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Human-Robot Collaboration Based on Motion
Intention Estimation

Yanan Li and Shuzhi Sam Ge,Fellow, IEEE

Abstract—In this paper, adaptive impedance control is pro-
posed for a robot collaborating with a human partner, in the
presence of unknown motion intention of the human partner and
unknown robot dynamics. Human motion intention is defined as
the desired trajectory in the limb model of the human partner,
which is extremely difficult to obtain considering the nonlinear
and time-varying property of the limb model. Neural networks
are employed to cope with this problem, based on which an online
estimation method is developed. The estimated motion intention is
integrated into the developed adaptive impedance control,which
makes the robot follow a given target impedance model. Under
the proposed method, the robot is able to actively collaborate
with its human partner, which is verified through experiment
studies.

Index Terms—Motion intention estimation, human-robot col-
laboration, neural networks.

I. I NTRODUCTION

The society has already recognized the needs for human-
robot collaboration to reduce human workload, costs and
fatigue risk, and to increase the productivity and efficiency [1].
With the advancement of industrial production, most emerging
manufacturing tasks that are either too complex to automate
or too heavy to manipulate manually are impractical and
even impossible to be solely taken by either fully automated
robots or human beings, which earnestly requests robots to
work alongside human beings collaboratively. The thrusts
of human-robot collaboration rely on the observation that
robots and human beings share the same workspace and have
complementary advantages. The robots’ strength lies in their
superior efficiencies in carrying out regular tasks at high
speed with guaranteed performance, while human beings with
their cognitive skills excel in understanding the circumstances,
reasoning, and problem solving.

In human-robot collaboration, one of the most critical prob-
lems is to make the robot understand the motion intention of its
human partner so that the robot is able to “actively” collaborate
with its human partner. In this regard, to make the robot track
a prescribed trajectory is not applicable. Force control can
be an option for interaction control, but it is limited by its
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poor robustness [2]. Proposed in [3] and further developed
in many other works [4], [5], [6], [7], [8], [9], impedance
control is acknowledged to be a promising approach for
interaction control. By employing impedance control, the robot
is controlled to be compliant to the force exerted by the
human partner. In this way, the robot passively follows the
motion of its human partner, and human-robot collaboration
becomes possible. Nevertheless, as the robot refines its motion
according to the force exerted by the human partner, it will
act as a load when the human partner intents to change the
motion [10]. To solve this problem, the motion intention of
the human partner is expected to be estimated and integrated
into robot control.

As a matter of fact, understanding the motion intention of
the other party is essential in human-human collaboration.
Both collaboration parties usually keep communicating with
each other through kinds of medias. In this paper, we consider
that the force and position sensors are available and they
represent the communication medias between a robot arm and
a human limb. In the first part, we investigate the problem
of how to estimate the motion intention of the human partner
from available sensory information. There has been much ef-
fort made in this direction in the literature. In [11], the motion
characteristics of the human limb is investigated, which isused
to generate a point-to-point cooperative movement in [12].In
[13], under the assumption that the momentum is preserved
during an interaction task, the motion intention of the human
partner is represented by the change of the interaction force,
which is estimated by the change of the control effort. In [14],
the motion intention state is deemed as a stochastic process
and it is estimated by employing the Hidden Markov Model
(HMM). In this method, parameters of the human limb model
are estimated online, and two intention states (active and
passive) are defined to indicate that the human partner leads
and follows, respectively. In [15], a crane robot is designed to
aid the walking of the elderly and handicapped, and the user’s
intentional walking direction is estimated using the Kalman
filter. However, human motion intention is typically a time-
varying trajectory, which cannot be represented by only several
states as in [14] or motion directions as in [15]. In this regard,
we employ the human limb model as in [16], and define
the desired trajectory in this model as the motion intention
of the human partner. A related work can be found in [17],
in which the desired trajectory in the human limb model is
calculated with unknown parameters of the human limb as
design parameters. Considering nonlinear and time-varying
properties of the human limb model [18], [19], we estimate
the desired trajectory in this model based on neural networks
(NN), which are acknowledged to possess excellent universal
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approximation ability [20]. In the preliminary study [21],NN
have been employed to develop an off-line estimation method.
It has two obvious disadvantages: (i) the human partner may
change his intention during the collaboration and then the
training process has to be re-conducted; and (ii) the real human
motion intention is needed in the training phase which is
difficult to obtain in practice. Therefore, in this paper, an
updating law is developed to online adjust the NN weights
such that the estimation accuracy is guaranteed even when hu-
man motion intention changes. Besides, the real human motion
intention is not required in the proposed method. Thereafter,
the estimated motion intention is integrated into impedance
control as the rest position of a given target impedance model.
Adaptive control is designed to make the robot follow the
target impedance model, subject to unknown robot dynamics.
As a result, the robot “actively” moves towards its human
partner’s intended position rather than “passively” comply
to the interaction force, and the collaboration efficiency is
increased. Based on the above discussion, we highlight the
contributions of this paper as follows: the motion intention
of the human partner is defined as the desired trajectory
in the employed human limb model, which is estimated by
developing a NN method; and the estimated motion intention is
integrated into impedance control to make the robot “actively”
follow its human partner.

The rest of the paper is organized as follows. In Section
II, a specific human-robot collaboration system under study
is described and the problem of unknown motion intention of
the human partner is formulated. In Section III, the proposed
motion intention estimation method is introduced in details.
In Section IV, adaptive impedance control is developed and
it is rigorously proven that the robot dynamics are governed
by a given target impedance model. In Section V, an intensive
experiment study is used to verify the effectiveness of the
proposed method. Concluding remarks are given in Section
VI.

II. PROBLEM FORMULATION

A. System Description

In this paper, we investigate a typical human-robot collabo-
ration system, which includes a human limb and a robot arm
with a configurable end-effector and a force sensing handle,
as shown in Fig. 1. The robot arm providesn degrees-of-the-
freedom (DOF) at the force sensing handle, which is mounted
at the end-effector and measures the force exerted by the
human partner to the robot arm. The end-effector is selected
in order to flexibly pick and place objects with different sizes
and shapes. According to the force exerted by the human
partner and detected by the sensor mounted on the handle,
the control system generates control input for each joint of
the robot arm and drives the end-effector to the destination.
In the whole system, human partner leads the task by simply
applying forces to the handle, and the robot arm carries the
object load. The critical problem to be discussed in this paper
is how to estimate the motion intention of the human partner
and make the robot achieve “active” following.

Assumption 1: The object is tightly grasped by the robot
arm and there is no relative motion between the object and the

end-effector. Furthermore, the object is deemed as “a part”of
the robot arm.

Fig. 1. System under study

Consider the robot kinematics given by

x(t) = ψ(q) (1)

wherex(t) ∈ R
n and q ∈ R

n are positions/oritations in the
Cartesian space and coordinates in the joint space, respectively.
Differentiating (1) with respect to time results in

ẋ(t) = J(q)q̇ (2)

whereJ(q) ∈ R
n×n is the Jacobian matrix. Further differen-

tiating (2) with respect to time results in

ẍ(t) = J̇(q)q̇ + J(q)q̈ (3)

Assumption 2: The Jacobian matrixJ(q) is assumed to be
known and nonsingular in a finite workspace.

The robot arm dynamics in the joint space are described as

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ + JT (q)f(t) (4)

where M(q) ∈ R
n×n is the symmetric bounded positive

definite inertia matrix;C(q, q̇)q̇ ∈ R
n denotes the Coriolis

and Centrifugal force;G(q) ∈ R
n is the gravitational force;

τ ∈ R
n is the vector of control input; andf(t) ∈ R

n denotes
the force exerted by the human limb, which is0 when there
is no contact between the robot arm and human limb.

Property 1: [22] There exist unknown finite scalarsθj >

0, j = 1, . . . , 4, such that for∀q, q̇ ∈ Rn, ‖M‖ ≤ θ1, ‖C‖ ≤
θ2 + θ3‖q̇‖, and‖G‖ ≤ θ4.

Since the interaction is at the handle near the end-effector,
we consider the robot dynamics in the Cartesian space by
substituting the kinematic constraints (1)-(3) into the dynamic
model (4), as follows

MR(q)ẍ + CR(q, q̇)ẋ+GR(q) = u+ f(t) (5)

where

MR(q) = J−T (q)M(q)J−1(q),

CR(q, q̇) = J−T (q)(C(q, q̇) −M(q)J−1(q)J̇(q))J−1(q),

GR(q) = J−T (q)G(q), u = J−T (q)τ (6)

Property 2: [23] Matrix MR(q) is symmetric and positive
definite.

Property 3: [23] Matrix 2CR(q, q̇) − ṀR(q) is a skew-
symmetric matrix ifCR(q, q̇) is in the Christoffel form, i.e.,
ξT (2CR(q, q̇) − ṀR(q))ξ = 0, ∀ξ ∈ R

n.
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B. Problem Statement

In a predefined task, the desired trajectory of the robot
arm is prescribed and available for the control design. In the
human-robot collaboration task under study in this paper, the
desired trajectory is determined by the human partner, which
is unknown to the control design. In the literature, impedance
control is employed such that the robot arm is controlled
to be compliant to the force exerted by the human partner.
Equivalently, the robot arm dynamics are governed by a target
impedance model as below

Md(ẍ− ẍd) + Cd(ẋ− ẋd) +Gd(x− xd) = f (7)

wherexd is the rest position, andMd, Cd, andGd are the
desired inertia, damping, and stiffness matrices, respectively.

From the above impedance model, we find that the actual
position of the robot armx will be refined according to the
interaction forcef . Seen from the perspective of the human
partner, he will feel like moving an object with inertial/mass
Md, dampingCd, and stiffnessGd from the rest positionxd to
x. In this regard, ifxd is designed to be far away fromx, the
human partner need consume lots of energy to move the robot
arm. Conversely, if the robot “knows” the motion intention
of the human partner and changesxd accordingly, the human
partner will consume less energy to move the robot arm.

In many cases,xd can be designed based on the designer’s
prediction of the motion intention of the human partner.
For example, in the application of human-robot handshaking,
although it is impossible to exactly predict human’s actual
movement, it is possible to designxd based on the basic un-
derstanding of the handshaking motion of the human partner.
Nevertheless, this empirical method is obviously lack of flex-
ibility and cannot guarantee a good performance. Therefore,
in the first part of this paper, we will propose a method to
designxd based on the estimation of the motion intention of
the human partner. After that, we will develop an adaptive
control to guarantee the robot dynamics (5) to be governed
by the above impedance model (7), subject to unknown robot
dynamics.

III. M OTION INTENTION ESTIMATION

A. Human Limb Model

This section is dedicated to define the motion intention of
the human partner by employing a human limb model. A
general model to describe the dynamics of a human limb is
supposed to include its mass-damper-spring property, as in
[16]

−MH ẍ− CH ẋ+GH(xHd − x) = f (8)

whereMH , CH , andGH are the mass, damper, and spring
matrices of the human limb, respectively and they are diagonal,
andxHd is the trajectory planned in the human partner’s CNS
which is referred as the motion intention of the human partner
in this paper.

As discussed and verified in [16], the damper and spring
components usually dominate human limb model. Thus, we
have the following simplified model

−CH ẋ+GH(xHd − x) = f (9)

Suppose thatCH andGH are unknown functions ofx and ẋ,
i.e.,CH(x, ẋ) andGH(x), similarly as in the robot dynamics
(4). Then, we may assume that the motion intentionxHd can
be estimated by the interaction forcef , actual positionx and
velocity ẋ, i.e.,

xHd = F (f, ẋ, x) (10)

whereF (·) is an unknown function. Equivalently, we have the
following assumption:

Assumption 3: In a typical collaborative task, the motion
intention of the human partner (in each direction), i.e.,xHd in
(9), is determined by the interaction forcef , actual position
x and velocityẋ at the interaction point (in the corresponding
direction) of the human limb and robot arm.

Remark 1: The above assumption is the fundamental of the
estimation method to be developed in this paper. Its validity
will be verified by experiments at the end of this paper.

In (10), functionF (·) is typically unknown and nonlin-
ear considering the time-varying property and uncertainty
of CH and GH . Indeed, human partner may change his
limb impedance (CH andGH ) during the collaboration. This
makes the estimation ofxHd based on (10) become difficult.
In this regard, we employ machine learning to cope with
this problem, which can discover intrinsic information, map
unknown relationship and approximate functions. The basic
idea is to approximatexHd in (10) by a linearly parameterized
function of f, ẋ andx, and an adaptive method is developed
to estimate the ideal weights of the parameterized function.

B. Neural Networks Based Motion Intention Estimation

As one of the popular machine learning methods, radial
basis function neural networks (RBFNN) are employed in this
paper. The structure of RBFNN is expressed as follows [23]

ϕ(W, r) = WTS(r), W, S(r) ∈ Rp,

S(r) = [s1(r), s2(r), . . . , sp(r)]
T ,

sk(r) = exp[
−(r − µk)T (r − µk)

η2

k

],

k = 1, 2, . . . , p (11)

where ϕ(W, r) is a continuous function ofr, r ∈ Ωr ⊂
Rm is the input to RBFNN,p is the NN nodes number,
µk = [µk,1, µk,2, . . . , µk,m]T is the center of the receptive
field andηk is the width of the Gaussian function, andW is
an adjustable synaptic weight vector.

By employing RBFNN, the motion intention of the human
partner and its estimation are respectively given by

xHd,i = ŴT
i Si(ri) + ǫi

x̂Hd,i = ŴT
i Si(ri), i = 1, 2, . . . , n (12)

where (·)i is the ith component of(·), ri = [fT
i , x

T
i , ẋ

T
i ]T

is the input of RBFNN,ǫi is the estimation error,̂Wi is the
estimate of the ideal weightWi, andSi has the same meaning
as that in (11). It is known thatǫi can be made arbitrarily small,
if p is sufficiently large.

Remark 2: One underlying assumption of the above NN
estimation is thatF (·) in (10) is a continuous function. This
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assumption is valid in most occasions, because in a typical
human-robot collaboration scenario the human partner tends
to change his limb impedance smoothly. In the case that
F (·) is discontinuous, the estimation method proposed in this
paper may be challenged and this problem needs to be further
investigated in the future work.

As Si(ri) is available by collecting datari, we employ
the back propagation algorithm [24] to obtain̂Wi in (12).
According to the discussion in the Introduction and Section
II, the control objective is to make the robot “actively” move
towards its human partner’s intended position and thus the
interaction forcefi as small as possible. Therefore,̂Wi is
adjusted online in the direction of the steepest descent with
respect to the following cost function

Ei =
1

2
f2

i (13)

Equivalently, we have

˙̂
Wi(t) = −α′

i

∂Ei

∂Ŵi

= −α′

i

∂Ei

∂fi

∂fi

∂xHd,i

∂xHd,i

∂Ŵi

= −α′

ifi

∂fi

∂xHd,i

∂xHd,i

∂Ŵi

(14)

whereα′

i is a positive scalar.
In the above equation,∂fi

∂xHd,i
can be obtained according to

(9) as follows

∂fi

∂xHd,i

= GH,i (15)

and ∂xd,i

∂Ŵi

can be obtained according to (12) as follows

∂xHd,i

∂Ŵi

= Si(ri) (16)

Substituting (15) and (16) into (14) leads to

˙̂
Wi(t) = −αifiSi(ri) (17)

whereαi = α′

iGH,i. AsGH,i is the parameter of human limb
dynamics and unknown, it is absorbed byαi.

Remark 3: Note thatGH may be time-varying but it can be
still absorbed byα, which is set by the designer and does not
necessarily have the real value ofα′GH . The same approach
has been used in [25].

Then, we obtain the updating law of̂Wi as below

Ŵi(t) = Ŵi(0) − αi

∫ t

0

[fi(ω)Si(ri(ω))]dω (18)

With the above equation, we obtain the estimated motion
intention x̂Hd,i according to (12).

Remark 4: Note thatŴi can be obtained online as in (18).
This is a favorable property in the sense that the human partner
may change his motion intention at any time.

Remark 5: In the practical implementation, the adaptation
of Ŵi can be switched off to simplify the computation and
improve the system robustness. The condition to switch the
adaptation can be designed as: the adaptation is switched off
if fi < f

i
, wheref

i
is a design parameter. This condition

indicates that the adaptation is switched off whenx is close
to xHd.

As the estimation error with NN is unavoidable and NN
estimation usually falls into local minimum,̂xHd cannot be
exactly the same asxHd. Therefore, it is improper to use
position control to make the actual positionx track the
estimated motion intention̂xHd. Instead of that,x̂Hd can
be used as the rest position in the target impedance model
(7), such that the error between the actual positionx and
the estimated motion intention̂xHd can be accommodated
partly by impedance control. This will be discussed in the
following section. Nevertheless, it is important to note that
this is different from the pure impedance control with a fixed
rest position, where the error between the actual position and
the motion intention is much larger and thus the human partner
consumes much more energy to move the robot arm.

IV. A DAPTIVE IMPEDANCE CONTROL

As x̂Hd is obtained in the above section, we letxd = x̂Hd

and design adaptive impedance control to make the robot arm
dynamics (5) track the given impedance model (7). The control
diagram is shown in Fig. 2.

Robot

Arm
+ Impedance 

Control

xd

 

 ,  !

Intention 

Estimation

  !"

#,$

%,  !

"# 

Fig. 2. Adaptive impedance control with estimated motion intention

Construct the error signalw = Mdë + Cdė + Gde − f

with e = x − xd as in [26], the control objective is to make
limt→∞ w(t) = 0. In [27], an auxiliary variablez is defined
for the analysis convenience, which is briefly introduced in
the following.

First, we define an augmented impedance error

w̄ = Kfw = ë+Kdė+Kpe−Kff (19)

whereKd = M−1

d Cd, Kp = M−1

d Gd, and Kf = M−1

d .
Choose two positive definite matricesΛ andΓ such that

Λ + Γ = Kd, Λ̇ + ΓΛ = Kp (20)

and define

ḟl + Γfl = Kff (21)

Thus, we can rewrite (19) as

w̄ = ë+ (Λ + Γ)ė+ (Λ̇ + ΓΛ)e− ḟl − Γfl (22)

By defining

z = ė+ Λe− fl (23)

we obtain

w̄ = ż + Γz (24)
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Suppose thatlim
t→∞

ż(t) exists, lim
t→∞

z(t) = 0 will lead to

lim
t→∞

ż(t) = 0. Therefore, considering (24) and (19), we have

lim
t→∞

w(t) = 0 if lim
t→∞

z(t) = 0. Based on this fact, the control
objective finally becomes

lim
t→∞

z(t) = 0 (25)

Define an augmented state variable

ẋr = ẋd − Λe+ fl (26)

(26) and (23) immediately result in

z = ẋ− ẋr (27)

which will be used in the following control performance
analysis.

We propose the adaptive impedance control as below

u = −Kz −

4∑
j=1

θ̂jφ
2

j

φj‖z‖+ σj

z − f (28)

˙̂
θj = −aj θ̂j +

bjφ
2

j‖z‖
2

φj‖z‖ + σj

(29)

where j = 1, . . . , 4, θ̂j is the estimation ofθj in Property
1, K is a positive definite matrix,bj > 0, aj and σj are
time varying positive functions satisfyinglimt→∞ aj = 0,∫ t

0
aj(ω)dω = cj < ∞, limt→∞ σj = 0 and

∫ t

0
σj(ω)dω =

dj < ∞, andφ1 = ‖J−T ‖‖J−1‖(‖ẍr‖ + ‖J−1‖‖J̇‖‖ẋr‖),
φ2 = ‖J−T ‖‖J−1‖‖ẋr‖, φ3 = ‖J−T ‖‖J−1‖‖q̇‖‖ẋr‖ and
φ4 = ‖J−T ‖.

Considering (23), we rewrite (5) as

MRż + CRz = u+ f − (MRẍr + CRẋr +GR) (30)

Substituting the control input (28) into the above equation, we
have

MRż + CRz

= −Kz −

4∑
j=1

θ̂jφ
2

j

φj‖z‖ + σj

z − (MRẍr + CRẋr +GR)(31)

Theorem 1: Considering the robot dynamics described by
(4), control (28) with the updating law (29) guarantees the
following results:

(i) the defined impedance error asymptotically converges to
0 as t→ ∞, i.e., lim

t→∞

z(t) = 0; and

(ii) all the signals in the closed-loop are bounded.

Proof: Consider the following Lyapunov function candi-
date

V =
1

2
zTMRz +

4∑
j=1

1

2bi
θ̃2j (32)

whereθ̃j = θj − θ̂j .
The derivative ofV with respect to time is

V̇ =
1

2
zT ṀRz + zTMRż +

4∑
j=1

1

bj
θ̃j

˙̃
θj (33)

Considering Property 3, we have

V̇ = zTCRz + zTMRż +

4∑
j=1

1

bj
θ̃j

˙̃
θj (34)

According to the dynamics (31), we obtain

V̇ = zT (−Kz −

4∑
j=1

θ̂jφ
2

j

φj‖z‖ + σj

z

−(MRẍr + CRẋr +GR)) +

4∑
j=1

1

bj
θ̃j

˙̃
θj (35)

According to (29), we have

˙̃
θj = −

˙̂
θj = aj θ̂j −

bjφ
2

j‖z‖
2

φj‖z‖+ σj

(36)

Substituting the above equation to (35) leads to

V̇ = zT (−Kz −

4∑
j=1

θjφ
2

j

φj‖z‖+ σj

z

−(MRẍr + CRẋr +GR)) +

4∑
j=1

aj

bj
θ̃j θ̂j (37)

Considering the definitions ofφj , we have

−zT (MRẍr + CRẋr +GR)

≤ ‖z‖‖MRẍr + CRẋr +GR‖

≤ ‖z‖(‖MR‖‖ẍr‖ + ‖CR‖‖ẋr‖ + ‖GR‖)

= ‖z‖(‖J−TMJ−1‖‖ẍr‖

+‖J−T (C −MJ−1J̇)J−1‖‖ẋr‖ + ‖J−TG‖)

≤ ‖z‖‖J−T‖(‖M‖‖J−1‖‖ẍr‖

+(‖C‖ + ‖M‖‖J−1‖‖J̇‖)‖J−1‖‖ẋr‖ + ‖G‖)

≤ ‖z‖‖J−T‖(θ1‖J
−1‖‖ẍr‖

+((θ2 + θ3‖q̇‖) + θ1‖J
−1‖‖J̇‖)‖J−1‖‖ẋr‖ + θ4)

= ‖z‖{θ1‖J
−T‖‖J−1‖(‖ẍr‖ + ‖J−1‖‖J̇‖‖ẋr‖)

+θ2‖J
−T ‖‖J−1‖‖ẋr‖ + θ3‖J

−T ‖‖J−1‖‖q̇‖‖ẋr‖

+θ4‖J
−T ‖}

= ‖z‖

4∑
j=1

θjφj (38)

Substituting the above inequality to (37), we obtain

V̇ ≤ −zTKz +

4∑
j=1

σjθj +

4∑
j=1

aj

bj
θ̃j θ̂j

≤ −zTKz +

4∑
j=1

σjθj +
1

4

4∑
j=1

aj

bj
θ2j

= −zTKz + δ (39)

whereδ =
∑4

j=1
σjθj + 1

4

∑4

j=1

aj

bj
θ2j , and the last inequality

comes from

θ̃j θ̂j = (θj − θ̂j)θ̂j =
1

4
θ2j − (

1

2
θj − θ̂j)

2 ≤
1

4
θ2j (40)

Becauselimt→∞ aj = 0 and limt→∞ σj = 0, we have
limt→∞ δ = 0. It indicates that there existst1 such that when
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t > t1, δ ≤ ε, whereε is a small finite constant. Then we
obtain z ∈ Ln

∞
. According to the definition ofz in (23),

x ∈ Ln
∞
, ẋ ∈ Ln

∞
, and thusẍr ∈ Ln

∞
, ẋr ∈ Ln

∞
. Considering

(31), we haveż ∈ Ln
∞

.
Integrating both sides of (39) leads to

V (t) − V (0) ≤ −

∫ t

0

zT (ω)Kz(ω)dω +

∫ t

0

δ(ω)dω (41)

which leads to∫ t

0

zT (ω)Kz(ω)dω ≤ V (0) − V (t) +

∫ t

0

δ(ω)dω

≤ V (0) +

∫ t

0

δ(ω)dω (42)

becauseV (t) ≥ 0.
According to the definition ofδ, we have

∫ t

0

δ(ω)dω =

4∑
j=1

θj

∫ t

0

σj(ω)dω +
1

4

4∑
j=1

θ2j

bj

∫ t

0

aj(ω)dω

=

4∑
j=1

θjdj +
1

4

4∑
j=1

θ2j

bj
cj (43)

The above equation indicates that
∫ t

0
δ(ω)dω is bounded.

According to (42),
∫ t

0
zT (ω)Kz(ω)dω is bounded because

V (0) is bounded, which results inz ∈ Ln
2
. According to

Barbalet’s Lemma,z ∈ Ln
2 and ż ∈ Ln

∞
lead to z → 0 as

t→ ∞, which completes the proof.
Remark 6: While the control inputu is developed in the

Cartesian space, we need transform it to the joint space
for the control of each joint. In the non-redundancy case,
the transformation is uniquely determined asτ = JTu, as
discussed above and shown in Fig. 2. In the redundancy
case, the transformation is not uniquely determined and there
exists freedom to improve some measures of the system per-
formance, such as singularity avoidance, obstacle avoidance,
kinetic energy minimization and posture control. More details
can be found in [28], [29].

V. EXPERIMENT

In this section, the proposed method is examined through
experiments. The experiments are carried out on Nancy which
is a humanoid introduced in [30] and shown in Fig. 3(a). In
these experiments, the human partner holds a plate mounted on
Nancy’s left wrist, where there is an ATI mini-40 force/torque
sensor, as shown in Fig. 3(b). Nancy’s left wrist is moved by
the human partner towards his intended position. The actual
position and velocity of the left wrist is provided by Maxon’s
EPOS2 70/10 dual loop controller and the torque from the
human partner is measured by the force/torque sensor. An
industrial PC is used to process the collected data and im-
plement the developed method. Because the human partner’s
motion intention cannot be measured in the experiment, we
can only understand the experiment results in an indirect way.
In particular, a small external torque indicates a small error
between the actual trajectory and the motion intention. This
has been discussed when developing the intention estimation
method in Section III.

 

(a)

 
force/torque sensor human partner 

(b)

Fig. 3. Nancy and experiment scenario

Two cases of different motion intentions are considered. In
the first case, the human partner aims to move the wrist to a
fixed angle and thus the intended motion is a point-to-point
movement. In the second case, the human partner aims to move
the wrist forward and back between two target angles, and the
intended motion is a time-varying trajectory. In both cases,
impedance control with zero stiffness is implemented for the
comparison purpose. Impedance parameters in (7) areMx =
0.01, Cx = 0.8 andGx = 0. The number of NN nodes is
p = 10, and the other parameters of NN in (11) areµi = 0
andηi = 1 for i = 1, 2, . . . , 10. The adaptation ratio in (18) is
α = 0.01. Other values of the above parameters can be chosen
to improve the control performance.

The results in the first case are shown in Figs. 4 and 5.
In Fig. 4, the wrist angles with impedance control and the
proposed method are shown. The “target angle” in the figure
stands for the position that the human partner intends to move
the robot arm to. It is found that the response with the proposed
method is faster than that with impedance control, which
indicates that the wrist with the proposed method follows
human partner’s motion intention more “actively”. The NN
estimation performance is also illustrated in Fig. 4 by showing
the estimated motion intention. While Fig. 4 illustrates that the
wrist with two methods is moved to roughly the same angle
(the target angle), it is clearly found in Fig. 5 that much less
torque is needed with the proposed method. When the target
angle is reached, the torque from the human partner becomes
zero with both impedance control and the proposed method.
Based on these results, it can be concluded that much less
effort is required from the human partner with the proposed
method, although both impedance control and the proposed
method can be employed for human-robot collaboration in the
case of point-to-point movement.

Instead of point-to-point movement in the first case, a more
common scenario in practice is to move the robot arm along
a time-varying trajectory. In the second case, Nancy’s wrist is
firstly moved toward a prescribed target position, and back to
the other target position. The results in this case are shownin
Figs. 6 and 7. The “target angle 1” and “target angle 2” in Fig.
6 stand for the target positions in the forward motion and in
the back motion, respectively. Similarly as in Fig. 4, a faster
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Fig. 4. Joint angle, in the case of point-to-point movement
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Fig. 5. External torque, in the case of point-to-point movement

response is achieved with the proposed method as shown in
Fig. 6. In Fig. 7, it is found that an external torque of about
0.4Nm is needed to move Nancy’s wrist so the robot is a load
to the human partner, as discussed before. Two ways can be
considered to achieve the better performance with impedance
control. One is to choose smaller impedance parametersMd

and Cd, and make the robot arm “softer”. Unfortunately, it
has been proved that the desired inertia cannot be chosen to
be arbitrarily small [7] and a large damping is required to
stabilize the whole system in practical implementations [31].
The other one requires the human partner to stiffen his limb
and make the limb impedance dominate the impedance of
the coupled system, but more control effort from the human
partner is the cost and it is not achievable when the robot arm
has a large weight (and thus a large inertia). In this regard,to
make the robot arm actively follow human partner’s motion
in the case of time-varying trajectory cannot be achieved by
impedance control with a fixed rest position. Compared to
impedance control, the proposed method requires a much
smaller external torque, which is less than 0.1Nm as also
shown in Fig. 7. The above results indicate that Nancy’s wrist
can be moved to the target positions with much less effort
under the proposed method, even if the human partner changes
his motion intention. They have also well justified the validity
of Assumption 3, where it is assumed that the motion intention
of the human partner can be estimated based on the interaction
force, position and velocity, in such a specific collaborative
task.

During the experiments, we note that the human partner may
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Fig. 6. Joint angle, in the case of time-varying trajectory
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Fig. 7. External torque, in the case of time-varying trajectory

change his motion intention according to robot trajectory.This
is an interesting issue but is not considered in the proposed
method. In this paper, we assume implicitly that the human
motion intention is stationary with respect to the actual robot
trajectory, i.e., the adaptation of the robot trajectory has no
effect on the human motion intention. However, human motion
is also an output of the neuromuscular control system, so
the dynamic interaction with the robot could well result in
concurrent adaptations in the human motion intention. This
makes the problem more tricky and it will be further investi-
gated in the future work. Besides, in the discussion throughout
this paper, human partner and robot are considered to be two
separated subsystems. Particularly, the motion intentionof the
human partner is estimated by considering the human limb
dynamics, then the estimated motion intention is integrated to
impedance control of the robot arm. The performance of the
whole coupled collaboration system is yet to be rigorously
analyzed, which will be also considered in the future work.

VI. CONCLUSION

In this work, human-robot collaboration has been investi-
gated, in which the motion intention of the human partner has
been observed by employing the human limb model and esti-
mating the desired trajectory. A NN method has been proposed
to cope with the problem of unknown human limb model. The
estimated motion intention has been integrated into impedance
control of the robot arm, such that it actively follows its human
partner. Experiment results have been provided to verify the
validity of the proposed method.
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