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Abstract 
The hypothesis for this research is that applying the Human Computer Interaction 

(HCI) concepts of using multiple modalities, dialog management, context, and 

semantics to Human Robot Interaction (HRI) will improve the performance of 

Instruction Based Learning (IBL) compared to only using speech. We tested the 

hypothesis by simulating a domestic robot that can be taught to clean a house using a 

multi-modal interface. We used a method of semantically integrating the inputs from 

multiple modalities and contexts that multiplies a confidence score for each input by a 

Fusion Weight, sums the products, and then uses the input with the highest product 

sum. We developed an algorithm for determining the Fusion Weights. We concluded 

that different modalities, contexts, and modes of dialog management impact human 

robot interaction; however, which combination is better depends on the importance of 

the accuracy of learning what is taught versus the succinctness of the dialog between 

the user and the robot. 
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Chapter 1 Introduction 

1.1 Motivation 
Today, robot manufacturers program their robots to accomplish a defined set of 

functions before they leave the factory. Although the functions are advanced when 

compared with what robots could do as little as ten years ago, they are very limited 

when compared with the wide range of activities that a human can perform. As the 

mechanical and sensory capabilities of robots continue to advance, they will be able 

to perform increasingly human-like functions. In fact, the Holy Grail for some robot 

designers is to design a robot that is as human like as possible. Future robots will 

include domestic robots to do household chores, such as cleaning a house; industrial 

robots to do tasks that are dangerous to humans or humans do not like to do; and 

exploration robots to explore other planets and uninhabitable places on earth. 

According to Wolf and Bugmann [90], “Future service robots cannot be 

completely preprogrammed by the manufacturer. There are far too many possible 

tasks. In order for these robots to successfully learn and interact with people from the 

general public, they must be programmable by anybody (naïve users / without 

training) and not just by engineers, roboticists and computer scientists.”  

Bugmann [13] further elaborates by saying that “Any robot needs to be 

programmed by its user to become a functional device. For domestic robots, this 

poses a special problem, as their typical users are naïve in programming and unaware 

of mechanical and control issues. As for human servants, domestic robots need to 

learn the particular needs of their employers / owners and the particularities of their 



environment. Various learning methods have been investigated, such as learning from 

demonstration, learning by reinforcement, etc. But none of these methods has the 

power that language has for communicating logical rules and procedural knowledge. 

Therefore, learning from verbal instructions will be an essential capability in future 

domestic robots.” Bugmann calls programming a robot by verbal instruction, 

Instruction Based Learning (IBL) stating that, “Comparatively little research has been 

devoted to Instruction-based learning (IBL)” [13].  

Although verbal instruction is an important part of how humans teach one another, 

it is not the only part. Humans use other modalities such as vision and gestures to 

teach each other. Therefore, it is logical that humans should use multiple modalities 

to teach future robots. For our research, we will expand Bugmann’s definition of IBL 

to include other modalities. 

1.2 Problem Statement 
A great deal of research has been done on using multi-modal interfaces for 

computer systems, which is referred to as Human Computer Interaction (HCI). Table 

1.1 illustrates how using multiple modalities, dialog management, context, and 

semantics improves recognition. Except for the research of Demirdjian et al. [25], 

those using multiple HCI techniques have lower error rates than those using only a 

single HCI technique. Even the research of Demirdjian et al. produced lower error 

rates when multiple techniques were used.  
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Researcher HCI Techniques Error Rate 

Demirdjian et al. [25] Vision & speech 0%

Demirdjian et al. [25] Speech 5%

Demirdjian et al. [25] Vision 8%

Morency et al. [61] Gesture & dialog context 8%

Morency and Darrell [60] Gestures & dialog state 9%

Quattoni et al. [67] Vision & semantics 9%

Wang and Demirdjian [86] Speech & gestures 12%

Webb et al. [87] Speech & dialog state 17%

Metze et al. [59] Speech, context, & gesture 17%

Morency et al. [61] Gesture 22%

Saenko et al. [72] Vision 34%

Eisenstein and Davis [31] Linguistic context 34%

Bugmann [13] Speech 40%

Table 1.1: Error Rates for Various HCI Techniques. 

However, these techniques have not been applied to the same extent in Human 

Robot Interaction (HRI), or IBL. We believe that using these HCI techniques will 

improve IBL to some degree. 

The hypothesis for this research is: 

Applying the Human Computer Interaction (HCI) concepts of using 

multiple modalities, dialog management, context, and semantics to 

Human Robot Interaction (HRI) will improve the performance of 

Instruction Based Learning (IBL) compared to only using speech. 

We tested the hypothesis by simulating a domestic robot that can be taught to 

clean a house using a multi-modal interface.  

What we are simulating does not exist today. We are looking in the future, when a 

user can go to a store in a mall and buy a domestic robot to bring home. Once the user 

gets it home, the first thing the user might say to the robot is, “Clean the house” and it 

is probably going to ask, “How do you want me to clean the house?” At this point, the 
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user is going to take the robot from room to room and tell it things like, “I want you 

to clean the sink, vacuum the floor, dust the cabinets, and then mop the floor once a 

week”. Today’s robots are not even close to having the capabilities of doing this. 

Today’s robots can take instructions verbally, but the verbal commands are simple, 

like: “Go to location A and pick up object B”. How do we get from the technology 

today to a robot that can dust a table when it is told, “Dust that table”? We propose it 

is by applying what we have learned about interacting with computer systems. Today, 

there are computer systems that respond to spoken commands. A lot of research has 

been done so that computer systems can take commands that are more sophisticated 

than the commands one can give to today’s robots. What we propose to do is apply 

these techniques, which have been successful at instructing a computer what to do 

and apply them to instructing a robot what to do. 

1.3 Research Methodology 
We tested the following modalities and contexts: 

• Speech (e.g., “sweep the floor”) 

• Pointing (what the user is pointing at, e.g., “broom”) 

• Field of Vision (what the robot sees in the room, e.g., “broom”, “floor”, “mop”) 

• Head Nodding (yes or no head nods) 

• Real World Context (tasks the robot already knows how to perform, e.g., “sweep 

the floor with a vacuum once a week”) 

• Dialog History (what the robot and user have been talking about recently, e.g., 

“clean the counters with a dry rag”) 
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Originally we planned to test the hypothesis with the following five scenarios: 

1. Speech and Context (Real World and Dialog History) only 

2. Speech and Context + Pointing (one type of modality) 

3. Speech and Context + Field of Vision (another type of modality) 

4. Speech and Context + Head Nodding (another type of modality) 

5. Speech and Context + All 

However, these do not test the impact of Context adequately. Therefore, we 

expanded the experiments to include seven scenarios: 

1. Speech only (no modalities and no context) 

2. Speech + Real World Context (one type of context) 

3. Speech + Dialog History (another type of context) 

4. Speech + Pointing (one type of modality) 

5. Speech + Field of Vision (another type of modality) 

6. Speech + Head Nodding (another type of modality) 

7. Speech + All 

During human-to-human interactions, the process of ensuring common 

understanding is called grounding. Clarifying questions are asked to ground the 

conversation. To test different modes of dialog management, we used three different 

strategies for grounding [83]: 

1. Optimistic – The robot assumes grounding without any clarification. Optimism 

means that participants assume that their contributions have been understood. 
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2. Cautious – The robot engages in clarification when an utterance or gesture is 

ambiguous. Cautious participants wait until there is some kind of feedback 

(which may involve simply continuing with another relevant utterance) before 

assuming that their contributions have been understood. 

3. Pessimistic – The participants always verify any answer that is not yes or no. 

The purpose of this research is more than just demonstrating that a robot can be 

taught to perform a task. It is measuring how well the robot learned to perform the 

task, and how well it balanced asking questions with extrapolating from what the 

robot already knew.  

Asking too many questions will frustrate the human, and will make the learning 

process longer. On the other hand, asking too few questions may result in the robot 

not learning how to perform the task correctly. 

One can optimize the robot’s learning process so that no clarifying questions are 

asked at the expense of not learning the task correctly; or one can optimize it so that 

the task is learned correctly at the expense of asking “too many” clarifying questions. 

The learning process was evaluated using two metrics: 

1. How many times did the robot ask a clarifying question? 

2. How many times did the robot learn the task correctly? 

All the 166 tasks in the corpus were tested in each of the 21 combinations of the 

three grounding strategies (i.e., Optimistic, Cautious, and Pessimistic) and seven 

scenarios of modality and context. 
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1.4 Organization 
This dissertation is organized into eight chapters. Chapter 2 provides the 

background and reviews the relevant literature in the areas of HCI, HRI, and IBL. 

Chapter 3 presents the details of the research methodology that was adopted. Chapter 

4 describes the system implementation in more detail. Chapter 5 explains the 

semantic integration of the modalities and contexts. Chapter 6 analyzes the 

experimental results and presents the findings. Chapter 7 examines using neural 

networks for semantic integration. Chapter 8 discusses the contributions of this 

research, limitations of the research, and future work. 
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Chapter 2 Background and Related Work 
In this chapter, we will begin by discussing multi-modal Human Computer 

Interaction (HCI). Then, we will introduce Human Robot Interaction (HRI), which is 

a newer offshoot of HCI, and discuss how it is different from HCI. Next, we will 

introduce a specific taxonomy for classifying robots. We will use the taxonomy to 

identify robots where teaching the robot skills is important. After that, we will discuss 

the various methods of teaching the robot skills, including Instruction Based Learning 

(IBL). We will then focus on the limited research that has been done on IBL and the 

related challenges. Finally, we will explain how we believe that the techniques 

learned in HCI can be applied to address those limitations. 

2.1 Human Computer Interaction (HCI) 
Human Computer Interaction (HCI) has been around since the 1940’s when the 

first computer, ENIAC, was built [88]. Much research has been done on HCI since 

then. Today, most people are familiar with HCI using a keyboard, mouse, and 

monitor. We will begin the discussion with multi-modal interfaces, where speech and 

vision modalities are introduced into HCI. 

Pastra provides a theoretical basis for why multi-modal interfaces work [66]. She 

brings together Searle’s theory of intentionality [73, 74], Harnad’s symbol grounding 

problem [38], as well as arguments regarding the nature of images and language 

developed within different AI fields to produce a Double-Grounding theory that 

explains why speech and vision modalities work. Simply put, vision grounds speech 
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in the physical aspects of the world and speech grounds vision in the mental aspects 

of the world. 

Bolt built the first known multi-modal interface in 1980 [5]. Bolt’s interface could 

create, move, copy, remove, and name shapes using a combination of speech and 

pointing, e.g.,  “put that to the left of the green triangle,” “copy that there,” “call that 

the calendar,” “move the calendar here”. The system did fusion at the parse level. 

Every time the system recognized an anaphor or deictic reference, it would 

immediately see where the user was pointing and resolve the reference. The system 

also had an ability to learn new words. When the user said, “call that <name>,” the 

system told the speech recognizer to switch from recognition mode to training mode 

so that the name that the user gave the object was learned. The system components 

were tightly integrated because of the way the system was designed. While 

performing fusion during speech, yields a straightforward implementation of fusion, 

gestures and speech are in general not synchronized, i.e., gesture precedes or follows 

a spoken reference. Assuming that they are synchronized forces the user to change his 

or her normal behavior to use the system. In other words, the system trains the user, 

which is not desirable. 

Since Bolt’s work, numerous multi-modal interfaces have been developed. A 

comprehensive summary of research in multi-modal computer interfaces conducted in 

2004 listed 336 citations [57]. Several more recent research papers relevant to this 

dissertation are discussed in more detail below. 

9  



Chai et al. mapped gesture, dialog history, visible objects, and referring 

expressions from a speech utterance into four vectors and used these vectors to 

identify ambiguous references in speech [21]. In another effort, Chai et al. fused 

multi-modal inputs by using common data structures to represent utterances and 

gestures, and overlaying the data structures to disambiguate the utterance [20]. A 

variety of contexts, such as domain context and conversation context, were also used 

to enhance multi-modal interpretation. In a telephone banking call center application, 

Webb et al. used the state of the dialog to identify ambiguous references in speech, 

and achieved a 17% word error rate [87]. Wolf and Bugmann proposed using a touch 

screen to identify an ambiguous reference in speech in an application where users 

taught a computer to a play card game [90]. Morency and Darrell used the current 

dialog state of a Windows interface to clarify yes and no head nods with a 9% error 

rate [60]. Morency et al. also used dialog context to improve head nodding 

recognition of an embodied conversational agent from 78% to 92% [61]. A corollary 

of these results means that when expecting a yes or no answer, a robot could interpret 

yes and no head nods with 91% or 92% accuracy. Quattoni et al. developed a method 

of identifying objects (e.g., bed) in a scene (e.g., bedroom) using semantics to reduce 

the number of objects that need to be considered, with a 9% error rate [67]. For 

example, beds do not usually appear in bathrooms. A corollary of this is to use 

objects in a scene, or field of vision, to clarify the semantics of an utterance. Saenko 

et al. used a vision-only approach to detecting and recognizing spoken phrases (i.e., 

lip reading) to control a car stereo system with 66% accuracy [72]. 
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Wang and Demirdjian’s Virtual Home Desktop enables users to control a 

computer desktop system using gestures and speech with a 12% error rate [86]. 

MOWGLI (Multi-modal Oral With Gesture Large display Interface) is a speech 

and gesture multi-modal computer interface [19]. Carbini et al. describe two 

applications of MOWGLI. The first application is a Wizard of Oz cooperative story 

telling experiment named Virstory, where user speech-gesture actions are interpreted 

in order to cooperatively build a story with another person. The second application is 

a chess game where moves are completed through speech, gesture, or a combination 

of the two. MOWGLI is an untethered system that tracks head and both hand 

positions. The head position is used to estimate the pointing direction. MOWGLI 

behaves as a “speech-gesture mouse" similar to Bolt's “Put that there" system. Using 

both hands, a user can navigate within a large panoramic image. The pointing hand is 

used for displacement.  

Demirdjian et al. describe a virtual studio application that allows a user to edit a 

virtual world and navigate around it [25]. The application uses speech, one-handed, 

and two-handed gestures to identify ambiguous references in speech. The error rate 

was 8% with vision only, 5% with speech only, and 0% with both vision and speech. 

 

Flatscape is a collaborative situation map application for planning military 

missions [33]. It uses a mouse, eye tracker, gesture, and dialog history, to resolve 

ambiguity in spoken commands. 

Robbins researched seven speech and gesture based multi-modal interfaces [69]: 
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1. Bolt’s “Put-That-There” system 

2. CUBRICON system – Maintains dynamic user and dialog models to improve 

interpretation of gesture-based and natural language speech multi-modal input. 

3. XTRA system – Includes the use of user and dialog models while exploring the 

use of variable granularity in deictic gestures involved in a point-and-speak 

interface model. 

4. QuickSet, – A reusable map-based speech and pen multi-modal interface 

framework that allows more complex symbol gestures for creating objects as well 

as spatial and pointing gestures. 

5. IBM’s Human-Centric Word Processor – A word processor that explores the 

benefits of using gesture and speech to edit dictated text. 

6. Portable Voice Assistant – A modular architecture for developing web-based 

multi-modal applications. 

7. Field Medic Information System – A portable multi-modal system consisting of a 

wearable hands-free speech interface augmented by a speech and gesture tablet 

computer interface. 

Sharma et al. used gestures to disambiguate the speech in two crisis management 

systems: Crisis Management (XISM) and Dialog Assisted Visual Environment for 

Geoinformation (DAVE_G) [75]. 

An application developed by Englert and Glass, where a wireless phone user with 

a MDA utilizes pen and speech input to register and administer customer care 

campaigns, uses context and multi-modal input accuracy to determine what the user 
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means [32]. The system develops several hypotheses as to what the user meant based 

on the multi-modal input. Inconsistent hypotheses are discarded. The remaining 

consistent hypotheses are ranked with regard to the most probable meaning. The 

ranking reflects the input accuracy of a modality. Speech is more difficult to interpret 

than keyboard input. Gestures are more complex to interpret than speech input.  

In an application where two avatars are solving a problem in an interactive gaming 

environment, Gorniak and Roy used knowledge of the environment and the situation 

to resolve ambiguities in a very efficient dialog – efficient in the sense that few words 

are spoken because both participants in conversation are aware of the environment 

and the situation [35].  

Metze  et al. describe an Augmented Table which allows several users at the same 

time to perform multi-modal, cross-lingual document retrieval of audio-visual 

documents [59]. The Augmented Table enhances multi-lingual speech recognition 

with context and a visual gesture recognition system, using tokens. The English word 

error rate was reported to be 17.2%; the sentence error rate was 20.7%; and the 

finalized goal rate was 71.5%. 

Several researchers have studied the linguistic aspects of gestures. This research 

helps to temporally align gestures and speech. 

Kosmopoulos and Maglogiannis propose a method for extracting mid-level 

semantics from sign language videos, by employing high-level domain knowledge 

[49]. The approach is applied to sign-language videos, but it can be generalized to any 

case, where semantically rich information can be derived from gesture. 
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By studying how weathermen point at weather maps and users answer questions 

like "where is the nearest parking lot", Kettebekov and Sharma discovered parallels 

between gestures and speech [43]. They identified gesture phonemes that form into 

morphemes (morphology), which in turn are used to form phrases (syntax), and 

finally those yield meaning (semantics). A study of 332 gesture utterances revealed 

that 93.7% of time the adopted gesture primitives were temporally aligned with the 

semantically associated nouns, pronouns, spatial adverbials, and spatial prepositions. 

In another study, Eisenstein and Davis examined using speech to classify gestures 

into a taxonomy of gesticulation created by linguists [31]. The automatic gesture 

classification system is based solely on an n-gram model of linguistic context and is 

intended to supplement a visual classifier. The system achieved 66% accuracy on a 

three-class classification problem, which represents higher accuracy than human 

raters achieve when presented with the same information. 

Max is a conversational agent that collaborates in cooperative tasks taking place in 

virtual reality. Max is the application in a cooperative construction task [50] and is a 

guide in a public computer museum [48]. 

Corradini et al. described a full system design similar to Max, except that input is 

real speech instead of keyboard, like Max [24]. Neither paper cited the other work. 

2.2 Human Robot Interaction (HRI) 
Human Robot Interaction (HRI) is a newer offshoot of HCI, and less research has 

been done on HRI. For example, a search of Google Scholar produced 1,300,000 hits 
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for “Human Computer Interaction (HCI)”, while “Human Robot Interaction (HRI)” 

only produced 24,500 hits [96]. 

Kiesler and Hinds described the difference between HRI and HCI as [45]: 

1. People perceive robots differently than they do most other computer technologies. 

People’s mental models of autonomous robots are often more anthropomorphic 

than are their models of other systems. 

2. Robots are mobile, bringing them into physical proximity with other robots, 

people, and objects. This means robots have to negotiate their interactions in a 

dynamic, sometimes physically challenging, environment. 

3. Robots make decisions. They learn about themselves and their world, and exert 

some control over the information they process and actions they take. Because a 

robot operates in the physical world, it must adjust its decisions sensibly and 

safely to account for its abilities and the challenges in a given environment.  

In 2004, Breazeal listed the following major laboratories and researchers working 

on HRI [6]: 

• Brigham Young University (Mike Goodrich and Dan Olsen) 

• Carnegie Mellon (Reid Simmons, Sara Kiesler, and Illah Nourbakhsh) 

• Georgia Tech (Ron Arkin and Tucker Balch) 

• Massachusetts Institute of Technology (Cynthia Breazeal, Rod Brooks, and Brian 

Scassellati) 

• NASA Johnson Space Center (Rob Ambrose and Bob Savely) 

• NASA Ames (Illah Nourbakhsh, Terry Fong, and Bill Clancey) 
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• Navy Research Lab, Washington DC (Alan Schultz, Dennis Perzanowski, and 

Greg Trafton) 

• National Institute of Standards and Technology (Jean Scholtz) 

• University of Massachusetts – Lowell (Holly Yanco) 

• Mitre Corporation (Jill Drury) 

• Stanford University (Pam Hinds, Hank Jones, and Ousamma Khatib) 

• TRACLabs (David Kortenkamp) 

• University of South Florida (Robin Murphy and Christine Lisetti) 

• University of Southern California (Maja Mataric, Gaurav Sukhatme, and Stephan 

Schaal) 

• Vanderbilt (Kaz Kawamura, Alan Peters, Julie Adams, and Mitch Wilkes) 

Work is also being done at the University of Kansas, where Brown et al. designed 

a cognitive robot to use in four research projects studying the resolution of ambiguity 

in the following human and robotic systems [11, 10]: natural language understanding 

systems, active vision systems, memory retrieval systems, and robot reasoning and 

actuation. 

Yanco and Drury proposed taxonomy for classifying HRI in 2002 and updated it in 

2004. The categories of the taxonomy are [92]:  

Task Type – E.g., urban search and rescue, walking aid for the blind, toy, or 

delivery robot. 
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Task Criticality – High, medium, or low; where high means a failure affects 

the life of a human. 

Robot Morphology – Anthropomorphic (having a human-like appearance), 

zoomorphic (having an animal-like appearance), or functional (having an 

appearance that is neither humanlike nor animal-like, but is related to the 

robot’s function). 

Ratio of People to Robots – Denoted as a non-reduced fraction, with number 

of humans over the number of robots. 

Composition of Robot Teams – Homogeneous (robots are all of the same 

type) or heterogeneous. 

Level of Shared Interaction Among Teams – One human, one robot; one 

human, robot team; one human, multiple robots; human team, one robot; 

multiple humans, one robot; human team, robot team; human team, multiple 

robots; or multiple humans, robot team. 

Interaction Role (of Human) – Supervisor, operator, teammate, 

mechanic/programmer, or bystander. One or more of these values can be 

assigned. 

Type of Human-Robot Physical Proximity – Avoiding, passing, following, 

approaching, touching, or none (human and robot are not collocated). 
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Decision Support for Operators  – Four subcategories of available sensor 

information, sensor information provided, type of sensor fusion, and pre-

processing. 

Time/Space Taxonomy – Divides human-robot interaction into four 

categories based on whether the humans and robots are using computing 

systems at the same time (synchronous) or different times (asynchronous) and 

while in the same place (collocated) or in different places (non-collocated). 

Autonomy Level / Amount of Intervention – The Autonomy Level 

measures the percentage of time that the robot is carrying out its task on its 

own; the Amount of Intervention measures the percentage of time that a 

human operator must be controlling the robot. These two measures sum to 

100%. 

Recently HRI has been focused on the following areas: 

Robot Hosting – Robots that conduct demonstrations or answer questions for 

humans. For instance, Sidner et al. developed a penguin robot that 

demonstrates itself and a device called an IGlass cup [77, 76]; and Den Os and 

Boves developed a sales avatar that uses eye contact, gaze, body posture, 

drawing with a pen, and speaking to assist shoppers in designing bathrooms 

[26]. 

Teleoperation – Robots that are remotely operated by humans and have 

varying degrees of autonomy. Examples are the analysis of HRI for Urban 
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Search and Rescue (USAR) robots by Yanco et al. [91] and the research on 

polymorphic robots (shape changer) used in USAR by Drury et al. [30, 29]. 

Service Robots – Robots that perform autonomous tasks for humans. An 

example is COGNIRON. COGNIRON is a European Union project to 

develop “a social robot companion” [3]. COGNIRON’s mission statement is: 

“Developing cognitive robots whose “purpose in life” would be to serve 

humans as assistants or “companions”. Such robots would be able to learn 

new skills and tasks in an active open-ended way and to grow in constant 

interaction and co-operation with humans” [3]. Another example of a service 

robot is a speech-controlled wheelchair, which was developed by Tellex and 

Roy [80]. The speech-controlled wheelchair understands high-level natural 

language commands such as “take a left”.  

pHRI – Physical Human-Robot Interaction, which as defined by Khatib et al., 

involves haptic, force, neural, and other physical interactions between humans 

and robots [44]. 

2.3 Robot Learning 
We studied robots that need to learn skills from humans for a variety of reasons: 

• The skills are too complex to program (e.g., auto mechanic robot).  

• The robot needs to learn the particular needs of the human it serves (e.g., 

domestic robot).  
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• The robot needs to learn the particularities of its environment (e.g., exploration 

robot). 

• The subject matter expert is not a computer scientist or robot engineer, but is a 

human instructor adept at teaching the skills to humans. 

Using Yanco and Drury’s taxonomy, the key attributes of these robots are [92]: 

Interaction Role (of Human) = Supervisor, as the human tells the robot what 

to do, but the robot plans and carries out the task. 

Time/space taxonomy = Asynchronous (different times from human) and 

non-collocated (from human) 

Autonomy Level / Amount of Intervention = Autonomy near 100% and 

Intervention near 0%. 

In these cases, the human teaches the robot a task to be performed later. 

We will define “Robot Learning” as the process of humans teaching skills to these 

types of robots. 

There are various types of Robot Learning and many ways to classify them. 

Bruemmer proposed the following classifications [12]: 

1. Artificial Neural Networks – A supervised, learning-with-a-trainer approach 

where knowledge is learned by adjusting weights between nodes of a neural 

network.  
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2. Reinforcement Learning – An unsupervised, learning-with-a-critic approach 

where mappings from percepts to actions are learned inductively through trial and 

error.  

3. Evolutionary Learning – An unsupervised, learning-with-a-critic approach where 

controllers are derived deductively by alterations to an initial population of 

program code.  

4. Learning by Imitation – A design methodology that uses a biologically inspired 

developmental paradigm to enable learning by emulation. Imitative Learning is 

more an approach than a specific computational means. Theoretically, it might 

involve any of the means described above. 

Other researchers have grouped the first three together and called it Learning by 

Reinforcement. Bruemmer also did not discuss Instruction Based Learning. 

For our work, we will classify the types of Robot Learning as: 

RbD – Robot Programming by Demonstration, also referred to as Learning by 

Imitation. A non-verbal technique usually used to teach new motor skills to a 

robot. This approach works best for learning multidimensional and non-linear 

tasks. 

Learning by Reinforcement – Trial and error method with the teacher, 

environment, or both providing reward and punishment when the goal is 

achieved, or not achieved. Learning by reinforcement is guided more by the 

robot than the teacher.  
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IBL – Instruction Based Learning. A technique using conventional teaching 

methods, where demonstration is difficult, e.g., driving directions, house 

cleaning directions (not to be confused with individual sub-tasks, like dusting 

a table with a dust cloth, which are very amenable to RbD and probably the 

most straightforward way to convey that skill to a robot). This technique goes 

beyond the other techniques by generating knowledge representations that the 

user can interrogate. 

IBL is the subject of this dissertation; however, before we examine the work of 

other researchers with IBL, we will review the other two types of Robot Learning.  

2.4 Robot Programming by Demonstration (RbD) 
Taycher et al. proposed a new method for tracking 3D human motion [79]. They 

used a database of rendered images to evaluate their approach.  

Klingspor et al. reviewed the state of the art in 1997 and identified two 

requirements for RbD [46]: 

1. The human teacher must be competent in the skill being demonstrated. 

2. The robot acquiring the skill must have adequate sensors and degrees of freedom 

to perform the skill. 

Nicolescu and Mataric taught a Pioneer 2DX robot to reach a set of colored 

columns in a specific sequence as demonstrated by a human [63, 64]. 

Calinon et al. demonstrated another example of learning by imitation [17]. The 

experiment starts with the human and the robot facing each other across a table. There 

is a red and a green dot on the table. The human reaches for each dot alternatively 
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with the left or right arm. The robot then imitates the human. In another experiment, 

they taught a robot to move chess pieces by the user moving the robot’s arm through 

the task [18]. 

Alissandrakis et al. addressed the RbD problem where the robot and the human 

may not share the same degrees of freedom, morphology, constraints, etc. [1]. In 

another work, Calinon and Billard explored the issue of recognizing, generalizing and 

reproducing arbitrary gestures [16]. Breazeal et al. used biologically inspired 

mechanisms to design a robot capable of learning how to imitate facial expressions 

from imitative games played with a human [8]. 

2.5 Learning by Reinforcement 
Thomaz et al. looked at what they called, Socially Guided Machine Learning, in 

Sophie’s world [81]. In their experiment, eighteen participants were asked to play a 

video game, in which the participant’s goal was to get the robot, Sophie, to learn how 

to bake a cake on her own. The robot achieved this goal through a series of actions 

(e.g. pick-up eggs, turn left, use-eggs on bowl, etc.). The participants decided when 

they were finished with training Sophie. At this point, the experimenter tested the 

robot; and their game score was the degree to which Sophie finished baking the cake. 

They found teachers favored reward over punishment and had a tendency to use 

guidance in addition to reward and punishment. 

Rosenstein and Barto examined what they called, Supervised Actor-Critic 

Reinforcement Learning [70]. They defined Supervised Actor-Critic Reinforcement 

Learning as reinforcement learning where positive and negative feedback from the 
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environment are augmented with teacher feedback and guidance. They demonstrated 

their methods on a seven degree-of-freedom manipulator arm. Lopes and Wang used 

reinforcement learning to teach CARL (Communication, Action, Reasoning and 

Learning in robotics) to identify images of a person, trashcan, or triangle by asking 

the teacher [54]. 

2.6 Instruction Based Learning (IBL) 
Toptsis et al. proposed a multi-modal dialog system for a mobile robot called 

BIRON (Bielefeld Robot Companion) developed under the auspices of the 

COGNIRON project [82]. However, it was limited to the so-called home-tour, where 

a user shows a robot companion around his or her private home and teaches the robot 

important locations and objects, using speech and gestures. 

In another COGNIRON project, Green et al. analyzed miscommunication in a 

multi-modal interface with a service robot [37]. The application was the home-tour. 

Their observations from twelve user sessions revealed two major areas of 

miscommunication: 

1. Users misunderstand the robot’s functionality 

2. Ill-timed feedback from the robot with respect to the situation 

Their solution to functionality mismatch is to train the user on the capabilities of 

the robot. We argue that another solution is to just allow the user to become familiar 

with the robot’s capabilities through interaction in the same way two humans 

familiarize themselves with each other’s capabilities. This of course means that the 

robot must be capable of engaging in a rich dialog. A lot of their ill-timed feedback 
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resulted from the slowness of the system. Part of our research studied the effect of 

various modes of feedback on learning. 

Dominey et al. demonstrated the use of speech in three applications, namely, 

command, interrogate, and teach, on two robot platforms: Event Perceiver and AIBO 

ERS7 [28]. Although they looked at IBL, the interaction did not include gestures and 

was limited to the capabilities of the robots. These capabilities were simple. Event 

Perceiver was taught the names for various objects (e.g., “This is a stack”) and AIBO 

ERS7 was taught to associate perceptual events with behaviors (e.g., “Head-touch to 

Bark”). Additionally, the dialog was verbose and robot controlled. AIBO’s behaviors 

could not be triggered by temporal events (e.g., on Wednesdays) nor could they be 

combined into higher-level tasks (e.g., “sing and dance” meaning “bark” and “spin 

around”). 

Wilske and Kruijff developed a robot that could handle indirect speech acts [89]. 

Indirect speech acts are best illustrated in Asimov’s classical story “Little Lost 

Robot” (1947), where a robot was told “Get lost!” and then tried to lose itself, instead 

of just backing-off. Their system was limited to fulfilling direct or indirect requests 

for bringing objects from locations where the robot knew such objects could be 

found. 

Breazeal et al. looked at IBL as collaboration between a human and a robot, 

instead of the classical teacher-student relationship [7, 52]. Their research platform is 

Leonardo (“Leo”), a humanoid robot with 65 degrees of freedom. Leo uses gestures 

without speech to communicate. Their work draws from Joint Intention and Situated 
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Learning Theory, which is the basis for many HCI dialog managers. According to 

Cohen and Levesque’s Joint Intention Theory, two or more partners doing something 

together have “joint intention”, if they share the same goal and plan of execution [22, 

23]. Breazeal et al. use Vygotsky’s Zone of Proximal Development from Situated 

Learning Theory [84], which theorizes that a child learns a new skill from a teacher 

through the process of scaffolding. In HRI scaffolding, the human provides structure 

and assists with the new activity, so that the robot can achieve something it cannot do 

on its own. In their application, Leo learned to associate names with objects and then 

to perform actions on the labeled objects. They successfully taught Leo both primitive 

tasks (e.g., turning a button on) and compound tasks (e.g., turning a set of buttons on 

then off, and turning a button on as a single action). Although effective in teaching 

skills to the robot, the close collaboration between the robot and human will not work 

as well with more autonomous robot applications such as driving instructions or 

house cleaning. 

In other research, Breazeal et al. used Leo again to examine two types of non-

verbal communication, explicit (e.g., robot nods its head or points to an object) and 

implicit (i.e., gaze direction) [9]. They found that people infer task-relevant “mental” 

states of Leo not only from explicit communication, but also from implicit 

communication. One limitation of their research is the limited grammar to parse 

incoming phrases. These include simple greetings, labeling the buttons in the 

workspace, requesting or commanding the robot to press or point to the labeled 

buttons, and acknowledging that the task is complete. Other limitations are the lack of 
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speech synthesis, and the fact that they used gestures to communicate to the human, 

but did not interpret similar gestures from the human. 

Like Breazeal et al. [7, 52], Lopes and Teixeira used guided instruction to teach 

CARL (Communication, Action, Reasoning and Learning in robotics) to turn a corner 

[53]. They explained guided instruction as teaching a task, in which the human 

explains one or two steps of the task, the robot tries them out, and then the human 

explains a little more, and so on. Their implementation used speech only and did not 

include teaching CARL compound tasks. 

Zhang and Knoll defined two types of IBL [93]: 

• Front-End Approach – The robot system receives instructions that completely 

specify a task the human wants to be performed. The input is analyzed and the 

necessary actions are taken in a subsequent separate step. Upon completion of the 

task, the system is ready for accepting new input. This approach is ideal for 

systems that have to deal only with a limited set and scope of tasks, which do not 

vary much over time either. Inadvertent changes of the environment resulting 

from the robot’s actions, which would require a reformulation of the problem, 

cannot be considered because neither the programmer nor the instructor can 

foresee all of these states. 

• Communicator Approach – The robot and human engage in a collaborative dialog 

in order for the robot to learn a task, much like that proposed by Breazeal et al. 

and Lopes and Teixeira. 
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The Communicator Approach was used to teach a two-arm multi-sensor robot 

system to assemble parts using human tools (e.g., screw driver, wrench) [93]. Like the 

other Communicator Approach examples above, this approach does not lend itself to 

imparting temporal conditions. Although complex, assembling parts is not as complex 

as cleaning a house. Using this method to teach a robot to clean a house, drive a car to 

the store, or search for life on a remote planet would be very tedious. Users are going 

to expect robots of this type to have some high-level primitives built-in. 

Bugmann et al. implemented a system for teaching a robot to navigate through a 

city with a natural language interface [13, 15, 51]. The corpus contained 144 routes, 

which were produced by 24 subjects instructing six routes each [14]. From this 

corpus, they identified fifteen primitive actions. They found the primitive actions to 

be rather complex procedures for a robot, requiring the visual localization of 

landmarks, the identification of navigable areas, and the planning of a path to reach a 

landmark. Their HRI was limited to speech and did not include vision. Basing their 

natural language interface on a corpus (as opposed to designing the interface so it 

would be easy to program) has both good and bad points. It is good because the user 

is allowed to use unconstrained language. It is bad because new primitives have to be 

added as the number of teachers grows. Experimental data showed that one new 

function would be added to the functional lexicon for every 38 additional route 

instructions collected. Although a Front-End Approach (as defined by Zhang and 

Knoll), Bugmann et al. used high-level primitives to avoid the shortcoming of not 

being able to predict all the idiosyncrasies of the environment. 
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MacMahon [55] proposes MARCO, a modular architecture for reasoning about 

and following route instructions, which can be extended to other IBL applications. 

Like Bugmann, MacMahon’s primitives are fairly complex and high level and leave a 

lot to be interpreted during execution. MARCO is a design. MacMahon never 

indicated that it had been implemented. MARCO deals with the robot interpreting 

speech from the human. MARCO does not include gesture recognition or generation 

by the robot, speech generation by the robot, or dialog management. 

Green and Severinson-Eklundh, examined robot generated gestures in IBL by 

placing a life-like character, CERO, on top of a mobile robot [36]. CERO provided a 

visible direction for the robot and low-level visual feedback to supplement the spoken 

feedback issued by the dialog system. The dialog system was fairly advanced, using 

dialog acts in different situations (e.g., question, answer, require, repair). CERO was 

able to perform a small set of tasks: 

• GOTO: Navigation from one location to another 

• DELIVER: Carry an object while navigating 

• FETCH: Navigate to a location and address another user in order to get an object 

and carry it back 

Green and Severinson-Eklundh noted that their system did not handle out of 

sequence commands well. Others have referred to the ability to handle out of 

sequence commands as “accommodation” [83]. CERO did not interpret gestures from 
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the human and was only able to handle simple commands. CERO did not have the 

capability of learning compound tasks.  

Suomela and Halme’s WorkPartner has similarities with the work in this 

dissertation [78]. WorkPartner is a test bed for service robots. It is targeted for light 

outdoor applications like property maintenance, gardening, and light forestry tasks. It 

understands human speech and gestures and uses speech to carry on a dialog with 

humans. It can be taught compound tasks based on previously taught subtasks. 

Limitations of WorkPartner are: 

• WorkPartner’s language understanding is very limited and does not allow free 

flowing dialog between the human and robot. 

• Learning is limited to a large number of very small subtasks, which the human 

then combines and teaches to the robot as a new task.  

• WorkPartner does not use gestures to communicate with the human. 

Mavridis and Roy’s work also has similarities with our work [58, 71]. They have 

implemented a manipulator robot arm with seven degrees of freedom, equipped with 

force feedback actuators, a gripper with force-sensitive touch sensors integrated into 

each finger tip, joint angle encoders, and dual cameras mounted around the gripper. 

The robot’s world consists of a tabletop on which various objects are placed and 

manipulated. They use what they call an “amodal” interface that integrates both 

language and sensor-derived information about the situation. For example, the robot 

can acquire parts of situations either by seeing them or by “imagining” them through 
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descriptions given by the user: “There is a red ball at the left”. These situations can 

later be used to create mental imagery, thus enabling bi-directional translation 

between perception and language. The robot is able to pass the first two parts of the 

Token Test [27], a standard test used to assess early-situated language skills in 

children. The robot is also able to answer questions about the present and past, act on 

objects and locations, and integrate verbal with sensory information about the world.  

Blythe and Reilly simulated a household robot agent, Mr. Fixit, who could, along 

with other tasks, vacuum and clean up broken cups [4]. Although Blythe and Reilly’s 

research did not involve IBL, it is included because it is a good description of the 

application we propose to research.  

According to Blythe and Reilly, the typical household is a challenging 

environment for a robot, partly because of the presence of other agents. The robot 

must sense and respond to the other agents as it completes its task. In addition, other 

agents may move furniture and create new cleaning tasks. This leads to a less 

structured environment, for example, than a nuclear power plant or a road-following 

task. Thus, it will be impossible to pre-program a vacuuming and cleaning robot to 

perform “blind”, without sensing the environment and monitoring the progress of 

tasks.  

Some of the changes in the environment will demand reactive responses from the 

robot, such as interrupting a less important task to pick up a piece of trash. Thus, a 

vacuuming robot must be flexible enough in its design to respond intelligently to a 

changing set of goals, as well as a changing environment. Such a robot needs to 
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display a range of capabilities not typically found in a single system. Deliberative 

systems that embody powerful techniques for reasoning about actions and their 

consequences often fail to guarantee a timely response in time-critical situations. In 

addition, reactive systems that respond well in time-critical situations typically do not 

provide a reasonable response in situations unforeseen by the designers.  

Reactive systems have traditionally been more successful than deliberative ones in 

controlling agents in dynamic domains, like a typical household. Building a reactive 

system, however, can be a complex and time consuming endeavor because of the 

need to pre-code all of the behaviors of the system for all foreseeable circumstances. 

An efficient reactive system is also likely to have a narrow area of applicability, for 

instance a specific house and task set. Deliberative systems are best suited to long-

term, off-line planning for static environments, but not for controlling an autonomous 

agent operating in a dynamic environment. However, deliberative systems are often 

more robust to varying domains and sets of interacting goals because they employ 

some form of forward projection.  

2.7 Assessment of IBL Research 
The previous section identified a number of research projects on IBL. Each had its 

limitations. The limitations that we address in this dissertation are: 

1. Use of only one modality, or the use of multiple modalities in only one direction 

(i.e., robot to human, or human to robot). 

2. Limited dialog. 

3. Robot controlled dialog. 
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4. Too many clarifying questions. 

5. Unable to accommodate out of sequence utterances from the human. 

6. Limited to simple tasks such as identifying objects, fetching objects, or turning 

lights on and off. 

7. Only looked at what robots can do today. 

8. Unable to learn behaviors triggered by temporal events (e.g., every Wednesday). 

9. Unable to combine learned tasks into higher-level compound tasks. 

10. Unable to teach autonomous behaviors, such as driving a car or cleaning a house. 

A great deal of research has been done on using multi-modal interfaces to 

computer systems (HCI). However, the best results are achieved when context, 

situation, dialog state, and environment are also taken into account. Using multiple 

modalities, dialog states, context, and semantics improves recognition over speech 

recognition alone in these applications (Table 1.1). We believe that using these HCI 

techniques will improve IBL in the same manner. 

2.8 TRINDIKIT 
The TRINDI project proposed an “information state theory of dialog modeling” 

[83]. The TRINDI approach combines the following two approaches, using the 

advantages of each: 

1. Finite state machine – Dialog states are usually viewed as viable for simple 

scripted dialogs. 

2. Plan-based approach – Though more complex and difficult to implement, this 

approach is seen as more amenable to flexible dialog behavior. Plan-based 
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approaches are also criticized as being more obscure because of the large amount 

of procedural processing and lack of well founded semantics for plan related 

operations. 

The TRINDI information state theory of dialog modeling consists of the following 

components: 

1. A description of the informational components of the information state, e.g., 

participants, beliefs, common ground, and intentions. 

2. Formal representations of the above components, e.g., as typed feature structures, 

lists, sets, propositions, or modal operators within a logic. 

3. A set of dialog moves that triggers the update of the information state. These are 

generally also correlated with externally performed actions, such as particular 

natural language utterances.  

4. A set of update rules that govern updating of the information state, given various 

conditions of the current information state and performed dialog moves. Some of 

these rules also select particular dialog moves for the system to perform in the 

case of a system participating in a dialog, rather than just monitoring one. 

5. A control strategy for deciding which rules to select at a given point from the set 

of applicable ones. This strategy can range from something as simple as  “pick the 

first rule that applies” to more sophisticated arbitration mechanisms based on 

game theory, utility theory, or statistical methods. 

The TRINDI project has developed a toolkit, called TRINDIKIT, that is for 

building and experimenting with dialog move engines and information states [83]. 
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The TRINDIKIT package also specifies formats for defining information states, 

update rules, dialog moves, and associated algorithms. It further provides a set of 

tools for experimenting with different formalizations of implementations of 

information states rules and algorithms. 

The TRINDIKIT is implemented in SICStus Prolog. It works best with SICStus 

Prolog 3.8 or later versions. It is available free from the web [102]. 

2.9 Multi-Modal Interface Tools 
Flippo et al. propose a multi-modal framework using a variety of modalities and 

methods for ambiguity resolution, and a novel approach to multi-modal fusion, where 

92% of the application is reusable code [33]. 

The Extended Multi-Modal Annotation (EMMA) language annotates XML code 

with multi-modal features [32]. 

2.10 HRI Metrics 
Olsen and Goodrich proposed the following metrics for evaluating HRI in a USAR 

application [65]: 

1. Task Effectiveness (TE) – A measure of how well a human-robot team 

accomplishes some task.  

2. Neglect Tolerance (NT) – A measure of how the robot’s current task effectiveness 

declines over time when the user neglects the robot. 

3. Interaction Effort (IE) – The amount of time required to interact with the robot. 
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4. Robot Attention Demand (RAD) – A unit-less quantity that represents the fraction 

of a human’s time that is consumed by interacting with a robot. RAD = IE / (IE + 

NT). 

5. Free Time (FT) – The fraction of the task time that the human does not need to 

pay attention to the robot. FT = 1.0 – RAD.  

6. Fan-Out (FO) – An estimate of the number of robots that a user can effectively 

operate at once. FO = 1 / RAD = (IE + NT) / IE. 

Except for the first metric, TE, these metrics are appropriate for measuring remote 

operation HRI, like USAR, but do not provide any insight into IBL.  

Because IBL deals with autonomous behavior, NT and IE should be zero by 

definition. RAD becomes undefined when NT and IE are zero. If we assume NT and 

IE are very small numbers instead, RAD becomes almost zero and FT and FO 

become almost one, which makes NT, IE, RAD, FT, and FO meaningless. 

TE, which measures how well a human-robot team accomplishes some task, is the 

only relevant one for IBL.  

2.11 Task Corpus 
Developing a multi-modal corpus was a key activity in this research. Potential 

sources for a corpus are household task training manuals, articles on “how to clean a 

house”, domestic servant training video, and Home & Garden TV shows on house 

cleaning. 
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The list of primitives was developed from the corpus instead of the other way 

around. This approach to the definition of the robot’s functionality and natural-

language interface has been described as “corpus-based robotics” [14]. 

According to Wolf and Bugmann [90], speech transcription can be done using 

tools such as Transcriber. This produces a time stamped XML text corresponding to a 

recorded sound file. They are currently investigating if there are similar tools for the 

transcription and annotation of signs or gestures done in a card game on a touch 

screen. Otherwise, they will develop dedicated software. The task of such software is 

to annotate the raw recording of trajectories on the screen with high-level “sign tags”, 

such as pointat(AceClubs) or turnover(AceHearts). 
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Chapter 3 Research Methodology 

3.1 Approach 
The research approach in this dissertation is: 

1. Develop a computer system to translate speech and gestures into tasks for a robot 

to execute. 

2. Develop the system by integrating off-the-shelf components with custom written 

software. 

3. Generate lesson plans to teach the system tasks. 

4. Using speech and gestures, input tasks into the system. 

5. Measure how well the system learned the tasks. 

6. Vary the parameters in the system to measure the impact of clarifying questions 

on the accuracy of learning tasks. 

7. Introduce vision system recognition errors to simulate a more real environment. 

8. Use the measurements to either prove or disprove the research hypothesis. 

This research will not include simulating the robot. 

In order to mitigate the effects of not being able to tell whether the robot’s learned 

capabilities are due to the quality of the human instructor versus the quality of the 

system, only one human instructor is used in the experiments. 

3.2 System Architecture 
Figure 3.1 is a diagram of the system architecture. 
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Figure 3.1: System Architecture. 

The system architecture is a blend of MIND [21, 20], the XISM Framework [75], 

and MARCO [55]. Each component is briefly described below. The implementation 

is described in detail in a later chapter. 

• User – Teaches the robot how to clean the house. 

• Audio Stream – Utterances from the user. 

• Speech Recognition – Translates the utterances into words. 

• Video Stream – Robot's vision system. 

• Head Nod Recognition – Recognizes yes and no head nods. 
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• Pointing Recognition – Captures objects selected by pointing. Temporal order of 

selection is maintained. 

• Field of Vision – Captures objects that are visible to the robot. Temporal order of 

selection is NOT maintained. 

• Context – Provides real world context and dialog history. 

• Semantic Integration – Fuses nodding, pointing, field of vision, speech, real 

world context, and dialog history to resolve ambiguities in what the user says. 

• Dialog Management – Manages dialog and resolves any remaining ambiguities 

through clarifying questions. 

• Visual Feedback – Visual feedback from the robot to the user, such as head 

nodding and pointing. 

• Audio Feedback – Generates speech from the robot. 

• Task Management – Determines when tasks should be executed and breaks tasks 

into simple subtasks for the various subsystems of the robot to execute. 

• Robot Controller – Mechanical and sensory systems of the robot used to execute 

tasks requested by the user. 

The Dialog Management module works with all the modules above it in Figure 3.1 

to translate the user’s speech and gestures into tasks. We audited what the Dialog 

Management module sent to the Task Management module. This let us measure how 

well the Dialog Management module and all the modules above it did at correctly 

40  



interpreting the user’s speech and gestures. By adjusting parameters in those modules, 

we tested permutations of speech, visual cues, and grounding strategies. Those 

modules encompass all the HCI techniques, which we believe have not been applied 

to HRI. 

The execution of the tasks by the Task Manager and Robot Controller has already 

been covered in other research done by Blythe and Reilly [4].  

3.3 System Implementation 
The system was implemented by integrating software available from other 

researchers, commercial software, and software developed as part of this dissertation. 

The mapping of the software packages to the components of the system is shown in 

Table 3.1. 
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Component Description e-Speaking Phoenix Framework

User Teaches the robot how to clean the house

Audio Stream Utterances from the user

Speech Recognition Translates the utterances into words

Video Stream Robot's vision system

Head Nod Recognition Recognizes yes and no head nods

Pointing Recognition 
Captures objects selected by pointing and 

temporal order of selection is maintained

Field of Vision

Captures objects that are visible to the 

robot and temporal order of selection is 

NOT maintained

Context 
Provides real world context and dialog 

history

Semantic Integration 

Fuses nodding, pointing, field of vision, 

speech, real world context, and dialog 

history to resolve ambiguities in what the 

user says

Dialog Management 

Manages dialog and resolves any 

remaining ambiguities through clarifying 

questions

Visual Feedback 
Visual feedback from the robot to the user, 

such as head nodding and pointing

Audio Feedback Generates speech from the robot

Task Management 

Determines when tasks should be executed 

and breaks tasks into simple subtasks for 

the various subsystems of the robot to 

execute

Robot Controller 

Mechanical and sensory systems of the 

robot used to execute tasks requested by 

the user

Developed 

Software

Utilized Software

 

Table 3.1: Mapping of Software Packages to System Components. 

Each of the software packages is described below. 
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3.3.1 e-Speaking 

The Speech Recognition component translates the user’s utterances into a parsed 

list of words and passes it to the Semantic Integration component to be combined 

with other modalities and context. It is composed of two parts: a standard Automatic 

Speech Recognizer (ASR) and a parser.  

The ASR selected for the system was e-Speaking, which is a shareware product 

published by e-Speaking.com [99]. e-Speaking was installed and trained using the 

speech recognition tools of Windows XP [98] and Microsoft SAPI 5.1 [97]. 

3.3.2 Phoenix Parser  

The system parses the speech from the ASR with the Colorado University Phoenix 

parser [95]: 

 “The Phoenix parser is designed for development of simple, robust Natural 

Language interfaces to applications, especially spoken language applications. 

Because spontaneous speech is often ill-formed and because the recognizer 

will make recognition errors, it is necessary that the parser be robust to errors 

in recognition, grammar and fluency.” 

3.3.3 Flippo Framework 

The Flippo Framework is a multi-modal framework enabling rapid development of 

applications using a variety of modalities and methods for ambiguity resolution [33]. 

The framework uses an application-independent fusion technique that can be easily 

augmented to support application-specific demands as well as new modalities. The 

fusion algorithm separates the three parts of fusion: obtaining data from modalities, 

fusing that data to yield an unambiguous meaning, and calling application code to 

take an action based on that meaning. Separation of these three tasks makes the 

framework applicable to a wide range of applications and modalities. 
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The Framework is written in Java 1.4, and was provided for this work [33]. 

3.3.4 Developed Code – Dialog Management 

It was originally proposed to use TRINDIKIT from the TRINDI project to 

implement the Dialog Management component [83]. However, we decided to develop 

the Dialog Management in Java for the following reasons: 

• TRINDIKIT is implemented in Prolog, which would have complicated the 

integration with the Java-based Flippo Framework, which the other components 

are implemented in. 

• The Flippo Framework included a dialog management component that was easily 

replaced with the more complicated dialog management software needed. 

3.3.5 Developed Code – HRI Environment Simulator 

The HRI Environment Simulator is a Java application developed to simulate 

various components of the system and to act as a console for conducting the research 

experiments. The various buttons, pull-down menus, and text fields will be described 

throughout the rest of the dissertation. 

The video components of the system (Video Stream, Head Nod Recognition, 

Pointing Recognition, and Field of Vision) were not implemented because of 

difficulties with video processing, and instead they were simulated with the HRI 

Environment Simulator.  

Similarly, the Visual Feedback, Audio Feedback, Task Management, and Robot 

Controller components were not implemented because they are not germane to the 

research problem. The output of the Dialog Management module to the Visual 
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Feedback, Audio Feedback, and Task Management modules are displayed as text on 

the HRI Environment Simulator screen, so the results of the experiments can be 

observed. 

3.4 Robot Simulation 
As described earlier, avatars have been used to simulate robots [50, 48, 24]. 

Simulation could be used to verify how well the robot learned a task. However, a 

more objective method of verification might be to examine the robot’s memory. One 

advantage of verifying with a simulation is that the simulation might reveal a unique 

and unexpected implementation of a task by the robot. Examining the robot’s 

memory for expected implementations might miss such an unexpected 

implementation. 

3.5 Task Corpus 
A task is the basic unit of work performed by the robot. A Primitive Task 

describes an action (e.g., clean, wash, dust) taken on an object (e.g., sink, dish, bed, 

couch) using none, one, or more tools (e.g., wash rag, vacuum cleaner) under a 

specified condition (e.g., daily, in the spring). 

Compound Tasks are composed of multiple Primitive Tasks and are referred to in 

a conversation as a single task. For example, the Compound Task “clean the kitchen 

daily” might be composed of the following Primitive Tasks: 

1. Load the dishwasher 

2. Wipe down the sink with a sponge 

3. Wipe down the stove top with a sponge 
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4. Wipe down the counters with a sponge 

5. Vacuum the floor with a sweeper 

Compound Tasks can also include other Compound Tasks. 

The corpus of tasks to teach the robot was developed by performing an on-line 

search (using Google) on “how to clean a house”, which yielded numerous results 

with the following characteristics: 

• Multiple authors. 

• Covering daily and seasonal cleaning tasks. 

• Instructions are high-level complex tasks explained in only a few words that a 

human easily understands, like “sweep the floors”. 

• The robot’s vision system will need to be able to recognize a large variety of 

household supplies, equipment, appliances, furniture, etc. 

A total of 166 tasks were transcribed from these Web sites and grouped into 12 

Compound Tasks: 

1. Clean the kitchen daily (5 Primitive Tasks and 1 Compound Task) 

2. Clean the bathroom daily (9 Primitive Tasks and 1 Compound Task) 

3. Clean the bedroom daily (4 Primitive Tasks and 1 Compound Task) 

4. Clean the family room daily (9 Primitive Tasks and 1 Compound Task) 

5. Clean the living room daily (9 Primitive Tasks and 1 Compound Task) 

6. Clean the foyer daily (9 Primitive Tasks and 1 Compound Task) 

7. Clean the kitchen in the spring (25 Primitive Tasks and 2 Compound Tasks) 

8. Clean the bathroom in the spring (27 Primitive Tasks and 2 Compound Tasks) 
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9. Clean the living room in the spring (26 Primitive Tasks and 2 Compound Tasks) 

10. Clean the bedroom in the spring (23 Primitive Tasks and 2 Compound Tasks) 

11. Clean the dining room in the spring (11 Primitive Tasks and 4 Compound Tasks) 

12. Clean the house every day (8 Primitive Tasks and 1 Compound Task) 

 The 9 Primitive Tasks in Compound Tasks 4, 5, and 6 are identical and are 

counted only once in the 166 total. 

Compound Tasks can be thought of as high-level tasks (such as, “clean the dining 

room in the spring”), which are composed of steps, or sub-tasks, which can be more 

Compound Tasks, or Primitive Tasks, which have no sub-tasks. 

As an example, Compound Task 11 (clean the dining room in the spring) is 

composed of 11 Primitive Tasks and 4 Compound Tasks in the following steps: 

1. Dust down the ceiling with a feather duster (Primitive Task 1) 

2. Dust down the corners with a feather duster (Primitive Task 2) 

3. Dust and clean all wall art (Primitive Task 3) 

4. Dust and clean the Ceiling Fan (Primitive Task 4) 

5. Take down draperies (Primitive Task 5)  

6. Take down curtains (Primitive Task 6) 

7. Wash down the dining table (Compound Task 2,  “clean the dining room in the 

spring” is Compound Task 1) 

8. Wash down the chairs (Compound Task 3) 

9. Wash down any other furniture (Compound Task 4) 

10. Clean the carpets (Primitive Task 7) 
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11. Clean the rugs (Primitive Task 8) 

Compound Task 2 (wash down the dining table) is composed of the following sub-

tasks: 

1. Clean wood with damp cloth (Primitive Task 9) 

2. Oil wood with furniture oil (Primitive Task 10) 

Compound Task 3 (wash down the chairs) is composed of the following sub-tasks: 

1. Clean wood with damp cloth (Primitive Task 9 – same as in Compound Task 2) 

2. Oil wood with furniture oil (Primitive Task 10 – same as in Compound Task 2) 

3. Spot clean upholstery with spot cleaner (Primitive Task 11) 

Compound Task 4 (wash down any other furniture) is composed of the following 

sub-tasks: 

1. Clean wood with damp cloth (Primitive Task 9 – same as in Compound Task 2) 

2. Oil wood with furniture oil (Primitive Task 10 – same as in Compound Task 2) 

3.6 Lesson Plans 
For the experiments, the 12 Compound Tasks were combined into 10 Lesson Plans 

to teach the robot. Compound Tasks 4, 5, and 6 (i.e., the ones with identical Primitive 

Tasks) were combined into one Lesson Plan, and the rest were assigned to their own 

Lesson Plan. 

As explained later, at the end of the teaching process, after the robot has asked all 

the clarifying questions and understood all the parts of the Task (i.e., action, object, 

tools, and condition), it asks, “How do I perform this task?” The user responds in one 

of three ways: 
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• “Watch me” or “I’ll show you” – At this point it is assumed the robot and the user 

engage in RbD.  

• “This task is like Task A, which you already know how to do” – At this point the 

robot copies any sub-tasks (i.e., Primitive Tasks) from the known Task and 

creates a new Task. 

• Starts giving the robot a list of sub-tasks (i.e., Primitive Tasks) for this Compound 

Task. 

Table 3.2 shows how many times each of the three teaching methods is employed 

in the ten Lesson Plans: 

Lesson 

Plan

Compound 

Tasks
RbD Is Like

Nested

Sub-Tasks
1 1 3 2 1

2 2 4 5 1

3 3 2 2 1

4 4, 5, & 6 6 5 1

5 7 17 8 2

6 8 19 8 2

7 9 16 10 2

8 10 18 5 2

9 11 8 4 3

10 12 7 1 1

Teaching Methods

 

Table 3.2: Teaching Methods Used in Lesson Plans. 

The words used to teach each task were transcribed directly from the Web sites, 

usually without any tools or conditions. The tools and conditions were provided in 

gestures or utterances in response to the robot’s clarifying questions, or assumed by 

the robot from the Real World Context or Dialog History. 
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The teaching words included both simple sentences (e.g., “vacuum the floor”) and 

compound sentences with two or more tasks (e.g., “wipe down the sink after loading 

the dishwasher”, “take down the draperies, curtains, and blinds”), which made the 

robot’s parser more sophisticated, but made the dialog more natural. Table 3.3 shows 

the number of simple and compound sentences used in each Lesson Plan: 

Lesson 

Plan

Compound 

Tasks
RbD Is Like

Nested

Sub-Tasks
Simple Compound

1 1 3 2 1 5 1

2 2 4 5 1 4 3

3 3 2 2 1 3 1

4 4, 5, & 6 6 5 1 6 3

5 7 17 8 2 15 5

6 8 19 8 2 12 8

7 9 16 10 2 9 9

8 10 18 5 2 10 7

9 11 8 4 3 6 4

10 12 7 1 1 5 1

Teaching Methods Teaching Sentences

 

Table 3.3: Simple and Compound Sentences Used in Lesson Plans. 

All ten Lesson Plans are included in the Appendix. 

3.7 Procedure 
The experiments were performed as follows for each of the seven scenarios: 

1. Set the grounding mode to Optimistic. 

2. Load the Real World Context with tasks from Lesson Plans 2 through 10, which 

are not also in Lesson Plan 1. 

3. Teach the robot Lesson Plan 1 (the teaching methodology is explained later). 

4. Set the grounding mode to Cautious. 
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5. Reload the Real World Context with tasks from Lesson Plans 2 through 10, which 

are not also in Lesson Plan 1. (This ensures the robot does not retain in any Real 

World Context learned in Step 3). 

6. Teach the robot Lesson Plan 1. 

7. Set the grounding mode to Pessimistic. 

8. Reload the Real World Context with tasks from Lesson Plans 2 through 10, which 

are not also in Lesson Plan 1. (This ensures the robot does not retain in any Real 

World Context learned in Step 3 or 6). 

9. Teach the robot Lesson Plan 1. 

10. Repeat Steps 1 through 9 for all other 9 Lesson Plans, loading the Real World 

Context appropriately (e.g., load the Real World Context with tasks from Lesson 

Plans 1 and 3 through 10, which are not also in Lesson Plan 2, and teach Lesson 

Plan 2). 

The Real World Context is loaded using ten-fold cross-validation. Kohavi 

reviewed accuracy estimation methods and compared the two most common methods: 

cross-validation and bootstrap. His results show that for selecting a good classifier, 

ten-fold cross-validation may be better than the more expensive leave-one-out cross-

validation [47]. 

The exact method of teaching the robot a task is difficult to formalize because of 

all the variables involved. However to ensure some consistency in the experiments, 

the following methodology was used for teaching each Lesson Plan: 
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• Use the exact wording in the “Steps” section of the Lesson Plan the first time 

through (Figure 4.4). For example in Lesson Plan 1, say “Wipe down the sink 

after loading the dishwasher” to teach the first two tasks. 

• After the first try, then use whatever works. For example for the first task of 

Lesson Plan 1, use “Wipe down the sink with a sponge daily”. 

• It is allowed to answer a slot-filling question, with just the value for the slot. For 

example in Lesson Plan 1, “a sponge” is an acceptable response to the question, 

“What tools do you want me to use to wipe down the sink?” 

• Try to teach the robot a task 3 times, then give up by saying, “forget it” or “quit”. 

• Use the exact wording in the “How To” section of the Lesson Plan, if it is 

specified; otherwise, “I’ll show you” can be used (Figure 4.5).  

• If the user is unable to teach the robot one of the Primitive Tasks in a Compound 

Task, then go ahead and teach it the rest of the Primitive Tasks. 

• When Grounding is Optimistic, answer “Are there more tasks ...” with the next 

task, if there are more instead of “yes”. This will reduce the number of Clarifying 

Questions. With Cautious and Pessimistic Grounding, the robot will verify the 

next task is part of the Compound Task, if the user does not answer “yes”, so the 

number of Clarifying Questions is the same whether the user answers with “yes” 

or the next Task. 
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Chapter 4 System Implementation 
The hypothesis was tested by simulating a domestic robot that can be taught to 

clean a house using a multi-modal interface. Figure 3.1 is a block diagram of the 

system, which simulates the robot. The system was implemented by integrating 

software from other researchers, commercial software, and software developed as part 

of this dissertation. This chapter describes each of the blocks of the system in detail. 

4.1 Speech Recognition 
This component translates the user’s utterances into a parsed list of words and 

passes it to the Semantic Integration component to be combined with other modalities 

and context. It is composed of two parts: a standard Automatic Speech Recognizer 

(ASR) and a parser. 

4.1.1 Speech Recognition – ASR 

These ASRs were considered and studied: 

• IBM ViaVoice [101] – An internet search revealed that IBM no longer supports 

JSAPI (Java Speech API) for ViaVoice. Because the rest of the code is written in 

Java, the lack of JSAPI support would have made the development effort more 

difficult (and costly). 

• Sphinx 4.0 from Carnegie-Mellon University (CMU) [85] – A great deal of effort 

was expended trying to integrate Sphinx 4.0 into the system because it was free, 

supported by a large on-line community, and was written in Java. Sphinx 4.0 is a 

highly modular and tunable system. Working with Nickolay V. Shmyrev, a 
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SourceForge [100] developer, we tried many configurations and improved the 

word error rate (WER) on a small subset of our corpus to 16%. According to their 

Web site, SourceForge is the world's largest Open Source software development 

Web site. SourceForge provides free hosting to Open Source software 

development projects, including Sphinx 4.0, with a centralized resource for 

managing projects, issues, communications, and code. However, when Sphinx 4.0 

was integrated into the rest of the software and tested, the performance was 

unacceptable. The primary reason for not working was that we used an acoustic 

model built from the words in the Wall Street Journal. Although applicable to a 

wide variety of applications, the Wall Street Journal had few, if any, occurrences 

of the typical phrases in our corpus. CMU has another tool, SphinxTrain, for 

building new acoustic models from scratch. The problem is that SphinxTrain only 

runs under UNIX and it would be a non-trivial effort to move it to Windows. 

• Dragon NaturallySpeaking from Nuance [94] – We attempted to install Dragon 

NaturallySpeaking, but it requires a minimum of 512MB of memory and our 

system only had 368MB and could not be upgraded.  

The ASR finally selected for the system was e-Speaking, which is a shareware 

product published by e-Speaking.com [99]. e-Speaking was simple to install and was 

trained using the speech recognition tools that come with Windows XP [98] and 

Microsoft SAPI 5.1 [97]. 

The integration into the rest of the system was not as elegant as with Sphinx 4.0, 

but it provides keyboard-free input of speech into the system, which was what was 
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desired. e-Speaking is a stand-alone software package that lets the user speak words 

into any standard Windows application. A simple Java Windows program that is 

provided with the Flippo Framework allowed us to use e-Speaking to speak words 

into the system. The user speaks to the robot as follows: 

1. The user positions the cursor in the e-Speaking application window and says 

(through the computer microphone), “start dictation” (Figure 4.1). 

2. e-Speaking says (through the computer speakers), “You may begin dictating.” 

3. The user positions the cursor in the Java “Speech input” window and says 

something to the robot like, “clean the kitchen daily” (Figure 4.2). 

4. To send the speech to the robot, the user says, “return”. 

5. The Java application sends the speech to the parser, and highlights the user’s 

words in blue to indicate they have been sent to the parser (Figure 4.3). 

6. The user continues speaking to the robot by repeating Steps 3-5. 
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Figure 4.1: User Says “start dictation” to e-Speaking. 
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Figure 4.2: User Says “clean the kitchen” to Speech Input Window. 
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Figure 4.3: System Acknowledges “clean the kitchen” Sent to Parser. 

The Word Error Rate (WER) for e-Speaking was measured experimentally as 

6.7% using the same subset of the corpus as was used to measure it for Sphinx 4.0. 

4.1.2 Speech Recognition – Parser 

The system parses the speech from the ASR using the Colorado University 

Phoenix parser [95]: 

 “Phoenix parses each input utterance into a sequence of one or more semantic 

frames. The developer must define a set of frames and provide grammar rules 

that specify the word strings that can fill each slot in a frame”. 

 

We designed eight frames that correspond to the dialog between the user and the 

robot: 
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1. Single-task – The primary unit of the dialog, which describes an action (e.g., 

clean, wash, dust) taken on an object (e.g., sink, dish, bed, couch) using none, 

one, or more tools (e.g., wash rag, vacuum cleaner) under a specified condition 

(e.g., daily, in the spring).  

2. Connector – Connects two simple sentences in single-task frames together to form 

a compound sentence with words like after, next, or then (e.g., wipe down the 

sink after loading the dishwasher). 

3. Learning – Tells the robot that two tasks are similar with words like, “is like” or 

“is similar to” (e.g., wipe down the stove top is similar to wipe down the sink). 

4. RbD – Robot Programming by Demonstration (RbD), which tells the robot that 

the user is going to show it how to perform a task (e.g., I’ll show you, watch me) 

5. Answer – Reply of yes, no, or “I don't know” to a question posed by the robot. 

6. Quit – Tells the robot that the user is going to start over (e.g., quit, forget it). 

7. RequestRepeat – Tells the robot to repeat what it just said (e.g., “what?”, “huh?”,  

“I don't understand”). 

8. Greet – A greeting (e.g., welcome, hello, how are you?). 

The frames, their slots, and an example are shown in Table 4.1 through Table 4.8. 
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Frame single-task 

[action] An action (e.g., clean, wash, dust) ... 

[object] ... taken on an object (e.g., sink, dish, bed, couch) ... 

[tools] 
... using none, one, or more tools (e.g., wash rag, vacuum 

cleaner) 

[condition] ... under a specified condition (e.g., daily, in the spring). 

Slots 

[anaph] 

This is a special slot to hold anaphora (e.g., it, that), which 

might refer to any of the other slots. The anaphora is never 

resolved explicitly, but its presence causes Semantic 

Integration to fill all slots, so a simple command like "do 

that" will cause Semantic Integration to fill all the other slots 

with information from all the modalities and contexts to 

create a valid single-task frame. 

Example 

Utterance clean the kitchen daily with a sponge 

Phoenix 

Parse 
Single-task: [clean] [kitchen] [sponge] [daily] 

Table 4.1: Single-task Frame. 

Frame Connector 

Slots [connector] 

Connects two simple sentences in single-task frames 

together to form a compound sentence with words like after, 

next, or then. 

Example 

Utterance wipe down the sink after loading the dishwasher 

Phoenix 

Parse 

Single-task: [wipe down] [sink] [] [] 

Connector: [after] 

Single-task: [loading] [dishwasher] [] [] 

Table 4.2: Connector Frame. 

Frame Learning 

Slots [operator] 
Tells the robot that two tasks are similar with words like, “is 

like” or “is similar to”. 

Example 

Utterance wipe down the stove top is similar to wipe down the sink 

Phoenix 

Parse 

Single-task: [wipe down] [stove top] [] [] 

Learning: [is similar to] 

Single-task: [wipe down] [sink] [] [] 

Table 4.3: Learning Frame. 
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Frame RbD 

Slots [show] 

Robot Programming by Demonstration (RbD), which tells 

the robot that the user is going to show it how to perform a 

task. 

Example 

Utterance watch me 

Phoenix 

Parse 
RbD: [watch me] 

Table 4.4: RbD Frame. 

Frame Answer 

Slots [answer] 
Reply of yes, no, or I don't know to a question posed by the 

robot. 

Example 

Utterance nope 

Phoenix 

Parse 
Answer: [no] 

Table 4.5: Answer Frame. 

Frame Quit 

Slots [quit] 
Tells the robot that the user is going to start over (e.g., quit, 

forget it). 

Example 

Utterance forget it 

Phoenix 

Parse 
Quit: [forget it] 

Table 4.6: Quit Frame. 

Frame RequestRepeat 

Slots [requestRepeat] 
Tells the robot to repeat what it just said (e.g., what?, 

huh?,  I don't understand). 

Example 

Utterance huh 

Phoenix 

Parse 
RequestRepeat: [huh] 

Table 4.7: RequestRepeat Frame. 
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Frame Greet 

Slots [greeting] A greeting (e.g., welcome, hello, how are you?). 

Example 

Utterance hello 

Phoenix 

Parse 
Greet: [hello] 

Table 4.8: Greet Frame. 

The grammar rules that specify the word strings that can fill each slot in a frame 

are divided into two sets, namely, base grammar rules and task grammar rules.  

The base grammar rules define the word strings that can fill each slot of all the 

frames, except the single-task frame. The base grammar rules are defined in the 

Appendix. 

The task grammar rules are automatically extracted from the XML-based Lesson 

Plan files by a Java tool we developed called the GrammarParser. The Lesson Plan 

files are used to guide the user in teaching the robot the tasks used in the experiments 

to evaluate the research hypothesis. They contain the following information: 

• Task: This is the main task being taught (e.g., clean the kitchen daily). 

• Steps: These are the sub-tasks of the main task (e.g., wipe down the sink after 

loading the dishwasher). 

• Answers: These are the answers to the questions that the robot might ask about 

the missing slots in the Steps (e.g., “a sponge” is the answer to the question, 

“What tools do you want me to use to wipe down the sink?”). 

• How To: These are the Teaching Methods the user uses to teach the robot how to 

perform a specific task or sub-task (e.g., RbD, Is Like, or Nested Sub-Tasks). 

• The task is in the following format that we developed: 
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• action,object,[tools],condition,[sub-tasks]; 

The “Task”, “Steps”, “Answers”, and “How To” information is displayed in the 

Lesson Plan field of the HRI Environment Simulator as shown in Figure 4.4 and 

Figure 4.5. (The other details of the HRI Environment Simulator are provided later in 

this chapter). 

 

Figure 4.4: Task and Steps Information in HRI Environment Simulator. 
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Figure 4.5: Answers and How To Information in HRI Environment Simulator. 

The Appendix includes the Lesson Plans we used in the experiments and more 

details on the format of the Lesson Plan files. The task grammar rules are also 

included in the Appendix. 

Because we are using a very syntactically relaxed dialog in our experiments, many 

word strings in the task grammar can be used to fill more than one slot. For example, 

“vacuum” can be either an “action” to perform, or a “tool” to use in performing a task 

as illustrated in these two example utterances: 

• Vacuum the floor. 

• Clean the carpets and rugs with a vacuum and rug shampoo machine. 
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The Phoenix parser is robust enough to identify both parses, and both parses are 

provided to the Semantic Integration module where the other modalities and contexts 

are used to resolve the ambiguity. 

4.2 Head Nod Recognition 
When people interact naturally with each other, head nods are frequently used to 

answer yes or no.  

This component recognizes yes and no head nods and passes that information to 

the Semantic Integration component to be combined with other modalities. 

This component (and other modality and context modules) were developed by us 

and added to the Flippo Framework. 

The Flippo Framework defines two abstract Java classes: 

• AbstractContextProvider – Collects data from one modality connected to the 

system. 

• AbstractResolver – Provides a list of possible values for a slot, along with 

confidence scores (i.e., probability that the value is correct), for one modality. 

Our HeadNodContextProvider simulates the Head Nodding recognizer described 

by Morency and Darrell [60]. In their experiments, a head nod was recognized 

correctly 85.3% of the time. 

The user in our experiments simulates a head nod by clicking on either the Yes or 

No button on the HRI Environment Simulator window shown in Figure 4.6. 
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Figure 4.6: Head Nod Buttons in HRI Environment Simulator. 

The HeadNodResolver provides either a “yes” or “no” value with a confidence 

score of 100% to Semantic Integration. Although the HeadNodContextProvider is 

simulating errors consistent with the Head Nodding recognizer described by Morency 

and Darrell [60], as far as the HeadNodResolver is concerned the value provided by 

the HeadNodContextProvider is 100% accurate. Therefore the confidence score is 

100%. The fact that the nod might be incorrect is taken into consideration by the 

Semantic Integration component, which assigns a weight to the inputs it receives 

from the various Resolvers as part of the fusion process, which is described in more 

detail later. 
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4.3 Pointing Recognition 
Pointing is also a frequently used gesture when people interact naturally with each 

other. 

This component identifies which objects the user is pointing at and passes that 

information to the Semantic Integration component to be combined with other 

modalities and context. 

Our PointingContextProvider simulates the Pointing recognizer described by 

Nickel and Stiefelhagen [62]. They reported a true-positive rate (number of detected 

gestures divided by the total number of ground truth gestures) of 78.3% and a false-

positive rate (number of falsely detected frames divided by the total number of non-

gesture frames) of 11.6%. 

The user in our experiments simulates pointing by selecting a Thing in the Room 

on the HRI Environment Simulator window, as SWEEPER is shown in Figure 4.7. 
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Figure 4.7: Pointing at Things In Room in HRI Environment Simulator. 

When Semantic Integration calls a Resolver, it tells the Resolver which slot it is 

trying to fill. This is important to the PointingResolver because a Thing in the Room 

can be either an “object” or a “tool”. After the PointingResolver gets the Thing that 

the user is pointing at from PointingContextProvider, it first searches the Real World 

Context database to see if the Thing can be an “object”, if the object slot is being 

filled, or if the Thing can be a “tool”, if the tools slot is being filled. The tools slot 

may contain none, one, or many “tool” strings. 

The Real World Context database is a set of all the tasks the robot knows how to 

perform. The Real World Context database is described in more detail later. 
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If the Thing can fill the slot, the PointingResolver provides the Thing with a 

confidence score of 100% to Semantic Integration. If the Thing cannot fill the slot, 

the PointingResolver does not pass it on to Semantic Integration. 

4.4 Field of Vision 
Chai et al. propose an algorithm for disambiguating speech using pointing, dialog 

history, and all visible objects (i.e., field of vision) [21]. Field of vision is used as a 

final test when pointing and dialog history fail to disambiguate the user’s utterance. 

An example of where Field of Vision is applicable to our research, is: 

The robot and the user are standing in the kitchen. The user is explaining what 

to clean in the kitchen and says, “Clean the table after every meal.” “Table” is 

an ambiguous reference because a house contains several tables. However, the 

Field of Vision narrows the reference down to the “table in the kitchen”. 

This component identifies the objects in the robot’s field of vision and passes that 

information to the Semantic Integration component to be combined with other 

modalities and context. 

The FieldOfVisionContextProvider simulates the Field of Vision recognizer 

described by Jensfelt et al. [39]. They reported a true-positive rate (number of 

detected Things divided by the total number of Things in the Room) of 95.0% and a 

false-positive rate (number of falsely detected Things divided by the total number of 

Things detected) of 2.3%.  
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In our experiments, all the Things in the Room on the HRI Environment Simulator 

window simulate the Field of Vision, as SPONGE, SWEEPER, STOVE TOP, 

COUNTERS, DISHWASHER, SINK, and FLOOR are shown in Figure 4.8. 

 

 

Figure 4.8: Field of Vision in HRI Environment Simulator. 

Similar to the PointingResolver, after the FieldOfVisionResolver gets the Things 

in the field of vision from the FieldOfVisionContextProvider, it first searches the 

Real World Context database to see if the Things can be “objects”, if the object slot is 

being filled, or if the Things can be “tools”, if the tools slot is being filled. 

After it has determined the valid Things in the field of vision, what the 

FieldOfVisionResolver does next depends on the slot being filled. 
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If the object slot is being filled, the FieldOfVisionResolver provides a list of 

Things each with a confidence score of 1/n to Semantic Integration, where n is the 

number of valid Things.  

For example, if the FieldOfVisionResolver found these Things filling object slots 

in the Real World Context database: 

1. STOVE TOP 

2. COUNTERS 

3. DISHWASHER 

4. SINK 

5. FLOOR 

It would then provide this list of five Things, each with a confidence score of 20%, 

to Semantic Integration as possible values for the object slot. 

If the tools slot is being filled, the FieldOfVisionResolver first creates sets of tools 

by taking permutations of the Things. This is because the tools slot may contain none, 

one, or many “tool” strings. Then, it provides a list of tool sets, each with a 

confidence score of 1/n to Semantic Integration, where n is the number of tool sets.  

For example, if the FieldOfVisionResolver found these Things filling tool slots in 

the Real World Context database: 

1. SPONGE 

2. SWEEPER 

3. DISHWASHER  

FieldOfVision would create the following seven tool sets: 
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1. [SPONGE] 

2. [SWEEPER] 

3. [DISHWASHER] 

4. [SPONGE, SWEEPER] 

5. [SPONGE, DISHWASHER] 

6. [SWEEPER, DISHWASHER] 

7. [SPONGE, SWEEPER, DISHWASHER] 

It would then provide this list of seven tool sets, each with a confidence score of 

14.3%, to Semantic Integration as possible values for the tools slot. 

Obviously, a large number of tools in the field of vision could generate a rather 

large number of tool sets. To prevent this, FieldOfVisionResolver trims the list of tool 

sets in two ways: 

1. The number of tools in a set cannot exceed a maximum number of tools per set. 

For our experiments, this value was set to three under the assumption that most 

household tasks are performed with three or fewer tools. 

2. The number of tool sets cannot exceed a maximum number of tool sets. For our 

experiments, this value was set to 25 under the assumption that with a larger 

number of tool sets, the confidence level (e.g., 4%) would be so low that Semantic 

Integration would ignore them as possibilities to fill the tools slot. 

However, at a minimum, the FieldOfVisionResolver will always provide a list of 

tool sets containing each of the tools in the field of vision in a separate tool set, even 

if the number of sets exceeds the maximum number of tool sets allowed. For 
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example, if there are n tools in the field of vision, FieldOfVisionResolver will always 

provide at least n sets of tools. 

Also, the FieldOfVisionResolver never provides an incomplete list of permutations 

for any number m, where m is the number of tools in a set. For example, if there are 

six tools in the field of vision: 

• The number of tool sets with one tool in the set is nt/1!, where nt is the number of 

tools, or 6. 

• The number of tool sets with two tools in the set is nt(nt-1)/2!, or 15. 

• The number of tool sets with three tools in the set is nt(nt-1)(nt-2)/3!, or 20. 

• 6 + 15 + 20 > 25 

• So, FieldOfVisionResolver would trim the list of tool sets to the 21 sets 

containing one or two tools. 

Because DISHWASHER appears both as an object and a tool in the Real World 

Context database example above, the FieldOfVisionResolver (and the 

PointingResolver) will provide it to Semantic Integration to fill both the object and 

tools slot. Semantic Integration will try to resolve this ambiguity as described later. 

4.5 Context 
Humans also use contextual information to resolve missing or ambiguous 

references in a conversation. Our robot simulation uses Real World Context and 

Dialog History. 
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4.5.1 Real World Context 

Real World Context is the information that a human knows through experience. 

For example, if Mary tells John to clean the sink, John may know that sinks are 

usually cleaned with a sponge. So, Mary does not have to tell him to clean the sink 

with a sponge, and John does not have to ask Mary what to clean the sink with. 

We provide the robot with Real World Context by pre-loading it with a set of 

already defined tasks. 

This component searches through the pre-loaded tasks looking for values to fill 

empty slots and passes that information to the Semantic Integration component to be 

combined with other modalities and context. 

The Lesson Plans are used to pre-load the Real World Context for the experiments. 

For each Lesson Plan, the tasks in the other Lesson Plans are pre-loaded into the Real 

World Context. For example, when teaching the robot the tasks in Lesson Plan 1, the 

tasks from Lesson Plans 2 through 10 are pre-loaded into the Real World Context.  

The only exception is that no tasks, which are in the Lesson Plan being taught, are 

pre-loaded into the Real World Context. As an example, the task “Take down the 

draperies” occurs in both Lesson Plans 5 and 6. So, when Lesson Plan 5 is being 

taught, “Take down the draperies” from Lesson Plan 6 will not be included in the 

Real World Context. This is done to ensure that the robot has to learn every task in a 

Lesson Plan, and cannot fill unspoken slots of the task (e.g., “tools” or “condition”) 

by merely looking in the Real World Context. 
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The file names for each Lesson Plan are identified in the HRI Environment 

Simulator window as shown in Figure 4.9. 

 

Figure 4.9: Lesson Plan File Names in HRI Environment Simulator. 

The file names are selected with drop-down menus in the HRI Environment 

Simulator window as shown for Lesson Plan 5 in Figure 4.10. 
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Figure 4.10: Selecting Lesson Plan File Name. 

The Lesson Plan being taught is identified in the Run box of the HRI Environment 

Simulator window as displayed in Figure 4.11. 
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Figure 4.11: Lesson Plan Being Taught in HRI Environment Simulator. 

The Lesson Plan to teach is selected with the drop-down menu in the HRI 

Environment Simulator window as illustrated in Figure 4.12. 
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Figure 4.12: Selecting Lesson Plan To Teach in HRI Environment Simulator. 

When the user clicks on the Run button on the HRI Environment Simulator 

window in Figure 4.13, the system pre-loads the Real World Context with the tasks 

from the other Lesson Plans, excluding any that are also in the Lesson Plan being 

taught. 
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Figure 4.13: Pre-Load Real World Context in HRI Environment Simulator. 

As with the other components that feed into Semantic Integration, we implemented 

this component as a Flippo Framework AbstractResolver. The RealWorldResolver 

searches the Real World Context for tasks that match the partially filled single-task 

frame and gets a list of values from the matching tasks for the specified slot. Then, it 

calculates a confidence score for each unique value in the list as m/n, where m is the 

number of occurrences of the unique value and n is the number of all values found. 

For example, if the partially filled single-task frame is: 

action: clean 

object: kitchen 
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tools: not filled 

condition: not filled 

RealWorldResolver will search the Real World Context for all the tasks with 

action = clean and object = kitchen. Since the tools slot and condition slot are not 

filled, RealWorldResolver will treat these as wildcards in its search, i.e., matching 

with anything. 

For the example, Semantic Integration is trying to fill the condition slot and it finds 

the following values for the condition slot in its search: 

27 occurrences of DAILY 

48 occurrences of IN THE SPRING 

9 occurrences of EVERY DAY 

2 occurrences of AFTER EVERY USE 

The confidence scores for each unique value would be: 

DAILY = 27/(27 + 48 + 9 +2) = 31% 

IN THE SPRING = 48/(27 + 48 + 9 +2) = 56% 

EVERY DAY = 9/(27 + 48 + 9 +2) = 10% 

AFTER EVERY USE = 2/(27 + 48 + 9 +2) = 3% 

4.5.2 Dialog History 

During a dialog, humans tend to only specify the new or changed aspects of the 

discussion without repeating what has been mentioned earlier in the conversation. In 
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this way, humans use the Dialog History to resolve missing or ambiguous references 

in a conversation. For example, if Mary is explaining how to “clean the kitchen 

daily” to John, she does not have to add “daily” to the end of each step. It is 

sufficient to tell John to “wipe the counters with a sponge”, and not say, “wipe the 

counters with a sponge daily”. Dialog history is also used to resolve anaphora (e.g., 

it, that, those). The Flippo Framework provides a DialogHistoryResolver, which was 

used in this work. 

When Semantic Integration has resolved the slots of a frame as much as it can 

without further dialog (e.g., asking the user to clarify something), its slots are added 

to the Dialog History. There is currently room for seven slots. Flippo states the reason 

for seven was that since the human mind can only maintain approximately seven 

entities at a time, we do not need to store more than that number in the Dialog History 

[34]. Although modifying a constant in the Java code easily changes the number, we 

left it at seven due to the lack of a better number. 

During fusion, the DialogHistoryResolver provides Semantic Integration with the 

first slot value in the dialog history for a specified slot with a confidence score of 

100%. An example dialog is as follows: 

User: Clean the kitchen daily. 

Robot: How do I clean the kitchen daily? 

User: First, wipe down the sink. 

Robot: What do I wipe down the sink with? 
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User: A sponge. 

After the first utterance from the user, the Dialog History would be: 

action: clean (from 1
st
 utterance) 

object: kitchen (from 1
st
 utterance) 

condition: daily (from 1
st
 utterance) 

For the second user utterance, the Speech Recognition component would provide 

the following to Semantic Integration: 

action: wipe down 

object: sink 

tools: not filled 

condition: not filled 

During fusion, the DialogHistoryResolver would provide Semantic Integration 

with a condition slot value of “daily”. After fusion of the second utterance, the Dialog 

History would be: 

action: wipe down (from 2
nd

 utterance) 

object: sink (from 2
nd

 utterance) 

condition: daily (from 2
nd

 utterance) 

action: clean (from 1
st
 utterance) 

object: kitchen (from 1
st
 utterance) 
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condition: daily (from 1
st
 utterance) 

For the third user utterance, Speech Recognition would provide the following: 

tools: sponge 

During fusion, the DialogHistoryResolver would provide Semantic Integration 

with the following slot values: 

action: wipe down (slot 1 in the Dialog History) 

object: sink (slot 2 in the Dialog History) 

condition: daily (slot 3 in the Dialog History 

After fusion of the third utterance, the Dialog History would become: 

action: wipe down (from 3
rd

 utterance) 

object: sink (from 3
rd

 utterance) 

tools: sponge (from 3
rd

 utterance) 

condition: daily (from 3
rd

 utterance) 

action: wipe down (from 2
nd

 utterance) 

object: sink (from 2
nd

 utterance) 

condition: daily (from 2
nd

 utterance) 

4.6 Semantic Integration 
The Semantic Integration component performs two functions: 

1. Fusion – Combining input from multiple modalities (e.g., Speech, Pointing, Field 

of Vision) and contexts (e.g., Real World Context, Dialog History) into a frame. 
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2. Integration – Combining the fused frames into a meaningful Fused Utterance 

(e.g., task, answer to a question, explanation of how to perform a task) 

4.6.1 Fusion 

The fusion software for Semantic Integration was provided as part of the Flippo 

Framework. 

A flexible XML configuration file controlled the fusion software. The 

configuration file defined the following for each frame and slot received from the 

Phoenix parser: 

• A list of Resolvers used to resolve the slot. 

• The weight that is applied to the confidence scores provided by the Resolvers. 

For example, the configuration file used for the experiments with all the modalities 

and contexts active (Speech + All) contained the following configuration in XML 

format: 

frame: single-task 

slot: action 

resolver: SpeechResolver (weight = 1.0) 

resolver: RealWorldResolver (weight = 0.2) 

resolver: DialogHistoryResolver (weight = 0.6) 

slot: object 

resolver: SpeechResolver (weight = 0.92) 

resolver: PointingResolver (weight = -0.06) 

resolver: FieldOfVisionResolver (weight = -0.63) 

resolver: RealWorldResolver (weight = 0.12) 

resolver: DialogHistoryResolver (weight = 0.84) 

slot: tools 

resolver: SpeechResolver (weight = 0.55) 

resolver: PointingResolver (weight = 0.52) 

resolver: FieldOfVisionResolver (weight = -0.92) 

resolver: RealWorldResolver (weight = 1.08) 

resolver: DialogHistoryResolver (weight = 0.54) 
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slot: condition 

resolver: SpeechResolver (weight = 0.12) 

resolver: RealWorldResolver (weight = 0.84) 

resolver: DialogHistoryResolver (weight = 0.12) 

 

frame: connector 

slot: connector 

resolver: SpeechResolver (weight = 1.6) 

 

frame: learning 

slot: learning 

resolver: SpeechResolver (weight = 1.6) 

 

frame: rbd 

slot: show 

resolver: SpeechResolver (weight = 1.6) 

 

frame: answer 

slot: answer 

resolver: SpeechResolver (weight = 0.933) 

resolver: HeadNodResolver (weight = 0.853) 

 

frame: quit 

slot: quit 

resolver: SpeechResolver (weight = 1.6) 

 

frame: requestRepeat 

slot: requestRepeat 

resolver: SpeechResolver (weight = 1.6) 

 

frame: greet 

slot: greet 

resolver: SpeechResolver (weight = 1.6) 

 

Except for the single-task and answer frames, fusion is trivial because there is only 

one modality – Speech. 

4.6.2 Single-Task Fusion 

For the single-task frame, Semantic Integration fuses input from multiple 

modalities (e.g., Speech, Pointing, Field of Vision) and contexts (e.g., Real World 
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Context, Dialog History) into a task for the robot to perform (e.g., sweep the floor). 

Each task is composed of four parts: 

• action – The action to be performed (e.g., sweep) 

• object – The object on which the action is to be performed (e.g., floor) 

• tools – The tools the robot is to use to perform the action on the object (e.g., 

broom) 

• condition – How often the robot is to perform the task (e.g., every day) 

Specifically, the following modality and context input is provided to Semantic 

Integration for fusion: 

• Speech – E.g., “sweep the floor” 

• Pointing – What the user is pointing at, e.g., “broom” 

• Field of Vision – What the robot sees in the room, e.g., “broom”, “floor”, “mop” 

• Real World Context – Tasks the robot already knows how to perform, e.g., 

“sweep the floor with a vacuum once a week” 

• Dialog History – What the robot and user have been talking about recently, e.g., 

“clean the counters with a dry rag” 

The input format is a list of phrases and a confidence score that each phrase is the 

correct phrase. Each part, or slot, of the task (i.e., action, object, tools, and condition) 

is fused separately. In the given example, Semantic Integration would receive the 

following inputs for the “tools” slot: 

• Speech: null, 100% (there is nothing in “sweep the floor” about what tools to use) 

• Pointing: broom, 100% 
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• Field of Vision: broom, 50%; mop, 50% (“floor” is an object and thus is not 

supplied as a possible “tool”) 

• Real World Context: vacuum, 100% 

• Dialog History: dry rag, 100% 

Semantic Integration takes the confidence score of each phrase and multiplies it by 

a weight assigned to each input and uses the one with the highest number as the 

phrase for that slot. In the example, if the input weights were as follows: 

• Speech = 1.00 

• Pointing = 0.80 

• Field of Vision = 0.60 

• Real World Context = 0.40 

• Dialog History = 0.20 

The fusion calculations would be as follows: 

• broom: (100% x 0.80) + (50% x 0.60) = 1.10 

• vacuum: (100% x 0.40) = 0.40 

• mop: (50% x 0.60) = 0.30 

• dry rag: (100% x 0.20) = 0.20 

Semantic Integration would pick “broom” for the “tools” slot, which turns out to 

be what the user meant, even though, he or she never said it. 

We did make one change to the Flippo Framework fusion algorithm. It was 

modified so that it returns no results if there is a tie for what goes in a slot. The 

assumption is that, with all the additional modalities, a tie is unlikely. But, if there is 
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still a tie for a slot, it is better to ask the user what was meant, than to arbitrarily select 

one of the ones with highest vote, which is what the Flippo Framework does. 

The fusion weights were determined experimentally and are different for each slot 

as explained later. The weights are influenced by the error rates of the modalities 

(e.g., Speech, Pointing, Field of Vision), which indirectly influence the error rates of 

the contexts (e.g., Real World Context, Dialog History). Negative weights are 

possible. A negative weight does not indicate that the information from a modality 

should be ignored, as indicated by the experimental results discussed later.  

4.6.3 Answer Fusion 

For the answer frame, fusion is similar to that of tasks. There is only one slot, 

called “answer”, which can have only one of two values: “yes” or “no”. Each 

modality, Speech and Head Nodding, provides either a “yes” or “no” with a 

confidence score of 100% as the input to fusion. As an example, the fusion 

component might receive the following inputs for the “answer” slot: 

• Speech: yes, 100% 

• Head Nodding: no, 100% 

As with tasks, the fusion algorithm takes the confidence score of each phrase and 

multiplies it by a weight assigned to each input and uses the one with the highest 

number as the “answer”. In the example, if the input weights were as follows: 

• Speech = 1.00 

• Head Nodding = 0.80 

The fusion calculations would be as follows: 

88  



• yes: (100% x 1.00) = 1.00 

• no: (100% x 0.80) = 0.80 

The fusion component would pick “yes” as the correct “answer”. 

The fusion weights for “answer” slot are determined based on the ability of the 

modality to correctly recognize a “yes” or “no”. As discussed, the overall error rate of 

the Speech Recognizer was measured experimentally as 6.7%. In other words, the 

Speech Recognizer recognizes a phrase correctly 93.3% of the time. Similarly, the 

Head Nodding errors are simulated based on the results of the Head Nodding 

recognizer described by Morency and Darrell [60]. In their experiments, a head nod 

was recognized correctly 85.3% of the time. 

Thus, the weights used for the “answer” slot for the two modalities are: 

• Speech = 0.933 

• Head Nodding = 0.853 

4.6.4 Integration 

After the frames are fused, Semantic Integration combines them into meaningful 

dialog units, which we call Fused Utterances, for Dialog Management to process.  

Table 4.9 shows how fused frames are combined into Fused Utterances. 
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Fused Utterance Frames Description Examples 

SINGLE-TASK  1 Single-task  

An action taken on an 

object using none, one, 

or more tools when a 

specified condition 

occurs.  

Clean the counter with 

a sponge daily. 

MULTIPLE-TASK  
1 or more Single-task +  

0 or more Connector 

An ordered list of tasks 

to perform. 

Wipe down the sink 

after loading the 

dishwasher. 

 

Wipe the mirror and 

faucet. 

RBD  RbD 

Robot Programming by 

Demonstration (RbD), 

which tells the robot 

that the user is going to 

show it how to perform 

a task. 

Watch me. 

 

I'll show you. 

LEARNING  

Single-task +  

Learning +  

Single-task 

Tells the robot that two 

tasks are similar. 

Wipe down the stove 

top is like wipe down 

the sink. 

ANSWER  Answer 
Reply to a question 

posed by the robot. 

Yes. 

 

No. 

 

I don't know. 

REQUEST-REPEAT  RequestRepeat 
Tells the robot to repeat 

what it just said. 

What? 

 

Huh? 

 

I don't understand. 

GREET  Greet A greeting. 

Welcome. 

 

Hello. 

 

How are you? 

QUIT  Quit 

Tells the robot that the 

user is going to start 

over. 

Quit. 

 

Forget it. 

NO-PARSE  None 

Indicates the Speech 

Recognizer heard 

something, but did not 

recognize it. 

The rain in Spain 

mainly falls in the 

plain. 

Table 4.9: Fused Utterances. 
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4.7 Dialog Management 

4.7.1 Overview 

The Dialog Management component manages the dialog between the user and 

robot and resolves any ambiguities remaining after Semantic Integration, through 

clarifying questions. 

Although we originally proposed to use TRINDIKIT from the TRINDI project to 

implement the Dialog Management component [83], it was decided to implement the 

Dialog Management in Java as discussed earlier. 

The Dialog Management component still uses dialog plans similar to the TrindiKit 

design. The goal of a Dialog Plan is to translate a Fused Utterance from Semantic 

Integration into a list of valid tasks. In pursuing its goal, a Dialog Plan can ask 

questions and receive additional Fused Utterances from the user and launch other 

Dialog Plans as sub-plans in achieving its goal. 

Dialog Plans are implemented as Java Threads. Each Dialog Plan resolves exactly 

one Fused Utterance. The Dialog Plan suspends itself after it asks a clarifying 

question. The Dialog Management module resumes the Dialog Plan when it receives 

a Fused Utterance from Semantic Integration.  

Tasks are represented in the Task Database as an action, object, set of tools, 

condition, and a list of sub-tasks. A Primitive Task contains an empty sub-task list. A 

Compound Task contains a sub-task list of other Primitive and Compound Tasks.  

For example, the “Load the dishwasher” sub-task might actually be a Compound 

Task composed of two Primitive Tasks: 
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1. Pick up the dishes with your hands. 

2. Put the dishes in the dishwasher with your hands. 

4.7.2 Initial Dialog Plan 

The Dialog Management component begins by executing the Initial Dialog Plan. 

The Initial Dialog Plan handles each Fused Utterance as follows: 

SINGLE-TASK 

1. Execute the Single Task Dialog Plan (later section) to process the Fused 

Utterance. 

2. The Single Task Dialog Plan returns a Task; and Dialog Management adds it to 

the Task Database. The Task Database is a set of Tasks that the robot executes 

when the specified conditions occur. It is also provides the Real World Context. 

3. Acknowledge the Task by saying, “OK. Anything else?” 

4. Wait for next Fused Utterance. 

MULTIPLE-TASK  

1. Execute the Multiple Task Dialog Plan (later section) to process the Fused 

Utterance. 

2. The Multiple Task Dialog Plan returns a list of Tasks; and Dialog Management 

adds them to the Task Database.  

3. Acknowledge Tasks by saying, “OK. Anything else?” 

4. Wait for next Fused Utterance. 

ANSWER  

1. If the user said Yes, say, “What can I do for you?” 
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2. If the user said No or “I don’t know”, presumably in response to the question in 

Step 1, say, “OK. Just let me know when you want me to do something.” 

3. Wait for the next Fused Utterance. 

REQUEST-REPEAT or GREET  

1. Say, “Hello my name is Robot.” 

2. Wait for the next Fused Utterance. 

QUIT  

1. Assume the user is responding to the question, “What can I do for you?” and say, 

“OK. Just let me know when you want me to do something.” 

2. Wait for the next Fused Utterance. 

RBD or LEARNING 

1. These Fused Utterances do not make sense at this point in the dialog; therefore 

let the user know that by saying, “I'm sorry I don't understand what you mean. 

Please start over.” 

2. Wait for next Fused Utterance. 

NO-PARSE 

1. Let the user know that the robot did not understand what the user said, by saying, 

“I'm sorry I don't understand what you mean. Please start over.” 

2. Wait for next Fused Utterance 

4.7.3 Single Task Dialog Plan 

The Single Task Plan processes a SINGLE-TASK Fused Utterance as follows: 
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1. Try to fill the empty slots by asking the clarifying questions, as shown in Table 

4.10. 

Slot Clarifying Question Example 

action  

 What do you want me to do to 

the <object> with the <tools> 

<condition>? 

What do you want me to do to 

the ACCENT TABLES with the 

DUST RAG and PLEDGE 

DAILY? 

object  

 What do you want me to 

<action> with the <tools> 

<condition>? 

What do you want me to DUST 

with the DUST RAG and 

PLEDGE DAILY? 

tools  

 What tools do you want me to 

use to <action> the <object> 

<condition>? 

What tools do you want me to 

use to DUST the ACCENT 

TABLES DAILY? 

condition  

 How often do you want me to 

<action> the <object> with the 

<tools>? 

How often do you want me to 

DUST the ACCENT TABLES 

with the DUST RAG and 

PLEDGE? 

Table 4.10: Clarifying Questions to Fill Empty Slots. 

The clarifying question is adjusted if not all the slots are filled. For example, if 

only the object (e.g., ACCENT TABLE) and condition (e.g., DAILY) are known, 

the robot would try to fill the action slot with the question, “What do you want me 

to do to the ACCENT TABLE DAILY?” 

2. Patiently try to fill the slots by repeating the clarifying questions until a QUIT 

Fused Utterance is received from Semantic Integration. 

3. If the QUIT Fused Utterance is received, acknowledge the user wants to start over 

by saying, “OK. Just let me know when you want me to do something.”, and then 

start over by executing the Initial Dialog Plan. 

4. If any of the other Fused Utterances are received while trying to fill empty slots, 

say, “I'm sorry. I don't understand what you mean.” and repeat the clarifying 

question again. 
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5. Once all the slots are filled, learn how to perform the task by executing the Robot 

Learning Dialog Plan. 

4.7.4 Robot Learning Dialog Plan 

The purpose of this Dialog Plan is to learn a new Task, which is currently not in 

the Task Database. The robot learns the new Task in one of the following ways: 

1. The user shows the robot how to perform the Task (Robot Learning by 

Demonstration – RbD). The user saying, “I’ll show you”, simulates this. Then, 

the Task is added to the Task Data Base as new Primitive Task. 

2. The user teaches the robot how to perform the Task by saying it is like another 

Task the robot already knows how to do (LEARNING Fused Utterance). 

3. The user teaches the robot how to perform the Task by breaking it down into sub-

tasks that the robot does know how to do (Compound Task). Another Dialog 

Plan is executed to manage this Instruction Based Learning (IBL) dialog. Then, 

the Task is added to the Task Data Base as a new Compound Task. 

The plan begins by the robot asking the user how to perform the task. What 

happens next depends on what the user says, as shown below for each possible Fused 

Utterance: 

RBD (Case 1) 

1. Assume the user shows the robot how to perform the Task. 

2. Return the task being learned as a Primitive Task to the Dialog Plan that called 

this one. For example: 

95  



User: Sweep the floors daily. (Initial Dialog Plan executes Single Task Dialog 

Plan) 

Robot: What tools do you want me to use to sweep the floors daily? 

User: A broom. (Single Task Dialog Plan executes Robot Learning Dialog 

Plan) 

Robot: How do I sweep the floors with a broom daily? 

User: I’ll show you. (Robot Learning Dialog Plan returns “sweep the floors 

with a broom daily” task to Single Task Dialog Plan; Single Task Dialog Plan 

returns it to Initial Dialog Plan; and Initial Dialog Plan saves it in the Task 

Database and waits for the next utterance from the user) 

LEARNING (Case 2) 

1. Extract the two Tasks from the Fused Utterance. 

2. If two Tasks were not found, say, “I'm sorry I don't understand what you mean. 

Please start over.” Then start the Robot Learning Dialog Plan over by asking the 

user how to perform the task again. 

3. If two Tasks were found, determine which one is the known Task and which one 

is the unknown task by assuming the found task, which matches the task we are 

trying to learn the closest, is the unknown task and the other one is the known 

task. For example, given the following dialog: 

Robot: How do I clean the foyer daily? 

User: Clean the family room is like clean the foyer. 
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then,  

Task Robot is Trying to Learn =  

action: clean 

object: foyer 

tools: none 

condition: daily 

Task 1 from Fused Utterance =  

action: clean 

object: family room 

tools: unknown 

condition: unknown 

Task 2 from Fused Utterance =  

action: clean 

object: foyer 

tools: unknown 

condition: unknown 

Now, Task 2 is more like the Task the Robot is Trying to Learn, so 

Unknown Task = Task 2 (clean the foyer) 

Known Task = Task 1 (clean the family room) 

This algorithm allows the user to speak more freely with the robot by not 

requiring a very strict grammar to be followed. For example, if the user had said, 
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“Clean the foyer is like clean the family room.” then it would have ended up with 

the same unknown and known task: 

Unknown Task = Task 1 (clean the foyer) 

Known Task = Task 2 (clean the family room) 

4. Find the Known Task in the Task Database. 

5. If a perfect match is found (i.e., action, object, tools, and condition slots match), 

then use it. 

6. If a perfect match is not found, then find the first partial match where three out of 

the four slots match and use it. 

7. If neither a perfect or partial match is found, say: 

“I'm sorry I don't understand what you mean.” 

“I don't know how to do the first task or how to do the second task.” 

“Please start over.” 

And, then start the Robot Learning Dialog Plan over by asking the user how to 

perform the Task again. 

8. If either a perfect or partial match is found, copy the subtasks from the known 

task to the one being learned. 

9. Return the Task being learned (with the subtasks from the known task) to the 

Dialog Plan that called this one. For example, given that the known task above 

(clean the family room) is defined as: 

action: clean 

object: family room 
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tools: none 

condition: daily 

subtasks: 

fluff the cushions with your hands daily 

wipe the tabletops with pledge and a dry rag daily 

Now the newly created Compound Task that is returned is defined as: 

action: clean 

object: foyer 

tools: none 

condition: daily 

subtasks: 

fluff the cushions with your hands daily 

wipe the tabletops with pledge and a dry rag daily 

SINGLE-TASK or MULTIPLE-TASK (Case 3) 

1. Assume this is the beginning of a Compound Task definition and execute the 

Compound Task Dialog Plan. The Compound Task Dialog Plan handles both 

simple sentences (e.g., vacuum the floors) in SINGLE-TASK Fused Utterances 

or compound sentences (e.g., wipe down the sink after loading the dishwasher) in 

MULTIPLE-TASK Fused Utterances. 

2. Return the task being learned as a Compound Task to the Dialog Plan that called 

this one. For example: 
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a. User: Clean the kitchen daily. (Initial Dialog Plan executes Single 

Task Dialog Plan) 

b. Robot: What tools do you want me to use to clean the kitchen daily? 

c. User: None. (Single Task Dialog Plan executes Robot Learning Dialog 

Plan) 

d. Robot: How do I clean the kitchen with no tools daily? 

e. User: Wipe down the stovetop. (Robot Learning Dialog Plan executes 

Compound Task Dialog Plan) 

f. User and robot engage in dialog to define additional subtasks (e.g., 

“wipe down the counters” and “vacuum the floors”) 

g. Compound Task Dialog Plan returns the Compound Task to this 

Dialog Plan, which returns it to the Single Task Dialog Plan; Single 

Task Dialog Plan returns it to Initial Dialog Plan; and Initial Dialog 

Plan saves it in the Task Database and waits for the next utterance 

from the user) 

ANSWER  

1. If the answer is Yes, assume the user did not understand the question and repeat 

the question, “How do I perform this task?” 

2. If the answer is not Yes, say “I'm sorry I don't understand what you mean. Please 

start over.” and restart the dialog by returning to the Dialog Plan that called this 

one with an empty list of Tasks. 

REQUEST-REPEAT 
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1. Repeat the question, “How do I perform this task?” 

QUIT 

1. Say “OK. Just let me know when you want me to do something.” and restart the 

dialog by returning to the Dialog Plan that called this one with an empty list of 

Tasks. 

NO-PARSE or GREET  

1. Say, “I'm sorry. I don't understand what you mean.” 

2. Repeat the question, “How do I perform this task?” 

4.7.5 Compound Task Dialog Plan 

The Compound Task Dialog Plan handles both simple sentences (e.g., vacuum the 

floors) in SINGLE-TASK Fused Utterances or compound sentences (e.g., wipe down 

the sink after loading the dishwasher) in MULTIPLE-TASK Fused Utterances. This 

allows the user to express a Compound Task in a variety of ways, for example: 

• Wipe down the sink (No connector and only one task). 

• Sweep and mop the floors (No connector, but more than one task). 

• Then, dust the cabinets (A connector, but only one task). 

• Wipe down the sink after loading the dishwasher (A connector and more than one 

task). 

Normally, in a Compound Task the order of executing the sub-tasks is assumed to 

be in the order that the user expressed them to the robot. For example, the order of 

execution for “sweep and mop the floors” is assumed to be: 

1. Sweep the floors. 
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2. Mop the floors. 

But, the connectors, “before” and “after”, take precedence over the order of 

expression. For example, if the user says, “Wipe down the sink after loading the 

dishwasher. The order of expression is: 

1. Wipe down the sink. 

2. Load the dishwasher. 

However, the connector, “after”, pre-empts the order of expression, which means 

the user really wants the order of execution to be: 

1. Load the dishwasher. 

2. Wipe down the sink. 

The primary goal of the Compound Task Dialog Plan is to combine a sequence of 

utterances from the user, which may be spoken all at the same time, or over a period 

of time into a Compound Task with the sub-tasks in the correct order. 

The Compound Task Dialog Plan is invoked by another Dialog Plan to process a 

SINGLE-TASK or MULTIPLE-TASK Fused Utterance. After the Fused Utterance is 

processed, the robot asks the user if there are more subtasks in the Compound Task 

by saying, “Are there more steps in the process to <action> the <object> with the 

<tools> <condition>?” (e.g., Are there more steps in the process to clean the kitchen 

with no tools daily?). If the user answers Yes, the Compound Task Dialog Plan 

processes the next SINGLE-TASK or MULTIPLE-TASK Fused Utterance. If the 

user answers No, the Compound Task Dialog Plan returns the finished Compound 

Task to the Dialog Plan that invoked it. 
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The Compound Task Dialog Plan stops and returns an empty Task list to the 

Dialog Plan that invoked it, whenever the user says a QUIT Fused Utterance. 

The Compound Task Dialog Plan responds to all other Fused Utterances (e.g., 

GREET) by saying, “I'm sorry I don't understand what you mean. Are there more 

steps in the process to <action> the <object> with the <tools> <condition>?” 

The Compound Task Dialog Plan uses a state table to keep track of how subtasks 

are added to the subtask list based on the use of NEXT, BEFORE, and AFTER, 

where these are connector frames in a MULTIPLE-TASK Fused Utterance. These 

can also be thought of as generic representations of these words in an English 

sentence (e.g., Wipe down the sink AFTER loading the dishwasher).  

The state table allows the user to provide a list of sub-tasks using adverbs such as, 

“before”, “after”, and “next”. It can handle the adverb at the beginning of a sentence 

(e.g., “After loading the dishwasher, wipe down the sink.”) or in the middle (e.g., 

“Wipe down the sink after loading the dishwasher.”).  

The state table is shown in Table 4.11. 
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  Input 

  Task NEXT BEFORE AFTER 

T N B A 

Save current subtask as last 

subtask 

No 

action 
No action No action 

Z: Initial 

State 

False False False False 

T TN TB TA 

Add last subtask to end of subtask 

list and save current subtask as 

last subtask 

No 

action 
No action No action 

T: Task 

Received 

False False False False 

NT N B A 

Save current subtask as last 

subtask 

No 

action 
No action No action 

N: NEXT 

Received 

False True True True 

BT N B A 

Save current subtask as last 

subtask 

No 

action 
No action No action 

B: 

BEFORE 

Received 
False True True True 

AT N B A 

Save current subtask as last 

subtask 

No 

action 
No action No action 

A: AFTER 

Received 

False True True True 

Z TN TB TA 

Add last subtask before current 

subtask  

No 

action 
No action No action 

TN: Task 

NEXT 

Received 
True if insertion is ambiguous True False False 

Z TB TB Z 

Add last subtask before current 

subtask 

No 

action 
No action 

Add last subtask 

to end of subtask 

list 

TB: Task 

BEFORE 

Received 

True if insertion is ambiguous True True True 

Z TA Z TA 

Add current subtask before last 

subtask 

No 

action 

Add last subtask to 

end of subtask list 
No action 

TA: Task 

AFTER 

Received 
True if insertion is ambiguous True True True 

Z TN TB TA 

Add last subtask before current 

subtask 

No 

action 
No action No action 

NT: NEXT 

Task 

Received 
True if insertion is ambiguous False False False 

Z BT Z Z 

Add current subtask before last 

subtask 

No 

action 

Add last subtask to 

end of subtask list 

Add last subtask 

to end of subtask 

list 

BT: 

BEFORE 

Task 

Received 
True if insertion is ambiguous True True True 

Z AT Z Z 

Add last subtask before current 

subtask 

No 

action 

Add last subtask to 

end of subtask list 

Add last subtask 

to end of subtask 

list 

State 

AT: 

AFTER 

Task 

Received 
True if insertion is ambiguous True True True 

Table 4.11: NEXT, BEFORE, and AFTER State Table. 
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The input to the state table is the current frame, which can be a single-task, or one 

of three connectors: NEXT, BEFORE, or AFTER. The current state represents what 

has been received before. The output of the state table is a tuple of the next state, the 

action the Compound Task Dialog Plan takes with regard to adding subtasks to the 

Compound Task, and the cautious setting. An example of a tuple in Table 4.11 is the 

case when the state is Z and the input is Task: 

Next State: T 

Action: Save current subtask as last subtask 

Cautious Setting: False 

The cautious setting determines how the Dialog Management component grounds 

the dialog and is explained in a later section. 

An example of how the state table works is illustrated with the following dialog: 

Robot: How do I clean the kitchen with no tools daily? 

User: Wipe down the sink after loading the dishwasher. 

Robot: Are there more steps in the process to clean the kitchen with no tools 

daily? 

User: Wipe down the stovetop. 

Robot: Are there more steps in the process to clean the kitchen with no tools 

daily? 

User: Wipe down the counters. 
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Robot: Are there more steps in the process to clean the kitchen with no tools 

daily? 

User: No. 

Table 4.12 shows how the Compound Task Dialog Plan would process the user 

utterances. For the purposes of clarity, the dialog to fill the missing slots has been 

omitted. 
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User 

Utterance 
Frames 

Current 

State 

Next 

State 
Action 

Current 

Subtask 

Last 

Subtask 

Subtask 

List 

Task: Wipe 

down the 

sink 

Z T 

Save 

current 

subtask as 

last 

subtask 

Wipe down 

the sink 

Wipe 

down the 

sink 

empty 

AFTER T TA No action 
Wipe down 

the sink 

Wipe 

down the 

sink 

empty 

Wipe down 

the sink after 

loading the 

dishwasher. 

Task: Load 

the 

dishwasher 

TA Z 

Add 

current 

subtask 

before last 

subtask 

Load the 

dishwasher 

Wipe 

down the 

sink 

1. Load the 

dishwasher

2. Wipe 

down the 

sink 

Wipe down 

the stovetop. 

Task: Wipe 

down the 

stovetop 

Z T 

Save 

current 

subtask as 

last 

subtask 

Wipe down 

the 

stovetop 

Wipe 

down the 

stovetop 

1. Load the 

dishwasher

2. Wipe 

down the 

sink 

Wipe down 

the counters. 

Task: Wipe 

down the 

counters 

T T 

Add last 

subtask to 

end of 

subtask 

list & save 

current 

subtask as 

last 

subtask 

Wipe down 

the 

counters 

Wipe 

down the 

counters 

1. Load the 

dishwasher

2. Wipe 

down the 

sink 

3. Wipe 

down the 

stovetop 

No. 

State table not used; last subtask is added to 

end of subtask list and completed Compound 

Task is returned to the invoking Dialog Plan 

Wipe down 

the 

counters 

Wipe 

down the 

counters 

1. Load the 

dishwasher

2. Wipe 

down the 

sink 

3. Wipe 

down the 

stovetop 

4. Wipe 

down the 

counters 

Table 4.12: Compound Task Dialog Plan Example. 

4.7.6 Multiple Task Dialog Plan 

The Initial Dialog Plan only executes Multiple Task Dialog Plan when the robot is 

not learning a Compound Task and the user utters a MULTIPLE-TASK Fused 

Utterance (e.g., wipe down the sink after loading the dishwasher). No other Dialog 

Plans execute this plan. 
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The Multiple Task Plan processes a MULTIPLE-TASK Fused Utterance as 

follows: 

1. Create the skeleton of a new Compound Task using the action, object, tools, and 

condition slots from the first frame in the Fused Utterance. For example, if the 

user said “Sweep and mop the floors daily”, the Compound Task skeleton would 

be: 

action: sweep 

object: floors 

tools: none 

condition: daily 

2. Execute the Compound Task Dialog Plan to fill in the subtasks of the Compound 

Task  (see Section 4.7.5). 

4.7.7 Grounding 

As explained earlier, we used three different strategies for grounding in our 

experiments, Optimistic, Cautious, and Pessimistic. The Dialog Management 

component can operate using any of these three strategies, or modes. The user in the 

experiments selects the grounding mode with the pull-down window on the HRI 

Environment Simulator window, as shown in Figure 4.14. 
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Figure 4.14: Grounding Mode Selection in the HRI Environment Simulator. 

Whenever the Dialog Management makes an assumption about what the user 

means, it invokes the “check assumption” method. If the robot is in Optimistic mode, 

“check assumption” always returns true. If the robot is in Pessimistic mode, “check 

assumption” will ask the user to verify the assumption with a “yes” or “no”. If the 

robot is in Cautious mode, it will ask the user to verify the assumption, if there is a 

possibility the assumption is not true. In Cautious mode, the invoking Dialog Plan is 

the one that decides whether an utterance is ambiguous and whether “check 

assumption” should verify the assumption or not. 

During the dialog, the user’s intentions are ambiguous in the following situations: 
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• Because of audio and visual errors from the modalities (both real and simulated) 

and incorrect assumptions by the contexts, all the slots may not be filled correctly 

during Fusion. 

• When the user responds to “How do I perform this task?” with a Task, did the 

user misunderstand the robot, or is it giving the first step in a Compound Task? 

• When the user responds to “Are there more steps in the process?” with a Task, did 

the user misunderstand the robot, or is the user giving the next step in a process? 

• When a Fused Utterance contains two or more single-tasks and at least one 

BEFORE or AFTER, the intentions of the user are ambiguous. For example, if the 

user says: 

wipe down the sink before mopping the floors sweep the floors 

Does the user mean? 

Wipe down the sink. 

Before mopping the floors, sweep the floors. 

Or, does the user mean? 

Wipe down the sink before mopping the floors. 

Sweep the floors. 

The subtask order for the first interpretation is: 

1. Wipe down the sink. 

2. Sweep the floors. 

3. Mop the floors. 

The subtask order for the second interpretation is: 
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1. Wipe down the sink. 

2. Mop the floors. 

3. Sweep the floors. 

• When the user teaches the robot how to perform a Task by saying it is like another 

Task that the robot already knows how to do, and the robot finds a match in the 

Task Database. Because of audio and visual errors from the modalities (both real 

and simulated) and incorrect assumptions by the contexts, all the slots may not be 

filled correctly during Fusion. Consequently, the known Task may be incorrect. 

Table 4.13 illustrates what the Dialog Management component does in each of 

these ambiguous situations for each of the three grounding modes. 
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  Grounding 

  Optimistic Cautious Pessimistic 

Slots may not be 

filled correctly 

during Fusion 

Assumes slots are 

filled correctly 

Only verifies 

tools slot and 

assumes all other 

slots are filled 

correctly 

Verifies all slots 

User responds to 

“How do I 

perform this 

task?” with a Task 

Assumes Task is 

first step 

Verifies Task is 

first step 

Verifies Task is 

first step 

User responds to 

“Are there more 

steps in the 

process?” with a 

Task 

Assumes Task is 

next step 

Verifies Task is 

next step 

Verifies Task is 

next step 

Fused Utterance 

contains two or 

more single-tasks 

and at least one 

BEFORE or 

AFTER 

Assumes a 

subtask order 

Verifies a subtask 

order, only if this 

situation occurs 

Always verifies a 

subtask order 

Ambiguous 

Situation 

Match found in 

the Task Database 

for "is like" Task 

Assumes match is 

the known Task 

Verifies partial 

match is the 

known Task and 

assumes perfect 

match is the 

known Task 

Verifies partial or 

perfect match is 

the known Task 

Table 4.13: Grounding During Ambiguous Situations. 

4.7.8 Accommodation 

Traum et al. refer to the ability to handle out of sequence answers as 

“accommodation” [83]. Humans use accommodation all the time, but it is not easy to 

handle accommodation programmatically. The Dialog Management component 

supports two forms of accommodation: 

Slot Filling – When Dialog Management is trying to fill slots, it asks the user 

for each slot individually, but will accept values for any slot. For example in 

the following dialog: 

User: Wipe down the counters. 
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Robot: What tools do you want me to use to wipe down the counters? 

User: Daily. 

Robot: What tools do you want me to use to wipe down the counters 

daily? 

User: A sponge. 

In its first question, the robot did not ask for the condition, but that is what the 

user answered with. So, the robot accommodated the out of sequence answer 

by accepting it as the condition, and acknowledged the accommodation by 

including it in the question asking for the tools again. 

Compound Task Process Definition – When using Optimistic grounding and 

the user responds to “Are there more steps in the process?” with a Task, 

Dialog Management accommodates the out of sequence answer as the next 

Task in the process. 

4.8 Visual Feedback 
Feedback from the robot to the user is conceptually the inverse of modality Fusion, 

and is frequently referred to as fission [33]. When the robot wants to respond to the 

user, the Dialog Management component will generate output to send to the Visual 

Feedback component, as well as sending corresponding text to the natural language 

generator, or Audio Feedback. 

For the experiments, the HRI Environment Simulator provides limited Visual 

Feedback as follows: 
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• The Head Nod buttons darken when the user clicks down on them and returns to 

normal when the user clicks up as shown in Figure 4.15. 

• The Thing pointed at darkens when the user selects it as shown in Figure 4.7 and 

returns to normal when the robot “sees” what the user is pointing at, as shown in 

Figure 4.16. 

 

Figure 4.15: Visual Feedback of Head Nod. 
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Figure 4.16: Visual Feedback of Pointing. 

4.9 Audio Feedback 
We did not implement a natural language generator for the experiments. Instead, 

what the robot says is displayed in the HRI Environment Simulator, as shown in 

Figure 4.17. 
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Figure 4.17: Audio Feedback Simulation in the HRI Environment Simulator. 

Other components invoke the Audio Feedback component to generate strings by 

calling generic Java methods, such as “What do you want me to do to the <object> 

with the <tools> <condition>?” In this way, the responses are centralized and can be 

changed easily. Table 4.14 shows the generic methods and the strings they produce. 

Java Method Arguments Description String Produced 

askForSlot task, slot Fill an empty 

Slot 

Action – What do you want me to do to 

the <object> with the <tools> 

<condition>? 

Object – What do you want me to 

<action> with the <tools> <condition>? 

Tools – What tools do you want me to 

use to <action> the <object> 

<condition>? 

Condition – How often do you want me 

to <action> the <object> with the 

<tools>? 
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Java Method Arguments Description String Produced 

verifySlots task Verify all filled 

Slots are filled 

correctly 

Are you asking me to <action> the 

<object> with the <tools> <condition>? 

confirmTask task Confirm a task I'm just confirming. Do you want me to 

<action> the <object> with the <tools> 

<condition>? 

confirmKnownTask task Confirm a known 

Task 

I'm just confirming. I already know how 

to <action> the <object> with the 

<tools> <condition>. Is that what you 

want me to do? 

confirmNewTask task Confirm a new 

Task 

I'm just confirming. Is the new task to 

<action> the <object> with the <tools> 

<condition>? 

askIfMoreSubtasks task Ask if there more 

subtasks 

Are there more steps in the process to 

<action> the <object> with the <tools> 

<condition>? 

askForNextSubtask task Ask for the next 

subtask in a 

Compound Task 

OK. What is the next step in the process 

to <action> the <object> with the 

<tools> <condition>? 

confirmCompoundTaskNotDone task Confirm 

Compound Task 

is NOT 

completed 

I'm just confirming. Is this another step 

to <action> the <object> with the 

<tools> <condition>? 

confirmCompoundTaskDone task Confirm 

Compound Task 

is completed 

I'm just confirming. Are you done 

telling me the steps to <action> the 

<object> with the <tools> <condition>? 

verifySubtasks task Verify subtasks 

in a Compound 

Task 

I'm just confirming. Are these the steps 

to <action> the <object> with the 

<tools> <condition>? 

<action> the <object> with the <tools> 

<condition> 

<action> the <object> with the <tools> 

<condition> 

… 

<action> the <object> with the <tools> 

<condition> 

askForSubtasksAgain none Ask subtasks in a 

Compound Task 

again 

OK, please give me the steps for this 

process again. 

verifyUnknownIsLikeKnown unknown 

task, known 

task 

Verify unknown 

task is like 

known task 

I know how to <action> the <object> 

with the <tools> <condition>. Is 

<action> the <object> with the <tools> 

<condition> done the same way as that? 

verifyNewIsLikeTwoKnowns unknown 

task, 2 known 

tasks 

Verify an 

unknown task is 

like two known 

tasks 

I know how to <action> the <object> 

with the <tools> <condition> and how 

to <action> the <object> with the 

<tools> <condition>. Is <action> the 

<object> with the <tools> <condition> 

done the same way as those? 

unknownTasks 2 unknown 

tasks 

Tell user neither 

Task in Learning 

frame was 

known 

I don't know how to <action1> the 

<object1> with the <tools1> 

<condition1> or how to <action2> the 

<object2> with the <tools2> 

<condition2>. 
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Java Method Arguments Description String Produced 

speak string Say string string 

robotIntroduction none  Hello my name is Robot. 

robotRequest none  What can I do for you? 

pleaseStartOver none  Please start over. 

tryAgain none  OK. Let's try again. 

robotRequestRepeat none  I'm sorry I don't understand what you 

mean. Please start over. 

robotStandby none  OK. Just let me know when you want 

me to do something. 

robotAcksTask none  OK. Anything else? 

iDontUnderstand none   I'm sorry I don't understand what you 

mean. 

Table 4.14: Audio Feedback Methods. 

The Audio Feedback component does more than just display character strings. The 

most significant is to form a “task clause” from the internal representation of a task, 

which only includes the action, object, tools, and condition. It automatically accounts 

for missing slots and no tools to make the speech more natural.  

For example if fusion produces the following task: 

action = clean 

object = unknown 

tools = none 

condition = daily 

The robot asks for the object slot with, “What do you want me to clean with no 

tools daily?” 

If more than one slot is missing, as in the following example: 

action = clean 

object = unknown 

tools = none 
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condition = unknown 

The robot asks for the object slot with, “What do you want me to clean with no 

tools?” 

Also, this component removes the “-ed” and “-ing” suffixes from action verbs. For 

example, if the task is: 

action = loading 

object = unknown 

tools = none 

condition = daily 

The robot asks for the object slot with, “What do you want me to load with no 

tools?” 

The Audio Feedback performs one other function of counting clarifying questions, 

which is one of the experimental metrics. The number of clarifying questions is 

displayed in the HRI Environment Simulator as shown in Figure 4.18. The number of 

clarifying questions is reset to zero every time the Run button is clicked. 
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Figure 4.18: Clarifying Questions Counter. 

4.10 Task Management and Robot Controller 
In a fully functioning robot, the Task Management component would break down 

all tasks into action primitives. The Robot Controller would take these primitives and 

execute them using the robot’s sensory and mechanical systems. 

We did not simulate the Task Management component because it was done by 

Blythe and Reilly who simulated a household robot agent, Mr. Fixit, who could, 

along with other tasks, vacuum and clean up broken cups [4]. We did not simulate the 

Robot Controller because it was beyond the scope of this research. 

Another important function of the HRI Environment Simulator, which has not 

been discussed yet, is determining whether the robot is learning the tasks correctly. 
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Determining whether the robot is learning the tasks correctly is one of two 

experimental metrics; the other being the number of clarifying questions. 

When the user clicks on the Run button on the HRI Environment Simulator, the 

system loads a Golden Task Database with the tasks in the Lesson Plan being taught, 

and updates the Tasks in Lesson Plans field in the HRI Environment Simulator as 

shown in Figure 4.19. The Golden Task Database represents the correct set of Tasks 

the robot is supposed to learn from this Lesson Plan. 

 

Figure 4.19: Tasks in Lesson Plan in HRI Environment Simulator. 

The system counts each unique Compound Task as one task and each unique 

Primitive Task that make up a Compound Task as one task. For example, the Golden 
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Task Database for Lesson Plan 9 contains 15 tasks (shown in Appendix). Figure 4.20 

illustrates how the system counts the number of tasks. 

Golden Task No. Lesson Plan 9 XML

<task>

1 CLEAN,DINING ROOM,[],SPRING,[

2  DUST DOWN,CEILING,[FEATHER DUSTER],SPRING,[];

3  DUST DOWN,CORNERS,[FEATHER DUSTER],SPRING,[];

4  DUST AND CLEAN,ART,[LIGHTLY WET CLEAN CLOTH],SPRING,[];

5  DUST AND CLEAN,CEILING FAN,[MURPHYS OIL SOAP],SPRING,[];

6  TAKE DOWN,DRAPERIES,[HANDS],SPRING,[];

7  TAKE DOWN,CURTAINS,[HANDS],SPRING,[];

8  WASH DOWN,DINING TABLE,[],SPRING,[

9   CLEAN,WOOD,[DAMP CLOTH],SPRING,[];

10   OIL,WOOD,[FURNITURE OIL],SPRING,[];

 ];

11  WASH DOWN,CHAIRS,[],SPRING,[

same as 9   CLEAN,WOOD,[DAMP CLOTH],SPRING,[];

same as 10   OIL,WOOD,[FURNITURE OIL],SPRING,[];

12   SPOT CLEAN,UPHOLSTERY,[SPOT CLEANER],SPRING,[];

 ];

13  WASH DOWN,OTHER FURNITURE,[],SPRING,[

same as 9   CLEAN,WOOD,[DAMP CLOTH],SPRING,[];

same as 10   OIL,WOOD,[FURNITURE OIL],SPRING,[];

same as 12   SPOT CLEAN,UPHOLSTERY,[SPOT CLEANER],SPRING,[];

 ];

14  CLEAN,CARPETS,[VACUUM,RUG SHAMPOO MACHINE],SPRING,[];

15  CLEAN,RUGS,[VACUUM,RUG SHAMPOO MACHINE],SPRING,[];

];

</task>  

Figure 4.20: Golden Tasks for Lesson Plan 9. 

Each time Dialog Management adds a new task to the Task Database, the system 

compares it with the Golden Task Database. If the new task is in the Golden Task 

Database, then the “Matching Tasks in TaskDataBase” and “% Matching” fields in 

the HRI Environment Simulator are updated as displayed in Figure 4.21. 
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Figure 4.21: Matching Tasks in TaskDataBase. 
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Chapter 5 Semantic Integration 
We have defined Semantic Integration as the component that fuses input from 

multiple modalities (e.g., Speech, Pointing, Field of Vision) and contexts (e.g., Real 

World Context, Dialog History) into a task for the robot to perform (e.g., sweep the 

floor).  

The fusion weights were determined experimentally and are different for each slot. 

The weights are influenced by the error rates of the three modalities (e.g., Speech, 

Pointing, Field of Vision), which indirectly influence the error rates of the contexts 

(e.g., Real World Context, Dialog History). As stated earlier, the error rates are: 

• Speech: 6.7% (overall) 

• Pointing: true-positive rate of 78.3% and a false-positive rate of 11.6% [62] 

• Field of Vision: true-positive rate of 95.0% and a false-positive rate of 2.3% [39] 

The fusion weights used in these experiments were determined using the following 

approach [41]: 

• Prepare 20 log files containing all 166 tasks in the corpus. 

• Determine 20 sets of weights for each of the 20 logs with no-errors. 

• Cluster the 20 sets of weights using k-means clustering [56] 

• Determine the six sets of “best” weights for each slot using the following 

methods: 

o Reconstruction Error and Peakedness 

o Centroid 

o Closest to Centroid 
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o Frequency 

• Determine 20 sets of weights for each of the 20 logs with errors 

• Cluster the 20 sets of weights 

• Determine the six sets of “best” weights for each slot using the following 

methods: 

o Reconstruction Error and Peakedness 

o Centroid 

o Closest to Centroid 

o Frequency 

• Calculate the Fusion Error Rate (FER) for the 20 logs with errors using the 12 sets 

of “best” weights determined above. 

• Plot 240 FER to determine which of the 12 sets of “best” weights to use. 

This approach is described in detail in this chapter. 

5.1 Preparation of Log Files 
We started with seven log files that covered all 166 tasks in the corpus. These log 

files were created during the debug phase of the software development. We processed 

the files to extract the Fusion sessions and used the file sizes to divide them into 20 

approximately equal log files. Each log contains about 275 Fusion sessions with a 

total of 5,497 fusion sessions in all 20 logs. Each Fusion session represents one 

instance where the Semantic Integration module fused inputs from multiple 

modalities, Dialog History, and Real World Context to generate a potential Task for 

the Dialog Management module to validate. Each sample contains the actual 
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confidence scores provided by the modality and context inputs (i.e., Speech, Pointing, 

Field of Vision, Real World Context, and Dialog History) for a specific phrase and 

whether the phrase was the Best choice or Not. Table 5.1 summarizes the log files. 

 

Log File Original Log Lesson Plans

Fusion 

Sessions

Log 1a communicator before 9-20.log LP9, LP10 252

Log 1b communicator before 9-20.log LP9, LP10 253

Log 1c communicator before 9-20.log LP9, LP10 252

Log 2a communicator before 8-27-07 1300.log LP5, LP6 205

Log 2b communicator before 8-27-07 1300.log LP5, LP6 205

Log 2c communicator before 8-27-07 1300.log LP5, LP6 205

Log 3 communicator before 8-9-07 1510.log LP1 291

Log 4 communicator before 8-15-07 1115.log LP2 421

Log 5 communicator before 8-17-07 1645.log LP2, LP3, LP4 582

Log 6a communicator before 9-10 1630.log LP6, LP7 265

Log 6b communicator before 9-10 1630.log LP6, LP7 264

Log 6c communicator before 9-10 1630.log LP6, LP7 265

Log 6d communicator before 9-10 1630.log LP6, LP7 265

Log 6e communicator before 9-10 1630.log LP6, LP7 264

Log 6f communicator before 9-10 1630.log LP6, LP7 265

Log 7a communicator log before 9-12.log LP8, LP9 249

Log 7b communicator log before 9-12.log LP8, LP9 248

Log 7c communicator log before 9-12.log LP8, LP9 249

Log 7d communicator log before 9-12.log LP8, LP9 248

Log 7e communicator log before 9-12.log LP8, LP9 249

Average 275

Total 5497  

Table 5.1: Log Files Used To Determine Fusion Weights. 

5.2 Calculation of Fusion Weights with No Errors 
Next, we determined the 20 sets of weights using the brute-force method, for each 

of the 20 logs with no-errors as shown in Table 5.2. 
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Slot Weight Log 1a Log 1b Log 1c Log 2a Log 2b Log 2c Log 3 Log 4 Log 5 Log 6a Log 6b Log 6c Log 6d Log 6e Log 6f Log 7a Log 7b Log 7c Log 7d Log 7e

realWorldW -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20

historyW 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

speechW 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60

Fusion error rate 6% 33% 18% 6% 8% 9% 11% 6% 4% 9% 11% 5% 4% 3% 5% 16% 13% 11% 11% 8%

realWorldW -0.20 -0.20 -0.26 -0.20 -0.20 -0.20 0.14 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20

historyW 0.60 0.60 0.61 0.60 0.60 0.60 0.33 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60

fieldOfVisionW -0.20 -0.20 -0.26 -1.00 0.20 -0.20 0.04 -0.20 0.20 -0.60 -1.00 -1.00 -1.00 -1.00 -1.00 -0.60 -1.00 -0.20 -0.20 -0.20

pointingW 0.20 -0.20 0.14 0.20 0.20 0.20 0.02 0.20 0.20 0.20 0.20 -1.00 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

speechW 1.00 1.00 0.96 1.00 1.00 1.00 0.66 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Fusion error rate 17% 20% 27% 31% 23% 21% 13% 17% 10% 22% 22% 23% 25% 23% 24% 20% 21% 23% 18% 16%

realWorldW 1.00 1.00 0.66 -0.20 -0.20 -0.20 0.28 -0.20 -0.20 -0.20 1.00 0.60 1.00 1.00 1.00 -0.20 1.00 0.36 -0.20 1.00

historyW 0.60 0.60 0.36 0.60 0.20 0.20 0.12 0.20 0.60 0.20 0.60 0.20 0.60 0.60 0.60 0.60 0.60 0.12 0.60 0.60

fieldOfVisionW -1.00 -1.00 0.57 -0.60 0.20 0.20 0.76 0.20 -1.00 0.20 1.00 -1.00 -0.60 -1.00 -0.60 -0.20 -0.60 0.60 -0.20 -1.00

pointingW 1.00 1.00 0.60 0.60 0.20 0.20 0.20 0.20 0.60 0.20 1.00 0.60 0.20 0.60 1.00 0.60 1.00 0.20 1.00 1.00

speechW 1.00 1.00 0.44 1.00 0.60 0.60 0.36 0.60 1.00 0.60 1.00 0.60 1.00 1.00 1.00 1.00 1.00 0.20 1.00 1.00

Fusion error rate 41% 43% 38% 22% 31% 43% 33% 65% 29% 44% 31% 24% 25% 21% 32% 18% 15% 19% 20% 29%

realWorldW 0.20 0.20 -0.60 0.20 0.20 -0.60 -1.00 -0.20 -0.20 0.20 0.20 -0.60 -0.60 0.20 0.20 -0.60 -0.60 0.20 0.20 0.20

historyW 0.20 0.60 1.00 0.60 0.60 1.00 0.60 0.20 0.20 0.60 0.60 1.00 1.00 0.60 0.60 1.00 1.00 0.60 0.60 0.20

speechW 0.60 0.20 0.20 0.20 0.20 -0.60 1.00 0.60 0.60 0.20 0.20 -0.20 -0.20 0.20 -0.20 0.20 0.20 -0.20 -0.20 -0.20

Fusion error rate 0% 2% 0% 1% 1% 0% 13% 3% 1% 2% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0%

No Errors

condition

action

object

tools

 

Table 5.2: Fusion Weights (No Errors). 

The brute-force algorithm tries all combination of weights, measuring the FER 

each time, and picking the set of weights with the lowest FER. For faster 

convergence, we start by using a large delta on the first pass and then using a smaller 

delta around the first pass weights on the second pass, and so forth.  

5.3 Calculation of Fusion Weights with Errors 
Then, we determined the 20 sets of weights for each of the 20 logs with errors as 

shown in Table 5.3. 

Slot Weight Log 1a Log 1b Log 1c Log 2a Log 2b Log 2c Log 3 Log 4 Log 5 Log 6a Log 6b Log 6c Log 6d Log 6e Log 6f Log 7a Log 7b Log 7c Log 7d Log 7e

realWorldW 0.20 -0.20 -0.20 -0.20 0.20 -0.20 0.79 0.20 0.52 -0.20 0.20 0.20 -0.50 -0.20 0.20 0.20 0.20 0.20 0.20 0.20

historyW 0.60 0.20 0.20 0.20 0.60 0.20 0.02 0.60 0.28 0.20 0.60 0.20 0.61 0.20 0.60 0.60 0.60 0.60 0.60 0.60

speechW 1.00 0.60 0.60 0.60 1.00 0.60 0.39 1.00 0.36 0.60 1.00 0.60 0.62 0.60 1.00 1.00 1.00 1.00 1.00 1.00

Fusion error rate 35% 55% 47% 39% 37% 33% 23% 24% 22% 42% 38% 29% 29% 27% 34% 38% 37% 36% 40% 30%

realWorldW 0.04 -0.04 0.70 0.04 0.28 0.60 0.84 0.10 0.84 0.12 -0.04 0.02 0.92 0.44 0.20 0.60 -0.04 0.92 0.70 -0.01

historyW 0.75 1.00 0.84 0.60 0.76 -0.12 0.68 0.09 0.12 0.84 1.00 0.84 0.12 1.03 0.12 0.04 0.90 0.12 0.73 1.07

fieldOfVisionW -0.40 -1.40 -0.50 -1.40 -0.82 -1.40 -0.12 -0.26 -0.60 -0.63 -0.60 -1.05 -0.60 -1.40 -1.40 -0.36 -0.44 -0.76 -0.49 -0.61

pointingW 0.00 0.04 -0.07 -0.04 0.01 0.04 0.04 0.10 0.60 -0.06 0.04 -1.56 -0.12 0.01 -0.12 0.36 0.01 -0.12 -0.05 0.00

speechW 0.81 1.08 0.92 0.68 0.86 0.60 0.76 1.56 0.84 0.92 1.08 0.92 0.84 1.11 1.08 0.60 0.98 1.08 0.83 1.18

Fusion error rate 32% 36% 47% 43% 37% 39% 29% 25% 20% 39% 36% 46% 40% 37% 41% 40% 33% 42% 34% 28%

realWorldW 1.24 0.76 1.21 0.92 0.92 0.76 1.05 0.52 1.34 0.92 0.92 1.08 0.50 0.76 1.24 1.24 1.24 1.40 0.82 0.76

historyW 0.36 0.49 0.21 0.84 0.52 0.68 0.25 -0.12 0.36 0.84 0.68 0.54 0.42 0.52 0.60 0.28 0.60 0.68 0.44 0.68

fieldOfVisionW -1.56 -0.50 0.30 -1.40 0.76 -0.60 0.57 -0.52 -1.56 -0.20 0.60 -0.92 -0.55 -0.52 -1.08 0.04 0.12 -0.28 0.52 -1.40

pointingW 0.02 -0.76 0.20 0.68 0.12 0.04 0.03 0.28 -0.01 0.04 0.52 0.52 0.09 0.28 0.52 0.52 0.28 0.04 0.23 0.04

speechW 0.44 0.57 0.26 1.08 0.76 0.76 0.37 0.44 0.60 0.92 0.76 0.55 0.50 0.60 0.76 0.60 0.68 0.76 0.50 0.76

Fusion error rate 52% 51% 50% 34% 48% 48% 39% 72% 35% 51% 41% 32% 34% 28% 48% 28% 27% 28% 35% 39%

realWorldW 0.76 -0.60 -0.60 1.08 0.92 1.00 -1.40 0.20 0.20 0.66 0.68 0.60 0.84 1.00 0.60 1.00 1.00 1.00 1.00 1.00

historyW 0.12 1.00 1.00 0.28 0.12 0.20 0.84 0.60 0.60 0.25 0.12 0.20 0.12 0.20 0.20 0.20 0.20 0.20 0.20 0.20

speechW 0.28 1.00 1.00 0.12 0.12 0.20 1.08 1.00 1.00 0.02 0.12 0.20 0.12 0.20 0.20 0.20 0.20 0.20 0.20 0.20

Fusion error rate 16% 39% 31% 18% 20% 25% 39% 25% 30% 23% 19% 20% 20% 19% 19% 24% 26% 26% 21% 15%

Errors

tools

condition

action

object

 

Table 5.3: Fusion Weights (Errors). 

The experiments recorded in the log file were performed in an error free 

environment to test the software, but we processed the samples and added errors that 

are consistent with the Speech Recognition, Pointing, and Field of Vision errors. 
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5.4 K-Means Clustering of Fusion Weights 
Next, we used the K-Means clustering algorithm to cluster both the no errors and 

errors weights. We varied k from 2 to 20 clusters.  

The K-Means algorithm requires the determination of the initial centroids for each 

cluster. We used an evenly distributed grid between the minimum and maximum of 

each weight for these reasons: 

• The results would be repeatable. 

• A null cluster would indicate an area of empty space between clusters, which 

would mean the points were truly clustered and not just evenly distributed 

throughout the feature space. 

Another popular way to do it is randomly [2]. 

Table 5.4 and Table 5.5 show the number of sets of weights in each cluster. 
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k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

2 19 1

3 19 1

4 19 1

5 19 1

6 19 1

7 19 1

8 19 1

9 19 1

10 19 1

11 19 1

12 19 1

13 19 1

14 19 1

15 19 1

16 19 1

17 19 1

18 19 1

19 19 1

20 19 1

action slot (no errors)

Cluster No.

 

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

2 1 19

3 1 8 11

4 1 8 11

5 1 6 3 10

6 1 6 4 9

7 1 6 3 7 3

8 1 6 2 9 2

9 1 6 2 9 2

10 1 6 2 1 8 2

11 1 6 2 1 8 2

12 1 6 2 1 8 2

13 1 6 2 9 2

14 1 6 2 1 8 2

15 1 6 2 1 8 2

16 1 6 2 1 8 2

17 1 6 2 1 8 2

18 1 6 2 1 8 2

19 1 6 2 1 8 2

20 1 6 2 1 8 2

object slot (no errors)

Cluster No.

 
k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

2 12 8

3 8 8 4

4 4 8 7 1

5 3 6 7 3 1

6 4 8 4 3 1

7 2 1 2 7 6 1 1

8 3 7 6 3 1

9 1 4 7 6 1 1

10 4 1 4 7 2 1 1

11 2 1 2 7 6 1 1

12 1 1 3 4 7 2 1 1

13 1 1 3 7 6 1 1

14 2 1 2 1 6 6 1 1

15 1 1 3 4 7 2 1 1

16 1 1 3 7 6 1 1

17 1 1 3 4 7 2 1 1

18 1 1 3 5 2 2 4 1 1

19 1 5 3 1 2 6 1 1

20 1 1 3 4 5 2 1 1 1 1

Cluster No.

tools slot (no errors)  

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

2 7 13

3 3 4 13

4 1 5 10 4

5 3 4 4 9

6 1 5 3 11

7 1 5 4 6 4

8 1 5 4 6 4

9 1 2 3 3 11

10 1 5 4 6 4

11 1 2 3 3 10 1

12 1 5 4 3 7

13 1 5 4 6 4

14 1 5 4 3 6 1

15 1 5 4 6 4

16 1 5 4 6 4

17 1 5 4 3 6 1

18 1 5 4 6 4

19 1 5 4 3 6 1

20 1 5 4 3 6 1

Cluster No.

condition slot (no errors)  

Table 5.4: K-Means Clustering of Fusion Weights (No Errors). 
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k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

2 8 12

3 7 3 10

4 7 3 10

5 1 6 3 10

6 1 6 1 2 10

7 7 1 10 2

8 7 1 2 10

9 1 6 1 2 10

10 1 6 1 2 10

11 7 1 2 10

12 7 1 2 10

13 1 6 1 2 10

14 1 6 1 2 10

15 1 6 1 2 10

16 1 6 1 2 10

17 1 6 1 1 10 1

18 1 6 1 2 10

19 1 6 1 2 10

20 1 6 1 1 10 1

Cluster No.

action slot (errors)  

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

2 6 14

3 1 5 14

4 1 3 9 7

5 1 5 14

6 1 3 8 8

7 1 2 3 9 5

8 1 3 2 9 5

9 1 3 2 6 8

10 1 3 5 8 3

11 1 3 2 9 5

12 1 3 2 3 7 4

13 1 3 3 6 7

14 1 2 1 2 4 6 4

15 1 3 2 8 3 3

16 1 2 1 2 2 6 3 3

17 1 3 2 3 7 4

18 1 2 1 2 2 6 3 3

19 1 3 2 2 6 3 3

20 1 3 2 6 5 3

Cluster No.

object slot (errors)  
k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

2 11 9

3 4 9 7

4 6 5 4 5

5 2 5 4 5 4

6 3 6 4 4 3

7 3 3 5 3 4 2

8 2 2 3 5 4 3 1

9 2 2 5 2 2 5 1 1

10 3 1 3 4 3 4 2

11 2 1 4 4 2 2 3 2

12 2 1 2 3 3 2 3 2 2

13 2 2 1 2 4 3 4 1 1

14 3 1 1 3 3 2 2 3 1 1

15 2 2 1 2 4 2 3 2 1 1

16 2 1 1 2 3 2 3 2 2 1 1

17 2 1 1 2 1 4 2 2 2 3

18 2 1 1 2 3 2 2 2 3 2

19 2 1 1 2 1 4 2 2 2 1 1 1

20 2 2 1 1 2 3 2 2 2 1 1 1

Cluster No.

tools slot (errors)  

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

2 3 17

3 1 4 15

4 1 2 2 15

5 1 2 2 15

6 1 4 6 9

7 1 2 2 15

8 1 2 2 15

9 1 2 5 2 10

10 1 2 2 6 9

11 1 2 2 6 9

12 1 2 5 2 10

13 1 2 2 6 9

14 1 2 2 6 9

15 1 2 5 2 9 1

16 1 2 2 6 8 1

17 1 2 2 6 9

18 1 2 5 2 2 8

19 1 2 2 6 8 1

20 1 2 2 6 8 1

Cluster No.

condition slot (errors)  

Table 5.5: K-Means Clustering of Fusion Weights (Errors). 

5.5 Best Fusion Weights (Reconstruction Error) 
We used two different methods to determine which k to use. This section discusses 

using reconstruction error and the next section discusses using peakedness. 

Alpaydin suggested plotting the reconstruction error as a function of k and 

looking for the “elbow” of the curve [2].  

Alpaydin defined reconstruction error as the sum of the mean-squared-error 

between all 20 samples and the centroid of the cluster they were assigned to, or [2]: 

E({mi}
k

 i=1|Χ) = ΣtΣi b
t
i║x

t 
- mi║2

 

where 
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b
t
i =  1, if ║x

t 
- mi║ = minj ║x

t 
- mi║ 

 0, otherwise 

As shown in Figure 5.1, the reconstruction error for the “action” slot with no errors 

was zero for all k, so we used k = 2. Cluster No. 0 in Table 5.4 is the largest cluster 

for k = 2, which was used. 
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Figure 5.1: Reconstruction Error Curve for Action Slot (No Errors). 

We calculated the reconstruction error for the other slots and found the “elbow” as 

shown in the Figure 5.2 through Figure 5.8. 
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Figure 5.2: Reconstruction Error Curve for Object Slot (No Errors). 
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Figure 5.3: Reconstruction Error Curve for Tools Slot (No Errors). 
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Figure 5.4: Reconstruction Error Curve for Condition Slot (No Errors). 
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Figure 5.5: Reconstruction Error Curve for Action Slot (Errors). 
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Figure 5.6: Reconstruction Error Curve for Object Slot (Errors). 
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Figure 5.7: Reconstruction Error Curve for Tools Slot (Error). 
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Figure 5.8: Reconstruction Error Curve for Condition Slot (Errors). 

We used the largest cluster in Table 5.4 and Table 5.5 for the k determined by 

reconstruction error as shown in Table 5.6. 

Slot No Errors / Errors k Cluster

action no errors 2 0

object no errors 3 2

tools no errors 4 1

condition no errors 4 2

action errors 3 2

object errors 4 2

tools errors 4 0

condition errors 4 3  

Table 5.6: Largest Cluster Determined By Reconstruction Error. 

5.6 Best Fusion Weights (Peakedness) 
The other method for determining k, which we propose, is to find the one where 

the largest cluster is the one with the highest peak in comparison to the other clusters. 

135  



For example, if we plot the number of weight vectors in each cluster for the condition 

slot (no errors) with k = 11, we get the plot shown Figure 5.9. 
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Figure 5.9: Example of Peakedness. 

There is a clear peak at Cluster No. 7 with 10 weight vectors in it. 

We can find the k with the highest peak by calculating the “peakedness” for each k 

using the formula below, and then using the one with the highest “peakedness” value: 

peakedness = (vectors/cluster) / AVERAGE(vectors/cluster) 

In the example above, 

peakedness = 10 / 3.33 = 3.00 

As shown in Table 5.7, we used the largest cluster in Table 5.4 and Table 5.5 for 

the k with the highest peak. For the case when the peakedness for two k were the 

same, the smaller k was used. 
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Slot No Errors / Errors k Cluster

action no errors 2 0

object no errors 10 8

tools no errors 12 5

condition no errors 11 7

action errors 17 11

object errors 15 9

tools errors 19 9

condition errors 4 3  

Table 5.7: Largest Cluster Determined By Peakedness. 

5.7 Choosing the Best Fusion Weights 
Table 5.8 shows the sets of “best” weights for each slot using both methods of 

determining k: 

• Centroid (of the largest cluster) 

• Closest to Centroid (set closest, in a Euclidean sense, to the centroid of the largest 

cluster) 

• Frequency (most frequently occurring set in the largest cluster; “n/a” means all 

the sets in the cluster were different) 
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Slot Weight Centroid Closest Frequent Centroid Closest Frequent

realWorldW -0.20 -0.20 -0.20 -0.20 -0.20 -0.20

historyW 0.20 0.20 0.20 0.20 0.20 0.20

speechW 0.60 0.60 0.60 0.60 0.60 0.60

realWorldW -0.18 -0.20 -0.20 -0.17 -0.20 -0.20

historyW 0.58 0.60 0.60 0.57 0.60 0.60

fieldOfVisionW -0.11 -0.20 -0.20 -0.18 -0.20 -0.20

pointingW 0.14 0.20 0.20 0.17 0.20 0.20

speechW 0.97 1.00 1.00 0.95 1.00 1.00

realWorldW 0.95 1.00 1.00 1.00 1.00 1.00

historyW 0.55 0.60 0.60 0.60 0.60 0.60

fieldOfVisionW -0.85 -1.00 -1.00 -0.83 -1.00 -1.00

pointingW 0.80 1.00 1.00 0.83 1.00 1.00

speechW 0.95 1.00 1.00 1.00 1.00 1.00

realWorldW 0.20 0.20 0.20 0.20 0.20 0.20

historyW 0.56 0.60 0.60 0.56 0.60 0.60

speechW 0.04 0.20 0.20 0.04 0.20 0.20

Slot Weight Centroid Closest Frequent Centroid Closest Frequent

realWorldW 0.20 0.20 0.20 0.20 0.20 0.20

historyW 0.60 0.60 0.60 0.60 0.60 0.60

speechW 1.00 1.00 1.00 1.00 1.00 1.00

realWorldW 0.09 0.12 n/a 0.09 0.12 n/a

historyW 0.83 0.84 n/a 0.92 0.84 n/a

fieldOfVisionW -0.73 -0.63 n/a -0.79 -0.63 n/a

pointingW 0.02 -0.06 n/a 0.01 -0.06 n/a

speechW 1.06 0.92 n/a 1.00 0.92 n/a

realWorldW 1.10 1.24 n/a 0.96 1.08 n/a

historyW 0.56 0.60 n/a 0.58 0.54 n/a

fieldOfVisionW -1.32 -1.08 n/a -0.78 -0.92 n/a

pointingW 0.30 0.52 n/a 0.34 0.52 n/a

speechW 0.70 0.76 n/a 0.67 0.55 n/a

realWorldW 0.88 0.84 1.00 0.88 0.84 1.00

historyW 0.19 0.12 0.20 0.19 0.12 0.20

speechW 0.17 0.12 0.20 0.17 0.12 0.20

object

Reconstruction Error Peakedness

Reconstruction Error Peakedness

no errors

errors

tools

condition

condition

action

action

object

tools

 

Table 5.8: Sets of Best Weights. 

As shown, in some cases, the different methods identified the same set of weights. 
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Next, we calculated the Fusion Error Rate (FER) for the 20 logs with errors 

using the sets of “best” weights as determined. The results are shown in Table 

5.9 and Table 5.10.  

Weights N.*.* E.*.*

realWorldW -0.20 0.20

historyW 0.20 0.60

speechW 0.60 1.00

Log 1a 37% 35%

Log 1b 55% 57%

Log 1c 47% 50%

Log 2a 39% 40%

Log 2b 38% 37%

Log 2c 33% 33%

Log 3 33% 27%

Log 4 27% 24%

Log 5 23% 23%

Log 6a 42% 45%

Log 6b 41% 38%

Log 6c 31% 29%

Log 6d 30% 30%

Log 6e 27% 28%

Log 6f 36% 34%

Log 7a 40% 38%

Log 7b 38% 37%

Log 7c 37% 36%

Log 7d 42% 40%

Log 7e 31% 30%

Average 36% 35%

FER (action slot)  

Weights N.R.Ce N.*.Cl/F N.P.Ce E.R.Ce E.*.Cl E.P.Ce

realWorldW -0.18 -0.20 -0.17 0.09 0.12 0.09

historyW 0.58 0.60 0.57 0.83 0.84 0.92

fieldOfVisionW -0.11 -0.20 -0.18 -0.73 -0.63 -0.79

pointingW 0.14 0.20 0.17 0.02 -0.06 0.01

speechW 0.97 1.00 0.95 1.06 0.92 1.00

Log 1a 46% 47% 47% 41% 35% 36%

Log 1b 43% 44% 44% 41% 35% 35%

Log 1c 54% 56% 54% 53% 48% 49%

Log 2a 49% 49% 49% 48% 43% 43%

Log 2b 53% 56% 56% 45% 38% 38%

Log 2c 46% 46% 46% 41% 37% 36%

Log 3 36% 36% 36% 36% 36% 37%

Log 4 30% 30% 30% 28% 31% 32%

Log 5 23% 24% 23% 22% 25% 26%

Log 6a 55% 57% 56% 48% 39% 41%

Log 6b 45% 46% 45% 42% 36% 36%

Log 6c 51% 51% 51% 48% 47% 47%

Log 6d 47% 47% 47% 42% 39% 40%

Log 6e 45% 45% 45% 40% 37% 37%

Log 6f 52% 54% 46% 44% 39% 39%

Log 7a 45% 45% 45% 42% 37% 37%

Log 7b 43% 43% 43% 41% 34% 34%

Log 7c 48% 48% 48% 44% 41% 41%

Log 7d 46% 49% 46% 44% 36% 36%

Log 7e 35% 35% 35% 34% 30% 29%

Average 44.5% 45.3% 44.6% 41.2% 37.3% 37.4%

FER (object slot)  

Table 5.9: Fusion Error Rate (FER) for Action and Object Slots. 

Weights N.R.Ce N.*.Cl/F N.P.Ce E.R.Ce E.R.Cl E.P.Ce E.P.Cl

realWorldW 0.95 1.00 1.00 1.10 1.24 0.96 1.08

historyW 0.55 0.60 0.60 0.56 0.60 0.58 0.54

fieldOfVisionW -0.85 -1.00 -0.83 -1.32 -1.08 -0.78 -0.92

pointingW 0.80 1.00 0.83 0.30 0.52 0.34 0.52

speechW 0.95 1.00 1.00 0.70 0.76 0.67 0.55

Log 1a 61% 63% 60% 57% 56% 56% 54%

Log 1b 53% 55% 53% 53% 55% 53% 55%

Log 1c 58% 61% 58% 59% 57% 57% 57%

Log 2a 37% 38% 37% 36% 35% 36% 37%

Log 2b 55% 57% 55% 54% 53% 53% 52%

Log 2c 54% 54% 54% 53% 52% 52% 52%

Log 3 47% 48% 47% 46% 45% 46% 45%

Log 4 73% 74% 73% 74% 73% 74% 73%

Log 5 38% 38% 38% 36% 36% 36% 36%

Log 6a 61% 64% 60% 55% 57% 55% 59%

Log 6b 45% 47% 45% 45% 44% 44% 46%

Log 6c 38% 40% 39% 38% 36% 34% 32%

Log 6d 41% 42% 41% 38% 38% 36% 36%

Log 6e 34% 35% 34% 32% 31% 29% 31%

Log 6f 53% 58% 53% 51% 48% 52% 50%

Log 7a 32% 33% 32% 32% 31% 31% 30%

Log 7b 32% 35% 32% 31% 29% 29% 28%

Log 7c 35% 38% 36% 32% 32% 31% 31%

Log 7d 40% 42% 41% 38% 37% 37% 39%

Log 7e 43% 43% 43% 40% 40% 39% 38%

Average 46.5% 48.3% 46.6% 45.0% 44.2% 44.1% 44.0%

FER (tools slot)  

Weights N.*.Ce N.*.Cl/F E.*.Ce E.*.Cl E.*.F

realWorldW 0.20 0.20 0.88 0.84 1.00

historyW 0.56 0.60 0.19 0.12 0.20

speechW 0.04 0.20 0.17 0.12 0.20

Log 1a 20% 22% 16% 16% 16%

Log 1b 45% 43% 53% 53% 53%

Log 1c 39% 38% 49% 49% 49%

Log 2a 23% 25% 18% 18% 18%

Log 2b 26% 28% 21% 20% 21%

Log 2c 31% 32% 25% 25% 25%

Log 3 49% 48% 62% 63% 62%

Log 4 26% 25% 29% 29% 29%

Log 5 30% 30% 34% 34% 34%

Log 6a 26% 26% 24% 24% 24%

Log 6b 24% 27% 19% 19% 19%

Log 6c 23% 23% 20% 20% 20%

Log 6d 23% 24% 20% 20% 20%

Log 6e 24% 25% 19% 19% 19%

Log 6f 23% 25% 19% 19% 19%

Log 7a 29% 30% 24% 24% 24%

Log 7b 27% 29% 26% 26% 26%

Log 7c 30% 31% 26% 26% 26%

Log 7d 29% 29% 21% 21% 21%

Log 7e 20% 21% 15% 15% 15%

Average 28.36% 29.14% 27.05% 27.04% 27.08%

FER (condition slot)  

Table 5.10: Fusion Error Rate (FER) for Tools and Condition Slots. 

The weights are denoted using the following nomenclature: 
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X.Y.Z 

where: 

X =  N, if the weights were determined using the “no errors” data 

 E, if the weights were determined using the “errors” data 

 

Y = R, if k was determined using reconstruction error 

 P, if k was determined using peakedness 

 *, if the weights were the same for both methods of determining k 

 

Z =  Ce, if the weights were the centroid of the largest cluster 

 Cl, if the weights were the ones closest to the centroid of the largest cluster 

 F, if the weights were the most frequent weights in the largest cluster 

 Cl/F, if the weights closest to the centroid were also the most frequent 

 *, if the weights closest to the centroid were the same as the centroid and 

 also the most frequent 

The FER was calculated as follows: 

f = e / t  

where: 

f is the Fusion Error Rate (FER) 

e is the number of incorrect Fusion Sessions 

t is the total number of Fusion Sessions in the log (Table 5.1) 
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The number of incorrect Fusion Sessions, e, was determined by comparing the slot 

value determined using the weights under consideration with the correct slot value. 

For example, if the number of slots determined incorrectly for Log 1a was 93, the 

FER would be calculated as follows: 

f = e / t  

f = 93 / 252 

f = 37% 

It was determined that one set of weights could not produce the lowest FER for all 

logs, as illustrated in Figure 5.10 through Figure 5.13. 
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Figure 5.10: Fusion Error Rates (FER) for All Logs for Action Slot. 
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Figure 5.11: Fusion Error Rates (FER) for All Logs for Object Slot. 
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Figure 5.12: Fusion Error Rates (FER) for All Logs for Tools Slot. 
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Figure 5.13: Fusion Error Rates (FER) for All Logs for Condition Slot. 

However, averaging the FER across all logs (Table 5.9 and Table 5.10), the 

weights from the data with “errors” that are the closest to the centroid of the largest 

cluster using the k determined by peakedness produce the best average FER across all 

logs. These weights are in the columns labeled E.*.* and E.*.Cl in Table 5.9 and 

E.P.Cl and E.*.Cl in Table 5.10. 

5.8 Comparison with Arbitrary Weights 
In order to assess the quality of the optimum Fusion weights relative to any 

arbitrary weights, we plotted the FER for an arbitrary set of weights. We varied the 

weights from –1.0 to 1.0 in 0.5 increments, calculated the FER, and plotted the results 

in Figure 5.14. 
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Figure 5.14: Fusion Error Rate (FER) for Arbitrary Weights. 

For comparison, we included all the weights determined by clustering. As shown, 

the set of the Fusion weights is important. 

5.9 Fusion Weights Used for Experiments 
We used the set of weights from the data with “errors” that is the closest to the 

centroid of the largest cluster using the k determined by peakedness, which are 

summarized in Table 5.11. 
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Slot Weight Centroid Closest Frequent Centroid Closest Frequent

realWorldW 0.20 0.20 0.20 0.20 0.20 0.20

historyW 0.60 0.60 0.60 0.60 0.60 0.60

speechW 1.00 1.00 1.00 1.00 1.00 1.00

realWorldW 0.09 0.12 n/a 0.09 0.12 n/a

historyW 0.83 0.84 n/a 0.92 0.84 n/a

fieldOfVisionW -0.73 -0.63 n/a -0.79 -0.63 n/a

pointingW 0.02 -0.06 n/a 0.01 -0.06 n/a

speechW 1.06 0.92 n/a 1.00 0.92 n/a

realWorldW 1.10 1.24 n/a 0.96 1.08 n/a

historyW 0.56 0.60 n/a 0.58 0.54 n/a

fieldOfVisionW -1.32 -1.08 n/a -0.78 -0.92 n/a

pointingW 0.30 0.52 n/a 0.34 0.52 n/a

speechW 0.70 0.76 n/a 0.67 0.55 n/a

realWorldW 0.88 0.84 1.00 0.88 0.84 1.00

historyW 0.19 0.12 0.20 0.19 0.12 0.20

speechW 0.17 0.12 0.20 0.17 0.12 0.20

object

Reconstruction Error Peakedness

errors

tools

condition

action

 

Table 5.11: Fusion Weights Used for Experiments. 
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Chapter 6 Experimental Results 
The hypothesis for this research project is that “Applying the Human Computer 

Interaction (HCI) concepts of using multiple modalities, dialog management, context, 

and semantics to Human Robot Interaction (HRI) will improve the performance of 

Instruction Based Learning (IBL) compared to only using speech”. We tested the 

hypothesis by simulating a domestic robot that can be taught to clean a house using a 

multi-modal interface. 

The hypothesis was tested with the following seven scenarios and three grounding 

modes (Optimistic, Cautious, and Pessimistic): 

• Speech only (no modalities and no context) 

• Speech + Real World Context (one type of context) 

• Speech + Dialog History (another type of context) 

• Speech + Pointing (one type of modality) 

• Speech + Field of Vision (another type of modality) 

• Speech + Head Nodding (another type of modality) 

• Speech + All 

All 166 tasks in the corpus were tested in each of the 21 combinations of dialog 

modes and scenarios. 

The learning process was evaluated using two metrics: 

How many times did the robot ask a “clarifying” question? 

How many times did the robot learn the task correctly? 
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The measurements from each experiment are provided in the Appendix and 

analyzed in detail in this chapter. 

A total of 210 experiments were performed, during which the robot was taught 

3,486 tasks [40]. Each task took an average of 1.07 minutes to teach. 

6.1 Speech Only 
The results of the Speech Only (no modalities and no context) experiments are 

summarized in Figure 6.1. 
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Figure 6.1: Speech Only Results. 

Each of the three points represents the results of teaching the robot 166 tasks in 

one of the grounding modes. 
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The y-axis values, Questions/Task, were calculated by dividing the total number of 

Clarifying Questions by the total number of Tasks Learned Correctly as follows: 

Questions/Task (Optimistic) = 670 / 106 = 6.3 

Questions/Task (Cautious) = 1026 / 118 = 8.7 

Questions/Task (Pessimistic) = 1280 / 117 = 10.9 

The x-axis values, Learned Tasks, were calculated by dividing the total number of 

Tasks Learned Correctly by the total number of Tasks in Lesson Plan as follows: 

Learned Task (Optimistic) = 106 / 166 = 64% 

Learned Task (Cautious) = 118 / 166 = 71% 

Learned Task (Pessimistic) = 117 / 166 = 70% 

The results indicate that the number of questions asked by the robot is as expected, 

with Optimistic being the least and Pessimistic being the most. The accuracy of the 

tasks learned correctly is lower when the robot assumes its understanding is correct 

without asking any clarifying questions (Optimistic). Pessimistic grounding with 

more questions did not seem to improve the Learned Task accuracy over Cautious 

grounding with fewer questions. However, the difference between the two is only 1% 

and is probably statistically insignificant. 

These results will be used in later sections as a baseline for determining if other 

modalities and context do indeed improve the human robot interaction. 

Before examining the results of the other experiments, we will first look at which 

grounding mode is “better”. 
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A “perfect score” would be 0 Questions per Task and 100% Learned Tasks as 

shown in Figure 6.1. Thus, one way to measure which grounding mode is better, is to 

calculate the Euclidean distance from the “perfect score” to each point as follows: 

di = sqrt((1 - xi)
2
 + (0 - yi)

2
) 

where, 

i = Grounding mode: Optimistic, Cautious, or Optimistic 

xi = Learned Tasks for grounding mode i 

yi = Normalized Questions/Task for grounding mode i 

Using this method, a smaller di indicates a better human robot interaction. Table 

6.1 shows these calculations for the Speech Only results of Figure 6.1. 

Grounding % Correct Questions/Task

Normalized 

Questions/Task

Euclidean 

Distance

Optimistic 64% 6.3 0.58 0.68

Cautious 71% 8.7 0.79 0.85

Pessimistic 70% 10.9 1.00 1.04  

Table 6.1: Euclidean Distance for Speech Only Results. 

Using this approach indicates that Optimistic grounding is better than Cautious 

grounding, and Cautious grounding is better than Pessimistic grounding. However, 

this approach makes an implicit assumption about the importance of not asking too 

many questions versus understanding the task correctly. In the real world, this 

importance depends on the application. For example, the importance of getting the 

task correct would be much more important than not asking too many questions for a 

robot surgeon. On the other hand, getting the task somewhat correct might be less 
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important to a robot building a structure on Mars than not asking too many questions 

because of the time-delay in the communications between Mars and Earth. 

We can address this issue by introducing a constant, which we will call λ, where, 

λ = importance of understanding the task correctly (accuracy) 

1 - λ = importance of not asking too many questions (succinctness) 

0 ≤ λ ≤ 1 

Now the HRI measure, which we will refer to as hi, is calculated as follows: 

hi = sqrt(λ(1 - xi)
2
 + (1 - λ)(0 - yi)

2
) 

where, 

i = Grounding mode: Optimistic, Cautious, or Optimistic 

xi = Learned Tasks for grounding mode i 

yi = Normalized Questions/Task for grounding mode i 

λ = importance of understanding the task correctly (accuracy) 

A lower value of hi is better than a higher one. 

Figure 6.2 shows a plot of hi for various values of λ. (The values used for λ in 

Figure 6.2 and all other plots of hi for various values of λ are 0.0, 0.2, 0.4, 0.6, 0.8, 

and 1.0). 
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Figure 6.2: Speech Only Comparison of Grounding Modes. 

Figure 6.2 illustrates that for λ less than 0.8 (i.e., the importance of accuracy is less 

than 80%), Optimistic grounding is the best (i.e., the HRI measure is the lowest). It 

also shows that as λ increases (i.e., accuracy becomes more important), Optimistic 

grounding becomes the worst (i.e., the HRI measure is the highest). Figure 6.2 shows 

that for all values of λ, Cautious grounding is better than Pessimistic. 

6.2 Speech + Real World Context 
The results of the Speech + Real World Context (one type of context) experiments 

are summarized and compared with the results of the Speech Only experiments in 

Figure 6.3. 
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Figure 6.3: Speech + Real World Context Results. 

Figure 6.3 illustrates that: 

• Real World Context improves HRI (Human Robot Interaction) in terms of both 

Questions/Task and Learned Tasks for Cautious and Pessimistic grounding. 

• Real World Context improves HRI in terms of Questions/Task, but not in terms of 

Learned Tasks for Optimistic grounding. This is probably due to the robot not 

verifying incorrect slot values assumed from Real World Context. Thus, the robot 

asks fewer questions because it assumes more from its Real World Context, but it 

is wrong more often because its assumed data are incorrect. 

To determine if the hypothesis that Real World Context improves HRI is true, a 

dependent t-test was performed comparing the Speech Only h with the Speech + Real 
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World Context h for various values of λ [68]. Table 6.2 shows that Real World 

Context improves HRI for all values of λ with a less than 16% probability that the 

results are due to chance. 

Lambda 0.0 0.2 0.4 0.6 0.8 1.0

Speech + Real World Context Mean 0.70 0.64 0.57 0.50 0.40 0.27

Speech Only Mean 0.79 0.72 0.65 0.56 0.46 0.32

Probability results are due to chance 5% 6% 6% 8% 10% 16%  

Table 6.2: Dependent T-Test of Speech Only and Speech + Real World Context. 

Figure 6.4 displays a comparison of grounding modes for the Speech + Real World 

Context experiments for various values of λ. 
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Figure 6.4: Speech + Real World Context Comparison of Grounding Modes. 

Figure 6.4 shows that for λ less than 0.8 (i.e., the importance of accuracy is less 

than 80%), Optimistic grounding is the best (i.e., the HRI measure is the lowest), 

Cautious grounding is worse, and Pessimistic grounding is the worst (i.e., the HRI 
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measure is the highest). It also shows that as λ increases (i.e., accuracy becomes more 

important), Pessimistic grounding becomes the best, Cautious grounding is worse, 

and Optimistic grounding is the worst. 

6.3 Speech + Dialog History 
The results of the Speech + Dialog History (another type of context) experiments 

are summarized and compared with the results of the Speech Only experiments in 

Figure 6.5. 
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Figure 6.5: Speech + Dialog History Results. 

Figure 6.5 shows: 

• Dialog History improves HRI in terms of both Questions/Task and Learned Tasks 

for Optimistic and Pessimistic grounding. 
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• Dialog History improves HRI in terms of Learned Tasks, but not in terms of 

Questions/Task for Cautious grounding. This is probably due to the robot not 

verifying incorrect slot values, assumed from Dialog History, early enough in the 

dialog, requiring additional questions to correct later on in the dialog.  

To determine if the hypothesis that Dialog History improves HRI is true, a 

dependent t-test was performed comparing the Speech Only h with the Speech + 

Dialog History h for various values of λ [68]. Table 6.3 shows that Dialog History 

improves HRI for all values of λ with a less than 16% probability that the results are 

due to chance. 

Lambda 0.0 0.2 0.4 0.6 0.8 1.0

Speech + Dialog History Mean 0.67 0.61 0.55 0.47 0.37 0.21

Speech Only Mean 0.79 0.72 0.65 0.56 0.46 0.32

Probability results are due to chance 16% 15% 13% 11% 7% 1%  

Table 6.3: Dependent T-Test of Speech Only and Speech + Dialog History. 

Figure 6.6 shows a comparison of grounding modes for the Speech + Dialog 

History experiments for various values of λ. 
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Figure 6.6: Speech + Dialog History Comparison of Grounding Modes. 

Figure 6.6 illustrates that for λ less than 0.8 (i.e., the importance of accuracy is less 

than 80%), Optimistic grounding is the best (i.e., the HRI measure is the lowest), 

Pessimistic grounding is worse, and Cautious grounding is the worst (i.e., the HRI 

measure is the highest). It also shows that as λ increases (i.e., accuracy becomes more 

important), Pessimistic grounding becomes the best, Cautious grounding is worse, 

and Optimistic grounding is the worst. It also shows that for all values of λ, 

Pessimistic grounding is better than Cautious grounding. 
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6.4 Speech + Pointing 
The results of the Speech + Pointing (one type of modality) experiments are 

summarized and compared with the results of the Speech Only experiments in Figure 

6.7. 
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Figure 6.7: Speech + Pointing Results. 

Figure 6.7 shows: 

• Pointing improves HRI in terms of both Questions/Task and Learned Tasks for 

Optimistic, Cautious, and Pessimistic grounding. 

To determine if the hypothesis that Pointing improves HRI is true, a dependent t-

test was performed comparing the Speech Only h with the Speech + Pointing h for 

various values of λ [68]. Table 6.4 shows that Pointing improves HRI for all values of 

λ with a less than 2% probability that the results are due to chance. 
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Lambda 0.0 0.2 0.4 0.6 0.8 1.0

Speech + Pointing Mean 0.67 0.60 0.53 0.44 0.33 0.15

Speech Only Mean 0.79 0.72 0.65 0.56 0.46 0.32

Probability results are due to chance 1.4% 0.9% 0.5% 0.2% 0.2% 0.3%  

Table 6.4: Dependent T-Test of Speech Only and Speech + Pointing. 

Figure 6.8 shows a comparison of grounding modes for the Speech + Pointing 

experiments for various values of λ. 
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Figure 6.8: Speech + Pointing Comparison of Grounding Modes. 

Figure 6.8 shows that for λ less than 0.8 (i.e., the importance of accuracy is less 

than 80%), Optimistic grounding is the best (i.e., the HRI measure is the lowest), 

Cautious grounding is worse, and Pessimistic grounding is the worst (i.e., the HRI 

measure is the highest). It also shows that as λ increases (i.e., accuracy becomes more 

important), Pessimistic grounding becomes the best, Cautious grounding is worse, 

and Optimistic grounding is the worst.  
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6.5 Speech + Field of Vision 
The results of the Speech + Field of Vision (another type of modality) experiments 

are summarized and compared with the results of the Speech Only experiments in 

Figure 6.9. 
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Figure 6.9: Speech + Field of Vision Results. 

Figure 6.9 shows: 

• Field of Vision improves HRI in terms of both Questions/Task and Learned Tasks 

for Optimistic, Cautious, and Pessimistic grounding. 

To determine if the hypothesis that Field of Vision improves HRI is true, a 

dependent t-test was performed comparing the Speech Only h with the Speech + Field 

of Vision h for various values of λ [68]. Table 6.5 shows that Field of Vision 
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improves HRI for all values of λ with a less than 0.6% probability that the results are 

due to chance. 

Lambda 0.0 0.2 0.4 0.6 0.8 1.0

Speech +  Field of Vision Mean 0.67 0.60 0.52 0.44 0.33 0.14

Speech Only Mean 0.79 0.72 0.65 0.56 0.46 0.32

Probability results are due to chance 0.6% 0.3% 0.1% 0.1% 0.2% 0.4%  

Table 6.5: Dependent T-Test of Speech Only and Speech + Field of Vision. 

Figure 6.10 displays a comparison of grounding modes for the Speech + Field of 

Vision experiments for various values of λ. 
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Figure 6.10: Speech + Field of Vision Comparison of Grounding Modes. 

Figure 6.10 illustrates that for λ less than 0.8 (i.e., the importance of accuracy is 

less than 80%), Optimistic grounding is the best (i.e., the HRI measure is the lowest), 

Cautious grounding is worse, and Pessimistic grounding is the worst (i.e., the HRI 

measure is the highest). It also shows that as λ increases (i.e., accuracy becomes more 
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important), Pessimistic grounding becomes the best, Cautious grounding is worse, 

and Optimistic grounding is the worst.  

6.6 Speech + Head Nodding 
The results of the Speech + Head Nodding (another type of modality) experiments 

are summarized and compared with the results of the Speech Only experiments in 

Figure 6.11. 
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Figure 6.11: Speech + Head Nodding Results. 

Figure 6.11 illustrates: 

• Head Nodding improves HRI in terms of both Questions/Task and Learned Tasks 

for Optimistic, Cautious, and Pessimistic grounding. 

161  



• Pessimistic grounding with more questions did not seem to improve the Learned 

Task accuracy over Cautious grounding with fewer questions.  

To determine if the hypothesis that Head Nodding improves HRI is true, a 

dependent t-test was performed comparing the Speech Only h with the Speech + 

Head Nodding h for various values of λ [68]. Table 6.6 shows that Head Nodding 

improves HRI for all values of λ with a less than 2% probability that the results are 

due to chance. 

Lambda 0.0 0.2 0.4 0.6 0.8 1.0

Speech +  Head Nodding Mean 0.68 0.61 0.54 0.45 0.34 0.15

Speech Only Mean 0.79 0.72 0.65 0.56 0.46 0.32

Probability results are due to chance 1.99% 1.24% 0.58% 0.12% 0.01% 0.01%  

Table 6.6: Dependent T-Test of Speech Only and Speech + Head Nodding. 

Figure 6.12 displays a comparison of grounding modes for the Speech + Head 

Nodding experiments for various values of λ. 
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Figure 6.12: Speech + Head Nodding Comparison of Grounding Modes. 

Figure 6.12 shows that for λ less than 0.8 (i.e., the importance of accuracy is less 

than 80%), Optimistic grounding is the best (i.e., the HRI measure is the lowest), 

Cautious grounding is worse, and Pessimistic grounding is the worst (i.e., the HRI 

measure is the highest). It also shows that as λ increases (i.e., accuracy becomes more 

important), Optimistic grounding becomes the worst (i.e., the HRI measure is the 

highest). Figure 6.12 shows that for most values of λ, Cautious grounding is better 

than Pessimistic. 
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6.7 Speech + All 
The results of the Speech + All experiments are summarized and compared with 

the results of the Speech Only experiments in Figure 6.13. All refers to Real World 

Context, Dialog History, Pointing, Field of Vision, and Head Nodding. 
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Figure 6.13: Speech + All Results. 

Figure 6.13 shows: 

• All (Real World Context, Dialog History, Pointing, Field of Vision, and Head 

Nodding) improves HRI in terms of both Questions/Task and Learned Tasks for 

Optimistic and Pessimistic grounding. 

• All improves HRI in terms of Learned Tasks, but not in terms of Questions/Task 

for Cautious grounding. This is probably due to the robot not verifying incorrect 

slot values, assumed from Dialog History, early enough in the dialog, requiring 
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additional questions to correct later on in the dialog. This phenomenon was also 

identified in the results of Speech + Dialog History. 

To determine if the hypothesis that All improves HRI is true, a dependent t-test 

was performed comparing the Speech Only h with the Speech + All h for various 

values of λ [68]. Table 6.7 shows that All improves HRI for all values of λ with a less 

than 24% probability that the results are due to chance. 

Lambda 0.0 0.2 0.4 0.6 0.8 1.0

Speech +  All Mean 0.72 0.65 0.58 0.49 0.38 0.18

Speech Only Mean 0.79 0.72 0.65 0.56 0.46 0.32

Probability results are due to chance 24% 22% 19% 14% 7% 3%  

Table 6.7: Dependent T-Test of Speech Only and Speech + All. 

Figure 6.14 illustrates a comparison of grounding modes for the Speech + All 

experiments for various values of λ. 
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Figure 6.14: Speech + All Comparison of Grounding Modes. 

Figure 6.14 shows that for λ less than 0.8 (i.e., the importance of accuracy is less 

than 80%), Optimistic grounding is the best (i.e., the HRI measure is the lowest), 

Pessimistic grounding is worse, and Cautious grounding is the worst (i.e., the HRI 

measure is the highest). It also shows that as λ increases (i.e., accuracy becomes more 

important), Optimistic grounding becomes the worst (i.e., the HRI measure is the 

highest).  

Figure 6.14 displays that for all values of λ, Pessimistic grounding is better than 

Cautious. 
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6.8 Dialog Management 
In the earlier sections of this chapter, we analyzed the impact of modality and 

context on HRI. In this section, we will analyze the impact of dialog management by 

looking at the experimental results from the perspective of the dialog management 

grounding modes. Figure 6.15 illustrates the comparison of the results for each of 

combinations of modalities, contexts, and grounding modes. 
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Figure 6.15: Results from All Experiments. 

To determine if the hypothesis that dialog management improves HRI is true, a 

dependent t-test was performed comparing the h of the grounding modes for various 

values of λ [68]. With a less than 1% probability that the results are due to chance, 

Table 6.8 shows that Optimistic grounding improves HRI more than Cautious 
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grounding for values of λ up through 0.8. However, when λ is 1.0, Cautious 

grounding improves HRI more than Optimistic grounding. 

Lambda 0.0 0.2 0.4 0.6 0.8 1.0

Cautious Mean 0.76 0.68 0.60 0.50 0.38 0.19

Optimistic Mean 0.47 0.44 0.41 0.37 0.32 0.27

Probability results are due to chance 0.1% 0.1% 0.1% 0.2% 0.9% 0.1%  

Table 6.8: Dependent T-Test of Optimistic and Cautious Grounding. 

With a less than 0.1% probability that the results are due to chance, Table 6.9 

illustrates that Optimistic grounding improves HRI more than Pessimistic grounding 

for values of λ up through 0.8. However, when λ is 1.0, Pessimistic grounding 

improves HRI more than Optimistic grounding. 

Lambda 0.0 0.2 0.4 0.6 0.8 1.0

Pessimistic Mean 0.87 0.78 0.68 0.56 0.41 0.15

Optimistic Mean 0.47 0.44 0.41 0.37 0.32 0.27

Probability results are due to chance 0.00% 0.00% 0.00% 0.00% 0.05% 0.09%  

Table 6.9: Dependent T-Test of Optimistic and Pessimistic Grounding. 

With a less than 6% probability that the results are due to chance, Table 6.10 

shows that Cautious grounding improves HRI more than Pessimistic grounding for 

values of λ up through 0.8. However, when λ is 1.0, Pessimistic grounding improves 

HRI more than Cautious grounding. 

Lambda 0.0 0.2 0.4 0.6 0.8 1.0

Pessimistic Mean 0.87 0.78 0.68 0.56 0.41 0.15

Cautious Mean 0.76 0.68 0.60 0.50 0.38 0.19

Probability results are due to chance 2% 2% 2% 3% 6% 1%  

Table 6.10: Dependent T-Test of Cautious and Pessimistic Grounding. 

6.9 Comparison of Results 
Table 6.2 through Table 6.7 provide experimental evidence that the following 

combinations of modality and context do indeed improve HRI over speech by itself 
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for all values of λ (i.e., ratio of importance of accuracy to succinctness) as 

hypothesized: 

• Speech + Real World Context (one type of context) 

• Speech + Dialog History (another type of context) 

• Speech + Pointing (one type of modality) 

• Speech + Field of Vision (another type of modality) 

• Speech + Head Nodding (another type of modality) 

• Speech + All (Real World Context, Dialog History, Pointing, Field of Vision, and 

Head Nodding) 

Table 6.8 through Table 6.10 provide experimental evidence that the dialog 

management grounding mode that improves HRI the best is dependent on the value of 

λ (i.e., ratio of importance of accuracy to succinctness) as might be expected, with 

Optimistic grounding being the best for values of λ less than or equal to 0.8, and 

Pessimistic grounding being the best for values greater than 0.8. The Pareto principle 

(a.k.a., the 80-20 rule) says that, for many events, 80% of the effects come from 20% 

of the causes [42]. The Pareto principle is often generalized to apply to any 

phenomenon where the 80-20 ratio occurs. The experimental evidence indicates that 

the Pareto principle also applies here because Optimistic grounding is the best for 

80% of the values of λ, and Pessimistic grounding is the best for 20% of the values of 

λ.  

The experimental evidence also suggests that Cautious grounding is of limited use 

since it is never the best choice for any values of λ that we tested. 
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Chapter 7 Semantic Integration with 

Neural Networks 
We have discussed one method for fusing the inputs from multiple modalities and 

contexts. The method multiplies the confidence score provided by the modalities and 

contexts for each input by a Fusion Weight, sums the products, and then uses the 

input with highest product sum. 

Other methods, such as neural networks could be used, as studied in this 

dissertation. The inputs to the neural network are the confidence scores from each 

modality and context input and the outputs are binary: this is the Best choice or this is 

Not the Best choice. 

Two of the log files shown in Table 5.1 were used, one as a training set (object 

slots from Log 1a) and one as a test set (object slots from Log 7e). The training set 

consists of 4,674 Not Best samples and 204 Best samples. The test set consists of 

2,969 Not Best samples and 185 Best samples. Both sets are unbalanced, in that the 

number of Not Best samples is much greater than the number of Best samples. This is 

because, of the numerous possibilities suggested by the five modality and context 

inputs, only one can be the Best. 

The experiments consist of: 

• Use two Bayesian classifiers, one using Euclidean distance and the other using 

Mahalanobis distance [2], to classify the test data based on the statistics of the 

training set. 
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• Use a neural network with various hidden nodes and one output node, 1 for Best 

and 0 for Not Best. 

• Use a neural network with various hidden nodes and two output nodes, one for 

Best and one for Not Best. 

• Use a strict output constraint where the result is 0, if the output is less than 0.1; 1 

if the output is greater than 0.9; and inconclusive otherwise. 

• Use a “fuzzy” output constraint where for one output, the result is 0, if the output 

is less than 0.5; 1 if the output is greater than 0.5; and inconclusive otherwise (i.e., 

the output is equal to 0.5); for two outputs, the result is 0, for the smaller output; 1 

for the larger output; and inconclusive, if they are equal. 

• Use the unbalanced training set. 

• Use a small balanced training set consisting of all the Best samples plus an equal 

amount of randomly selected Not Best samples. 

• Use a large balanced training set consisting of all the Not Best samples plus an 

equal amount of duplicated Best samples. 

The set-up and results for each of these is discussed in this chapter. 

7.1 Bayesian Classifier 
Two different Bayesian Classifiers were used. One classified based on the 

Euclidean distance between the test sample and the training sample means; the other 

classified based on the Mahalanobis distance between the test sample and the training 

sample means weighted by their standard deviations. 

The Euclidean distance was calculated as follows: 
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dEj = sqrt[Σi = 1→5 (xi – μij)
2
] 

where, 

μij = mean of the ith feature (i.e., input) of the jth mean training vector 

j = 1 for Best 

j = 2 for Not Best 

The classification rule was: 

if dE1 < dE2, then x is Best 

else x is Not Best 

The Mahalanobis distance was calculated as follows: 

dMj = sqrt[Σi = 1→5 ((xi – μij) /σij)
 2
] 

where, 

μij = mean of the ith feature of the jth mean training vector 

σij = standard deviation of the ith feature of the jth mean training vector 

j = 1 for Best 

j = 2 for Not Best 

The classification rule was: 

if dM1 < dM2, then x is Best 

else x is Not Best 

The confusion matrix and percent correctly classified are shown in Table 7.1 for 

both Bayesian classifiers. 
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Best Not Best Unknown Best Not Best Unknown

Best 144 41 0 Best 171 14 0

Not Best 285 2684 0 Not Best 505 2464 0

Classified Correctly = 90% Classified Correctly = 84%

Euclidean Mahalanobis

Classified As

Input

Classified As

Input

 

Table 7.1: Bayesian Classifier Confusion Matrices. 

7.2 Neural Network Classifier 
The neural network classifier experiments were divided by training set and number 

of output nodes as follows: 

• Unbalanced training set and one output node 

• Small balanced training set and one output node 

• Large balanced training set and one output node 

• Unbalanced training set and two output nodes 

• Small balanced training set and two output nodes 

• Large balanced training set and two output nodes 

For each set of experiments, the number of hidden nodes in one layer was varied 

and the results for both the strict and fuzzy output rules were calculated. 

7.2.1 Unbalanced Training Set and One Output Node 

The neural network was set up with five inputs, one layer of h hidden nodes, and 

one output node. The nodes were fully interconnected between layers. Each node 

used the sigmoid function. The neural network was trained using the standard back-

propagation learning algorithm with an η of 0.05. 

The maximum number of iterations and Mean Square Error (MSE) requirement 

were determined experimentally. An initial run was made with h = 1, 2, 4, 8, 16, and 

173  



32. The MSE achieved is shown in Figure 7.1. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Iterations

M
S

E

1

2

4

8

16

32

 

Figure 7.1: Training Results for h = 1, 2, 4, 8, 16, and 32. 

The MSE curve has an elbow at 1,000 iterations. A closer look at the elbow 

reveals the following MSE in Table 7.2. 

h MSE

1 0.0416

2 0.0297

4 0.0320

8 0.0305

16 0.0289

32 0.0276

Average 0.0317  

Table 7.2: MSE at 1,000 Iterations. 

Since the MSE leveled off after the elbow, finding a maximum number of 

iterations that would allow the neural network to converge at around 0.03 in the 
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minimum amount of time would allow as many combinations to be tried as possible. 

Using h = 5 as a starting point, the neural network was trained 20 times to determine 

how long it took to converge to an MSE of 0.03. The results are shown in Table 7.3. 

Run
Iterations until 

MSE = 0.03

7 4                  

16 521                  

5 5                  

14 839                  

18 1,313                

10 1,411                

12 1,413                

11 1,606                

4 1                

3 2                

8 3                

1 3                

2 3                

6 4                

17 4,659                

15 7,324                

9 >10,000

13 >10,000

Median 2,212                

91

29

,942

,482

,333

,576

,756

,071

 

Table 7.3: Iterations Until MSE = 0.03 for h = 5. 

The median of the 20 runs was 2,212, which means half of the runs converged to 

0.03 (i.e., the steady state of the neural network) in less than 2,212 iterations. The 

value of 2,300 was chosen as the maximum number of iterations; and minimum MSE 

requirement was set at 0.0001. Theoretically, this should have given at least half the 

runs with an MSE better than the typical MSE of 0.03, and would allow enough 

latitude for a MSE 300 times better than the worst case MSE. 

Although 2,300 does not seem like a large number of iterations, each iteration 

actually involves 4,878 (the size of the training set) updates of the neural network 

175  



weights. 

The number of hidden nodes, h, was varied from 5 to 100 in increments of 5. 

The percent classified correctly for this experiment are compared with that of the 

Bayesian classifiers in Table 7.4 and Figure 7.2. The confusion matrices for each run 

are given in the Appendix. 

h Training Strict Test Fuzzy Test Euclidean Mahalanobis

5 83% 80% 96% 90% 84%

10 84% 82% 96% 90% 84%

15 85% 81% 95% 90% 84%

20 91% 82% 98% 90% 84%

25 87% 81% 98% 90% 84%

30 86% 81% 98% 90% 84%

35 93% 81% 98% 90% 84%

40 2% 1% 98% 90% 84%

45 96% 94% 96% 90% 84%

50 96% 95% 95% 90% 84%

55 95% 93% 95% 90% 84%

60 2% 4% 18% 90% 84%

65 2% 2% 18% 90% 84%

70 95% 94% 96% 90% 84%

75 96% 95% 96% 90% 84%

80 95% 93% 98% 90% 84%

85 2% 4% 6% 90% 84%

90 96% 95% 95% 90% 84%

95 92% 82% 98% 90% 84%

100 3% 5% 78% 90% 84%  

Table 7.4: Correctly Classified – Unbalanced Training Set – One Output. 
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Figure 7.2: Correctly Classified – Unbalanced Training Set – One Output. 

The neural network appears to be unstable with 40 or more hidden nodes. With 

less than 40 hidden nodes, the fuzzy output classifier performs better than both of the 

Bayesian classifiers and the strict output classifier performs worse than both of them, 

or 

Fuzzy > Euclidean > Mahalanobis > Strict 

Also the performance does not seem to vary significantly with the number of 

hidden nodes. 

7.2.2 Small Balanced Training Set and One Output Node 

The neural network was set up with five inputs, one layer of h hidden nodes, and 

one output node. The nodes were fully interconnected between layers. Each node 
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used the sigmoid function. The neural network was trained using the standard back-

propagation learning algorithm with an η of 0.05. 

The maximum number of iterations was set at 27,000. It is n times greater than the 

number used for Unbalanced Training Set, where n is the inverse of the ratio between 

the number of samples in the Unbalanced Training Set (4,878) and the Small 

Balanced Training Set (405). The number of hidden nodes, h, was varied from 5 to 35 

in increments of 5. The maximum value of h was chosen to be less than the number in 

the first experiment where the neural network appeared to be unstable. 

The percent classified correctly for this experiment are compared with that of the 

Bayesian classifiers in Table 7.5 and Figure 7.3. The confusion matrices for each run 

are given in the Appendix. 

h Training Strict Test Fuzzy Test Euclidean Mahalanobis

5 54% 70% 85% 90% 84%

10 46% 64% 86% 90% 84%

15 61% 67% 91% 90% 84%

20 72% 76% 91% 90% 84%

25 69% 77% 91% 90% 84%

30 69% 76% 91% 90% 84%

35 72% 76% 89% 90% 84%  

Table 7.5: Correctly Classified – Small Balanced Training Set – One Output. 
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Figure 7.3: Correctly Classified – Small Balanced Training Set – One Output. 

The fuzzy output classifier performs worse than the Euclidean classifier, but better 

than the Mahalanobis classifier for h = 5 and 10. For h = 15 to 35, it performs about 

the same as the Euclidean classifier. The strict output classifier performs worse than 

both of them, or: 

Euclidean > Fuzzy > Mahalanobis > Strict 

The performance seems to improve with more hidden nodes. 

7.2.3 Large Balanced Training Set and One Output Node 

The neural network was set up with five inputs, one layer of h hidden nodes, and 

one output node. The nodes were fully interconnected between layers. Each node 

used the sigmoid function. The neural network was trained using the standard back-
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propagation learning algorithm with an η of 0.05. The maximum number of iterations 

was set at 1,000. It is n times smaller than the number used for Unbalanced Training 

Set, where n is the inverse of the ratio between the number of samples in the 

Unbalanced Training Set (4,878) and the Large Balanced Training Set (9,349). The 

number of hidden nodes, h, was varied from 5 to 35 in increments of 5.  

The percent classified correctly for this experiment are compared with that of the 

Bayesian classifiers in Table 7.6 and Figure 7.4. The confusion matrices for each run 

are given in the Appendix. 

h Training Strict Test Fuzzy Test Euclidean Mahalanobis

5 20% 10% 84% 90% 84%

10 47% 67% 84% 90% 84%

15 51% 70% 85% 90% 84%

20 43% 62% 86% 90% 84%

25 43% 62% 85% 90% 84%

30 40% 62% 85% 90% 84%

35 43% 62% 85% 90% 84%  

Table 7.6: Correctly Classified – Large Balanced Training Set – One Output. 
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Figure 7.4: Correctly Classified – Large Balanced Training Set – One Output. 

Both the strict output and fuzzy output classifiers perform worse than the 

Euclidean classifier. The fuzzy output classifier performs about the same as the 

Mahalanobis classifier, and the strict output classifier performs worse than the 

Mahalanobis classifier, or: 

Euclidean > Fuzzy = Mahalanobis > Strict 

The performance does seem to vary with the number of hidden nodes. The strict 

classifier performs best with 15 hidden nodes and the fuzzy classifier with 20 hidden 

nodes. 

7.2.4 Unbalanced Training Set and Two Output Nodes 

The neural network was set up with five inputs, one layer of h hidden nodes, and 
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two output nodes. The nodes were fully interconnected between layers. Each node 

used the sigmoid function. The neural network was trained using the standard back-

propagation learning algorithm with an η of 0.05. The maximum number of iterations 

was set at 2,300. The number of hidden nodes, h, was varied from 5 to 35 in 

increments of 5.  

The percent classified correctly for this experiment are compared with that of the 

Bayesian classifiers in Table 7.7 and Figure 7.5. The confusion matrices for each run 

are given in the Appendix. 

h Training Strict Test Fuzzy Test Euclidean Mahalanobis

5 83% 79% 94% 90% 84%

10 81% 79% 95% 90% 84%

15 83% 79% 98% 90% 84%

20 84% 80% 95% 90% 84%

25 83% 81% 98% 90% 84%

30 83% 80% 96% 90% 84%

35 84% 80% 96% 90% 84%  

Table 7.7: Correctly Classified – Unbalanced Training Set – Two Outputs. 
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Figure 7.5: Correctly Classified – Unbalanced Training Set – Two Outputs. 

The fuzzy output classifier performs better than both of the Bayesian classifiers 

and the strict output classifier performs worse than both of them, or: 

Fuzzy > Euclidean > Mahalanobis > Strict 

Also the performance does not seem to vary significantly with the number of 

hidden nodes. 

These results are similar to those for the Unbalanced Training set with one output 

node and 5 to 35 hidden nodes. 

7.2.5 Small Balanced Training Set and Two Output Nodes 

The neural network was set up with five inputs, one layer of h hidden nodes, and 

two output nodes. The nodes were fully interconnected between layers. Each node 
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used the sigmoid function. The neural network was trained using the standard back-

propagation learning algorithm with an η of 0.05. The maximum number of iterations 

was set at 27,000. The number of hidden nodes, h, was varied from 5 to 35 in 

increments of 5.  

The percent classified correctly for this experiment are compared with that of the 

Bayesian classifiers in Table 7.8 and Figure 7.6. The confusion matrices for each run 

are given in the Appendix. 

h Training Strict Test Fuzzy Test Euclidean Mahalanobis

5 12% 2% 85% 90% 84%

10 15% 3% 86% 90% 84%

15 43% 63% 86% 90% 84%

20 45% 64% 91% 90% 84%

25 59% 65% 91% 90% 84%

30 42% 63% 92% 90% 84%

35 61% 66% 91% 90% 84%  

Table 7.8: Correctly Classified – Small Balanced Training Set – Two Outputs. 
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Figure 7.6: Correctly Classified – Small Balanced Training Set – Two Outputs. 

The fuzzy output classifier performs worse than the Euclidean classifier, but better 

than the Mahalanobis classifier for h = 5 to 15. For h = 20 to 35, it performs about the 

same as the Euclidean classifier. The strict output classifier performs significantly 

worse than both of them, or 

Euclidean > Fuzzy > Mahalanobis > Strict 

The performance seems to improve with more hidden nodes. 

These results are similar to those for the Small Balanced Training set with one 

output node. 

7.2.6 Large Balanced Training Set and Two Output Nodes 

The neural network was set up with five inputs, one layer of h hidden nodes, and 
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two output nodes. The nodes were fully interconnected between layers. Each node 

used the sigmoid function. The neural network was trained using the standard back-

propagation learning algorithm with an η of 0.05. The maximum number of iterations 

was set at 1,000. The number of hidden nodes, h, was varied from 5 to 35 in 

increments of 5.  

The percent classified correctly for this experiment are compared with that of the 

Bayesian classifiers in Table 7.9 and Figure 7.7. The confusion matrices for each run 

are given in the Appendix. 

h Training Strict Test Fuzzy Test Euclidean Mahalanobis

5 12% 1% 89% 90% 84%

10 37% 58% 83% 90% 84%

15 13% 2% 86% 90% 84%

20 40% 61% 85% 90% 84%

25 14% 4% 84% 90% 84%

30 40% 58% 85% 90% 84%

35 41% 62% 86% 90% 84%  

Table 7.9: Correctly Classified – Large Balanced Training Set – Two Outputs. 
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Figure 7.7: Correctly Classified – Large Balanced Training Set – Two Outputs. 

The fuzzy output classifier performs worse than the Euclidean classifier, and about 

the same as the Mahalanobis classifier. The strict output classifier performs 

significantly worse than both of them, or: 

Euclidean > Fuzzy > Mahalanobis > Strict 

The performance seems to be much better with an even number of hidden nodes. 

These results are not similar to those for the Large Balanced Training set with one 

output node. 

7.3 Analysis of Results 
The only neural network configurations that consistently outperformed the 

Bayesian classifiers were the Unbalance Training Set with one or two fuzzy output 
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nodes. The percent classified correctly for these two are compared with that of the 

Bayesian classifiers in Figure 7.8.  
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Figure 7.8: Correctly Classified – Unbalanced Training Set – Fuzzy Outputs. 

Configurations of 20 to 35 hidden nodes, one fuzzy output, and the Unbalanced 

Training Set appear to perform the best in comparison to both Bayesian classifiers. 

Because the test set is unbalanced, the performance on an individual class basis 

must also be examined. The percent of Not Best classified correctly for these two are 

compared with that of the Bayesian classifiers in Figure 7.9, and the percent of Best 

classified correctly are compared in Figure 7.10. 
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Figure 7.9: Classified Not Best – Unbalanced Training Set – Fuzzy Outputs. 
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Figure 7.10: Classified Best – Unbalanced Training Set – Fuzzy Outputs. 

Figure 7.9 shows that both fuzzy output classifiers classify Not Best practically 

100% correct and outperform both Bayesian classifiers, or: 

One Fuzzy Output = Two Fuzzy Outputs > Euclidean > Mahalanobis 

However, Figure 7.10 illustrates that both Bayesian classifiers outperform both 

fuzzy output classifiers at classifying Best, and that the Mahalanobis classifier is the 

best. Or: 

Mahalanobis > Euclidean > One Fuzzy Output > Two Fuzzy Outputs 

Because of this, the results of these experiments are inconclusive. 

Some type of ensemble of classifiers (e.g., Mahalanobis for classifying the Best 

and One Fuzzy Output for classifying the Not Best) is a possible area for further 
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study. 

7.4 Comparison of Results with Fusion Weight Method 
We need to calculate the FER for the Bayesian and neural network classifiers to 

compare them with the fusion algorithm used in the experiments. As explained 

earlier, FER is calculated as follows: 

f = e / t  

where: 

f is the Fusion Error Rate (FER) 

e is the number of incorrect Fusion Sessions 

t is the total number of Fusion Sessions in the log 

The number of incorrect Fusion Sessions, e, can be determined as follows: 

e = x + y + z  

where: 

x is the number of Fusion Sessions where none of the Fusion choices were 

correct 

y is the number of remaining Fusion Sessions where Best was classified as 

Not Best or Unknown 

z is the number of remaining Fusion Sessions where Not Best was classified 

as Best 
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The total number of Fusion Sessions, t, for the test set (object slots from Log 7e) is 

226. The number of Fusion Sessions where none of the Fusion choices were correct, 

x, for the test set (object slots from Log 7e) is 41. The number of remaining Fusion 

Sessions is then, 226 less 41 or 185. The number of remaining Fusion Sessions where 

Best was classified as Not Best or Unknown, y, can be taken directly from the 

confusion matrices in Table 7.1 and the Appendix. 

The number of remaining Fusion Sessions where Not Best was classified as Best, 

z, can be determined as follows: 

z = ze(t – x – y)  

where: 

ze = % of Not Best was classified as Best 

ze = z1/(z1 + z2 + z3) 

where: 

z1 is the number of Not Best classified as Best 

z2 is the number of Not Best classified as Not Best 

z3 is the number of Not Best classified as Unknown 

The number of Not Best classified as Best (z1), Not Best (z2), and Unknown (z3) 

can be taken directly from the confusion matrices in Table 7.1 and the Appendix. 

Table 7.10 shows the calculation of the FER for the Bayesian classifiers and the 

best neural network classifiers. 
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Classifier x y z1     z2 z3 ze z f (FER) Source 

Euclidean 41 41 285 2684 0 9.6% 13.8 42% Table 7.1 

Mahalanobis 41 14 505 2464 0 17.0% 29.1 37% Table 7.1 

Unbalanced Training 

Set - One Fuzzy 

Output (h = 20) 

41 45 5 2964 0 0.2% 0.2 38% Appendix

Unbalanced Training 

Set - Two Fuzzy 

Outputs (h = 25) 

41 51 16 2953 0 0.5% 0.7 41% Appendix

Table 7.10: FER for Bayesian and Neural Network Classifiers. 

Table 5.9 shows that the FER for the test set (object slots from Log 7e) using the 

fusion algorithm used in the experiments is 30%. This means that the fusion 

algorithm used in the experiments would outperform a fusion algorithm based on the 

following Bayesian or neural network classifiers: 

• Two Bayesian classifiers, one using Euclidean distance and the other using 

Mahalanobis distance [2], to classify the test data based on the statistics of the 

training set. 

• Neural network with one layer of hidden nodes and one output node. 

• Neural network with one layer of hidden nodes and two output nodes. 

• Neural network with a strict output constraint where the result is 0, if the output is 

less than 0.1; 1 if the output is greater than 0.9; and inconclusive otherwise. 

• Neural network with a “fuzzy” output constraint where for one output, the result 

is 0, if the output is less than 0.5; 1 if the output is greater than 0.5; and 

inconclusive otherwise (i.e., the output is equal to 0.5); for two outputs, the result 

is 0, for the smaller output; 1 for the larger output; and inconclusive, if they are 

equal. 
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• Neural network training with an unbalanced training set. 

• Neural network training with a small balanced training set consisting of all the 

Best samples plus an equal amount of randomly selected Not Best samples. 

• Neural network training with a large balanced training set consisting of all the Not 

Best samples plus an equal amount of duplicated Best samples. 
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Chapter 8 Conclusions 

8.1 Main Contributions 
The hypothesis for this research is: 

Applying the Human Computer Interaction (HCI) concepts of using 

multiple modalities, dialog management, context, and semantics to 

Human Robot Interaction (HRI) will improve the performance of 

Instruction Based Learning (IBL) compared to only using speech. 

Table 6.2 through Table 6.7 provide experimental evidence that the following 

combinations of modality and context do indeed improve HRI over speech by itself 

for all values of λ (i.e., ratio of importance of accuracy to succinctness) as 

hypothesized: 

• Speech + Real World Context (one type of context) 

• Speech + Dialog History (another type of context) 

• Speech + Pointing (one type of modality) 

• Speech + Field of Vision (another type of modality) 

• Speech + Head Nodding (another type of modality) 

• Speech + All (Real World Context, Dialog History, Pointing, Field of Vision, and 

Head Nodding) 

Figure 5.14 shows that choosing the Fusion weights for Semantic Integration using 

the algorithm proposed in Chapter 5 improves HRI over using arbitrary Fusion 

weights. 
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The Fusion Error Rate (FER) results in Table 7.10 compared with those in Table 

5.9 implies that the fusion algorithm used in the experiments for Semantic Integration 

would outperform a fusion algorithm based on the Bayesian or neural network 

classifiers that were tested. 

Table 6.8 through Table 6.10 provide experimental evidence that the dialog 

management grounding mode that improves HRI the most is dependent on the value 

of λ as might be expected, with Optimistic grounding being the best for values of λ 

less than or equal to 0.8, and Pessimistic grounding being the best for values greater 

than 0.8. The experimental evidence also suggests that Cautious grounding is of 

limited use since it is never the best for any values of λ that were tested. The evidence 

also indicates that the Pareto principle (a.k.a., the 80-20 rule) applies to which 

grounding mode is the best [42]. 

8.2 Theoretical Contributions 
In addition to the main contributions, the theoretical contributions of this 

dissertation include: 

1. Codifying tasks as: action, object, tools, condition, and recursive subtasks. This 

method of codifying tasks is applicable to a wide variety of robot activities 

including household domestic chores, gardening, carpentry, assembly work, 

sorting trash for recycling, and exploration of other planets. It is also applicable 

to non-robotic applications such as smart homes (e.g., turn on the lights when the 

sun sets) or smart cars (e.g., take me to the store). 
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2. Using “peakedness” for determining k in K-Means Clustering. K-Means 

clustering is an unsupervised learning algorithm to classify a set of data into k 

clusters. A drawback of this algorithm is that k must be determined beforehand. 

We proposed determining k by calculating the “peakedness” for each k, and then 

using the one with the highest “peakedness” value. This method of determining k 

is applicable to any clustering application. 

3. Developed and implemented an algorithm/heuristic for determining Fusion 

Weights. We chose a method of fusing the inputs from multiple modalities and 

contexts. The method multiplies the confidence score provided by the modalities 

and contexts for each input by a Fusion Weight, sums the products, and then uses 

the input with highest product sum. We proposed an algorithm for determining 

the Fusion Weights that is applicable to any robotic or non-robotic application 

(e.g., automated airline ticket agent) that uses this method of fusion. 

4. Using the algorithm it was determined that the set of Fusion Weights closest to 

the centroid of the largest cluster using the k determined by peakedness produces 

the best average Fusion Error Rate (FER).  

5. Developed an HRI measure (hi) for comparing which combination of modalities, 

context, and dialog grounding is best for a desired level of learning accuracy and 

dialog succinctness. This measure is applicable to any HRI or HCI application 

that employs a dialog between a human and a system. 
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8.3 Application-Oriented Contributions 
In addition to the main and theoretical contributions, the application-oriented 

contributions of this dissertation that can be applied to solve similar problems 

include: 

1. Developed a set of Dialog Plans to manage Robot Learning, defining five plans 

to handle the entire dialog for Robot Learning: Initial Dialog Plan, Single Task 

Dialog Plan, Robot Learning Dialog Plan, Compound Task Dialog Plan, and 

Multiple Task Dialog Plan. The goal of a Dialog Plan is to translate a user 

utterance into a list of valid tasks. In pursuing its goal, a Dialog Plan can ask 

questions and receive additional utterances from the user and launch other Dialog 

Plans as sub-plans in achieving its goal. These Dialog Plans are applicable to any 

robotic or non-robotic application where a human is teaching a system to perform 

a task. 

2. Developed a state table driven algorithm that allows the user to provide a list of 

sub-tasks using adverbs such as, “before”, “after”, and “next”. It can handle the 

adverb at the beginning of a sentence (e.g., “After loading the dishwasher, wipe 

down the sink.”) or in the middle (e.g., “Wipe down the sink after loading the 

dishwasher.”). This algorithm is applicable to any robotic or non-robotic 

application where a human is teaching a system to perform a task. 

3. Implemented a dialog-grounding algorithm that supports Optimistic (verify no 

answers), Cautious (verify some answers), and Pessimistic (verify all answers) 

grounding. To verify what the user means, a Dialog Plan invokes the “check 
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assumption” method. If the dialog is in Optimistic mode, “check assumption” 

always returns true. If the dialog is in Pessimistic mode, “check assumption” will 

ask the user to verify the assumption with a “yes” or “no”. If the dialog is in 

Cautious mode, it will ask the user to verify the assumption, if there is a 

possibility the assumption is not true. Cautious mode is flexible enough that the 

decision whether to verify or not can be fixed (as in these experiments) or 

adaptive (e.g., set by heuristics). For example, the robot may start out verifying 

every answer and then verify less as its confidence in understanding what the 

user is saying grows. This algorithm is applicable to any HRI or HCI application 

that employs a dialog between a human and a system. 

4. Used already known tasks as Real World Context to resolve missing and 

ambiguous slot values. This method of developing a Real World Context is 

applicable to any robotic or non-robotic application where a human is teaching a 

system to perform a task. 

5. Implemented an algorithm for searching Real World Context using wild cards 

and calculating confidence scores based on occurrence of values. The 

RealWorldResolver searches the Real World Context for tasks that match the 

partially filled single-task frame (treating unfilled slots as wildcards) and gets a 

list of values from the matching tasks for the specified slot. Then, it calculates a 

confidence score for each unique value in the list. This algorithm for using a Real 

World Context database is applicable to any robotic or non-robotic application 

where a human is teaching a system to perform a task. 
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6. Developed an algorithm for determining possible tool sets from Field of Vision. 

The FieldOfVisionResolver generates sets of tools by taking permutations of the 

Things in the robot’s field of vision. Then, it provides a list of tool sets. To 

prevent an excessive number of tool sets, FieldOfVisionResolver prunes the list 

of tool sets. This algorithm is applicable to any computer vision system where 

the system needs to determine potential sets of things in the field of vision. 

7. Developed XML-based Lesson Plans. The XML Lesson Plans are simple to edit 

and read and are portable across any computer language that supports XML. In 

these experiments, we used a tool, GrammarParser, to parse the Lesson Plans into 

Phoenix frame and grammar files. The HRI Environment Simulator used the 

same Lesson Plan files to extract the Things in a Room to simulate Pointing and 

Field of Vision and to provide the Lesson Plan text to guide the user in teaching 

the robot to perform the Tasks in the Lesson Plan. The Lesson Plan files were 

also used to extract the Real World Context database for the experiments and to 

extract a “golden” Task Database with which to compare the results. The XML-

based Lesson Plan is applicable to any robotic or non-robotic application where a 

human is teaching a system to perform a task. 

8. Developed a set of Phoenix parser frames. We designed eight frames that 

corresponds to the robot learning dialog between the user and the robot, namely, 

single-task, connector, learning, rbd, answer, quit, requestRepeat, and greet. 

These frames are applicable to any robotic or non-robotic Phoenix parser based 

application where a human is teaching a system to perform a task. They also 
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provide the general guidelines for using another parser in these types of 

applications. 

8.4 Limitations 
Although we were able to gather enough evidence to support the research 

hypothesis, there were some limitations: 

1. Real vision system. We simulated Field of Vision, Pointing, and Head Nodding 

2. Object and tool recognition. We assumed that the robot could assign a name 

(e.g., sponge) to the computer vision image of an object or tool. 

3. Room recognition. We assumed the robot could assign a name (e.g., kitchen) to 

the computer vision image of a room. 

4. Deeper parsing (e.g., recognition of verb, noun, and adverb) and larger 

vocabulary. We parsed the speech to fill slots of the eight-frame Robot Learning 

dialog. 

5. Real or simulated robot task management, sensory, and mechanical systems. We 

only measured if the task taught by the user was learned by the robot in a 

symbolic sense, i.e., the robot correctly translated the speech, gestures, and 

dialog into a canonical task with an action, object, set of tools, and condition. 

6. Real RbD learning. We simulated Robot Learning by Demonstration by saying, 

“I’ll show you.” 

7. Real learning by example. We simulated learning by example by saying that two 

tasks are similar with words like, “is like” or “is similar to.” 

201  



8. More sophisticated sub-task error recovery. In the current implementation, if the 

user detects an error in the sub-tasks of a Compound task, the only method of 

recovery is to start over again. A more sophisticated dialog, including user 

grounding (i.e., user says, “Where are we?”) and sentences like, “Load the 

dishwasher first instead of wiping down the sink”, would allow a more graceful 

recovery. 

9. Different algorithm for Semantic Integration (e.g., ensemble of classifiers or 

adaptive Fusion weights). We chose a method of fusing the inputs from multiple 

modalities and contexts. The method multiplies the confidence score provided by 

the modalities and contexts for each input by a Fusion Weight, sums the 

products, and then uses the input with highest product sum. 

10. Real speech synthesis. Although the Audio Feedback component does more than 

just display character strings, we simulated the sound of speech by displaying 

text on the HRI Environment Simulator screen. 

11. Integrated speech recognition software. The integration of e-Speaking into the 

rest of the system was not as elegant as with Sphinx 4.0, but it provided 

keyboard-free input of speech into the system. A simple Java window program 

allowed us to use e-Speaking to speak words into the system. 

12. More tasks. Our corpus included 166 tasks. 
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8.5 Future Work 
Areas for further study include a real computer vision system, real or simulated 

robot task management, sensory, and mechanical systems, and different algorithms 

for Semantic Integration. 

8.5.1 Real Computer Vision System 

We simulated Field of Vision, Pointing, and Head Nodding in our experiments. 

Implementing a real computer vision system would allow us to explore object, tool, 

and room recognition (i.e., assigning a name to a computer vision image). In the 

COGNIRON project, this is called the home-tour, where a user shows a robot 

companion around his or her private home and teaches the robot important locations 

and objects, using speech and gestures [82]. 

Adding object, tool, and room recognition would require expanding the Speech 

Recognition component to recognize declarative (e.g., “That is a sponge”), and 

possibly interrogative (e.g., “Where is the sponge”) sentences. The current 

implementation only recognizes imperative sentences (e.g., clean the sink with a 

sponge). Adding declarative and interrogative sentences to the Speech Recognition 

component’s repertoire would require deeper parsing (e.g., recognition of verb, noun, 

and adverb) and a larger vocabulary. 

Another implication of adding object and tool recognition is that the 

PointingResolver could be changed to accept any Thing as an object or tool, even if it 

is not in the RealWorldContext database. This is more reasonable with Pointing than 

Field of Vision, because Pointing is an active signal from the user, where Field of 
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Vision is a passive signal from the environment. Then, the robot could ask what the 

name is for the item the robot was pointing at and whether it was a tool, object, or 

both. 

8.5.2 Task Management, Sensory, and Mechanical Systems 

In a fully functioning robot, The Task Management component would break all 

tasks down into action primitives. The Robot Controller would take these primitives 

and execute them using the robot’s sensory and mechanical systems. 

We did not simulate the Task Management component because it was done by 

Blythe and Reilly who simulated a household robot agent, Mr. Fixit, who could, 

along with other tasks, vacuum and clean up broken cups [4]. We did not simulate the 

Robot Controller because it was beyond the scope of this dissertation. 

Simulating or actually implementing these two components would allow us to 

implement real RbD learning (e.g., “I’ll show you”) and learning by example (e.g., 

“is like”). Implementing these two components would require expanding the Speech 

Recognition component to recognize declarative (e.g., “Here is how to wipe the 

sink”) and possibly interrogative (e.g., “How do you wipe the sink with a sponge”) 

sentences. 

Implementing real RbD learning and learning by example would necessitate a 

more sophisticated sub-task error recovery. In the current implementation, if the user 

detects an error in the sub-tasks of a Compound task, the only method of recovery is 

to start over again. A more sophisticated dialog, including user grounding (i.e., user 

says, “Where are we?”) and sentences like, “Load the dishwasher first instead of 
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wiping down the sink”, would be required to support the collaborative dialog required 

to do real RbD learning and learning by example. 

Implementing real RbD learning and learning by example and implementing or 

simulating the Task Management or Robot Controller components opens a 

completely new method of measuring task correctness by using standardized tests 

given to humans. This would allow a direct comparison between the skills of a human 

and those of a robot trying to learn human skills. This is also important because the 

best way to teach robots how to perform complex human tasks (e.g., carpentry, 

exploration, search and rescue, military) might be to send them to school with 

humans, meaning they will have to learn like a human. Fortunately, we will only have 

to teach one robot because we can “copy” what they learned to another robot. Of 

course, copying learned skills between heterogeneous robots opens up another area 

for further study. 

Although actually implementing the sensory and mechanical systems of a Robot 

Controller sophisticated enough to perform household-cleaning tasks might be 

beyond current technology, simulating them probably is not. Avatars have been used 

to simulate robots [50, 48, 24] and simulation could be used to verify how well the 

robot learned a task. 

8.5.3 Different Semantic Integration Algorithms 

We chose one method of fusing the inputs from multiple modalities and contexts. 

The method multiplies the confidence score provided by the modalities and contexts 
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for each input by a Fusion Weight, sums the products, and then uses the input with 

highest product sum. 

We also examined using neural networks for semantic integration. The results of 

these experiments indicated that hybrid classifiers (e.g., Mahalanobis for classifying 

the Best and One Fuzzy Output for classifying the Not Best) is an area for further 

study. 

Other methods, such as adaptive Fusion weights are also areas for future work. 
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Appendix I – Lesson Plans 
The Lesson Plan files are in XML format. The XML tags are explained below: 

 

<lesson plan> Denotes the beginning and end of a Lesson Plan. 

 

<text> Denotes the beginning and end of the Text portion of the Lesson Plan. The 

Text portion is divided into four sections: 

• Task: This is the main task being taught (e.g., clean the kitchen daily). 

• Steps: These are the sub-tasks of the main task (e.g., wipe down the sink 

after loading the dishwasher). 

• Answers: These are the answers to the questions that the Robot might ask 

about the missing slots in the Steps (e.g., “a sponge” is the answer to the 

question, “What tools do you want me to use to WIPE DOWN the 

SINK?”) 

• How To: These are the Teaching Methods the user uses to teach the Robot 

how to perform a specific task or sub-task (e.g., RbD, Is Like, or Nested 

Sub-Tasks) 

 

<room> Denotes which room is the “object” of the main task (e.g., kitchen). 

 

<tasks> Denotes the beginning and the end of list of tasks which compose the 

main task. 

 

<task> Denotes the beginning and the end of a specific task. The task is in the 

following format: 

action,object,[tools],condition,[sub-tasks]; 

where: 

tools = tool,tool,...,tool 

sub-tasks = task task ... task 

action = string of characters 

object = string of characters 

tool = string of characters 

condition = string of characters 
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Lesson Plan 1 
<lessonplan> 

<text> 

Task: Clean the kitchen daily 

 

Steps: 

Wipe down the sink after loading the dishwasher  

Wipe down the stove top  

Wipe down the counters  

Vacuum the floor 

 

Answers: 

Load the dishwasher with nothing 

Wipe down the sink with a sponge 

Wipe down the stove top with a sponge 

Wipe down the counters with a sponge 

Vacuum the floor with a sweeper 

 

How To: 

Load the dishwasher - I'll show you 

Wipe down the sink - I'll show you 

Wipe down the stove top is similar to wipe down the sink 

Wipe down the counters is similar to wipe down the sink 

Vacuum the floor - I'll show you 

</text> 

<tasks> 

<room> 

KITCHEN 

</room> 

<task> 

CLEAN,KITCHEN,[],DAILY,[ 

 LOADING,DISHWASHER,[],DAILY,[]; 

 WIPE DOWN,SINK,[SPONGE],DAILY,[]; 

 WIPE DOWN,STOVE TOP,[SPONGE],DAILY,[]; 

 WIPE DOWN,COUNTERS,[SPONGE],DAILY,[]; 

 VACUUM,FLOOR,[SWEEPER],DAILY,[]; 

]; 

</task> 

</tasks> 

</lessonplan> 
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Lesson Plan 2 
<lessonplan> 

<text> 

Task: Clean the bathroom daily 

 

Steps: 

Wipe out the sink 

Wipe the toilet seat and rim 

Swoosh the toilet bowl with a brush 

Wipe the mirror and faucet 

Squeegee the shower door 

Spray the entire shower and the curtain liner with shower mist after 

every use 

 

Answers: 

Wipe out the sink with a sponge and a dry rag 

Wipe the toilet seat with a sponge and a dry rag 

Wipe the toilet rim with a sponge and a dry rag 

Wipe the mirror with a sponge and a dry rag 

Wipe the faucet with a sponge and a dry rag 

Squeegee the shower door with a dry rag 

 

How To: 

Wipe out the sink - I'll show you 

Wipe the toilet seat is similar to wipe out the sink 

Wipe the toilet rim is similar to wipe out the sink 

Swoosh the toilet bowl - I'll show you 

Wipe the mirror is similar to wipe out the sink  

Wipe the faucet is similar to wipe out the sink  

Squeegee the shower door - I'll show you 

Spray the entire shower - I'll show you 

Spray the curtain liner is similar to spray the shower 

</text> 

<tasks> 

<room> 

BATHROOM 

</room> 

<task> 

CLEAN,BATHROOM,[],DAILY,[ 

 WIPE OUT,SINK,[SPONGE,DRY RAG],DAILY,[]; 

 WIPE,TOILET SEAT,[SPONGE,DRY RAG],DAILY,[]; 

 WIPE,RIM,[SPONGE,DRY RAG],DAILY,[]; 

 SWOOSH,TOILET BOWL,[BRUSH],DAILY,[]; 

 WIPE,MIRROR,[SPONGE,DRY RAG],DAILY,[]; 

 WIPE,FAUCET,[SPONGE,DRY RAG],DAILY,[]; 

 SQUEEGEE,SHOWER DOOR,[DRY RAG],DAILY,[]; 

 SPRAY,SHOWER,[SHOWER MIST],AFTER EVERY USE,[]; 

 SPRAY,CURTAIN LINER,[SHOWER MIST],AFTER EVERY USE,[]; 

]; 

</task> 

</tasks> 

</lessonplan> 
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Lesson Plan 3 
<lessonplan> 

<text> 

Task: Clean the bedroom daily 

 

Steps: 

Make the bed 

Fold or hang clothing and put away jewelry  

Straighten out the night-table surface 

 

Answers: 

Make the bed with no tools 

Fold or hang clothing with no tools 

Put away jewelry with no tools 

Straighten out the night-table with nothing 

 

How To: 

Make the bed - I'll show you 

Fold or hang clothing - I'll show you 

Put away jewelry is similar to fold or hang clothing 

Straighten out the night-table is similar to fold or hang clothing 

</text> 

<tasks> 

<room> 

BEDROOM 

</room> 

<task> 

CLEAN,BEDROOM,[],DAILY,[ 

 MAKE,BED,[],DAILY,[]; 

 FOLD OR HANG,CLOTHING,[],DAILY,[]; 

 PUT AWAY,JEWELRY,[],DAILY,[]; 

 STRAIGHTEN OUT,NIGHT TABLE SURFACE,[],DAILY,[]; 

]; 

</task> 

</tasks> 

</lessonplan> 
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Lesson Plan 4 
<lessonplan> 

<text> 

Task: Clean the family room daily 

Task: Clean the living room daily 

Task: Clean the foyer daily 

 

Steps (same for all three rooms): 

Pick up crumbs and dust bunnies with a handheld vacuum 

Fluff the cushions and fold throws after use 

Wipe tabletops and spot-clean cabinets when you see fingerprints 

Straighten coffee-table books and magazines.  

Throw out newspapers.  

Put away CDs and videos. 

 

Answers: 

Fluff the cushions with your hands 

Fold throws with you hands 

Wipe tabletops with pledge and a dry rag 

Spot clean cabinets with pledge and a dry rag 

Straighten coffee table with your hands 

Throw out newspapers with your hands 

Put away CDs with your hands 

Put away videos with your hands 

 

How To: 

Pick up crumbs and dust bunnies - I'll show you 

Fluff the cushions - I'll show you 

Fold throws - I'll show you 

Wipe tabletops - I'll show you 

Spot clean cabinets is similar to wipe tabletops 

Straighten coffee table - I'll show you 

Throw out newspapers is similar to straighten coffee table 

Put away CDs with your hands - I'll show you 

Put away videos with your hands is similar to put away CDs 

Clean the living room is similar to clean the family room 

Clean the foyer is similar to clean the family room 

</text> 

<tasks> 

<room> 

FAMILY ROOM, LIVING ROOM, FOYER 

</room> 

<task> 

CLEAN,FAMILY ROOM,[],DAILY,[ 

 PICK UP,CRUMBS AND DUST BUNNIES,[HANDHELD VACUUM],DAILY,[]; 

 FLUFF,CUSHIONS,[HANDS],DAILY,[]; 

 FOLD,THROWS,[HANDS],DAILY,[]; 

 WIPE,TABLETOPS,[PLEDGE,DRY RAG],DAILY,[]; 

 SPOT CLEAN,CABINETS,[PLEDGE,DRY RAG],DAILY,[]; 

 STRAIGHTEN,COFFEE TABLE,[HANDS],DAILY,[]; 

 THROW OUT,NEWSPAPERS,[HANDS],DAILY,[]; 

 PUT AWAY,CDS,[HANDS],DAILY,[]; 

 PUT AWAY,VIDEOS,[HANDS],DAILY,[]; 
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]; 

</task> 

<task> 

CLEAN,LIVING ROOM,[],DAILY,[ 

 PICK UP,CRUMBS AND DUST BUNNIES,[HANDHELD VACUUM],DAILY,[]; 

 FLUFF,CUSHIONS,[HANDS],DAILY,[]; 

 FOLD,THROWS,[HANDS],DAILY,[]; 

 WIPE,TABLETOPS,[PLEDGE,DRY RAG],DAILY,[]; 

 SPOT CLEAN,CABINETS,[PLEDGE,DRY RAG],DAILY,[]; 

 STRAIGHTEN,COFFEE TABLE,[HANDS],DAILY,[]; 

 THROW OUT,NEWSPAPERS,[HANDS],DAILY,[]; 

 PUT AWAY,CDS,[HANDS],DAILY,[]; 

 PUT AWAY,VIDEOS,[HANDS],DAILY,[]; 

]; 

</task> 

<task> 

CLEAN,FOYER,[],DAILY,[ 

 PICK UP,CRUMBS AND DUST BUNNIES,[HANDHELD VACUUM],DAILY,[]; 

 FLUFF,CUSHIONS,[HANDS],DAILY,[]; 

 FOLD,THROWS,[HANDS],DAILY,[]; 

 WIPE,TABLETOPS,[PLEDGE,DRY RAG],DAILY,[]; 

 SPOT CLEAN,CABINETS,[PLEDGE,DRY RAG],DAILY,[]; 

 STRAIGHTEN,COFFEE TABLE,[HANDS],DAILY,[]; 

 THROW OUT,NEWSPAPERS,[HANDS],DAILY,[]; 

 PUT AWAY,CDS,[HANDS],DAILY,[]; 

 PUT AWAY,VIDEOS,[HANDS],DAILY,[]; 

]; 

</task> 

</tasks> 

</lessonplan> 
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Lesson Plan 5 
<lessonplan> 

<text> 

Task: Clean the kitchen in the spring 

 

Steps: 

Begin with a 15 Minute Kitchen Cleanup 

Dust down the ceiling and corners of walls 

Dust and clean all art and photographs along the wall 

Dust and clean the ceiling fan 

Take down draperies, curtains, and blinds to wash or have cleaned 

according to the manufacturer's directions 

Clean the oven with oven cleaner 

Clean the refrigerator 

Clean the stove  

Wipe down and clean the toaster, blender, and other small 

appliances.  

Run the dishwasher empty 

Wash down the countertops in your kitchen 

Wipe down and clean out any drawers 

Wash down the sink 

Sweep and mop the floors 

 

Answers: 

Cleanup the kitchen with no tools 

Dust down the ceiling with a feather duster 

Dust down the corners of walls with a feather duster 

Dust and clean art with a lightly wet clean cloth 

Dust and clean photographs with a lightly wet clean cloth 

Dust and clean the ceiling fan with Murphys Oil Soap 

Take down draperies with your hands 

Take down curtains with your hands 

Take down blinds with your hands 

Clean the refrigerator with damp cloth 

Clean the stove with your damp cloth 

Wipe down and clean the toaster with a damp cloth 

Wipe down and clean the blender with a damp cloth 

Wipe down and clean the other small appliances with a damp cloth 

Run the dishwasher with vinegar 

Wash down the countertops with Windex 

Wipe down and clean out drawers with a damp cloth 

Wash down the sink with a sponge 

Sweep the floors with a broom 

Mop the floors with a towel 

 

How To: 

Begin with a 15 Minute Kitchen Cleanup: 

- Scrape off all the dishes into the trash or garbage disposal with 

a sponge 

- Load the dishes into the dishwasher with your hands 

- Pick up trash with your hands 

- Put away all items with your hands 

- Take out the trash with your hands 
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Dust down the ceiling - I'll show you 

Dust down the corners of walls is similar to dust down the ceiling 

Dust and clean art - I'll show you 

Dust and clean photographs is similar to dust and clean art 

Dust and clean the ceiling fan - I'll show you 

Take down draperies  - I'll show you 

Take down curtains is similar to take down draperies 

Take down blinds is similar to take down draperies 

Clean the oven - I'll show you 

Clean the refrigerator - I'll show you 

Clean the stove is similar to clean the refrigerator 

Wipe down and clean the toaster - I'll show you 

Wipe down and clean the blender is similar to wipe down and clean 

the toaster 

Wipe down and clean the other small appliances is similar to wipe 

down and clean the toaster 

Run the dishwasher - I'll show you 

Wash down the countertops - I'll show you 

Wipe down and clean out drawers is similar to wipe down and clean 

the blender 

Wash down the sink - I'll show you 

Sweep the floors - I'll show you 

Mop the floors - I'll show you 

</text> 

<tasks> 

<room> 

KITCHEN 

</room> 

<task> 

CLEAN,KITCHEN,[],SPRING,[ 

 CLEANUP,KITCHEN,[],SPRING,[ 

  SCRAPE OFF,DISHES,[SPONGE],SPRING,[]; 

  LOAD,DISHWASHER,[HANDS],SPRING,[]; 

  PICK UP,TRASH,[HANDS],SPRING,[]; 

  PUT AWAY,ITEMS,[HANDS],SPRING,[]; 

  TAKE OUT,TRASH,[HANDS],SPRING,[]; 

 ]; 

 DUST DOWN,CEILING,[FEATHER DUSTER],SPRING,[]; 

 DUST DOWN,CORNERS OF WALLS,[FEATHER DUSTER],SPRING,[]; 

 DUST AND CLEAN,ART,[LIGHTLY WET CLEAN CLOTH],SPRING,[]; 

 DUST AND CLEAN,PHOTOGRAPHS,[LIGHTLY WET CLEAN CLOTH],SPRING,[]; 

 DUST AND CLEAN,CEILING FAN,[MURPHYS OIL SOAP],SPRING,[]; 

 TAKE DOWN,DRAPERIES,[HANDS],SPRING,[]; 

 TAKE DOWN,CURTAINS,[HANDS],SPRING,[]; 

 TAKE DOWN,BLINDS,[HANDS],SPRING,[]; 

 CLEAN,OVEN,[OVEN CLEANER],SPRING,[]; 

 CLEAN,REFRIGERATOR,[DAMP CLOTH],SPRING,[]; 

 CLEAN,STOVE,[DAMP CLOTH],SPRING,[]; 

 WIPE DOWN AND CLEAN,TOASTER,[DAMP CLOTH],SPRING,[]; 

 WIPE DOWN AND CLEAN,BLENDER,[DAMP CLOTH],SPRING,[]; 

 WIPE DOWN AND CLEAN,OTHER SMALL APPLIANCES,[DAMP CLOTH],SPRING,[]; 

 RUN,DISHWASHER,[VINEGAR],SPRING,[]; 

 WASH DOWN,COUNTERTOPS,[WINDEX],SPRING,[]; 

 WIPE DOWN AND CLEAN,DRAWERS,[DAMP CLOTH],SPRING,[]; 
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 WASH DOWN,SINK,[SPONGE],SPRING,[]; 

 SWEEP,FLOORS,[BROOM],SPRING,[]; 

 MOP,FLOORS,[TOWEL],SPRING,[]; 

]; 

</task> 

</tasks> 

</lessonplan> 
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Lesson Plan 6 
<lessonplan> 

<text> 

Task: Clean the bathroom in the spring 

 

Steps: 

Follow the 15 Minute Bathroom Cleanup 

Dust down the ceiling and corners 

Dust the vents and fans.  

Take down draperies, curtains, blinds, etc, to wash or have cleaned 

according to the directions 

Scrub the shower and tub 

Scrub down the toilet 

Wash the inside and outside of cabinets 

Wash down the sink and fixtures 

Shake out bathroom rugs 

Sweep and mop the floors 

Empty and wash out the trash can 

 

Answers: 

Follow the 15 Minute Bathroom Cleanup with no tools 

Dust down the ceiling and corners with a feather duster 

Dust the vents and fans with a gentle cleanser mixed with water and 

a cleaning cloth  

Take down draperies, curtains, and blinds with your hands 

Scrub the shower and tub with a commercial cleaner 

Scrub down the toilet with a commercial cleaner 

Wash the inside and outside of cabinets with a damp sponge 

Wash down the sink and fixtures with a damp sponge 

Shake out bathroom rugs with your hands 

Sweep the floors with a broom 

Mop the floors with a towel 

Empty the trash can with your hands 

Wash out the trash can with windex and a sponge 

 

How To: 

Follow the 15 Minute Bathroom Cleanup: 

- Grab and put dirty clothing in the hamper with your hands 

- Grab and put trash in the trash can with your hands 

- Wipe down the sink and tub with a disinfectant wipe 

- Scrub out inside of toilet with toilet brush and toilet cleaner 

- Using a disinfectant wipe, wipe down the outside of the toilet 

- Using glass cleaner, wipe down the mirror 

- Pickup and put away items with your hands 

- Briefly sweep the floor with a Swiffer 

Dust down the ceiling - I'll show you 

Dust down the corners is similar to dust down the ceiling 

Dust the vents - I'll show you 

Dust fans is similar to dust vents 

Take down draperies - I'll show you 

Take down curtains is similar to take down draperies 

Take down blinds is similar to take down draperies 

Scrub the shower - I'll show you 
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Scrub the tub is similar to scrub the shower 

Scrub down the toilet is similar to scrub the shower 

Wash the cabinets - I'll show you 

Wash down the sink is like wash the cabinets 

Wash down the fixtures is like wash the cabinets 

Shake out bathroom rugs - I'll show you 

Sweep the floors - I'll show you 

Mop the floors - I'll show you 

Empty the trash can - I'll show you 

Wash out the trash can - I'll show you 

</text> 

<tasks> 

<room> 

BATHROOM 

</room> 

<task> 

CLEAN,BATHROOM,[],SPRING,[ 

 CLEANUP,BATHROOM,[],SPRING,[ 

  GRAB AND PUT,DIRTY CLOTHING,[HAMPER,HANDS],SPRING,[]; 

  GRAB AND PUT,TRASH,[TRASH CAN,HANDS],SPRING,[]; 

  WIPE DOWN,SINK,[DISINFECTANT WIPE],SPRING,[]; 

  WIPE DOWN,TUB,[DISINFECTANT WIPE],SPRING,[]; 

  SCRUB OUT,INSIDE OF TOILET,[TOILET BRUSH,TOILET 

CLEANER],SPRING,[]; 

  WIPE DOWN,OUTSIDE OF TOILET,[DISINFECTANT WIPE],SPRING,[]; 

  WIPE DOWN,MIRROR,[GLASS CLEANER],SPRING,[]; 

  PICKUP AND PUT AWAY,ITEMS,[HANDS],SPRING,[]; 

  SWEEP,FLOOR,[SWIFFER],SPRING,[]; 

 ]; 

 DUST DOWN,CEILING,[FEATHER DUSTER],SPRING,[]; 

 DUST DOWN,CORNERS,[FEATHER DUSTER],SPRING,[]; 

 DUST,VENTS,[GENTLE CLEANSER,CLEANING CLOTH],SPRING,[]; 

 DUST,FANS,[GENTLE CLEANSER,CLEANING CLOTH],SPRING,[]; 

 TAKE DOWN,DRAPERIES,[HANDS],SPRING,[]; 

 TAKE DOWN,CURTAINS,[HANDS],SPRING,[]; 

 TAKE DOWN,BLINDS,[HANDS],SPRING,[]; 

 SCRUB,SHOWER,[COMMERCIAL CLEANER],SPRING,[]; 

 SCRUB,TUB,[COMMERCIAL CLEANER],SPRING,[]; 

 SCRUB DOWN,TOILET,[COMMERCIAL CLEANER],SPRING,[]; 

 WASH,CABINETS,[DAMP SPONGE],SPRING,[]; 

 WASH DOWN,SINK,[DAMP SPONGE],SPRING,[]; 

 WASH DOWN,FIXTURES,[DAMP SPONGE],SPRING,[]; 

 SHAKE OUT,RUGS,[HANDS],SPRING,[]; 

 SWEEP,FLOORS,[BROOM],SPRING,[]; 

 MOP,FLOORS,[TOWEL],SPRING,[]; 

 EMPTY,TRASH CAN,[HANDS],SPRING,[]; 

 WASH OUT,TRASH CAN,[WINDEX,SPONGE],SPRING,[]; 

]; 

</task> 

</tasks> 

</lessonplan> 
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Lesson Plan 7 
<lessonplan> 

<text> 

Task: Clean the living room in the spring 

 

Steps: 

Begin with a 15 Minute Living Room Cleanup 

Dust down the ceiling and corners of walls  

Dust and clean all art and photographs along the wall 

Dust and clean the ceiling fan 

Take down draperies, curtains, and blinds to wash or have cleaned 

according to the manufacturer's directions 

Dust and clean out the couches and chairs 

Dust down and clean all accent lamps and knickknacks 

Dust down the books and the shelves.  

Dust down accent tables and the entertainment center 

Clean the carpets and rugs 

Take the time to clean the doormats inside and outside your doorways 

 

Answers: 

Begin with a 15 Minute Living Room Cleanup with your hands 

Dust down the ceiling and corners with a feather duster 

Dust and clean art with a lightly wet clean cloth 

Dust and clean photographs with a lightly wet clean cloth 

Dust and clean the ceiling fan with Murphys Oil Soap 

Take down draperies with your hands 

Take down curtains with your hands 

Take down blinds with your hands 

Dust and clean out the couches and chairs with a dust rag, vacuum 

cleaner, and upholstery shampoo machine 

Dust down and clean all accent lamps and knickknacks with a duster 

Dust down the books and the shelves with a dust rag 

Dust down accent tables and the entertainment center with a dust rag 

Clean the carpets and rugs with a vacuum and rug shampoo machine 

Clean the doormats with a vacuum cleaner 

 

How To: 

Begin with a 15 Minute Living Room Cleanup: 

- Put away all items with your hands 

- Brush off couch with soft brush 

- Fluff couch pillows with your hands 

- Dust down the coffee table with a duster 

- Arrange magazines and books with your hands 

- Vacuum floor with a sweeper 

Dust down the ceiling - I'll show you 

Dust down the corners is similar to dust down the ceiling 

Dust and clean art - I'll show you 

Dust and clean photographs is similar to dust and clean art 

Dust and clean the ceiling fan - I'll show you 

Take down draperies - I'll show you 

Take down curtains is similar to take down the draperies 

Take down blinds is similar to take down the draperies 

Dust and clean out the couches - I'll show you 
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Dust and clean out the chairs is similar to dust and clean out the 

couches 

Dust down and clean all accent lamps - I'll show you 

Dust down and clean all knickknacks is similar to dust down and 

clean all accent lamps 

Dust down the books - I'll show you 

Dust down the shelves is similar to dust down the books 

Dust down accent tables is similar to dust down the books 

Dust down the entertainment center is similar to dust down the books 

Clean the carpets - I'll show you 

Clean the rugs is similar to clean the carpets 

Clean the doormats - I'll show you 

</text> 

<tasks> 

<room> 

LIVING ROOM 

</room> 

<task> 

CLEAN,LIVING ROOM,[],SPRING,[ 

 CLEANUP,LIVING ROOM,[],SPRING,[ 

  PUT AWAY,ITEMS,[HANDS],SPRING,[]; 

  BRUSH OFF,COUCH,[SOFT BRUSH],SPRING,[]; 

  FLUFF,COUCH PILLOW,[HANDS],SPRING,[]; 

  DUST DOWN,COFFEE TABLE,[DUSTER],SPRING,[]; 

  ARRANGE,MAGAZINES,[HANDS],SPRING,[]; 

  ARRANGE,BOOKS,[HANDS],SPRING,[]; 

  VACUUM,FLOOR,[SWEEPER],SPRING,[]; 

 ]; 

 DUST DOWN,CEILING,[FEATHER DUSTER],SPRING,[]; 

 DUST DOWN,CORNERS,[FEATHER DUSTER],SPRING,[]; 

 DUST AND CLEAN,ART,[LIGHTLY WET CLEAN CLOTH],SPRING,[]; 

 DUST AND CLEAN,PHOTOGRAPHS,[LIGHTLY WET CLEAN CLOTH],SPRING,[]; 

 DUST AND CLEAN,CEILING FAN,[MURPHYS OIL SOAP],SPRING,[]; 

 TAKE DOWN,DRAPERIES,[HANDS],SPRING,[]; 

 TAKE DOWN,CURTAINS,[HANDS],SPRING,[]; 

 TAKE DOWN,BLINDS,[HANDS],SPRING,[]; 

 DUST AND CLEAN OUT,COUCHES,[DUST RAG,VACUUM CLEANER,UPHOLSTERY 

SHAMPOO MACHINE],SPRING,[]; 

 DUST AND CLEAN OUT,CHAIRS,[DUST RAG,VACUUM CLEANER,UPHOLSTERY 

SHAMPOO MACHINE],SPRING,[]; 

 DUST DOWN AND CLEAN,ACCENT LAMPS,[DUSTER],SPRING,[]; 

 DUST DOWN AND CLEAN,KNICKKNACKS,[DUSTER],SPRING,[]; 

 DUST DOWN,BOOKS,[DUST RAG],SPRING,[]; 

 DUST DOWN,SHELVES,[DUST RAG],SPRING,[]; 

 DUST DOWN,ACCENT TABLES,[DUST RAG],SPRING,[]; 

 DUST DOWN,ENTERTAINMENT CENTER,[DUST RAG],SPRING,[]; 

 CLEAN,CARPETS,[VACUUM,RUG SHAMPOO MACHINE],SPRING,[]; 

 CLEAN,RUGS,[VACUUM,RUG SHAMPOO MACHINE],SPRING,[]; 

 CLEAN,DOORMATS,[VACUUM CLEANER],SPRING,[]; 

]; 

</task> 

</tasks> 

</lessonplan> 
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Lesson Plan 8 
<lessonplan> 

<text> 

Task: Clean the bedroom in the spring  

 

Steps: 

Start with the 15 Minute Bedroom Cleanup 

Dust down the ceiling and corners.  

Clean the ceiling fan.  

Take down draperies and curtains to wash or have cleaned according 

to the directions.  

Wash all bedding 

Dust down and clean all accent lamps and knickknacks.  

Dust down all dressers, chests, and nightstands.  

Clean any mirrors. 

Clean flooring.  

 

Answers: 

Start with the 15 Minute Bedroom Cleanup 

Dust down the ceiling and corners with a feather duster 

Clean the ceiling fan with Murphys Oil Soap  

Take down draperies and curtains with your hands 

Wash all bedding in the washing machine 

Dust down and clean all accent lamps and knickknacks with a duster 

Dust down all dressers, chests, and nightstands with a duster 

Clean any mirrors with windex and newspapers 

Clean flooring with vacuum cleaner 

 

How To: 

Start with the 15 Minute Bedroom Cleanup: 

- Grab all dirty clothing and put it in a hamper with your hands  

- Grab all clean clothes and refold or rehang with your hands 

- Grab all trash and put in the trashcan with your hands  

- Make the bed with your hands 

- Pickup all the misplaced items with your hands  

- Straighten surfaces with your hands 

- Vacuum the floor with a sweeper 

Dust down the ceiling - I'll show you 

Dust down the corners is similar to dust down the ceiling 

Clean the ceiling fan - I'll show you  

Take down draperies - I'll show you 

Take down curtains is similar to take down the draperies 

Wash all bedding - I'll show you 

Dust down and clean all accent lamps - I'll show you 

Dust down and clean all knickknacks is similar to dust down and 

clean all accent lamps 

Dust down all dressers - I'll show you 

Dust down all chests is similar to dust down dressers 

Dust down all nightstands is similar to dust down dressers 

Clean any mirrors - I'll show you 

Clean flooring with vacuum cleaner - I'll show you 

</text> 

<tasks> 
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<room> 

BEDROOM 

</room> 

<task> 

CLEAN,BEDROOM,[],SPRING,[ 

 CLEANUP,BEDROOM,[],SPRING,[ 

  GRAB,DIRTY CLOTHING,[HANDS],SPRING,[]; 

  PUT,DIRTY CLOTHING,[HAMPER],SPRING,[]; 

  GRAB,CLEAN CLOTHES,[HANDS],SPRING,[]; 

  REFOLD OR REHANG,CLEAN CLOTHES,[HANDS],SPRING,[]; 

  GRAB,TRASH,[HANDS],SPRING,[]; 

  PUT,TRASH,[TRASHCAN],SPRING,[]; 

  MAKE,BED,[HANDS],SPRING,[]; 

  PICKUP,MISPLACED ITEMS,[HANDS],SPRING,[]; 

  STRAIGHTEN,SURFACES,[HANDS],SPRING,[]; 

  VACUUM,FLOOR,[SWEEPER],SPRING,[]; 

 ]; 

 DUST DOWN,CEILING,[FEATHER DUSTER],SPRING,[]; 

 DUST DOWN,CORNERS,[FEATHER DUSTER],SPRING,[]; 

 CLEAN,CEILING FAN,[MURPHYS OIL SOAP],SPRING,[]; 

 TAKE DOWN,DRAPERIES,[HANDS],SPRING,[]; 

 TAKE DOWN,CURTAINS,[HANDS],SPRING,[]; 

 WASH,BEDDING,[WASHING MACHINE],SPRING,[]; 

 DUST DOWN AND CLEAN,ACCENT LAMPS,[DUSTER],SPRING,[]; 

 DUST DOWN AND CLEAN,KNICKKNACKS,[DUSTER],SPRING,[]; 

 DUST DOWN,DRESSERS,[DUSTER],SPRING,[]; 

 DUST DOWN,CHESTS,[DUSTER],SPRING,[]; 

 DUST DOWN,NIGHTSTANDS,[DUSTER],SPRING,[]; 

 CLEAN,MIRRORS,[WINDEX,NEWSPAPERS],SPRING,[]; 

 CLEAN,FLOORING,[VACUUM CLEANER],SPRING,[]; 

]; 

</task> 

</tasks> 

</lessonplan> 
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Lesson Plan 9 
<lessonplan> 

<text> 

Task: Clean the dining room in the spring 

 

Steps: 

Dust down the ceiling and corners.  

Dust and clean all wall art.  

Dust and clean the Ceiling Fan.  

Take down draperies and curtains to wash or have cleaned according 

to the directions.  

Wash down the dining table, chairs, and any other furniture 

thoroughly.  

Clean the carpets and rugs.  

 

Answers: 

Dust down the ceiling and corners with a feather duster 

Dust and clean art with a lightly wet clean cloth 

Dust and clean the ceiling fan with Murphys Oil Soap  

Take down draperies and curtains with your hands 

Wash down the dining table, chairs, and any other furniture with no 

tools  

Clean the carpets and rugs with a vacuum and rug shampoo machine 

 

How To: 

Dust down the ceiling - I'll show you 

Dust down the corners is similar to dust down the ceiling 

Dust and clean art - I'll show you 

Dust and clean the ceiling fan - I'll show you 

Take down draperies - I'll show you 

Take down curtains is similar to take down the draperies 

Wash down the dining table: 

- Clean wood with damp cloth 

- Oil wood with furniture oil 

Wash down chairs: 

- Clean wood with damp cloth 

- Oil wood with furniture oil 

- Spot clean upholstery with spot cleaner 

Wash down other furniture is similar to wash down chairs 

Clean the carpets - I'll show you 

Clean the rugs is similar to clean the carpets 

</text> 

<tasks> 

<room> 

DINING ROOM 

</room> 

<task> 

CLEAN,DINING ROOM,[],SPRING,[ 

 DUST DOWN,CEILING,[FEATHER DUSTER],SPRING,[]; 

 DUST DOWN,CORNERS,[FEATHER DUSTER],SPRING,[]; 

 DUST AND CLEAN,ART,[LIGHTLY WET CLEAN CLOTH],SPRING,[]; 

 DUST AND CLEAN,CEILING FAN,[MURPHYS OIL SOAP],SPRING,[]; 

 TAKE DOWN,DRAPERIES,[HANDS],SPRING,[]; 
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 TAKE DOWN,CURTAINS,[HANDS],SPRING,[]; 

 WASH DOWN,DINING TABLE,[],SPRING,[ 

  CLEAN,WOOD,[DAMP CLOTH],SPRING,[]; 

  OIL,WOOD,[FURNITURE OIL],SPRING,[]; 

 ]; 

 WASH DOWN,CHAIRS,[],SPRING,[ 

  CLEAN,WOOD,[DAMP CLOTH],SPRING,[]; 

  OIL,WOOD,[FURNITURE OIL],SPRING,[]; 

  SPOT CLEAN,UPHOLSTERY,[SPOT CLEANER],SPRING,[]; 

 ]; 

 WASH DOWN,OTHER FURNITURE,[],SPRING,[ 

  CLEAN,WOOD,[DAMP CLOTH],SPRING,[]; 

  OIL,WOOD,[FURNITURE OIL],SPRING,[]; 

  SPOT CLEAN,UPHOLSTERY,[SPOT CLEANER],SPRING,[]; 

 ]; 

 CLEAN,CARPETS,[VACUUM,RUG SHAMPOO MACHINE],SPRING,[]; 

 CLEAN,RUGS,[VACUUM,RUG SHAMPOO MACHINE],SPRING,[]; 

]; 

</task> 

</tasks> 

</lessonplan> 
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Lesson Plan 10 
<lessonplan> 

<text> 

Task: Clean the house every day 

 

Steps: 

Make beds 

Do a load of laundry 

Wash dishes 

Take out trash 

Pick up and put away any clothes or items lying around 

 

Answers: 

Make beds with your hands 

Do a load of laundry in the washing machine 

Wash dishes with the dishwasher 

Take out trash with your hands 

Pick up clothes with your hands and put them in the hamper 

Pick up items lying around with your hands and put them away 

 

How To: 

Make beds - I'll show you 

Do a load of laundry - I'll show you 

Wash dishes - I'll show you 

Take out trash - I'll show you 

Pick up clothes - I'll show you 

Put clothes in hamper - I'll show you 

Pick up items lying around is similar to pick up clothes 

Put items lying around away - I'll show you 

</text> 

<tasks> 

<room> 

HOUSE 

</room> 

<task> 

CLEAN,HOUSE,[],EVERY DAY,[ 

 MAKE,BEDS,[HANDS],EVERY DAY,[]; 

 DO,LAUNDRY,[WASHING MACHINE],EVERY DAY,[]; 

 WASH,DISHES,[DISHWASHER],EVERY DAY,[]; 

 TAKE OUT,TRASH,[HANDS],EVERY DAY,[]; 

 PICK UP,CLOTHES,[HANDS],EVERY DAY,[]; 

 PUT,CLOTHES,[HAMPER],EVERY DAY,[]; 

 PICK UP,ITEMS LYING AROUND,[HANDS],EVERY DAY,[]; 

 PUT,ITEMS LYING AROUND,[AWAY],EVERY DAY,[]; 

]; 

</task> 

</tasks> 

</lessonplan> 
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Appendix II – Base Grammar Rules 
The grammars are context free rules that specify the word patterns corresponding to 

the slot [95]. The syntax for a grammar for a slot is: 

# optional comment 

[token_name] 

(<pattern a>) 

(<pattern b>) 

<Macro1> 

(<rewrite rule for Macro1>) 

<Macro2> 

(<rewrite rule for Macro2) 

; 

 

The slot name is enclosed in square brackets. After this follow a set of re-write 

patterns, one per line each enclosed in parentheses, with leading white space on the 

line. After the basic re-write patterns follow the non-terminal rewrites, which have the 

same format. Notation used in pattern specification: 

• Lower case strings are terminals. 

• Upper case strings are macros. 

• Names enclosed in [] are non-terminals (calls to other slot rules). 

• Regular Expressions: 

*item indicates 0 or 1 repetitions of the item 

+ indicates 1 or more repetitions 

+* indicates 0 or more repetitions (equivalent to a Kleene star) 

• #include <filename> reads file at that point. 

 

A macro has rewrite rules specified later in the same grammar rule. These cause a text 

substitution of all of the expansions for the macro, but do not cause a non-terminal 

slot to appear in the parse. Macros allow for a simpler expression of the grammar 

without inserting unwanted slots in the parse. 

 
# Base Grammar for HRI 

# Created June 25, 2007 by David O. Johnson 

# Contains everything, but action, object, tool, & condition tokens 

# which are contained in task.gra 

 

# Yes/No answer 

[answer] 

 ([yes]) 

 ([no]) 

 ([unknown]) 

; 

 

[yes] 
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 (yes) 

 (yeh) 

 (right) 

; 

 

[no] 

 (no) 

 (nah) 

 (wrong) 

; 

 

[unknown] 

 (dont know) 

 (not sure) 

; 

 

[greeting] 

 (hello) 

; 

 

[operator] 

 (same as) 

 (similar to) 

 (like) 

; 

 

[quit] 

 (bye) 

 (forget it) 

 (stop) 

 (quit) 

 (start over) 

; 

 

[requestRepeat] 

 (huh) 

; 

 

[connector] 

 ([after]) 

 ([before]) 

 ([next]) 

; 

 

[after] 

 (after) 

; 

 

[before] 

 (before) 

; 

 

[next] 

 (next) 
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 (then) 

; 

 

[tools] 

 ([tool]) 

 (+[tool] and [tool]) 

 (+[no_tool]) 

; 

 

[no_tool] 

 (no tools) 

 (none) 

; 

 

[anaph] 

 ([singular_anaphor]) 

 ([plural_anaphor]) 

; 

 

[singular_anaphor] 

 (THAT *one) 

THAT 

 (that) 

 (this) 

 (THE [_other]) 

THE 

 (the) 

 (any) 

 (an) 

; 

 

[_other] 

 (other) 

; 

 

[plural_anaphor] 

 (everything) 

 (those) 

; 

 

[show] 

 (SHOW *YOU) 

 (WATCH *ME) 

SHOW 

 (show) 

 (demonstrate) 

YOU 

 (you) 

WATCH 

 (watch) 

 (observe) 

 (look *at) 

ME 

 (me) 
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; 
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Appendix III – Task Grammar Rules 
 

# Created by GrammarParser.java on 5/20/08 3:09 PM 

 

[action] 

 (fluff) 

 (scrub out) 

 (loading) 

 (wash) 

 (grab and put) 

 (mop) 

 (swoosh) 

 (wipe out) 

 (shake out) 

 (take down) 

 (sweep) 

 (dust and clean) 

 (do) 

 (arrange) 

 (spot clean) 

 (clean) 

 (straighten out) 

 (squeegee) 

 (scrub down) 

 (wipe down and clean) 

 (dust down and clean) 

 (wipe) 

 (put away) 

 (cleanup) 

 (load) 

 (make) 

 (grab) 

 (straighten) 

 (oil) 

 (dust) 

 (fold or hang) 

 (refold or rehang) 

 (empty) 

 (dust and clean out) 

 (take out) 

 (pick up) 

 (pickup and put away) 

 (run) 

 (vacuum) 

 (scrape off) 

 (spray) 

 (dust down) 

 (throw out) 

 (scrub) 

 (wipe down) 

 (wash down) 
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 (wash out) 

 (brush off) 

 (pickup) 

 (fold) 

 (put) 

; 

 

[object] 

 (trash can) 

 (stove top) 

 (shower door) 

 (faucet) 

 (corners) 

 (oven) 

 (books) 

 (jewelry) 

 (dining room) 

 (ceiling) 

 (photographs) 

 (fans) 

 (curtain liner) 

 (bedding) 

 (countertops) 

 (mirrors) 

 (house) 

 (ceiling fan) 

 (knickknacks) 

 (accent lamps) 

 (inside of toilet) 

 (foyer) 

 (outside of toilet) 

 (trash) 

 (chests) 

 (clean clothes) 

 (fixtures) 

 (dishwasher) 

 (sink) 

 (other furniture) 

 (couch) 

 (wood) 

 (curtains) 

 (cabinets) 

 (corners of walls) 

 (tub) 

 (bedroom) 

 (cushions) 

 (night table surface) 

 (magazines) 

 (counters) 

 (beds) 

 (nightstands) 

 (toilet bowl) 

 (misplaced items) 

 (vents) 
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 (clothes) 

 (couches) 

 (entertainment center) 

 (dining table) 

 (tabletops) 

 (toilet seat) 

 (couch pillow) 

 (dishes) 

 (shower) 

 (blender) 

 (refrigerator) 

 (other small appliances) 

 (toilet) 

 (carpets) 

 (cds) 

 (upholstery) 

 (bathroom) 

 (crumbs and dust bunnies) 

 (living room) 

 (rim) 

 (blinds) 

 (laundry) 

 (throws) 

 (items) 

 (art) 

 (dirty clothing) 

 (floors) 

 (floor) 

 (flooring) 

 (rugs) 

 (stove) 

 (draperies) 

 (family room) 

 (toaster) 

 (chairs) 

 (newspapers) 

 (drawers) 

 (kitchen) 

 (coffee table) 

 (clothing) 

 (mirror) 

 (shelves) 

 (accent tables) 

 (doormats) 

 (bed) 

 (videos) 

 (dressers) 

 (surfaces) 

 (items lying around) 

; 

 

[tool] 

 (dust rag) 

 (sponge) 
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 (sweeper) 

 (trash can) 

 (away) 

 (gentle cleanser) 

 (duster) 

 (oven cleaner) 

 (commercial cleaner) 

 (towel) 

 (broom) 

 (trashcan) 

 (vinegar) 

 (disinfectant wipe) 

 (glass cleaner) 

 (brush) 

 (hamper) 

 (dishwasher) 

 (cleaning cloth) 

 (toilet cleaner) 

 (feather duster) 

 (washing machine) 

 (murphys oil soap) 

 (shower mist) 

 (newspapers) 

 (damp cloth) 

 (vacuum) 

 (swiffer) 

 (damp sponge) 

 (pledge) 

 (soft brush) 

 (dry rag) 

 (spot cleaner) 

 (windex) 

 (toilet brush) 

 (rug shampoo machine) 

 (hands) 

 (upholstery shampoo machine) 

 (lightly wet clean cloth) 

 (furniture oil) 

 (handheld vacuum) 

 (vacuum cleaner) 

; 

 

[condition] 

 (spring) 

 (after every use) 

 (every day) 

 (daily) 

; 
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Appendix IV – Experimental 

Measurements 

Experiment 
No. 

Lesson 
Plan Grounding Semantic Inputs 

Tasks in 
Lesson 

Plan 

Tasks 
Learned 
Correctly 

Clarifying 
Questions

1 1 Optimistic Speech only 6 3 22 

2 1 Cautious Speech only 6 3 28 

3 1 Pessimistic Speech only 6 3 39 

4 2 Optimistic Speech only 10 5 19 

5 2 Cautious Speech only 10 7 64 

6 2 Pessimistic Speech only 10 10 90 

7 3 Optimistic Speech only 5 3 24 

8 3 Cautious Speech only 5 5 29 

9 3 Pessimistic Speech only 5 5 50 

10 4 Optimistic Speech only 12 4 39 

11 4 Cautious Speech only 12 5 64 

12 4 Pessimistic Speech only 12 5 91 

13 5 Optimistic Speech only 27 19 117 

14 5 Cautious Speech only 27 19 172 

15 5 Pessimistic Speech only 27 20 208 

16 6 Optimistic Speech only 29 16 114 

17 6 Cautious Speech only 29 21 205 

18 6 Pessimistic Speech only 29 17 229 

19 7 Optimistic Speech only 28 25 123 

20 7 Cautious Speech only 28 25 175 

21 7 Pessimistic Speech only 28 25 224 

22 8 Optimistic Speech only 25 19 110 

23 8 Cautious Speech only 25 19 153 

24 8 Pessimistic Speech only 25 19 187 

25 9 Optimistic Speech only 15 7 60 

26 9 Cautious Speech only 15 8 84 

27 9 Pessimistic Speech only 15 7 103 

28 10 Optimistic Speech only 9 5 42 

29 10 Cautious Speech only 9 6 52 

30 10 Pessimistic Speech only 9 6 59 

31 1 Optimistic Speech + RW 6 0 17 

32 1 Cautious Speech + RW 6 2 51 

33 1 Pessimistic Speech + RW 6 5 57 

34 2 Optimistic Speech + RW 10 8 32 

35 2 Cautious Speech + RW 10 9 53 

36 2 Pessimistic Speech + RW 10 10 85 
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Experiment 
No. 

Lesson 
Plan Grounding Semantic Inputs 

Tasks in 
Lesson 

Plan 

Tasks 
Learned 
Correctly 

Clarifying 
Questions

37 3 Optimistic Speech + RW 5 3 20 

38 3 Cautious Speech + RW 5 4 33 

39 3 Pessimistic Speech + RW 5 5 46 

40 4 Optimistic Speech + RW 12 3 30 

41 4 Cautious Speech + RW 12 6 68 

42 4 Pessimistic Speech + RW 12 6 88 

43 5 Optimistic Speech + RW 27 17 85 

44 5 Cautious Speech + RW 27 24 167 

45 5 Pessimistic Speech + RW 27 25 194 

46 6 Optimistic Speech + RW 29 17 110 

47 6 Cautious Speech + RW 29 21 208 

48 6 Pessimistic Speech + RW 29 25 256 

49 7 Optimistic Speech + RW 28 22 92 

50 7 Cautious Speech + RW 28 26 166 

51 7 Pessimistic Speech + RW 28 26 213 

52 8 Optimistic Speech + RW 25 20 86 

53 8 Cautious Speech + RW 25 19 126 

54 8 Pessimistic Speech + RW 25 19 154 

55 9 Optimistic Speech + RW 15 8 48 

56 9 Cautious Speech + RW 15 7 75 

57 9 Pessimistic Speech + RW 15 9 87 

58 10 Optimistic Speech + RW 9 6 43 

59 10 Cautious Speech + RW 9 7 81 

60 10 Pessimistic Speech + RW 9 7 88 

61 1 Optimistic Speech + History 6 3 16 

62 1 Cautious Speech + History 6 4 55 

63 1 Pessimistic Speech + History 6 5 65 

64 2 Optimistic Speech + History 10 7 31 

65 2 Cautious Speech + History 10 10 67 

66 2 Pessimistic Speech + History 10 10 65 

67 3 Optimistic Speech + History 5 4 14 

68 3 Cautious Speech + History 5 5 30 

69 3 Pessimistic Speech + History 5 5 39 

70 4 Optimistic Speech + History 12 7 35 

71 4 Cautious Speech + History 12 7 92 

72 4 Pessimistic Speech + History 12 6 79 

73 5 Optimistic Speech + History 27 22 75 

74 5 Cautious Speech + History 27 23 203 

75 5 Pessimistic Speech + History 27 23 186 

76 6 Optimistic Speech + History 29 22 83 
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Experiment 
No. 

Lesson 
Plan Grounding Semantic Inputs 

Tasks in 
Lesson 

Plan 

Tasks 
Learned 
Correctly 

Clarifying 
Questions

77 6 Cautious Speech + History 29 21 203 

78 6 Pessimistic Speech + History 29 24 218 

79 7 Optimistic Speech + History 28 24 74 

80 7 Cautious Speech + History 28 23 183 

81 7 Pessimistic Speech + History 28 26 185 

82 8 Optimistic Speech + History 25 19 64 

83 8 Cautious Speech + History 25 19 150 

84 8 Pessimistic Speech + History 25 21 192 

85 9 Optimistic Speech + History 15 7 37 

86 9 Cautious Speech + History 15 10 153 

87 9 Pessimistic Speech + History 15 11 149 

88 10 Optimistic Speech + History 9 7 29 

89 10 Cautious Speech + History 9 9 79 

90 10 Pessimistic Speech + History 9 9 94 

91 1 Optimistic Speech + Pointing 6 5 28 

92 1 Cautious Speech + Pointing 6 5 40 

93 1 Pessimistic Speech + Pointing 6 6 66 

94 2 Optimistic Speech + Pointing 10 10 38 

95 2 Cautious Speech + Pointing 10 9 68 

96 2 Pessimistic Speech + Pointing 10 10 83 

97 3 Optimistic Speech + Pointing 5 4 24 

98 3 Cautious Speech + Pointing 5 5 29 

99 3 Pessimistic Speech + Pointing 5 5 42 

100 4 Optimistic Speech + Pointing 12 7 46 

101 4 Cautious Speech + Pointing 12 7 80 

102 4 Pessimistic Speech + Pointing 12 7 70 

103 5 Optimistic Speech + Pointing 27 23 113 

104 5 Cautious Speech + Pointing 27 25 173 

105 5 Pessimistic Speech + Pointing 27 27 224 

106 6 Optimistic Speech + Pointing 29 21 138 

107 6 Cautious Speech + Pointing 29 23 188 

108 6 Pessimistic Speech + Pointing 29 23 238 

109 7 Optimistic Speech + Pointing 28 26 116 

110 7 Cautious Speech + Pointing 28 25 165 

111 7 Pessimistic Speech + Pointing 28 26 224 

112 8 Optimistic Speech + Pointing 25 21 104 

113 8 Cautious Speech + Pointing 25 21 147 

114 8 Pessimistic Speech + Pointing 25 21 194 

115 9 Optimistic Speech + Pointing 15 11 76 

116 9 Cautious Speech + Pointing 15 13 95 
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No. 

Lesson 
Plan Grounding Semantic Inputs 

Tasks in 
Lesson 

Plan 

Tasks 
Learned 
Correctly 

Clarifying 
Questions

117 9 Pessimistic Speech + Pointing 15 13 132 

118 10 Optimistic Speech + Pointing 9 8 44 

119 10 Cautious Speech + Pointing 9 9 60 

120 10 Pessimistic Speech + Pointing 9 9 72 

121 1 Optimistic Speech + FOV 6 4 25 

122 1 Cautious Speech + FOV 6 6 42 

123 1 Pessimistic Speech + FOV 6 6 54 

124 2 Optimistic Speech + FOV 10 9 42 

125 2 Cautious Speech + FOV 10 10 61 

126 2 Pessimistic Speech + FOV 10 10 83 

127 3 Optimistic Speech + FOV 5 2 29 

128 3 Cautious Speech + FOV 5 5 31 

129 3 Pessimistic Speech + FOV 5 5 44 

130 4 Optimistic Speech + FOV 12 7 42 

131 4 Cautious Speech + FOV 12 7 61 

132 4 Pessimistic Speech + FOV 12 7 85 

133 5 Optimistic Speech + FOV 27 25 113 

134 5 Cautious Speech + FOV 27 25 174 

135 5 Pessimistic Speech + FOV 27 27 237 

136 6 Optimistic Speech + FOV 29 21 135 

137 6 Cautious Speech + FOV 29 22 189 

138 6 Pessimistic Speech + FOV 29 25 240 

139 7 Optimistic Speech + FOV 28 26 107 

140 7 Cautious Speech + FOV 28 26 167 

141 7 Pessimistic Speech + FOV 28 26 223 

142 8 Optimistic Speech + FOV 25 20 105 

143 8 Cautious Speech + FOV 25 20 142 

144 8 Pessimistic Speech + FOV 25 21 196 

145 9 Optimistic Speech + FOV 15 13 63 

146 9 Cautious Speech + FOV 15 13 110 

147 9 Pessimistic Speech + FOV 15 15 165 

148 10 Optimistic Speech + FOV 9 8 44 

149 10 Cautious Speech + FOV 9 9 65 

150 10 Pessimistic Speech + FOV 9 9 81 

151 1 Optimistic Speech + Nodding 6 5 32 

152 1 Cautious Speech + Nodding 6 6 36 

153 1 Pessimistic Speech + Nodding 6 6 45 

154 2 Optimistic Speech + Nodding 10 9 48 

155 2 Cautious Speech + Nodding 10 10 62 

156 2 Pessimistic Speech + Nodding 10 8 103 
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Plan 
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Learned 
Correctly 

Clarifying 
Questions

157 3 Optimistic Speech + Nodding 5 4 28 

158 3 Cautious Speech + Nodding 5 5 28 

159 3 Pessimistic Speech + Nodding 5 5 51 

160 4 Optimistic Speech + Nodding 12 7 43 

161 4 Cautious Speech + Nodding 12 7 58 

162 4 Pessimistic Speech + Nodding 12 7 68 

163 5 Optimistic Speech + Nodding 27 24 113 

164 5 Cautious Speech + Nodding 27 25 179 

165 5 Pessimistic Speech + Nodding 27 25 216 

166 6 Optimistic Speech + Nodding 29 22 148 

167 6 Cautious Speech + Nodding 29 23 211 

168 6 Pessimistic Speech + Nodding 29 22 259 

169 7 Optimistic Speech + Nodding 28 25 110 

170 7 Cautious Speech + Nodding 28 27 173 

171 7 Pessimistic Speech + Nodding 28 28 225 

172 8 Optimistic Speech + Nodding 25 21 116 

173 8 Cautious Speech + Nodding 25 21 139 

174 8 Pessimistic Speech + Nodding 25 20 176 

175 9 Optimistic Speech + Nodding 15 9 62 

176 9 Cautious Speech + Nodding 15 13 111 

177 9 Pessimistic Speech + Nodding 15 15 151 

178 10 Optimistic Speech + Nodding 9 7 45 

179 10 Cautious Speech + Nodding 9 8 73 

180 10 Pessimistic Speech + Nodding 9 9 69 

181 1 Optimistic All 6 0 31 

182 1 Cautious All 6 3 54 

183 1 Pessimistic All 6 3 61 

184 2 Optimistic All 10 4 36 

185 2 Cautious All 10 7 98 

186 2 Pessimistic All 10 8 57 

187 3 Optimistic All 5 3 15 

188 3 Cautious All 5 3 60 

189 3 Pessimistic All 5 5 36 

190 4 Optimistic All 12 6 35 

191 4 Cautious All 12 7 72 

192 4 Pessimistic All 12 7 103 

193 5 Optimistic All 27 20 78 

194 5 Cautious All 27 27 172 

195 5 Pessimistic All 27 25 207 

196 6 Optimistic All 29 26 106 
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197 6 Cautious All 29 29 268 

198 6 Pessimistic All 29 29 239 

199 7 Optimistic All 28 23 88 

200 7 Cautious All 28 26 190 

201 7 Pessimistic All 28 28 205 

202 8 Optimistic All 25 19 76 

203 8 Cautious All 25 20 186 

204 8 Pessimistic All 25 21 209 

205 9 Optimistic All 15 10 45 

206 9 Cautious All 15 13 144 

207 9 Pessimistic All 15 13 132 

208 10 Optimistic All 9 6 35 

209 10 Cautious All 9 6 131 

210 10 Pessimistic All 9 9 115 
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Appendix V – Confusion Matrices 
Unbalanced Training Set and One Output Node (h = 5 – 50) 

 

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 0 28 176 Best 0 17 168 Best 49 136 0

Not Best 0 4070 604 Not Best 0 2529 440 Not Best 3 2966 0

Classified Correctly = 83% Classified Correctly = 80% Classified Correctly = 96%

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 38 31 135 Best 38 18 129 Best 51 134 0

Not Best 3 4081 590 Not Best 1 2540 428 Not Best 6 2963 0

Classified Correctly = 84% Classified Correctly = 82% Classified Correctly = 96%

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 5 25 174 Best 10 19 156 Best 54 131 0

Not Best 0 4129 545 Not Best 0 2538 431 Not Best 18 2951 0

Classified Correctly = 85% Classified Correctly = 81% Classified Correctly = 95%

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 36 30 138 Best 42 18 125 Best 140 45 0

Not Best 3 4410 261 Not Best 3 2536 430 Not Best 5 2964 0

Classified Correctly = 91% Classified Correctly = 82% Classified Correctly = 98%

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 6 31 167 Best 10 19 156 Best 132 53 0

Not Best 2 4237 435 Not Best 0 2529 440 Not Best 11 2958 0

Classified Correctly = 87% Classified Correctly = 81% Classified Correctly = 98%

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 18 28 158 Best 15 19 151 Best 135 50 0

Not Best 0 4174 500 Not Best 3 2533 433 Not Best 9 2960 0

Classified Correctly = 86% Classified Correctly = 81% Classified Correctly = 98%

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 11 37 156 Best 6 21 158 Best 136 49 0

Not Best 0 4509 165 Not Best 0 2551 418 Not Best 5 2964 0

Classified Correctly = 93% Classified Correctly = 81% Classified Correctly = 98%

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 12 2 190 Best 2 2 181 Best 135 50 0

Not Best 0 68 4606 Not Best 0 43 2926 Not Best 9 2960 0

Classified Correctly = 2% Classified Correctly = 1% Classified Correctly = 98%

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 23 66 115 Best 5 41 139 Best 49 136 0

Not Best 0 4656 18 Not Best 0 2953 16 Not Best 5 2964

Classified Correctly = 96% Classified Correctly = 94% Classified Correctly = 96%

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 42 64 98 Best 47 41 97 Best 52 133 0

Not Best 1 4644 29 Not Best 0 2942 27 Not Best 10 2959 0

Classified Correctly = 96% Classified Correctly = 95% Classified Correctly = 95%

Strict Test for h = 50 Fuzzy Test for h = 50

Training for h = 45 Strict Test for h = 45 Fuzzy Test for h = 45

Training for h = 50

Classified As Classified As

Input Input Input

Input Input Input

Classified As Classified As Classified As

Classified As

Input Input

Training for h = 35 Strict Test for h = 35 Fuzzy Test for h = 35

Training for h = 40 Strict Test for h = 40 Fuzzy Test for h = 40

Input Input Input

Input

Strict Test for h = 30 Fuzzy Test for h = 30

Classified As Classified As Classified As

Classified As Classified As Classified As

Training for h = 25 Strict Test for h = 25 Fuzzy Test for h = 25

Training for h = 30

Classified As Classified As

Input Input Input

Input Input Input

Classified As Classified As Classified As

Classified As

Input Input

Training for h = 15 Strict Test for h = 15 Fuzzy Test for h = 15

Training for h = 20 Strict Test for h = 20 Fuzzy Test for h = 20

Input Input Input

Input

Strict Test for h = 10 Fuzzy Test for h = 10

Classified As Classified As Classified As

Classified As Classified As Classified As

Classified As Classified As

Input Input

Training for h = 5 Strict Test for h = 5

Classified As

Classified As

Input

Input

Fuzzy Test for h = 5

Training for h = 10

Classified As Classified As

Input Input

0

 

248  



Unbalanced Training Set and One Output Node (h = 55 – 100) 

 

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 7 66 131 Best 8 43 134 Best 49 136 0

Not Best 0 4647 27 Not Best 0 2940 29 Not Best 6 2963 0

Classified Correctly = 95% Classified Correctly = 93% Classified Correctly = 95%

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 108 1 95 Best 128 2 55 Best 177 8 0

Not Best 4 7 4663 Not Best 5 5 2959 Not Best 2581 388 0

Classified Correctly = 2% Classified Correctly = 4% Classified Correctly = 18%

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 34 3 167 Best 36 2 147 Best 172 13 0

Not Best 4 47 4623 Not Best 3 37 2929 Not Best 2570 399 0

Classified Correctly = 2% Classified Correctly = 2% Classified Correctly = 18%

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 9 78 117 Best 12 50 123 Best 51 134 0

Not Best 0 4648 26 Not Best 0 2952 17 Not Best 5 2964 0

Classified Correctly = 95% Classified Correctly = 94% Classified Correctly = 96%

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 15 89 100 Best 30 52 103 Best 49 136 0

Not Best 3 4669 2 Not Best 1 2962 6 Not Best 4 2965 0

Classified Correctly = 96% Classified Correctly = 95% Classified Correctly = 96%

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 16 64 124 Best 13 43 129 Best 129 56 0

Not Best 0 4629 45 Not Best 0 2927 42 Not Best 7 2962 0

Classified Correctly = 95% Classified Correctly = 93% Classified Correctly = 98%

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 111 0 93 Best 129 0 56 Best 185 0 0

Not Best 10 6 4658 Not Best 13 3 2953 Not Best 2949 20 0

Classified Correctly = 2% Classified Correctly = 4% Classified Correctly = 6%

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 19 83 102 Best 19 51 115 Best 50 135 0

Not Best 8 4660 6 Not Best 4 2962 3 Not Best 7 2962 0

Classified Correctly = 96% Classified Correctly = 95% Classified Correctly = 95%

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 11 38 155 Best 16 19 150 Best 141 44 0

Not Best 0 4496 178 Not Best 2 2564 403 Not Best 6 2963 0

Classified Correctly = 92% Classified Correctly = 82% Classified Correctly = 98%

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 116 2 86 Best 133 1 51 Best 161 24 0

Not Best 3 43 4628 Not Best 4 35 2930 Not Best 655 2314 0

Classified Correctly = 3% Classified Correctly = 5% Classified Correctly = 78%

Input Input

Training for h = 95 Strict Test for h = 95 Fuzzy Test for h = 95

Training for h = 100 Strict Test for h = 100 Fuzzy Test for h = 100

Input Input Input

Input

Strict Test for h = 90 Fuzzy Test for h = 90

Classified As Classified As Classified As

Classified As Classified As Classified As

Training for h = 85 Strict Test for h = 85 Fuzzy Test for h = 85

Training for h = 90

Classified As Classified As

Input Input Input

Input Input Input

Classified As Classified As Classified As

Classified As

Input Input

Training for h = 75 Strict Test for h = 75 Fuzzy Test for h = 75

Training for h = 80 Strict Test for h = 80 Fuzzy Test for h = 80

Input Input Input

Input

Strict Test for h = 70 Fuzzy Test for h = 70

Classified As Classified As Classified As

Classified As Classified As Classified As

Training for h = 65 Strict Test for h = 65 Fuzzy Test for h = 65

Training for h = 70

Classified As Classified As

Input Input Input

Input Input Input

Classified As Classified As Classified As

Classified As

Input Input

Training for h = 55 Strict Test for h = 55 Fuzzy Test for h = 55

Training for h = 60 Strict Test for h = 60 Fuzzy Test for h = 60

Input Input Input

Input

Classified As Classified As Classified As

Classified As Classified As Classified As
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Small Balanced Training Set and One Output Node (h = 5 – 35) 

 

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 73 15 116 Best 63 12 110 Best 169 16 0

Not Best 3 145 53 Not Best 73 2157 739 Not Best 448 2521 0

Classified Correctly = 54% Classified Correctly = 70% Classified Correctly = 85%

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 69 10 125 Best 63 10 112 Best 168 17 0

Not Best 2 119 80 Not Best 29 1961 979 Not Best 440 2529 0

Classified Correctly = 46% Classified Correctly = 64% Classified Correctly = 86%

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 137 9 58 Best 141 11 33 Best 169 16 0

Not Best 3 112 86 Not Best 41 1984 944 Not Best 264 2705 0

Classified Correctly = 61% Classified Correctly = 67% Classified Correctly = 91%

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 147 8 49 Best 146 13 26 Best 169 16 0

Not Best 3 146 52 Not Best 77 2253 639 Not Best 262 2707 0

Classified Correctly = 72% Classified Correctly = 76% Classified Correctly = 91%

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 131 5 68 Best 140 4 41 Best 169 16 0

Not Best 1 150 50 Not Best 48 2296 625 Not Best 270 2699 0

Classified Correctly = 69% Classified Correctly = 77% Classified Correctly = 91%

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 132 4 68 Best 138 6 41 Best 169 16 0

Not Best 1 147 53 Not Best 56 2248 665 Not Best 282 2687 0

Classified Correctly = 69% Classified Correctly = 76% Classified Correctly = 91%

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 147 5 52 Best 147 3 35 Best 169 16 0

Not Best 3 145 53 Not Best 75 2255 639 Not Best 341 2628 0

Classified Correctly = 72% Classified Correctly = 76% Classified Correctly = 89%

Training for h = 35 Strict Test for h = 35 Fuzzy Test for h = 35

Classified As Classified As Classified As

Input Input Input

Training for h = 30

Classified As Classified As

Strict Test for h = 30 Fuzzy Test for h = 30

Input Input Input

Training for h = 25 Strict Test for h = 25 Fuzzy Test for h = 25

Classified As

Input Input Input

Training for h = 15 Strict Test for h = 15 Fuzzy Test for h = 15

Classified As Classified As Classified As

Classified As Classified As Classified As

Input Input

Classified As Classified As Classified As

Training for h = 20 Strict Test for h = 20 Fuzzy Test for h = 20

Input Input Input

Input

Input Input

Strict Test for h = 10 Fuzzy Test for h = 10

Classified As

Input

Classified As Classified As

Input

Fuzzy Test for h = 5

Training for h = 10

Classified As Classified As

Input Input

Training for h = 5 Strict Test for h = 5

Classified As
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Large Balanced Training Set and One Output Node (h = 5 – 35) 

 

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 1078 160 3437 Best 50 1 134 Best 170 15 0

Not Best 16 832 3826 Not Best 7 275 2687 Not Best 474 2495 0

Classified Correctly = 20% Classified Correctly = 10% Classified Correctly = 84%

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 1147 298 3230 Best 53 13 119 Best 170 15 0

Not Best 20 3292 1362 Not Best 13 2074 882 Not Best 496 2473 0

Classified Correctly = 47% Classified Correctly = 67% Classified Correctly = 84%

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 1354 321 3000 Best 58 11 116 Best 170 15 0

Not Best 61 3393 1220 Not Best 37 2143 789 Not Best 455 2514 0

Classified Correctly = 51% Classified Correctly = 70% Classified Correctly = 85%

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 1101 276 3298 Best 52 10 123 Best 169 16 0

Not Best 15 2916 1743 Not Best 9 1899 1061 Not Best 435 2534 0

Classified Correctly = 43% Classified Correctly = 62% Classified Correctly = 86%

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 1377 161 3137 Best 60 10 115 Best 170 15 0

Not Best 54 2630 1990 Not Best 40 1896 1033 Not Best 454 2515 0

Classified Correctly = 43% Classified Correctly = 62% Classified Correctly = 85%

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 1033 161 3481 Best 52 10 123 Best 168 17 0

Not Best 24 2687 1963 Not Best 15 1916 1038 Not Best 466 2503 0

Classified Correctly = 40% Classified Correctly = 62% Classified Correctly = 85%

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 1332 161 3182 Best 56 10 119 Best 170 15 0

Not Best 74 2658 1942 Not Best 48 1892 1029 Not Best 466 2503 0

Classified Correctly = 43% Classified Correctly = 62% Classified Correctly = 85%

Input

Fuzzy Test for h = 5

Training for h = 10

Classified As Classified As

Input Input

Training for h = 5 Strict Test for h = 5

Classified As

Classified As

Input

Classified As Classified As

Input Input

Strict Test for h = 10 Fuzzy Test for h = 10

Classified As Classified As Classified As

Training for h = 20 Strict Test for h = 20 Fuzzy Test for h = 20

Input Input Input

Input

Classified As Classified As

Input Input

Input Input Input

Training for h = 15 Strict Test for h = 15 Fuzzy Test for h = 15

Classified As Classified As Classified As

Classified As

Training for h = 25 Strict Test for h = 25 Fuzzy Test for h = 25

Classified As

Training for h = 30

Classified As Classified As

Strict Test for h = 30 Fuzzy Test for h = 30

Input Input Input

Classified As Classified As Classified As

Input Input Input

Training for h = 35 Strict Test for h = 35 Fuzzy Test for h = 35  
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Unbalanced Training Set and Two Output Nodes (h = 5 – 35) 

 

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 0 26 178 Best 0 15 170 Best 14 171 0

Not Best 0 4049 625 Not Best 0 2503 466 Not Best 4 2965 0

Classified Correctly = 83% Classified Correctly = 79% Classified Correctly = 94%

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 0 24 180 Best 0 17 168 Best 45 140 0

Not Best 0 3960 714 Not Best 0 2478 491 Not Best 3 2966 0

Classified Correctly = 81% Classified Correctly = 79% Classified Correctly = 95%

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 0 31 173 Best 0 18 167 Best 127 58 0

Not Best 0 4045 629 Not Best 0 2502 467 Not Best 4 2965 0

Classified Correctly = 83% Classified Correctly = 79% Classified Correctly = 98%

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 2 26 176 Best 0 17 168 Best 45 140 0

Not Best 0 4111 563 Not Best 0 2513 456 Not Best 2 2967 0

Classified Correctly = 84% Classified Correctly = 80% Classified Correctly = 95%

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 36 22 146 Best 42 15 128 Best 134 51 0

Not Best 0 4034 640 Not Best 2 2502 465 Not Best 16 2953 0

Classified Correctly = 83% Classified Correctly = 81% Classified Correctly = 98%

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 12 22 170 Best 16 15 154 Best 53 132 0

Not Best 0 4053 621 Not Best 0 2514 455 Not Best 5 2964 0

Classified Correctly = 83% Classified Correctly = 80% Classified Correctly = 96%

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 21 26 157 Best 5 17 163 Best 52 133 0

Not Best 0 4084 590 Not Best 0 2523 446 Not Best 5 2964 0

Classified Correctly = 84% Classified Correctly = 80% Classified Correctly = 96%

Training for h = 35 Strict Test for h = 35 Fuzzy Test for h = 35

Classified As Classified As Classified As

Input Input Input

Training for h = 30

Classified As Classified As

Strict Test for h = 30 Fuzzy Test for h = 30

Input Input Input

Training for h = 25 Strict Test for h = 25 Fuzzy Test for h = 25

Classified As

Input Input Input

Training for h = 15 Strict Test for h = 15 Fuzzy Test for h = 15

Classified As Classified As Classified As

Classified As Classified As Classified As

Input Input

Classified As Classified As Classified As

Training for h = 20 Strict Test for h = 20 Fuzzy Test for h = 20

Input Input Input

Input

Input Input

Strict Test for h = 10 Fuzzy Test for h = 10

Classified As

Input

Classified As Classified As

Input

Fuzzy Test for h = 5

Training for h = 10

Classified As Classified As

Input Input

Training for h = 5 Strict Test for h = 5

Classified As
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Small Balanced Training Set and Two Output Nodes (h = 5 – 35) 

 

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 50 0 154 Best 56 0 129 Best 170 15 0

Not Best 0 0 201 Not Best 18 0 2951 Not Best 446 2523 0

Classified Correctly = 12% Classified Correctly = 2% Classified Correctly = 85%

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 56 0 148 Best 53 0 132 Best 169 16 0

Not Best 1 4 196 Not Best 12 28 2929 Not Best 436 2533 0

Classified Correctly = 15% Classified Correctly = 3% Classified Correctly = 86%

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 59 9 136 Best 54 11 120 Best 168 17 0

Not Best 2 115 84 Not Best 43 1931 995 Not Best 431 2538 0

Classified Correctly = 43% Classified Correctly = 63% Classified Correctly = 86%

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 69 7 128 Best 61 10 114 Best 168 17 0

Not Best 0 113 88 Not Best 15 1944 1010 Not Best 265 2704 0

Classified Correctly = 45% Classified Correctly = 64% Classified Correctly = 91%

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 126 5 73 Best 132 2 51 Best 169 16 0

Not Best 0 112 89 Not Best 9 1904 1056 Not Best 263 2706 0

Classified Correctly = 59% Classified Correctly = 65% Classified Correctly = 91%

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 59 7 138 Best 53 11 121 Best 167 18 0

Not Best 0 112 89 Not Best 9 1926 1034 Not Best 250 2719 0

Classified Correctly = 42% Classified Correctly = 63% Classified Correctly = 92%

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 133 7 64 Best 139 10 36 Best 169 16 0

Not Best 0 113 88 Not Best 19 1951 999 Not Best 254 2715 0

Classified Correctly = 61% Classified Correctly = 66% Classified Correctly = 91%

Input

Fuzzy Test for h = 5

Training for h = 10

Classified As Classified As

Input Input

Training for h = 5 Strict Test for h = 5

Classified As

Classified As

Input

Classified As Classified As

Input Input

Strict Test for h = 10 Fuzzy Test for h = 10

Classified As Classified As Classified As

Training for h = 20 Strict Test for h = 20 Fuzzy Test for h = 20

Input Input Input

Input

Classified As Classified As

Input Input

Input Input Input

Training for h = 15 Strict Test for h = 15 Fuzzy Test for h = 15

Classified As Classified As Classified As

Classified As

Training for h = 25 Strict Test for h = 25 Fuzzy Test for h = 25

Classified As

Training for h = 30

Classified As Classified As

Strict Test for h = 30 Fuzzy Test for h = 30

Input Input Input

Classified As Classified As Classified As

Input Input Input

Training for h = 35 Strict Test for h = 35 Fuzzy Test for h = 35  
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Large Balanced Training Set and Two Output Nodes (h = 5 – 35) 

 

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 1146 0 3529 Best 45 0 140 Best 145 40 0

Not Best 111 0 4563 Not Best 58 0 2911 Not Best 308 2661 0

Classified Correctly = 12% Classified Correctly = 1% Classified Correctly = 89%

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 964 161 3550 Best 41 10 134 Best 170 15 0

Not Best 24 2499 2151 Not Best 9 1792 1168 Not Best 506 2463 0

Classified Correctly = 37% Classified Correctly = 58% Classified Correctly = 83%

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 1262 0 3413 Best 53 0 132 Best 168 17 0

Not Best 9 0 4665 Not Best 5 0 2964 Not Best 434 2535 0

Classified Correctly = 13% Classified Correctly = 2% Classified Correctly = 86%

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 1171 161 3343 Best 53 10 122 Best 168 17 0

Not Best 50 2591 2033 Not Best 38 1870 1061 Not Best 450 2519 0

Classified Correctly = 40% Classified Correctly = 61% Classified Correctly = 85%

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 871 115 3689 Best 23 0 162 Best 170 15 0

Not Best 6 406 4262 Not Best 27 97 2845 Not Best 485 2484 0

Classified Correctly = 14% Classified Correctly = 4% Classified Correctly = 84%

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 1240 161 3274 Best 55 10 120 Best 170 15 0

Not Best 10 2482 2182 Not Best 3 1784 1182 Not Best 446 2523 0

Classified Correctly = 40% Classified Correctly = 58% Classified Correctly = 85%

Best Not Best Unknown Best Not Best Unknown Best Not Best Unknown

Best 1194 161 3320 Best 53 10 122 Best 169 16 0

Not Best 4 2675 1995 Not Best 8 1901 1060 Not Best 438 2531 0

Classified Correctly = 41% Classified Correctly = 62% Classified Correctly = 86%

Training for h = 35 Strict Test for h = 35 Fuzzy Test for h = 35

Classified As Classified As Classified As

Input Input Input

Training for h = 30

Classified As Classified As

Strict Test for h = 30 Fuzzy Test for h = 30

Input Input Input

Training for h = 25 Strict Test for h = 25 Fuzzy Test for h = 25

Classified As

Input Input Input

Training for h = 15 Strict Test for h = 15 Fuzzy Test for h = 15

Classified As Classified As Classified As

Classified As Classified As Classified As

Input Input

Classified As Classified As Classified As

Training for h = 20 Strict Test for h = 20 Fuzzy Test for h = 20

Input Input Input

Input

Input Input

Strict Test for h = 10 Fuzzy Test for h = 10

Classified As

Input

Classified As Classified As

Input

Fuzzy Test for h = 5

Training for h = 10

Classified As Classified As

Input Input

Training for h = 5 Strict Test for h = 5

Classified As
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