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Technology is changing the manufacturing world. For example, sensors are being
used to track inventory from the manufacturing floor to a retail shelf or a customer’s door,
i.e., asset tracking [1]. These types of interconnected systems constitute the so-called fourth
industrial revolution, i.e., Industry 4.0, and are projected to lower manufacturing costs [2].
As the manufacturing industry moves toward these integrated technologies and lower
costs, engineers will need to connect these systems via the Internet of Things (IoT) [2].
These engineers will also need to design connected systems that can efficiently and safely
interact with humans during the manufacturing process, e.g., a car assembly line [3]. The
focal points of this Special Issue are the smart sensors that enable robots and humans to
“see” each other [4–9] and the machine learning algorithms that process these complex data
so the robot can make decisions [10–13].

One of the biggest challenges in human–robot collaborations is the unpredictability
of human actions [14]. To address this challenge, sensors have been integrated into this
collaboration to allow the robot and human operator to “see” each other. The most common
way for robots to “see” humans is through three-dimensional cameras, e.g., Microsoft
Kinect [15]. These data are then used to help the robots detect humans and avoid collisions.
In this Special Issue, Khawaja demonstrates the use of this technology to predict human
motion [5]. Based on this predicted path, the robot can follow the operator’s movements
and be prepared to quickly execute the next step in the task, e.g., tightening a bolt or
attaching grommets. This motion prediction framework has been shown to decrease cycle
time by up to 25% in the sample task studied (delivering parts and tools to a worker in an
automobile assembly task). Another way for the robot to “see” the operator is through a
two-dimensional camera. These cameras tend to be used in applications where robots and
humans coexist. Yamakawa extended the use of two-dimensional cameras to collaborative
applications [4]. A high-speed camera can be used to take images of the operator’s hands,
which are then processed quickly and accurately using machine learning. This imaging
process has been shown to estimate the operator’s grasp type in 0.07 milliseconds with
94% accuracy. One limitation of using red–green–blue (RGB) imaging is the difficulty in
distinguishing between humans in the foreground and moving objects in the background.
Himmelsbach addressed this limitation in the field using thermal imaging [6]. This is espe-
cially advantageous for situations where robots can “see” both the operator’s workspace
and walkways with roaming autonomous vehicles. These autonomous vehicles may inad-
vertently trigger the robot to slow down or stop. Incorporating thermal imaging allows
robots to ignore these roaming robots in the background, resulting in a 50% increase in
efficiency. Typically, only a single sensing modality is used to enable the robot to “see”
the human operator because these data are difficult to process in real time [14,15]. Amin
combined both visual and tactile sensors with the aid of machine learning to quickly pro-
cess these robust data [8]. Multiple Microsoft Kinect cameras were used to detect a whole
human body, while multiple cameras allowed for monitoring a larger workspace. The
data from these cameras were fed into a neural network model to determine whether the
operator was passing through the workspace, observing the robot, moving too close to
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the robot for it to work, or interacting with the robot. Tactile sensors on the robot pro-
vided additional information about the operator: no interaction, intentional contact, or
incidental contact. These systems combined were able to “see” and “feel” the operator with
99% accuracy. Besides human-to-robot communication, messaging the other way from
robot to human is also important because humans can become nervous around fast-moving
robots. To address this, Grushko studied how robots can use haptic feedback to “talk”
to a human [7]. Operators showed a 45% improvement in completion time when haptic
feedback was used to inform the operator of the robot’s planned trajectory. The feedback
was provided through vibrations on a wearable device on the operator’s glove. Another
way humans and robots interact is through teaching, e.g., when the operator teaches the
robot to perform a task. Typically, a robot is taught to perform a non-contact task such as
spraying. Tasks that involve contact, such as picking up an object, require synchronous
sensing or both traction and contact. Zhang developed a sensor that measures both of these
forces using a single sensor, as opposed to a multiple-sensor arrangement [9]. This compact
sensor arrangement utilizes strain gauges mounted on a cylindrical sleeve. This sensor
was validated for a drawer-opening experiment where the robot was taught to approach a
drawer, grab the drawer, open the drawer, and then close the drawer.

During human–robot collaborations, a robot collects data and uses them to make
decisions. Due to the non-deterministic nature of these data, machine learning is used for
this processing [16]. The articles in this Special Issue demonstrate the power of machine
learning to optimize task scheduling, detect collisions, collaborate with more than one
person, and read social cues of a person. Scheduling tasks for human–robot collaborations
in a production setting can be difficult as there are uncertainties that cannot be predicted
and coded a priori offline, e.g., skill differences between human operators. Pupa’s online
framework, which leverages the parallelism of human–robot collaboration, is one way to
address this issue [10]. This novel framework has been shown to adapt to different human
operator skills and reallocate task steps if the robot becomes unavailable. To accomplish this,
a database was created to store the steps needed to accomplish a task. Then, a scheduler
algorithm chose the most suitable task for each actor (robot or human), accounting for
the operator’s skill level. The task monitoring component of the framework was fed back
to the database to determine which details of the task were left to accomplish. While
collaborating on these tasks, there are many points on articulated robots that can collide
with the operator and cause injury. The location and magnitude of these collisions can
be difficult to categorize. A neural network model has been previously developed to
determine when a collision has occurred [17] so the robot can adjust its force and avoid
an accident. Kwon expanded this neural network to include where on the robot the
collision occurred [11]. This work is important for safety, especially as robots become
more complicated with more articulations. Typically, these robots collaborate with a single
human. Zou used N-player game theory to extend the collaborative ability of a robot to
interact with two humans [12]. This theory utilized a recursive least-squares algorithm
underlying a novel controller that allowed the robot to adapt to a human’s response. This
controller was validated in a simulation where a robot helped two humans carry a table.
Compared to a traditional linear quadratic regulator, this N-player game theory controller
resulted in the humans exerting less effort. This work has the potential to extend beyond
industrial robots to robots that help in homes. Akalin developed a reinforcement learning
method to train robots that interact socially at home [13]. The robots were observed
interacting with humans using a trial-and-error method to determine an optimal behavior.
The robot learned which robot behaviors were desired through human feedback (e.g., facial
expressions, vocal laughter) and stored this information in a database for later use.

In summary, human–robot collaborations are a common occurrence. The articles in
this Special Issue aim to increase the efficiency and safety of these collaborations. Sensors
have been incorporated into the robots and surrounding workspaces so the robot can “see”
the human. Humans have been outfitted with sensors as well, so they have additional data



Sensors 2022, 22, 5848 3 of 3

to “see” the robot. Finally, machine learning techniques have been developed so the robots
can optimize these collaborations.
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