
Human-Robot Interaction for Cooperative

Manipulation: Handing Objects to One Another

Aaron Edsinger

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

edsinger@csail.mit.edu

Charles C. Kemp

Health Systems Institute

Georgia Institute of Technology

charlie.kemp@hsi.gatech.edu

Abstract— For manipulation tasks, the transfer of objects
between humans and robots is a fundamental way to co-
ordinate activity and cooperatively perform useful work.
Within this paper we demonstrate that robots and people can
effectively and intuitively work together by directly handing
objects to one another.

First, we present experimental results that demonstrate that
subjects without explicit instructions or robotics expertise can
successfully hand objects to a robot and take objects from
a robot in response to reaching gestures. Moreover, when
handing an object to the robot, subjects control the object’s
position and orientation to match the configuration of the
robot’s hand, thereby simplifying robotic grasping and offering
opportunities to simplify the manipulation task.

Second, we present a robotic application that relies on this
form of human-robot interaction. This application enables a
humanoid robot to help a user place objects on a shelf, perform
bimanual insertion tasks, and hold a box within which the
user can place objects. By handing appropriate objects to the
robot, the human directly and intuitively controls the robot.
Through this interaction, the human and robot complement
one another’s abilities and work together to achieve results.
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I. INTRODUCTION

Robots that work alongside people in their homes and

workplaces could extend the time an elderly person can

live at home, provide physical assistance to a worker on

an assembly line, or help with household chores. Human

environments present special challenges for robot manipu-

lation since they are complex, dynamic, uncontrolled, and

difficult to perceive reliably. By working with people, robots

can more easily overcome these challenges and provide

worthwhile services.

The transfer of objects between humans and robots is a

fundamental way to coordinate activity and cooperatively

perform useful work. A robot can leverage a person’s

familiarity with cues such as physical contact, reach direc-

tion, and grasp shape in order to facilitate object transfer.

Within this paper, we look at cooperative manipulation tasks

involving a single human, a single robot, and objects that

can be considered to be exclusively controlled by the robot,

exclusively controlled by the human, or briefly in transition

between these two states. A wide variety of tasks fit this

structure.

Many possibilities exist for transfering control of an

object between a robot and a human. For potential users

of manipulation assistance technology, the tasks cited as
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Fig. 1. The humanoid robot Domo is designed to assist people with
everyday manipulation tasks.

being most useful include preparing food, picking items up

from the floor, and placing items on a shelf [12]. These

tasks could potentially include some form of cooperative

object hand-off. Recent results with the NASA Robonaut

[5], the AIST HRP-2 [11], and the HERMES robot [2] have

included the handing of objects between a humanoid and

person. However, these projects have yet to consider object

transfer in detail. Within [3], Breazeal et. al. maintain that

during a collaborative task, a robot requires understanding

of a person’s intentions and desires in order to behave as a

partner rather than just a tool. However, within this paper we

show that a robot and a human can effectively and intuitively

work together using only simple social and physical cues.

In this paper, we first present experimental results that

demonstrate that subjects without explicit instructions or

robotics expertise can successfully hand objects to a robot

and take objects from a robot in response to reaching

gestures. Moreover, when handing an object to the robot,

subjects control the object’s position and orientation to

match the configuration of the robot’s hand, thereby simpli-

fying robotic grasping and offering opportunities to simplify

the manipulation task.

We then present a robotic application that relies on this

form of human-robot interaction. This application enables

a humanoid robot to help a user place objects on a shelf,

perform bimanual insertion tasks, and hold a box within

which the user can place objects. By handing appropriate

objects to the robot, the human directly and intuitively

controls the robot. Through this interaction, the human and

robot complement one another’s abilities and work together

to achieve results.



II. IMPLEMENTATION

Our work is implemented on the 29 degree-of-freedom

humanoid robot, Domo, pictured in Fig. 1. In this section

we present key components of Domo’s design that allow it

to safely interact with a person, hand objects to a person,

and receive objects from person.

A. Safe, Physical Interaction

In order to directly hand objects to one another, the

human and robot must work in close proximity. This re-

quires great attention to safety. Researchers have developed

a variety of approaches for safe robots [8], [1]. Our robot,

Domo, uses passive compliance and force sensing actuators

throughout its body [7]. These Series Elastic Actuators

(SEA) lower the mechanical impedance of its arms, al-

lowing for intrinsically safe physical interaction with a

person given moderate end-effector velocities [10], [14].

The Head Injury Criterion (HIC) is a commonly used index

to evaluate robot manipulator safety [13]. An HIC value

near 100 can be safe for human contact while an HIC of

1000 is potentially fatal. As we have discussed in [6], given

a hand velocity 1.0m/s Domo’s manipulator has an HIC of

approximately 167, while the Puma 560 has a substantially

higher estimated HIC of 550.

B. Detecting Object Transfer

Domo detects when an object has been placed in its hand,

attempts to grasp the object, and then detects whether or not

the grasp has been successful. Domo also detects when the

user attempts to acquire an object from Domo’s grip. This

section describes the implementation of this functionality

and indicates the names of the relevant perception and

control modules in italics.

1) Detecting Hand Velocity: Domo must decide when to

close its gripper in order to grasp an object being handed

to it by a human. Many options exist for detecting when

an object has been placed in a robot’s hand, including

tactile sensing and range sensors in the gripper. Moreover,

autonomous grasping often requires that a similar decision

be made. For the work described here, Domo lowers the

stiffness of the virtual springs used to control its arm

(StiffnessAdapt) and monitors the velocity of its hand in

order to detect when an object has been placed in its hand,

or is being pulled out of its hand (ContactDetect).

We used support vector regression (SVR) with a Gaussian

RBF kernel, as implemented in the LIBSVM package [4], to

model the maximum expected hand velocity in the absence

of external disturbances as a function of arm stiffness [6].

When Domo’s hand moves with a velocity greater than this

maximum expected velocity (ContactDetect), Domo com-

pliantly closes its hand using force control (PowerGrasp).

2) Detecting a Successful Grasp: Upon closing its hand,

Domo estimates the resulting grasp aperture, which gives a

strong indication of whether or not Domo has successfully

grasped an object. The grasp aperture, typically defined

as the distance between the thumb and forefinger, is a

common measure used when studying human manipulation

[9]. On a robot, the grasp aperture can be used to estimate

the size of an unknown, grasped object. For example, the

grasp aperture created by a power grasp on a cylinder is

proportional to the cylinder’s diameter.
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Fig. 2. The AssistedGrasp module gains assistance from a person in order
to grasp an object. Control state transitions (arrows) occur contingent on
perceptual feedback (bars).

On Domo, there is substantial compliance in the finger.

The compliant fingertip and skin also allow the finger

surface to deform during grasping. These factors would sig-

nificantly complicate model-based estimation of the grasp

aperture. Instead, we once again used support vector re-

gression (SVR) with a Gaussian RBF kernel to perform

supervised, offline learning. The resulting function takes the

hand’s four joint angles as input and outputs an estimate of

the object’s diameter. Training data was gathered for 50

power grasps formed on five cylindrical objects of known

diameters between 25mm and 75mm [6].

GraspDetect signals that a stable grasp has been made

on an object. It relies on three conditions to detect a grasp.

First, it monitors the net torque applied by the fingers. If it

is positive and above a threshold, then the hand is assumed

to be closed or closing with significant force. Second, if

the net angular velocity of the fingers is close to zero, it is

assumed that the fingers are in a stable state. Third, if the

estimated grasp aperture is greater than 20mm, then the

fingers are assumed to be wrapped around an object and

not resting on the palm of the hand. If all three conditions

are true, then GraspDetect signals a stable grasp.

C. Transfer of Objects between a Human and Robot

The AssistedGrasp algorithm puts all of the previous

modules together to acquire an object from the human. The

algorithm is depicted in Fig. 2. If at least one hand is empty,

AssistedGrasp can be activated. First, it employs PersonSeek

to find a person in the room. If PersonDetect finds a face at

a location, then PersonReach reaches below this location,

approximately toward the person’s midriff.

Once PersonReach has achieved its target and the arm

is nearly stationary, StiffnessAdapt lowers the stiffness of

the arm. This increases the likelihood of ContactDetect

given small contact forces. As the person gives Domo

the object, small displacements of the hand are sensed by

ContactDetect. PowerGrasp then closes the fingers around

the object. If GraspDetect signals success, RetractArm

brings the grasped object to the robot’s side. However, if

ContactDetect or GraspDetect fail, then PersonReach is

reactivated and the robot cues the person again.

While AssistedGrasp takes an object from a person,

the AssistedGive module hands a grasped object back. Its

implementation is nearly identical to AssistedGrasp, except

that GraspRelease is used instead of PowerGrasp.



III. TESTING COOPERATIVE MANIPULATION

When designing a robotic application that involves co-

operative manipulation, one must consider the roles of

both the human and the robot. By placing the human

“in the loop”, a robot can be useful without achieving

full autonomy. However, in order for applications to be

successful, the cooperation must result in a net benefit for

the human. Through human-like form and behavior, robots

may be able to reduce the burden of cooperation. Humans

could potentially use robots intuitively without specialized

instruction.

Socially understood gestures and cues that facilitate col-

laboration may be relatively easy for a robot to generate.

The human can then use the task context to interpret these

signals appropriately. For example, AssistedGrasp implicitly

assumes that a collaborator will understand the reaching

cue as a request for an object, and consequently hand

an appropriate object to the robot. People exhibit similar

behavior when interacting with one another. For example,

one would expect a person to pass a coffee cup, instead of

a dinner plate, to a waitress holding a coffee pot.

Over time, as a person becomes familiar with a robot,

we would expect the person to adapt his or her behavior to

make better use of the robot and increase the chances of task

success. As we will show with the following experiments

and a demonstration application, during AssistedGrasp,

subjects intuitively hand an object to the robot in a pose

that anticipates both the robot’s use of the object and the

limitations of the robot’s grasping.

In this section we present experimental results that

demonstrate that subjects without explicit instructions or

robotics expertise can successfully hand objects to a robot

and take objects from a robot in response to reaching

gestures. Moreover, when handing an object to the robot,

we show that subjects control the object’s position and

orientation to match the configuration of the robot’s hand,

thereby simplifying robotic grasping.

A. The Give and Take Experiment

1) Experimental Setup: As shown in Fig. 3, the subject

sits in front of the robot. The robot is at a table and an

oblong box ( 60mm × 85mm × 200mm) sits on the table.

The box is instrumented with a an inertial measurment unit

(IMU) to measure its orientation. The subject is told only

that the robot is performing an unspecified visual hand-eye

calibration task, and that whenever the robot reaches to

them, he or she is to place the box in the robot’s hand.

This explanation is to deter the subject from explicitly

considering the way in which he or she hands the box to the

robot. In a single trial, the robot reaches to the subject with

its hand open in a power-grasp configuration (preshaped).

The orientation of the open hand is varied per trial. The

subject places the box in the robot’s hand and the robot

grasps the box, brings the box up to its cameras, appears to

inspect it, and then lowers its arm in one of two ways.

In the first case, the robot reaches towards the person,

bringing the box just in front of and above the table edge

nearest the subject. It says the word “Done” and pauses for

one second. It then releases its grasp, dropping the box onto

the table, and retracts its arm. In the second case, the robot

does an identical action as in the first case, but this time it

reaches just past the table edge. Unless the subject takes the

box from the robot, it falls to the floor. This marks the end

of a trial. The robot pauses for 5 seconds and then initiates

the next trial. Six trials are performed with each subject.

At the start of each experiment, the box is aligned to the

robot’s body and the IMU is calibrated with respect to the

world frame {W}. We define the vector b
W as the longest

edge of the box. We define the power-grasp axis as z
H in

the hand’s coordinate frame {H}. This axis corresponds to

the long axis of a cylinder held in a power grasp. In frame

{W} this axis is z
W . The angle between z

W and b
W is

defined as the grasp alignment error. During each trial, we

measure the average grasp alignment error during the 500ms

just prior to the grasp being formed. We also vary the wrist

rotation for each of the six trials such that the angle formed

between z
W and gravity is [0◦,−45◦, 90◦, 0◦,−45◦, 90◦].

2) Experimental Hypothesis: This experiment considers

the following three questions:

1) When a subject hands the robot the box, do they adjust

its orientation to match the pose of the robot’s hand?

2) Will the subject correctly interpret the robot’s reach-

ing gesture, vocalization, and pause as a social cue to

take the object?

3) Can a small incentive such as not having to pick up the

object increase the subject’s willingness to respond to

the social cue?

We use the measured grasp alignment error to answer the

first question. We would expect to see b
W track z

W as

it varies between the three wrist orientations. The second

question is more difficult to confirm. For each experiment,

we measure the take-back rate as the number of trials a

subject reached to take the box back from the robot. We

expect that the subject will take back the box when the

robot performs its reaching gesture, vocalization, and pause.

The subjects are never instructed to take the object back. In

order to address the third question, the trials are varied so

that for half of the subjects the robot drops the cylinder on

the table, and for the other half the robot drops the cylinder

on the floor. If dropping the cylinder on the floor serves as

an incentive for the subject to take the box back prior to

the drop, we should see an increase in the take-back rate.

Importantly, the arm postures achieved by the incentive-

reach and the no-incentive-reach are nearly identical, in

order to minimize the differences between the reaching cues.

3) Experimental Results: Prior to the experiments, we

first measured the average grasp alignment error when we

deliberately oriented the box to match the robot’s grasp.

From repeated trials the mean error was 8.9◦. Next, we

measured the range of grasp alignment errors that are

possible when the object is placed in the robot’s open hand,

by freely rotating the box within the open hand (preshaped).

In this case the distribution of grasp errors was fairly

uniform between 0◦ and 60◦. We tested the experiment

using 10 subjects (6 female, 4 male in the ages of 18-55).

All subjects were naive to the experimental objectives and

had little if any prior experience working with robots. In Fig.

4, we see the grasp alignment errors for each of the six trials

of a typical subject. All subjects matched the orientation

of the offered box to the orientation of the robot’s hand



Fig. 3. One trial of the Give and Take experiment.
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Fig. 4. The grasp alignment errors from six trials with a typical subject during the Give and Take experiment. We see that for nearly all trials, the subject
aligns the box within a few degrees of the best expected performance. (Top) Blue shows the grasp alignment error (degrees) of the box with respect to
the open grasp configuration (preshaped). Red (horizontal) shows the mean error achieved when we deliberately aligned the box with the grasp. The X
axis shows the trial time, in seconds, starting when the reach commenced and ending when the grasp was initiated. (Bottom) The execution sequence
from the initiation of the reach until the grasp is formed.

with surprising accuracy. In Fig. 5, we see that the average

error for each subject is near the average error achieved

by one of the authors. We also see that, when offered the

box by the robot, 90theboxwasheldoverthefloor,100one

or more times, and the subjects let the box drop to the

ground in only 1 out of 30 trials. The possibility of the

box falling to the ground appears to influence the subject’s

behavior since subjects allowed the robot to drop the box

onto the table in 11 out of 30 trials. This experiment only

scratches the surface of the potentially rich interactions that

may occur during cooperative manipulation. However, it

shows quantitatively that people will intuitively adapt to and

assist the robot without instruction. We would expect that

more substantiative assistance could be given if the person

possessed greater contextual knowledge about the task and

the robot could generate more nuanced cues.

IV. APPLICATION

In this section we show that a robot and a person can

work together by directly handing objets to one another,

and that this form of interaction can support a variety of

everyday manipulation tasks. These results are presented in

more detail elsewhere [6].

As shown in Fig. 6, a collaborator can ask the robot to

take an object (AssistedGrasp), give back an object (Assist-

edGive), insert one object into another (BimanualInsert),

place an object on a shelf (ShelfPlace), or hold a box

while objects are placed in it (BimanualFixture). These

manual skill behaviors run concurrently, allowing a person

to vocally request them at any time. If the collaborator

notices that Domo is failing at a task, he or she can provide

vocal (VocalRequest) or contact (ContactDetect) feedback

to alert the robot. If Domo accidentally drops an object

(GraspDetect), the person can pick it up and ask the robot

to grasp it again (AssistedGrasp). Alternatively, at anytime

the person can ask Domo to hand over a grasped object

(AssistedGive). Through these behaviors, the robot and the

person work as a team. The person intuitively provides task-

level planning and guides the robot’s action selection. By

handing objects to the robot and taking objects from the

robot, the person directly and unambiguously specifies the

objects that the robot should use, while also helping the

robot grasp them in a manner appropriate for the task.

The following example scenario for cooperative manipu-

lation illustrates the utility of these behaviors:

1) Domo is positioned at a table cluttered with objects

and near a shelf. Domo first physically verifies the

location of the shelf.

2) A person asks for help in preparing a drink. He hands

Domo a cup and bottle of juice. Domo “pours” the

juice into the cup.



Fig. 5. (Top) Results showing that the 10 subjects intuitively aligned the
cylinder’s axis with the grasp axis of the robot’s hand when handing it to
the robot. For each of 6 trials, we measure the average alignment error,
in degrees, during the 500ms prior to grasping. The error bars show the
mean error and standard deviation for each subject. The red lines indicate
the best and worst expected performance. (Bottom) Results showing the
number of trials each subject took the box back from the robot when cued.
For subjects 1-5 (red), the robot dropped the box on the table, while for
subjects 6-10, the robot provided incentive by dropping the box on the
floor if the subject did not take it back.

PersonSeek

PersonDetect

VocalRequest

AssistedGrasp

AssistedGive

BimanualInsert

ShelfPlace

BimanualFixture

GraspDetect

VocalRequest

ContactDetect

Fig. 6. A collaborator can compose a task by coordinating its manipulation
skills using voice cues (VocalRequest) while the robot tracks the person
in the scene (PersonSeek, PersonDetect). The person can ask the robot
to take an object (AssistedGrasp), give back an object (AssistedGive),
insert one object into another (BimanualInsert), place an object on a shelf
(ShelfPlace), or hold a box while objects are placed in it (BimanualFixture).
The robot can reattempt a manual skill if failure is signaled (GraspDetect,

VocalRequest, ContactDetect).

3) Domo hands the bottle of juice back to the person.

4) The person now hands Domo a spoon. Domo inserts

the spoon into the cup and “stirs” the drink.

5) Domo hands the spoon back to the person and then

places the prepared drink on the shelf.

6) Next, the person asks for help in putting away gro-

ceries. He hands Domo a box of crackers. Domo

passes the box to the other hand and puts them upright

on the shelf.

7) The person hands Domo a paper bag of coffee and

Domo places it on the shelf as well.

8) Now, the person asks for help in clearing off the table.

He hands Domo a box and Domo grasps it with both

hands.

9) Domo keeps the box near the person as he goes about

clearing the table into it.

10) Finally, the task is done and Domo lowers the box

onto the table.

As shown in Fig. 7, a very similar scenario was realized

by Domo and the author as one consecutive task, punctuated

by vocal requests for the robot, over the course of 5 minutes.

Of course, other scenarios are possible using this approach.

For example, Domo could assist a person working on an

assembly line by holding a tool tray for the person, putting

tools away, holding a tool and then handing it back when

the person is ready, and performing the insertion of two

parts during assembly.

V. DISCUSSION

Within this paper, we demonstrated that a robot and a hu-

man can effectively and intuitively work together by directly

handing objects to one another. This mode of interaction

takes advantage of the complementary skills of the human

and the robot, and offers several distinct benefits. Objects

can be efficiently transferred between the human and the

robot with minimal delay between the human’s hand and the

robot’s end effector. The human solves a potentially difficult

grasping problem for the robot by directly placing the object

within the robot’s hand in a favorable configuration. As

we have shown empirically, the human does not require

explicit instruction or expertise to work with robots in this

way, possibly because of the similarity with the way people

work with one another. The robot reaches toward the person,

which can simplify the transfer for the human. This could

be especially important for assistive applications for people

with motor impairments. As we have demonstrated, handing

objects to one another can also serve as a useful interface,

since by handing an object to the robot, the human implicitly

commands the robot to manipulate that particular object in

the near future.

An interesting avenue for future work would be the

refinement of the robot’s reaching gestures. Reaching into

the human’s interpersonal space has social, ergonomic,

and biomechanical implications that are worthy of study.

Continued research in this area may lead to human-robot

interaction that is more intuitive, more comfortable, and

more efficient.
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