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Abstract—We designed and evaluated human-robot cross-
training, a strategy widely used and validated for effective human
team training. Cross-training is an interactive planning method
in which a human and a robot iteratively switch roles to learn a
shared plan for a collaborative task. Human subject experiments
(n = 36) showed that cross-training provides statistically signifi-
cant improvements in quantitative team performance measures,
compared to standard reinforcement learning techniques. Addi-
tionally, significant differences emerged in the perceived robot
performance and human trust. In this paper we briefly present
our motivation and findings, which support the hypothesis that
effective and fluent human-robot teaming may be best achieved
by modeling effective practices for human teamwork.

I. INTRODUCTION

When humans work in teams, it is crucial for the team

members to develop fluent team behavior. We believe that

the same holds for robotics teammates, if they are to perform

in a similarly fluent manner as members of a human-robot

team. Learning from demonstration [1] is one technique for

robot training that has received significant attention. In this

approach, the human explicitly teaches the robot a skill or

specific task. However, the focus is on one-way skill transfer

from a human to a robot, rather than a mutual adaptation

process for learning fluency in joint-action. In many other

works, the human interacts with the robot by providing high-

level feedback or guidance [4], but this kind of interaction

does not resemble the teamwork processes naturally observed

when human teams train together on interdependent tasks.

Our research leverages methods methods from human fac-

tors engineering, with the goal of achieving convergent team

behavior during training and team fluency at task execution,

as it is perceived by the human partner and is assessed by

quantitative team performance metrics.

II. APPROACH

In our previous work [5], [6], we have computationally

encoded the concept of shared mental models in the form of a

Markov Decision Process (MDP), that captures the knowledge

about the role of the robot and the human for a specific

task. We then proposed the entropy rate of the MDP as an

objective metric to evaluate the convergence of the robot’s

computational teaming model and the human mental model.

Additionally, we designed a quantitative method to elicit the

similarity between the mental model of human and robot,

based on prior work on shared mental model elicitation for

human teams.

Expert knowledge about the task execution is encoded in the

assignment of rewards of the MDP, and in the priors on the

transition probabilities that encode the expected human behav-

ior. This knowledge can be derived from task specifications or

from observation of expert human teams. However, rewards

and transition probabilities finely tuned to one human worker

are not likely to generalize to another human worker, since

each worker develops his or her own highly individualized

method for performing manual tasks. In fact, it has been shown

in previous research that human teams whose members have

similar mental models perform better than teams with more

accurate but less similar mental models. Even if the mental

model learned by observation of a team of human experts

is accurate, the robot needs to adapt this model when asked

to work with a new human partner. The goal then becomes

for the newly formed human-robot team to develop a shared-

mental model. One validated and widely used mechanism for

conveying shared mental modes in human teams is “cross-

training.” In [6], we emulated the cross-training process among

human team-members by having the human and robot train

together at a virtual environment.

III. HUMAN-ROBOT TEAMING EXPERIMENTS

We applied the proposed framework to train a team of one

human and one robot to perform a place-and-drill task, as

a proof of concept. The human’s role was to place screws

in one of three available positions. The robot’s role was to

drill each screw. This task is simple, but there is a sufficient

variety on how to accomplish it among different persons. For

example, some participants preferred to place all screws on a

sequence from right-to-left and then have them drilled at the



same sequence, while others preferred to place and drill each

screw before moving on to the next. The participants consisted

of 36 subjects. Videos of the experiment can be found at:

http://tinyurl.com/9prt3hb.

Each participant then did a training session in the ABB

RobotStudio virtual environment with an industrial robot

which we call “Abbie” (Figure 1). The participants were

randomly assigned to two groups, Group A and Group B.

Participants of Group A iteratively switched positions with

the vitual robot, placing the screws at the forward phase

and drilling at the rotation phase. Participants of Group B

trained with the robot with the standard reinforcement learning

approach, where the participant places screws and the robot

drills at all iterations, with the participant assigning a positive,

zero, or negative reward after each robot action [2].

Fig. 1. Human-Robot Cross-Training using ABB RobotStudio Virtual
Environment.

We then asked all participants to perform the place-and-drill

task with the actual robot, Abbie (Figure 2). To recognize the

actions of the human we used a Phasespace motion capture

system of eight cameras, which tracked the motion of a

Phasespace glove wore by the participant. Abbie executed the

policy learned from the training sessions. The task execution

was videotaped and later analyzed for team fluency metrics. Fi-

nally, all participants were asked to answer a post-experimental

survey.

Fig. 2. Human-Robot Task Execution

IV. RESULTS

Results of the experiment showed that the proposed cross-

training method outperforms standard reinforement learning

in quantitative measures of human-robot mental model con-

vergence (p = 0.04) and mental model similarity (p = 0.03).

Additionally, the post-experimental survey showed that partic-

ipants of Group A agreed more strongly that Abbie learned

their preferences, compared to participants of Goup B, and

trusted Abbie more (p < 0.01), in accordance with prior

work [7]. We also elicited the fluency of the teamwork by

measuring the concurrent motion of the human and robot

and the human idle time [3] during the task execution phase

that succeeded the human-robot training process. We observed

an increase of 71% in concurrent motion (p = 0.02) and a

decrease of 41% in human idle time (p = 0.04). One possible

explanation for this difference is that cross-training engendered

more trust in the robot, and thereby participants of Group A

had more confidence to act while the robot was moving. In

some cases, the increase in idle time was caused because the

participant was not sure on what the robot would do next,

and therefore waited to see. In other cases, the robot had

not learned correctly the human preference and did not act

accordingly, with the result of forcing the human to wait, or

confusing the human team-member.

V. CONCLUSION

We presented our motivation on using methods from prior

studies on human teawork, and on applying them on a team of

a human and a robot. Recent results provide the first evidence

that human-robot teamwork is improved when a human and

robot train together by switching roles, similarly to practices

observed in human teams. In [6], we focused on a simple

place-and-drill task, as a proof of concept. We are currently

planning on extending the framework on more complex tasks,

and on using the robot uncertainty about the human’s next

action to influence the motion planning parameters for a

robot working alongside a person. We are also extending the

computational formulation of the robot’s teaming model to

a POMDP framework that incorporates information-seeking

behavior.
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