4.318kg, and the length and mass of the second

link are set as 0.3443m, 2.152kg. By Lagrange equation,

dynamics parameters Mr(xr), Cr(xr, ẋr) and Gr(xr) in (1)

can be calculated based on the robot’s physical parameters

for simulating robot’s position and velocity in the task s-

pace and the detailed expression can be found in [43]. We

consider the initial position vector of robot gripper xr(0) =
[0.2m, 0.25m]T and the initial human hand position vector

xh(0) = [0.1m, 0.25m]T. In (3), we consider human motion

intention vector xe = [0.3m, 0.35m]T, and human arm stiff-

ness matrix Kh = [0.115N/m, 0; 0, 0.258N/m]. We consider

that the human arm arrives at xe in 30s, which generates

a prescribed human trajectory xh in Fig. 3(a), and xh(1)
and xh(2) denote uniform linear motions on X-axis and Y-

axis. According to (3), the control input of human fh can be

simulated when xh, Kh and xe are available as shown in Fig.

3(b), and Co(xo, ẋo) in (19) can be regarded as zero without

rotation. The external force fr can be obtained from (19), and

fr(1) and fr(2) denote external forces on X-axis and Y-axis.

We set other crucial parameters as follows: the object mass

in (19) is set as 0.6kg, and β in (27) is set as 0.3. In (6),

RBFNN node number is set as 210, RBFNN centers are set

in the region of [−1, 1], and we define the initial value of

the RBFNN weights θi as 0, positive definite gain matrices

Γ1 = Γ2 = 10I210·210, σ1 = 2.2 and σ2 = 0.9. In (8), the

proportional gain matrix Kp is defined as [10, 0; 0, 10], and the

differential gain matrix Kd is defined as [5, 0; 0, 5]. We define

L in (21) as follows:

L = 1.51 ·









0.103, 0.1, 0.1, 0.0
0.19, 0.6, 0.1, 0.2
0.08, 0.0, 0.2, 0.0
0.0, 0.2, 0.0, 0.7









(28)

B. Simulation results

Simulation results about robot’s desired motion xd, gripper

position xr and human motion xh are shown in Fig. 3(a).

It depicts that robot can estimate human motion intention

accurately and generates a desired motion to perform the task

successfully. We can conclude that the robot gripper position

xr tracks robot’s desired motion xd accurately under our

proposed controller in (8), and tracking errors converge to

zero on X-axis and Y-axis. As shown in Fig. 3(a), the motion

synchronization of human and robot can be achieved. Indicated

from Fig. 3(b), it is obvious that f̂h can estimate fh well which

illustrates the effectiveness of our proposed observer (21).

For evaluating the robustness of our proposed method,

we set three different human motion intention vectors as

xe1 = [0.3m, 0.35m]T, xe2 = [0.3m, 0.35m]T and xe3 =
[0.4m, 0.35m]T. Seen from Fig. 4, motion synchronization can

be achieved when human motion intentions are different.
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Fig. 3: Simulation results.

Fig. 4: Co-transporting considering different human motion

intentions.

V. EXPERIMENTS

A. Experiment settings

As shown in Fig. 5(a), the right arm of Baxter robot is

employed to cooperate with human to perform co-transporting

tasks. Angles, angular velocities and torques can be obtained

by sensors in all seven joints. Detailed introduction about

Baxter robot can be referred to [44]. Considering both accu-

racy and computation efficiency, two computers are utilized

in the experiments. One computer is used to calculate the

feedforward input urf of NN compensation in (4) by Matlab

Simulink, and transfer the compensation values to the other

computer by UDP communications. The other computer is

used to receive sensory information from Baxter robot, visual

sensor and force sensor, calculate feedback control input urb

and generate control input urNN to control the robot by Baxter

Robot Operating System Software Development Kit (RSDK)

in Ubuntu 14.04 LTS. Note that Jacobian matrix transpose

JT can be obtained from Python Kinematics and Dynamics

Library (PyKDL), and control torque vector of seven joints is

calculated by JTurNN .

Kinect 2 3D depth camera is utilized as a visual sensor for

obtaining human motion xh. Kinect 2 contains a color camera,

a depth sensor and four microphone arrays and provides

capabilities in three dimensional (3D) motion capture and

voice recognition. It is mounted on the hand of Baxter robot.

Quick response detection method is applied in Kinect 2 to

obtain the 3D position of the calibration board, which has

been fixed on the human side of the board. We can obtain

3D locations of human hand xh as the position of calibration

board seen from Fig. 5(b). A calibrated force-torque (F/T)

sensor ATI nano17 is used to obtain 6-DOF forces and torques

on the robot gripper. Indicated from Fig. 5(b), robot gripper

and human hand carry an acrylic board. Coordinate conversion
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and filters are utilized in processing collected visual and force

sensing information which have been described in Section III.

Then we utilize (15) to transform Kxh to Rxh, and utilize

(18) to transform F fr to Rfr. Rxh and Rfr are utilized for

further controller design in robot reference coordinates.

Windows 7Unbuntu 14.04

Router

Visual sensor

Kinect 2

Baxter

robot

Force sensor

ATI Nano 17

Computer 1 Computer 2

Human

hand

Acrylic board

Robot 

End-effector

Calibration 

board

(a) Experiment platform.

ATI nano17 

F/T sensor

Baxter robot 

end-effector
Acrylic 

board

 

Calibration 

board

Human 

hand 

(b) The co-transporting scenario.

Fig. 5: Experiment platform and co-transporting scenario.

B. Experiment results

1) Results with the proposed method: The experiment has

been performed with 4 subjects with ages ranging from 20 to

32. The group is formed of 3 males and 1 female all right-

handed, who are from our university, and they have robotic

research experiences but are blind to experiment settings.

As shown in Fig. 6, human subject B and Baxter robot

move the board jointly along the direction indicated by red

arrows, and synchronous motions in up, right, down, left and

diagonal directions in order in Y-Z plane demonstrate the

effectiveness of our proposed method. Indicated from Fig. 7(a),

human subject A/B/C/D and robot co-transport the object in

the diagonal direction from the same initial positions to the

target positions. Due to human motion uncertainties in real

applications, we only ensure similar xh of four subjects. Fig.

7(b) depicts that the task can be accomplished by different

human subjects. Sensor noises and rotations around X-axis

result in non-smooth curves of xh and xr, which may influence

experiment results and cannot be avoided. Fig. 7(b) shows that

motion synchronization of robot and Subject B can be achieved

on Y-axis and Z-axis (the board length is deducted from xr on

Y-axis for better comparison in figures). Mean squared error

(MSE) is employed to evaluate the robustness of our proposed

method, which is defined as follows:

MSE =
1

n

n
∑

k=1

[xr,k − xh,k − xb]
2 (29)

where xb denotes the vector of the board dimension [l, 0]T ,

l=0.24m denoting board length on Y-axis. We have added

a criterion “Motion Smoothness (MS)” and define it as the

distance between the upper and lower envelopes of the robot

motion curve. The results of MSE and MS for different

subjects are shown in Table I, which illustrates a small

tracking error for all subjects and smooth movements. Fig.

8(a) shows that the external forces on robot are smooth and

the co-carrying processes are stable. Limited by experimental

equipment, fh cannot be measured directly in our experiment,

so (19) is utilized to approximatively calculate fh on the end

of the board. Table II shows that fh of four subjects are small

and continuous under our proposed method.

TABLE I: MSE and MS of 4 subjects.

MSE/MS

subject
A B C D

MSEY(cm
2) 0.255 0.149 0.124 0.223

MSY(cm) 0.047 0.024 0.016 0.015

MSEZ(cm
2) 1.644 1.035 0.529 0.498

MSZ(cm) 0.020 0.018 0.023 0.022

TABLE II: Average and maximal fh of 4 subjects on Y, Z-

axes.

force

subject
A B C D

Yaverage(N) 0.806 0.791 0.964 0.774

Ymax(N) 4.512 2.603 5.349 2.516

Zaverage(N) 1.332 1.520 1.715 1.268

Zmax(N) 3.779 3.805 4.021 2.599

Fig. 6: Subject B performs a co-transporting task with Baxter

robot along the direction of red arrows.
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2) Comparisons: We compare our proposed method with

VS (Visual Servoing method) and PI (Passive Impedance

method) in this section. VS is utilized only with visual sensors

to achieve motion tracking, and PI relies on sensory infor-

mation from only force/torque senors to achieve compliant

interactive behavior.

VS control method is redesigned according to (8) to make

robot track xd towards human motion xh directly rather

than human motion intention xe, and a PD (proportional

differential)-based controller τvision = −KP (xr − xd) −
KD(ẋr − ẋd) is employed for tracking. The co-transporting

task can not be performed successfully only by VS method,

because there exist regid connections between human, board

and robot. Therefore, we consider the tracking performance

under VS without co-carrying the board for comparison. Figs.

9(a) and 9(b) show motion comparison (after 10s) under

different methods (our proposed method, VS and PI), and

the board length is deducted from xr on Y-axis for better

comparison in figures. Seen from Figs. 9(a) and 9(b), there

exists a delay in robot motions when VS controller is involved.

A traditional PI control method is used for comparison,

which is widely used in co-carrying tasks [45]. The desired

impedance model of robot is designed as fr = Ddẋr +
Kd(xr−xd), where Dd and Kd denote damping and stiffness

matrices, and we design Kd as zero for achieving compliant

behaviors in experiments. Seen from Figs. 9(a) and 9(b),

the robot motion under PI is less smooth and even includes

oscillations. Indicated from Fig. 8(b), external force fr is less

smooth than that under our proposed method shown in Fig.

8(a), and human subjects report that they found the interaction

uncomfortable. We conclude from Table III that fh under

our proposed method is smaller than that under PI, which

illustrates that human subjects cost less efforts in the task.

From Table IV, we find that our proposed method shows better

collaborative performance compared with VS and PI in the

task. Notably, Table IV shows better tracking results on Y-

axis using VS, but there exists a delay in co-carrying tasks

shown in Figs. 9(a) and 9(b), which may lead human to cost

more effort for human in co-carrying tasks.

TABLE III: Average and maximal fh on Y, Z-axes.

force

method
PI proposed

Yaverage(N) 1.054 0.791

Ymax(N) 3.177 2.603

Zaverage(N) 1.597 1.520

Zmax(N) 7.542 3.805

VI. CONCLUSIONS

A hybrid framework using visual and force sensing in

human-robot co-transporting tasks has been proposed in our

paper. Visual sensing has been employed to obtain human

motion and force sensing has been used to measure external

forces on robots. An observer has been designed for esti-

mating control input of human, and robot’s desired motion

has been designed based on the observer towards human

TABLE IV: MSE and MS under our proposed method com-

pared with PI and VS.

MSE/MS

subject
proposed PI VS

MSEY(cm
2) 0.149 3.751 0.734

MSY(cm) 0.026 0.040 0.027

MSEZ(cm
2) 1.035 1.813 1.017

MSZ(cm) 0.025 0.029 0.036
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Fig. 9: Motion comparison.

motion intention. An adaptive controller has been proposed

for improving tracking accuracy, and online NNs have been

used to compensate for uncertainties in robot’s dynamics.

The proposed framework has been validated by comparative

simulations and experimental co-carrying tasks.

VII. LIMITATIONS AND FUTURE WORKS

In future works, co-transporting tasks such as human-robot

collaborative assembly, tele-operation, sawing, etc will be

further designed to evaluate our proposed framework. The

calibration board was used for obtaining human motion and it

was sometimes not recognized in the experiments. Therefore,

more robust machine learning methods [46] [47] [48] will

be investigated to localize the human hand by visual sensors

without the calibration board. For instance, the Faster-RCNN

detection algorithm can be used to localize the human hand

position, while SiamRPN tracking algorithm can be utilized

to realize real-time tracking. In this work, the interactive

experience was described by human subjects verbally and is

evaluated by human control efforts. In future works, force

sensors will be mounted on the human side of the board for

evaluating human interactive experience using objective mea-

sures. Human user studies with questionnaires and subjective

measures will be also designed.

APPENDIX A

We consider Lyapunov function candidates V including Ve,

Vk and Vx as follows:

V = Ve + Vk + Vx
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Ve =
1

2
(ėTMr(xr)ė+ eTKpe) +

1

2

n
∑

i=1

θ̃i
T
Γ−1
i θ̃i

Vk =
1

2
( ˙̃xT

o
˙̃xo + f̃T

h f̃h + (vec(K̃h)
T vec(K̃h))

Vx =
1

2
(xh − xe)

TKh(xh − xe) (30)

Differentiating Ve yields:

V̇e = ėTMr(xr)ë+
1

2
ėT Ṁr(xr)ė+ ėTKpe+

n
∑

i=1

θ̃Ti Γ
−1
i

˙̂
θi

(31)

where 1
2
(Mr(xr)− 2Cr(xr, ẋr)) is a skew-symmetric matrix

[43], so we can obtain that 1
2
eT (Mr(xr)−2Cr(xr, ẋr))e = 0.

Substituting (9) and (6), we rewrite (31) according to Young’s

inequality as follows:

V̇e = ėT (Mr(xr)ë+ Cr(xr, ẋr)ė+Kpe)

+
n
∑

i=1

θ̃Ti Γ
−1
i {−Γi[Si(Zi)ėi + δiθ̂i]}

≤ −ėTKdė+ (ẋh − ẋd)
T f̂h +

n
∑

i=1

σi

2
(||θ∗i ||

2 − ||θ̃i||
2)

(32)

where Kq ≥ ||ε(Z)||, then differentiating Vk yields:

V̇k =δ̃T
˙̃
δ + ÃT

h
˙̂
Ah + vec(K̃h)

T vec(
˙̂
Kh)

=δ̃TN1f̃h − δ̃T (L−M1)δ̃ − ÃT
hN

T
1 δ̃ + ÃT

hβfh − ėT f̃h

+ vec(K̃h)
T vec(NT

1 δ̃xT
h )− vec(K̃h)

T vec(βfhx
T
h )

=− δ̃T (L−M1)δ̃ + βf̃T
h fh − (ẋh − ẋd)

T f̃h (33)

Differentiating Vx yields:

V̇x = ẋT
hKh(xh − xe) = −ẋT

h fh (34)

Adding V̇x to V̇e we obtain:

V̇e + V̇x ≤− ėTKdė+ (ẋh − ẋd)
T fh + (ẋh − ẋd)

T f̃h − ẋT
h fh

+ F

≤− ėTKdė+ (ẋT
e − ẋT

d )fh + ėT f̃h − ẋT
h fh

+ (ẋh − ẋd)
T f̃h + F

≤− ėTKdė− βfT
h fh − βf̃T

h fh + (ẋh − ẋd)
T f̃h + F

(35)

where F =
n
∑

i=1

σi

2
(||θ∗i ||

2−||θ̃i||
2). So we obtain V̇ as follows:

V̇ =V̇e + V̇k + V̇x

≤− ėTKdė− βfT
h fh − βf̃T

h fh − δ̃T (L−M1)δ̃ + βf̃T
h fh

+
n
∑

i=1

σi

2
(||θ∗i ||

2 − ||θ̃i||
2)

≤− ėTKdė− βfT
h fh − δ̃T (L−M1)δ̃ −

n
∑

i=1

σi

2
||θ̃i||

2

+

n
∑

i=1

σi

2
||θ∗i ||

2 (36)

Then we can conclude that variables ė, fh and δ̃ are bounded

and satisfy a condition as follows

λKd
||ė||2 + βmin||fh||

2 + λL−M1
||δ̃||2 +

σi

2
||vec(θ̃i)||

2

≤
σi

2
||vec(θ∗i )||

2 (37)

where λKd
and λL−M1

are the minimal eigenvalues of KD

and KL−M1
, respectively, βmin denotes the minimal value of

β, and vec(·) stands for the column vectorization operation.

It follows that ė, fh and x̃o can be made arbitrarily small by

choosing sufficiently large λKd
, λL and βmin. If θ∗i is zero,

we can conclude that V̇ = 0 when ė = 0, fh = 0 and δ̃ = 0.

We consider ė = 0 in robotic dynamics (9), and obtain that

KP e = 0, so e = 0 and xr = xd. Indicated from fh = 0,

we can obtain xh = xe(Kh ̸= 0) or Kh = 0. By considering

δ̃ = 0 in (25) we can obtain that f̃h = 0 which means that

control input of human can be obtained.

The above inequality (37) can be proved by contradiction:

assuming the above inequality is invalid yields V̇ < 0 and thus

V decreases iteratively. This indicates that ||ė||, ||fh||, ||δ̃|| and

||vec(θ̃i)|| (and thus the left-hand side of the above inequality)

become even smaller, which contradicts the hypothesis.
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