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Human-Robot Collaboration Based on Motion
Intention Estimation

Yanan Li and Shuzhi Sam Geégllow, IEEE

Abstract—In this paper, adaptive impedance control is pro- poor robustness [2]. Proposed in [3] and further developed
posed for a robot collaborating with a human partner, in the jn many other works [4], [5], [6], [7], [8], [9], impedance
presence of unknown motion intention of the human partner anl control is acknowledged to be a promising approach for

unknown robot dynamics. Human motion intention is defined as . ¢ fi trol. B loving i d trol. thieat
the desired trajectory in the limb model of the human partner, Interaction control. By eémploying impedance control,

which is extremely difficult to obtain considering the nonlinear IS controlled to be compliant to the force exerted by the
and time-varying property of the limb model. Neural networks human partner. In this way, the robot passively follows the
are employed to cope with this problem, based on which an onle  motion of its human partner, and human-robot collaboration
estimation method is developed. The estimated motion intéion is a0 mes possible. Nevertheless, as the robot refines itsrmot
integrated into the developed adaptive impedance controkvhich . L
makes the robot follow a given target impedance model. Under according to the force exerted by the hl_Jman partner, it wil
the proposed method, the robot is able to actively collabote act as a load when the human partner intents to change the

with its human partner, which is verified through experiment motion [10]. To solve this problem, the motion intention of

studies. the human partner is expected to be estimated and integrated
Index Terms—Motion intention estimation, human-robot col-  iNto robot control.
laboration, neural networks. As a matter of fact, understanding the motion intention of

the other party is essential in human-human collaboration.
Both collaboration parties usually keep communicatinghwit
each other through kinds of medias. In this paper, we conside

The society has already recognized the needs for hum#éimat the force and position sensors are available and they
robot collaboration to reduce human workload, costs amépresent the communication medias between a robot arm and
fatigue risk, and to increase the productivity and efficiefid. a human limb. In the first part, we investigate the problem
With the advancement of industrial production, most enregrgi of how to estimate the motion intention of the human partner
manufacturing tasks that are either too complex to automdtem available sensory information. There has been much ef-
or too heavy to manipulate manually are impractical arfdrt made in this direction in the literature. In [11], the tiom
even impossible to be solely taken by either fully automatexdharacteristics of the human limb is investigated, whialsisd
robots or human beings, which earnestly requests robotstdogenerate a point-to-point cooperative movement in [Ir2].
work alongside human beings collaboratively. The thrusf$3], under the assumption that the momentum is preserved
of human-robot collaboration rely on the observation thaluring an interaction task, the motion intention of the hama
robots and human beings share the same workspace and tparéner is represented by the change of the interactiore forc
complementary advantages. The robots’ strength lies iin thehich is estimated by the change of the control effort. In][14
superior efficiencies in carrying out regular tasks at higihe motion intention state is deemed as a stochastic process
speed with guaranteed performance, while human beings watid it is estimated by employing the Hidden Markov Model
their cognitive skills excel in understanding the circuamstes, (HMM). In this method, parameters of the human limb model
reasoning, and problem solving. are estimated online, and two intention states (active and

In human-robot collaboration, one of the most critical prolpassive) are defined to indicate that the human partner leads
lems is to make the robot understand the motion intentiotsof and follows, respectively. In [15], a crane robot is desijte
human partner so that the robot is able to “actively” coll@® aid the walking of the elderly and handicapped, and the siser’
with its human partner. In this regard, to make the robotktraintentional walking direction is estimated using the Katma
a prescribed trajectory is not applicable. Force contrai cdilter. However, human motion intention is typically a time-
be an option for interaction control, but it is limited by itsvarying trajectory, which cannot be represented by onlgsav

states as in [14] or motion directions as in [15]. In this relga
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I. INTRODUCTION



approximation ability [20]. In the preliminary study [21JN end-effector. Furthermore, the object is deemed as “a ért”
have been employed to develop an off-line estimation methdde robot arm.

It has two obvious disadvantages: (i) the human partner may
change his intention during the collaboration and then the
training process has to be re-conducted; and (ii) the reakimu
motion intention is needed in the training phase which is
difficult to obtain in practice. Therefore, in this paper, an
updating law is developed to online adjust the NN weights
such that the estimation accuracy is guaranteed even when hu
man motion intention changes. Besides, the real human motio
intention is not required in the proposed method. Thereafte
the estimated motion intention is integrated into impe@anc
control as the rest position of a given target impedance mode
Adaptive control is designed to make the robot follow the
target impedance model, subject to unknown robot dynami@ég.' =
As a result, the robot “actively” moves towards its human
partner’s intended position rather than “passively” compl
to the interaction force, and the collaboration efficiensy i z(t) = ¥(q) (1)

increased. Based on the above discussion, we highlight the " n . o .
contributions of this paper as follows: the motion intentioWnerez(t) € k™ andg¢ € R" are positions/oritations in the

of the human partner is defined as the desired trajectdritesian space and coordinates in the joint space, resggct
in the employed human limb model, which is estimated pyerentiating (1) with respect to time results in
developing a NN method; and the estimated motion intension i (t) = J(q)q (2)
integrated into impedance control to make the robot “abtive
follow its human partner.

The rest of the paper is organized as follows. In Sectid
II, a specific human-robot collaboration system under study i(t) = j(q)q-+ J(q)q ©)
is described and the problem of unknown motion intention of ) . _ )
the human partner is formulated. In Section IIl, the propose ASSumption 2: The Jacobian matrix/(¢) is assumed to be

motion intention estimation method is introduced in detailkno‘;]\’n ar;)d nonsggular n qflnr:te _W_orkspace. q ibed
In Section IV, adaptive impedance control is developed and The robot arm dynamics in the joint space are described as

it is rigorously proven that the robot dynamics are governed M (q)g + C(q,4)d + G(q) = 7+ J* (¢) f(2) 4)
by a given target impedance model. In Section V, an intensiv
experiment study is used to verify the effectiveness of tHe ="~ \4/ .
proposed method. Concluding remarks are given in Sectiffifinite inertia matrix;C

System under study

Consider the robot kinematics given by

where J(¢q) € R™*™ is the Jacobian matrix. Further differen-
jating (2) with respect to time results in

ere M(q) € R™" is the symmetric bounded positive
(¢,4)¢ € R™ denotes the Coriolis

VI, and Centrifugal force(z(q) € R" is the gravitational force;
7 € R™ is the vector of control input; and(t) € R™ denotes
Il. PROBLEM FORMULATION the force exerted by the human limb, whichOisvhen there

A. System Description is no contact between the robot arm and human limb.

In this paper, we investigate a typical human-robot collab Property 1. [22] There exist unknown finite scalaty >

ration system, which includes a human limb and a robot ar J :91’ o ,a4n,dsuGch t<hz;t forvg, ¢ € ", [|M]} < 01, [|C]| <
with a configurable end-effector and a force sensing handf@, " sllg]l, and||G]| < 6s.
as shown in Fig. 1. The robot arm provideslegrees-of-the- Since the interaction is at the handle near the end-effector

freedom (DOF) at the force sensing handle, which is mount&q, consider the robot dynamics in the Cartesian space by

at the end-effector and measures the force exerted by ﬁwueb stituting the kinematic constraints (1)-(3) into theaiic

human partner to the robot arm. The end-effector is select@é’deI (4), as follows

in order to flexibly pick and place objects with differentesz Mgr(q)Z + Cr(q, ) + Gr(q) =u+ f(t) (5)
and shapes. According to the force exerted by the huma ere
partner and detected by the sensor mounted on the hanme,

the control system generates control input for each joint ofMr(q) = J T (9)M(q)J '(q),

the robot arm and drives the end-effector to the destinatiquR(q’q) = JT(@)(Clg.q) — M(q)T *q)J(9) T (q),

In the whole system, human partner leads the task by simpIyG @ = J TG, u=J"T(g)r ()
R - ) =

applying forces to the handle, and the robot arm carries the

object load. The critical problem to be discussed in thisgpap Property 2: [23] Matrix Mz (q) is symmetric and positive

is how to estimate the motion intention of the human partndefinite. .

and make the robot achieve “active” following. Property 3: [23] Matrix 2Cgr(q,q) — Mgr(q) is a skew-
Assumption 1: The object is tightly grasped by the robotsymmetric matrix ifCr(q, ¢) is in the Christoffel form, i.e.,

arm and there is no relative motion between the object and §#&(2Cx (¢, §) — Mr(q))¢ = 0, V¢ € R™,



B. Problem Satement Suppose that’y andGy are unknown functions of and#,

In a predefined task, the desired trajectory of the robb®- Cu(z,#) andGy(x), similarly as in the robot dynamics
arm is prescribed and available for the control design. & t#)- Then, we may assume that the motion intentigry can
human-robot collaboration task under study in this pajer, tP€ estimated by the interaction forge actual position: and
desired trajectory is determined by the human partner, whi¥elocity &, i.e.,
is unknqwn to the control design. In the Iiteraturg, impegan era = F(f, &) (10)
control is employed such that the robot arm is controlled
to be compliant to the force exerted by the human partnghereF(-) is an unknown function. Equivalently, we have the
Equivalently, the robot arm dynamics are governed by a targellowing assumption:
impedance model as below Assumption 3: In a typical collaborative task, the motion

- L intention of the human partner (in each direction), gz, in
Ma(3 = Z4) + Ca(d = ia) + Galw —za) = f (") (9), is determined by the interaction forge actual position
where z4 is the rest position, and{;, C,;, and G4 are the « and velocity: at the interaction point (in the corresponding
desired inertia, damping, and stiffness matrices, resmdgt direction) of the human limb and robot arm.

From the above impedance model, we find that the actualRemark 1: The above assumption is the fundamental of the
position of the robot arnx will be refined according to the estimation method to be developed in this paper. Its validit
interaction forcef. Seen from the perspective of the humawill be verified by experiments at the end of this paper.
partner, he will feel like moving an object with inertial/sa  In (10), function F'(-) is typically unknown and nonlin-
M,, dampingCy, and stiffnes€?,; from the rest position; to ear considering the time-varying property and uncertainty
z. In this regard, ifx, is designed to be far away from the of Cx and Gy. Indeed, human partner may change his
human partner need consume lots of energy to move the robt impedance ¢z and Gy) during the collaboration. This
arm. Conversely, if the robot “knows” the motion intentiormakes the estimation of;4; based on (10) become difficult.
of the human partner and changesaccordingly, the human In this regard, we employ machine learning to cope with
partner will consume less energy to move the robot arm. this problem, which can discover intrinsic information, pna

In many casesy, can be designed based on the designertsmknown relationship and approximate functions. The basic
prediction of the motion intention of the human partneidea is to approximatex, in (10) by a linearly parameterized
For example, in the application of human-robot handshakirfgnction of f, # andz, and an adaptive method is developed
although it is impossible to exactly predict human’s actuéb estimate the ideal weights of the parameterized function
movement, it is possible to desigry based on the basic un-
derstanding of the hanq_shaking moti_on of _the human partngr. Neural Networks Based Motion Intention Estimation
Nevertheless, this empirical method is obviously lack of-fle

ibility and cannot guarantee a good performance. Thergefo eA.S one .Of the popular machine learning methods, _rad|§1l
in the first part of this paper, we will propose a method t asis function neural networks (RBFNN) are employed in this

designz, based on the estimation of the motion intention diaper: The structure of RBFNN is expressed as follows [23]

the human partner. After that, we will develop an adaptive o(W,r) = WTS(r), W, S(r) € RP,
control to guarantee the robot dynamics (5) to be governed S(r) — T
by the above impedance model (7), subject to unknown robot (r) = [s1(r); (SQ(T)’ ')'T'ESP(T)] )’
dynamics. si(r) = exp—— L HR)
M
[1l. M OTION INTENTION ESTIMATION k=1,2,....p (12)

A. Human Limb Model where (W, r) is a continuous function of, r € Q, C

This section is dedicated to define the motion intention d?™ is the input to RBFNN,p is the NN nodes number,
the human partner by employing a human limb model. Ay = [u1, k2, 1em|’ is the center of the receptive

general model to describe the dynamics of a human limbfisld andr; is the width of the Gaussian function, afd is

supposed to include its mass-damper-spring property, asaim adjustable synaptic weight vector.

[16] By employing RBFNN, the motion intention of the human
My — Cpi + (g —2) = ®) partner and its estimation are respectively given by

where My, Cy, and Gy are the mass, damper, and spring THdi = I/I/Z'Tsi(”) &
matrices of the human limb, respectively and they are diafon fHa; = W{Si(r), i=12,...,n (12)
an(_jscH_d is the trajectory planneq in the human partner’s CNvSvhere(-)i is the ith component of(-), r = [fT,aT,#7]T
which is referred as the motion intention of the human partng ; : S LRSI
in this paper. 15 t_he input of RBFNN,e_i is the estimation errod¥V; is thg
.nestlmate of the ideal weigh/;, and.S; has the same meaning

V;:;l% thatin (11). Itis known that can be made arbitrarily small,
Ifep is sufficiently large.

Remark 2: One underlying assumption of the above NN
—Cpit+Gu(zga—2z)=f (9) estimation is that'(-) in (10) is a continuous function. This

components usually dominate human limb model. Thus,
have the following simplified model



assumption is valid in most occasions, because in a typigadlicates that the adaptation is switched off wheis close
human-robot collaboration scenario the human partnerstend =y 4.
to change his limb impedance smoothly. In the case thatAs the estimation error with NN is unavoidable and NN
F'(-) is discontinuous, the estimation method proposed in théstimation usually falls into local minimunt;z; cannot be
paper may be challenged and this problem needs to be furtbractly the same asy,. Therefore, it is improper to use
investigated in the future work. position control to make the actual position track the
As S;(r;) is available by collecting data;, we employ estimated motion intentiorf 4. Instead of thatZyy can
the back propagation algorithm [24] to obtaifi; in (12). be used as the rest position in the target impedance model
According to the discussion in the Introduction and Sectiqf), such that the error between the actual positiomnd
II, the control objective is to make the robot “actively” meov the estimated motion intentiofiy; can be accommodated
towards its human partner’s intended position and thus tpartly by impedance control. This will be discussed in the
interaction forcef; as small as possible. Thereford/ is following section. Nevertheless, it is important to notatth
adjusted online in the direction of the steepest descerit wihis is different from the pure impedance control with a fixed

respect to the following cost function rest position, where the error between the actual positimh a
1, the motion intention is much larger and thus the human partne
Ei=3fi (13) consumes much more energy to move the robot arm.

Equivalently, we have
) IV. ADAPTIVE IMPEDANCE CONTROL

A 0E;
Wi(t) = -« oW As Ty is obtained in the above section, we fet = T x4
8E-Z Of, OTmas and design adaptive impedance control to make the robot arm
/ 7 ) 2

dynamics (5) track the given impedance model (7). The cbntro

_ai . . T
Ofi Ornai OW; diagram is shown in Fig. 2.

Ofi OxHa
ol Qi (14)
0rga; OW,;
. . I
whereq is a positive scalar. o s l ‘
In the above equatior%% can be obtained according to _' Intention Impedance - Robot &4
(9) as follows 7 —»| Estimation | Control Am [ |
ofi
I _ oy, (15) f
OTHd,i
dxg . .
and avid/i can be obtained accordlng to (12) as follows Fig. 2. Adaptive impedance control with estimated motioterition
O0rma,
ﬁ = Si(ri) (16) Construct the error signab = Myé + Cyé + Gae — f
o v with e = z — z4 as in [26], the control objective is to make
Substituting (15) and (16) into (14) leads to lim; o, w(t) = 0. In [27], an auxiliary variable: is defined
Wi(t) — i fiSi(r) (17) for the analysis convenience, which is briefly introduced in

the following.
whereq; = oG ;. As G ,; is the parameter of human limb  First, we define an augmented impedance error
dynamics and unknown, it is absorbed dby. ~ B )

Remark 3: Note thatG';; may be time-varying but it can be w=Kjw=¢é+ Kgé+ Kye — Ky f (19)
still absorbed by, which is set by the designer and does NQ{nere Ky = Mcle’d, K, = Md’lGd, and K; = Md’l.

necessarily have the real value @fG:;. The same approach chopse two positive definite matricdsand T such that
has been used in [25].

Then, we obtain the updating law &F; as below A+T =Ky A+TA=K, (20)
t .
P - and define
W) = Wi0) — s [ h@Sim@Dids (18 |
. e . . . fi+Tfi=Ksf (21)
With the above equation, we obtain the estimated motion
intention z g4 ; according to (12). Thus, we can rewrite (19) as
Remark 4: Note thatlV; can be obtained online as in (18). . Ny ;
This is a favorable property in the sense that the humangartn w=e+ A+t (A+TAe—fi—Tf (22)
may change his motion intention at any time. By defining
Remark 5: In the practical implementation, the adaptation .
of W; can be switched off to simplify the computation and z=¢é+ANe—fi (23)

improve the system robustness. The condition to switch t
adaptation can be designed as: the adaptation is switclied o
if f; < Lo whereil_ is a design parameter. This condition w==2+Tz (24)

obtain



Suppose thattlim Z(t) exists, tlim z(t) = 0 will lead to Considering Property 3, we have
lim 2(t) = 0. Therefore, considering (24) and (19), we have

t—oo . i 1

Jim w(t) = 0f lim 2(t) = 0. Based on this fact, the control = 2"Crz + 2" Mgz + Z 5 0i (34)
objective finally becomes =1

<.

According to the dynamics (31), we obtain

lim z(¢) =0 (25
t—o00 . 4 9 ¢2
Define an augmented state variable v Z < ;121 + 07
&y =dq—Ae+ fi (26) gl
, , _ —(Mgi, + Criy + Gr)) + Y _ —0,0; (35)
(26) and (23) immediately result in e b;
Z=1T — T, (27) According to (29), we have
which will be used in the following control performance 67 _ _9 — b — bj‘b?HZ”z (36)
. J J = YIYJI
analysis. oillzl + o
We propose the adaptive impedance control as below  gypstituting the above equation to (35) leads to
4 2 4 2
J¢ . J¢
u = —f (28) |4
Z¢7||ZH+U Z¢J||ZH+UJ
g — —a é‘-i- b;¢F|=|* (29) B . ! 154
J Qb]”ZH"’Ug —(Mgi, + Crt, + GRr)) Zb— i9; (37)
wherej = 1,...,4, Gj is the estimation o¥; in Property Considering the definitions af;, we have
1, K is a positive definite matrixp; > 0, a; and o; are . ) '
time varying positive functions satisfyingmt_,oO aj = 0, —z" (Mg, + Crir + GR)

fo aj(w)dw = ¢; < 00, limy_o0j =0 andf oj(w)dw =

< oc, andor = [T, | + 1] ), =Ml ) + Il + Gl
¢2 :””JT”””J &l ¢s = 77T gl |2 ]| and 21T TMT =Y |12
oa=|J7]. .

Considering (23), we rewrite (5) as HITTHC = M DT g+ 17T G

Izl MR, + Crir + Grll

IAIA

Mui + Crz = ut f— (Mpis + Crer + Gr) (30) < =TT
TR et T +(ICT + 1M TN e + 161
Substituting the control input (28) into the above equativa < =l ||J—T||(91 ||J—1|| |2,
have +((02 + O51d11) + 61T N TIDNT = ] + 64)
Mgz + Cgrz = =0T A+ 1T D
4 ). H2 -T —1y[115 -T EMPE
0;¢; +0ol[ T T M2 |+ O3l 1T g 1 I
= Kz — — "y — (Mgi, + Cri, + Ggr)(31 _
2 Gl vy "~ (Madr+ Oy + )@Y 017}
4
Theorem 1. Considering the robot dynamics described by — Il 2|l Zgquj (38)

(4), control (28) with the updating law (29) guarantees the

following results: Substituting the above inequality to (37) we obtain
(i) the defined impedance error asymptotically converges to

) Oast—ioo, i.g.,tli@oz(t)zo; and Vo< _ZTKZJFZUJ@ +Z_j9
(i) all the signals in the closed-loop are bounded. b.
Proof: Consider the following Lyapunov function candi- 13
T J p2
date 4 < -z Kz—i—j;crj Zgb_ej
1 T 1 n2 _ T
V=52 Mpz+ Z_} 2—bl_9j (32) = —2TKz+494 (39)
i A = whered = Z 005+ 1 ZJ 1 7207, and the last inequality
wheref; = 0; — 6;. comes from
The derivative ofl” with respect to time is ~ DY 1 1 A
0,0; = (6, —0;)0; = 767 — (56, —0;)* < 493 (40)
V= —ZTMRZ + 2T Mgz + Zbl (33) Becauselim;a; = 0 and lim;—0; = 0, we have

=1V lim;_.o 0 = 0. It indicates that there exists such that when



t > t1, 6 < g, wheree is a small finite constant. Then we
obtain z € L7 . According to the definition ofz in (23),
x e Ll,& e Ly, and thusi, € L2, 4, € L. Considering
(31), we haves € L7

Integrating both sides of (39) leads to

V(t)—V(O)g—/O zT(w)Kz(w)dw—l—/O S(w)dw (41)

which leads to

/t ZT(W)Kz(w)dw < V(0)=V(t) + /t §(w)dw
0 0

: force/torque sensor human partner
< V(O) +/ (5(w)dw (42) (b)
0
becausd/(t) > 0. Fig. 3. Nancy and experiment scenario
According to the definition of, we have
t 4 t 4 p2 . . . . .
/ S(w)dw = Z Hj/ o (w)dw + 1 9_3 a; (w)dw Two cases of different motion mtgntlons are conS|dered. In
0 e 4 e b;j Jo the first case, the human partner aims to move the wrist to a
4 r fixed angle and thus the intended motion is a point-to-point
— gL . movement. In the second case, the human partner aims to move
0;d; + ¢; (43) !
= 4 =1 b, the wrist forward and back between two target angles, and the

intended motion is a time-varying trajectory. In both cases

The above equation indicates thdf d(w)dw is bounded. impedance control with zero stiffness is implemented far th
According to (42),f0t 2T (w)K z(w)dw is bounded becausecomparison purpose. Impedance parameters in (7)\&re=
V(0) is bounded, which results in € L%. According to 0.01, C, = 0.8 and G, = 0. The number of NN nodes is
Barbalet's Lemmaz € Ly andz € L7 lead toz — 0 as p = 10, and the other parameters of NN in (11) are= 0
t — oo, which completes the proof. B andn =1fori=1,2,...,10. The adaptation ratio in (18) is

Remark 6: While the control inputu is developed in the o = 0.01. Other values of the above parameters can be chosen
Cartesian space, we need transform it to the joint spaggimprove the control performance.
for the control of each joint. In the non-redundancy case, The results in the first case are shown in Figs. 4 and 5.
the transformation is uniquely determined as= J"u, @ |n Fig. 4, the wrist angles with impedance control and the
discussed above and shown in Fig. 2. In the redundangyposed method are shown. The “target angle” in the figure
case, the transformation is not uniquely determined ancth&tands for the position that the human partner intends teemov
exists freedom to improve some measures of the system pfie robot arm to. It is found that the response with the pregos
formance, such as singularity avoidance, obstacle avo@&lanmethod is faster than that with impedance control, which
kinetic energy minimization and posture control. More dsta jndicates that the wrist with the proposed method follows

can be found in [28], [29]. human partner's motion intention more “actively”. The NN
estimation performance is also illustrated in Fig. 4 by simgw
V. EXPERIMENT the estimated motion intention. While Fig. 4 illustrateattthe

In this section, the proposed method is examined througfiist with two methods is moved to roughly the same angle
experiments. The experiments are carried out on Nancy whighe target angle), it is clearly found in Fig. 5 that muctsles
is a humanoid introduced in [30] and shown in Fig. 3(a). Itrque is needed with the proposed method. When the target
these experiments, the human partner holds a plate mountedogle is reached, the torque from the human partner becomes
Nancy'’s left wrist, where there is an ATl mini-40 force/tagy zero with both impedance control and the proposed method.
sensor, as shown in Fig. 3(b). Nancy’s left wrist is moved bgased on these results, it can be concluded that much less
the human partner towards his intended position. The act@éfiort is required from the human partner with the proposed
position and velocity of the left wrist is provided by Maxen’ method, although both impedance control and the proposed
EPOS2 70/10 dual loop controller and the torque from theethod can be employed for human-robot collaboration in the
human partner is measured by the force/torque sensor. gase of point-to-point movement.
industrial PC is used to process the collected data and imdnstead of point-to-point movement in the first case, a more
plement the developed method. Because the human partnegexmon scenario in practice is to move the robot arm along
motion intention cannot be measured in the experiment, \meime-varying trajectory. In the second case, Nancy'stvisis
can only understand the experiment results in an indiregt wdirstly moved toward a prescribed target position, and back t
In particular, a small external torque indicates a smalbrerrthe other target position. The results in this case are shiown
between the actual trajectory and the motion intentionsThFigs. 6 and 7. The “target angle 1” and “target angle 2” in Fig.
has been discussed when developing the intention estimatéstand for the target positions in the forward motion and in
method in Section Il the back motion, respectively. Similarly as in Fig. 4, a dast
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response is achieved with the proposed method as showrfidnge his motion intention according to robot trajectotys
Fig. 6. In Fig. 7, it is found that an external torque of abof @0 interesting issue but is not considered in the proposed
0.4Nm is needed to move Nancy’s wrist so the robot is a lo&g€thod. In this paper, we assume implicitly that the human
to the human partner, as discussed before. Two ways canfiion intention is stationary with respect to the actudiato
considered to achieve the better performance with impeglarfitiectory, i-e., the adaptation of the robot trajectory o
control. One is to choose smaller impedance parametérs gffecton the human motion intention. However, human motion
and C;, and make the robot arm “softer”. Unfortunately, itS /SO an output of the neuromuscular control system, so
has been proved that the desired inertia cannot be chosef{fp dynamic interaction with the robot could well result in
be arbitrarily small [7] and a large damping is required tgoncurrent adaptations in t_he huma_n motion intention. Tr_ns
stabilize the whole system in practical implementatiori§.[3 Makes the problem more tricky and it will be further investi-
The other one requires the human partner to stiffen his "n%\ted in the future work. Besides, in the d|scus_5|on through
and make the limb impedance dominate the impedance ¥ Paper, human partner and robot are considered to be two
the coupled system, but more control effort from the humaigParated subsystems. Particularly, the motion intemtidhe
partner is the cost and it is not achievable when the robot affyman partner is estimated by considering the human limb
has a large weight (and thus a large inertia). In this regard,_dynam'cs’ then the estimated motion intention is integr&be
make the robot arm actively follow human partner's motioff?Pedance control of the robot arm. The performance of the
in the case of time-varying trajectory cannot be achieved ¥j°le coupled collaboration system is yet to be rigorously
impedance control with a fixed rest position. Compared fnalyzed, which will be also considered in the future work.
impedance control, the proposed method requires a much
smaller external torque, which is less than 0.1Nm as also VI. CONCLUSION
shown in Fig. 7. The above results indicate that Nancy'stwris In this work, human-robot collaboration has been investi-
can be moved to the target positions with much less effajated, in which the motion intention of the human partner has
under the proposed method, even if the human partner chanigesn observed by employing the human limb model and esti-
his motion intention. They have also well justified the vilyid mating the desired trajectory. A NN method has been proposed
of Assumption 3, where it is assumed that the motion intentido cope with the problem of unknown human limb model. The
of the human partner can be estimated based on the interactistimated motion intention has been integrated into impegla
force, position and velocity, in such a specific collabeti control of the robot arm, such that it actively follows itsrhan
task. partner. Experiment results have been provided to verigy th
During the experiments, we note that the human partner mealidity of the proposed method.
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