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Human Robot Motion:

A shared effort approach

Grimaldo Silva1 and Thierry Fraichard1

Abstract— This paper is about Human Robot Motion (HRM),
i.e. the study of how a robot should move among humans.
This problem has often been solved by considering persons
as moving obstacles, predicting their future trajectories and
avoiding these trajectories. In contrast with such an approach,
recent works have showed benefits of robots that can move and
avoid collisions in a manner similar to persons, what we call
human-like motion. One such benefit is that human-like motion
was shown to reduce the planning effort for all persons in the
environment, given that they tend to solve collision avoidance
problems in similar ways. The effort required for avoiding a
collision, however, is not shared equally between agents as it
varies depending on factors such as visibility and crossing order.
Thus, this work tackles HRM using the notion of motion effort
and how it should be shared between the robot and the person
in order to avoid collisions. To that end our approach learns
a robot behavior using Reinforcement Learning that enables it
to mutually solve the collision avoidance problem during our
simulated trials.

I. Introduction

Human Robot Motion (HRM) is the study of how a

robot should move among persons. In this context, robot

motion must be safe and appropriate. While safety relates to

guaranteeing collision-free motion [1], the term appropriate

relates to respecting concepts such as social spaces [2],

legibility and perceived safety [3].

Many recent studies have focused on tackling HRM by

teaching a robot human-like behavior, such as in [4] and

[5]. The justification for this approach is that it allows a

robot to follow the flow of the persons [4], and also allows

for better behavior legibility to persons around the robot.

Legibility is important because it was shown that persons

tend to solve collision avoidance problems in stereotypical

ways under repeated conditions [6], which implies that a

robot behaving in an uncommon way forces the person to

actively plan its motion instead of relying on already learned

motion plans, this means that human-like motion reduces

planning effort for all the persons in the environment [7].

Furthermore, another argument is that unexpected motions

can be perceived as unsafe by nearby persons even though

in practice they may be collision free [5].

In order to create human-aware robots capable of navigat-

ing among persons, most current approaches in HRM, such

as [8] and [9], operate in two steps. First the probable future

behavior of the persons is predicted without considering the

robot. Then the future robot motion is computed taking this

prediction into account. As a result, the robot always yields,
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that is, it avoids to the best of its ability regions where a

person is expected to go through. Collision avoidance among

persons is, however, mutually solved [10]. This means that,

depending on the current disposition of nearby persons, each

person is expected to contribute a certain amount of what

we call effort to avoid a collision. The amount of effort

expected from each person and in which manner this effort is

represented, as speed or path changes for example, depends

on many factors [10], [11], [12], such as: who is first, angle

of approach, speed and visibility.

In order to replicate human collision avoidance behav-

ior, our objective is to allow the robot to share collision

avoidance effort with people, when necessary, in a safe and

appropriate manner, that is, in a way that is expected by

its human peers. To that end our approach accounts for two

facts: visibility and crossing order. The former represents the

understanding of the robot regarding what nearby persons

can see, while the latter represents which agent in crossing

scenarios should give way to the other. Note, however, that in

situations where the person is unwilling or unable to follow

a stereotypical motion the robot in our approach will still

be able to take full responsibility for avoiding collisions.

An important aspect is how the effort needs to be shared

between persons and robot. In some situations the person

does not expect the robot to yield, such as when the person

is behind the robot but intending to overtake. Whereas in

other cases the person expects the other agent to give him

priority and also to be responsible for most of the collision

avoidance [10], as is the case when the front of the robot

would collide into the side of a person during perpendicular

crossing scenarios.

Predicting human behavior in reaction to a given robot mo-

tion in our approach depends on a human-like model (HLM),

which unlike many works in HRM such as [8] and [5] does

not use the Social Force Model (SFM) which was introduced

in [13]. Instead we rely on a slightly modified version of

Optimal Reciprocal Collision Avoidance (ORCA) [14], also

called RVO 2. This HLM was chosen as it can be directly

modified to accommodate different degrees of participation

from a particular agent during collision avoidance.

Based on the persons’ reaction to a given robot motion,

we intend to use this information to avoid collisions with

persons in a human-like way. To that end, our approach relies

on reinforcement learning (RL) [15] to learn such behaviors,

this technique was chosen for its ability to explore the state

space and also to learn behaviors that can be recalled even

in real-time situations [16].



A. Outline of the Paper

This work is divided into six sections. Section II describes

works with related concepts. Afterwards, in Sec. III a formal

description of our approach is presented and also how to

measure the additional effort required for collision avoidance.

This is followed by Sec. IV where this additional effort

measure is used to build a human-like collision avoidance

strategy. Experimental results of our approach are presented

in Sec. V. Finally, a discussion of our results, future works

and final remarks are presented in Sec. VI.

II. Background and Contributions

Initial concepts in HRM focused mainly on allowing a

robot to respect social spaces, which can be defined in a

general sense as regions that for whatever reason a person

considers as belonging to them [2].

There are many other concepts that have an influence in

HRM, such as comfort. Comfort relates to the subjective

feeling of a person that the body is relieved of negative

stimuli [17]. Many factors affect comfort, one such factor is

the visibility which has been tackled in [17] using a multi-

layer costmap that factors the cost of visibility into a costmap

in order to calculate the optimal trajectory of an autonomous

wheelchair. A definition of comfortable motion that is more

related to HRM was made in [5], it can be summarized as the

perception of a person being able to walk in their preferred

velocity and if their path felt collision free.

Among the several human-like models (HLM) that can

approximate human behavior in these cases, we highlight

the Extended Social Force Model [13], a method based on

modeling each person as being attracted to their goal (in a

preferred velocity) and being repulsed by other agents and

also static objects in the environment. Another tool used in

simulation of pedestrians, particularly in crowd simulation

[18], [19], is the reciprocal velocity objects (RVO) [14]

which is based on finding velocity choices for agents that

guarantee collision avoidance.

Given one such HLM, its possible to calculate the reaction

of a given person to a robot motion. This contrasts with

many current approaches where the planned human motion

is static [8] or probabilistic [9]. That is, in these works the

robot avoids regions where persons are predicted to go in

order to avoid disrupting their plans.

Another concept, defined in [9], was hindrance. This term

relates to situations where a person natural behavior is

disrupted due to a robot’s proximity. To that end, a human-

like planner using Markov Decision Process associates a

probability for each of the several possible person trajectories

to the goal (a distribution over trajectories), this planner is

trained by observing human trajectories. Thus, a robot is able

move towards its goal while avoiding high hindrance regions.

Our approach brings novel contributions in relation to

those works as we focus on reproducing how persons share

collision avoidance effort. To this end, it is necessary to

forecast short-term human motion plan in reaction to a given

robot action, which we accomplish with a modified ORCA.

III. Overview of the problem

A robot is tasked with reaching a given goal, in-between

his current and desired positions any number of persons may

cross his path. It is evident that collisions with persons have

to be avoided whenever possible. However, persons have cer-

tain expectations about how this collision avoidance should

take place. To solve this problem it is important to model

how the collision avoidance effort should be distributed.

A. Formalization of the problem

Consider that W represents the environment, with W ⊂
R

2. In this environment, each person p and robot r that

belong to the set of dynamic objects D have positional

properties: qp = (xp, yp, θp) ∈ R
2 ×S1. Thus we define the

state of a given person as sp = (qp, q̇p), where each person

also has a goal, which is known a priori, gp = (x∗p, y
∗
p , θ

∗
p) ∈

R
2 × S1. Additionally, the robot r is also an agent in this

environment and as such also has positional properties sr
and a goal gr.

Although human behavior can be the result of large cog-

nitive effort, recent studies showed that realistic trajectories

can be generated with simple models where an agent solely

avoids local collisions [5]. Thus, our choice to utilize a

reactive HLM to evaluate human reaction to a given robot

motion over n time steps is reasonable.

One possible approach to the robot-person collision avoid-

ance problem can be posed in terms of minimizing additional

human effort. First, let πp,r = {qp(0), . . . , qp(n)} be the

predicted trajectory of person p after interaction with a robot

r trajectory within a prediction window of n time steps

ahead. Moreover, consider that the additional effort of a given

trajectory is represented by a value Γ(π) → R
∗ (detailed in

Sec. III-B). Finally, consider one possible formulation to this

problem

πr∗ = argmin
πr∈Πr

∑

p∈P

Γ(πp,r) (1)

where Πr is the set of admissible robot motions to the goal.

In this model the robot avoids causing additional effort to the

person whenever possible, that is, it will minimize the disrup-

tion of the person’s motion plan while still reaching its goal.

This approach is necessary in case the person is unaware

of the robot or either unwilling or incapable of changing

his motion plan. Conversely, in real scenarios, a person does

not always yield. The additional effort required for collision

avoidance is shared between the persons involved. In such

context, a robot that acts unlike other persons can generate

scenarios where, for example, persons are forced to actively

think about the robot motion plan instead of relying on

already learned stereotypical trajectories. As such, to achieve

HRM it is also necessary for the robot to replicate the ability

of persons to share necessary changes in planning between

themselves in a socially aware manner in order to solve

collision avoidance situations in stereotypical situations.

To account for the effort sharing between person and

robot, the problem of collision avoidance is posed as an

optimization problem in this manner



πr∗ = argmin
πr∈Πr

∑

p∈P

|(1− αr,p) · Γ(πp,r)− αr,p · Γ(πr)|

(2)

where αr,p ∈ [0, 1] is the effort distribution coefficient (EDC)

between p and r. This coefficient indicates, at each time step,

what is the relative cost of the robot’s deviation from its

baseline goal in relation to the person, a higher proportion

engenders less deviation, this is detailed in the section IV.

B. Human trajectory cost function

Anticipating the human effort necessary to execute a given

trajectory is a necessary step in order to properly divide effort

between person and robot. Many models exist to measure this

effort. One such function is the path length and also total

time to the goal [20]. Another approach, is given by [21],

which describes the cost of a trajectory as a combination of

weighted acceleration controls.

Our work relies on the concept of understanding how

collision avoidance requires additional effort in relation

to the robot baseline motion. Baseline motion represents

the trajectory that does not account for the presence of

other agents in the environment. The interaction with other

agents, however, requires change in the motion plan. To

measure this change, the first step is calculating the distance

of an agent r to the goal at time t using dt(r, gr) =
√

(xr(t)− x∗r)
2 + (yr(t)− y∗r )

2 where xr(t) and yr(t) are,

respectively, the x and y coordinates of the agent r at

time t. Thus, we can define the change in distance to

the goal as ∆dt(r, gr) = dt(r, gr) − dt−1(r, gr). In our

approach, at each time step, a baseline change in distance

to the goal is estimated, that is, the agent plans its motion

without accounting for other agents. This baseline change in

distance to the goal at the current time step is represented by

∆Bt(r, gr) and can be understood as the desired progression

to the goal.

However, interaction with other agents require additional

effort, which impose changes into the baseline motion of an

agent. Given this concept, we can define the additional effort

of r for a given trajectory as

Γ(πr) =
n
∑

t=1

max{0,∆dt(r, gr)−∆Bt(r, gr)} (3)

This cost function calculates its result based on the dif-

ference from the baseline motion to the actual motion. In

this formulation, a given motion can only have an equal or

smaller cost than the baseline motion at any time step. This

definition guarantees that Γ(π) → R
∗, which is a property

that is important in Sec. IV-B, when using it as part of a

reward function during optimization.

IV. Presentation of the Approach

Given the initial state of the person and the robot (includ-

ing position, goal and velocity), the robot wishes to find a

trajectory πr∗ that shares collision avoidance effort among

them in a similar way as another person would. Thus, in this

section we divide our approach to solve the optimization

problem of shared effort presented in Eq. 1 and Eq. 2 in five

main steps:

1) Receive information from sensors (world model/state)

2) Find ∀p ∈ D the αr,p based on current state

3) Plan collision avoidance actions up to n steps ahead

4) Send planned velocity (action) to wheels

5) Stop if goal reached, go to step 1 otherwise

As the robot receives input from its sensors it builds a

representation of the world including position of the goal,

position and velocity of nearby persons and also his own.

This information can be used to generate what is called a

model of its environment – a world model.

Information about position and velocity of nearby persons

enables the robot to calculate the amount of effort it should

share with each one for human-like collision avoidance. The

effort distribution coefficient (EDC) and the steps necessary

to calculate it are described in details in Sec. IV-A.

Given the world model and the EDC, the motion plans for

future timesteps can be calculated. To that end, Reinforce-

ment Learning (RL) is used to learn a motion plan capable of

reaching a given goal while avoiding collision with a nearby

person. Our formulation of this problem as RL problem is

described in Sec. IV-B.

Based on this overview of our approach to solve the

shared effort collision avoidance problem, in the upcoming

subsections the aforementioned steps are detailed and some

advantages and limitations of our approach are discussed.

A. Sharing effort

The proportion of effort shared during collision avoidance

between person and a robot varies depending on crossing

order and crossing angle. It is known that the person that

is giving way has to contribute more to the avoidance than

the one passing first [10]. One possible explanation for this

comes from difference in visual stimuli that both agents have,

as the person that gives way can more easily obtain visual

information about the person passing first [10]. In our current

formulation these two factors are taken into account to decide

shared effort: crossing order and visibility.

The point of potential collision, which is the position

where both agents would collide on in case they continue

in their current velocity, forms an angle ζr,p ∈ [0, 2π]
between the current position of the robot r and of person

p. Henceforth, when analyzing angles of crossing scenarios,

the angle that is being referenced is ζr,p. Furthermore, the

angle βr,p is formed from the bearing-angle of r in relation

to the position of p. The derivative of the bearing angle β̇

can be a strong indicator of potential collision and also of

crossing order [22]. These angles are shown in Fig. 1.

Based on results found [10] through analysis of the per-

pendicular crossing scenarios, it was found that the person

crossing first has a maximum of 40% contribution in collision

avoidance effort, while the one crossing last has a maximum

of 40%. Furthermore, it is intuitive that in most situations of

head-on collision with similar velocities or when both person

and robot see each other but have no clear crossing order,



Fig. 1: Collision situation between r and p, where crossing

angle ζ, bearing angle β and its derivative β̇ are shown.

the effort is shared equally between participants. Conversely,

in scenarios where one agent is potentially unaware of

the other i.e. the passing agent is coming from behind;

the responsibility shifts to the agent that sees the other.

Recent results also indicate that agents are still able to avoid

collisions against obstacles in peripheral vision [23].

This background allows us to correctly distribute effort

during collision avoidance between a person and a robot.

Thus let αr,p represent the effort sharing coefficient between

r in relation to p, which we define as a proportion that

weights crossing order and visibility into the relative cost

of the robot’s deviation from its baseline motion in relation

to the person. That is, the higher the proportion, the less

deviations from baseline motions of the robot are done in

comparison to the person.

The notion that agents do not react to other agents that

are outside their field of view, which span around 180o (with

both eyes) when looking ahead [24], is translated into our

model as a function Ψ : R → [0, 1]. This model is used for

the robot in order to find trajectories that respect humans

expectations. Thus, Ψ is defined as

Ψ(βr,p) =

{

0 for |βr,p|≥
π
2

1− e−λ1(|βr,p|−
π

2
) otherwise

(4)

where λ1 is 15. Based on this model of visibility, the shared

effort coefficient of r in relation to p that also accounts for

the passing order can be defined as

αr,p = (1−Ψ(βr,p)) + (0.5 + f(βr,p)) ·Ψ(βr,p) (5)

f(βr,p) = sgn(−βr,p)(1− δ(β))

(

A+
K −A

1 + exp(−λ2β̇r,p)

)

(6)

where the constants A, K and λ2 are, respectively, 0.1, −0.1
and 30. Furthermore, β̇ is the rate of change of β, sgn is

the standard sign function that extracts the sign of a real

number and δ : R → [0, 1] is a function that resembles

a smooth approximation of the dirac delta distribution that

maps β into 1 − |tanh(λ3β)| in which λ3 = 8 was chosen

to appropriately control the rate of convergence from one to

zero. The dirac-like distribution was used to guarantee that

the effort is always shared evenly during head-on (or near

Fig. 2: Shared effort space defines αp,r (both axis in degrees).

Its value indicates the relative cost of the robot’s deviation

from its baseline motion in relation a person’s deviation.

head-on) collision scenarios. Additionally, a generalized lo-

gistic function represents the boundary between the head-on

collision avoidance case and the perpendicular case (where

there may be an unequal distribution of effort).

The function f , showcased in Fig. 2, is not applied in cases

where there is no chance of collision, as there is no need to

change its motion plan, or in cases where the person does

not see the robot. In the latter case, for example, if a robot is

trying to pass a person from behind it is not appropriate to

expect the person to share effort with the robot as the robot

is outside its field of view. Thus, in both cases the robot is

responsible for the total motion effort.

B. Human-like collision avoidance

To correctly share effort between a person and a robot the

optimization problem defined in Sec. 2 is presented in this

section in a way can be solved using Reinforcement Learning

[15]. The most usual way to represent reinforcement learning

problems is as a Markov Decision Process (MDP) which

defines a tuple containing 〈Z,A,R, P 〉 that are, respectively,

the set of possible states Z, the set of possible actions A, the

reward function R : Z × A × Z → R and also a transition

function P : Z × A → Z. At each discrete time step the

MDP observes the current state z0 ∈ Z and selects an action

a0 ∈ A, as a result, it reaches a new state z1 and receives

a reward r1. Given this formulation, the goal of the MDP

is to reach a given terminal state sf with the best expected

reward or maximize the expected reward within a certain

time frame.

A particular robot behavior, that is, a relation between

every state and action is defined as ψ : Z → A and

called policy. The goal of a reinforcement learning is thus

to learn a policy ψ∗ that provides better reward than any

other policy. Among available methods of Reinforcement

Learning, TEXPLORE [16] was selected as our choice as it

is robust to noise and able to handle continuous state features.

In order for ψ to make a decision about the future



robot motion, the robot represents its own internal state

and the state of nearby persons into a form that can be

used in RL. As such, its RL state, defined as zt, is a

tuple 〈βr,g, dr,g, ζr,p, ttc, βr,p, β̇r,p, dr,p〉 that is used a person

where its current motion has risk of collision with the robot,

where ttc represents the number of time steps to collision (up

to n steps ahead) given linear projection of current velocities,

and β̇ is the rate of change of the bearing angle (see Fig.

1). One limitation of this state space formulation is that it

only allows for shared effort in the one person and one robot

scenario, given that adding more persons would require an

unbounded number of new states to the state space, according

to the number of people in the environment.

Using the relative angle and distance to the goal allows

the robot to learn what actions better leads him to the goal.

For instance, in the absence of collision risk, maintaining

the bearing angle of the robot to the goal, βr,g , at near zero

guarantees the reward is maximum. In a similar sense β̇ is

used to allow the agent to measure the risk of collision, the

direction of the collision is given by βr,p and ζr,p. When

collision is detected within the visible range the ttc is set to

the predicted amount of time steps, its value is an arbitrary

maximum distance of collision detection otherwise.

The possible actions are a discretization of the control

space, represented as forward motion and also left and right

motions in 45o angles. The discretization was chosen in such

way to reduce learning times. To avoid sharp turns as a

result of this discretization, the generated trajectories are

smoothed using a B-spline [25]. Given this control space,

each action at in our model can be represented by a control

u(t). Furthermore, the motion u(t) can be seen a trajectory of

two points and one time step, where its cost can be expressed

in terms of Γ, thus for each action at in state zt its reward

is given by

rt+1 = − |(1− αr,p) · Γ(up(t))− αr,p · Γ(ur(t))| (7)

The reward in Eq. 7 is used in case the robot did not reach

its goal and there was no collision, in case otherwise, the

reward is set to, respectively twenty and minus twenty.

V. Results

In this section we evaluate our approach to shared effort

in HRM. The tests were executed inside the ROS framework

and its packages but most trajectory planning is done inside

ORCA space. The persons are simulated as holonomic agents

using ORCA and are able to change their speed, conversely,

the robot has a discretized control space that is always at

maximum speed. The robot is set to have maximum speed

equal to a person’s maximum speed, however our model is

compatible with any particular proportion between these two

speeds. Moreover, in our tests both simulated person and

robot have a circular shape with diameter of 34 cm (similar

to TurtleBot 2). The robot motion model used to find the

trajectory is point mass but restricted to three acceptable

actions, see section IV-B for details.

In these tests, the time step between t and t + 1 of our

prediction is equal 0.25 seconds.

(a) Three difference scenarios where β̇ < 0

(b) Three difference scenarios where β̇ > 0

Fig. 3: Crossing angle of 90o, where zero indicates the effort-

aware robot and one the human-like planner

(a) Three difference scenarios where β̇ < 0

(b) Three difference scenarios where β̇ > 0

Fig. 4: Crossing angle of 45o, where zero indicates the effort-

aware robot and one the human-like planner

A. Trajectories based on crossing order

The trajectories presented were made accounting for dif-

ferent crossing angles and crossing order expectations in

order to evaluate their feasibility. The goal of the person is a

point with a fixed distance away while the goal of the robot

is a random position away and an angle near the direction

of their heading, this allows one to randomize the crossing

order without altering relative velocities. This is so as the

person and the robot are set to have near equal speeds.

It is important to note that there is no perceived order

in crossing scenarios with angles of 0o, depicted in Fig. 5.

Whereas in the case of crossing angle 45o (Fig .4) and 90o

(Fig. 3), we showcase different available trajectories in the

cases where a robot has crossing order priority (β̇r,p < 0)

and in cases where a person has the priority (β̇r,p > 0).



Fig. 5: Case with no crossing order, where zero indicates the

effort-aware robot and one the human-like planner

B. Runtime performance

The runtime performance analysis of our approach is

presented in Table I to showcase that, after the policy is

trained, it can be used to provide response times that are

compatible with real-world requirements.

Policy type Avg. 1-step (s) Avg. n-steps (s)

Online 0.100489s 3.701310s
Offline 0.000479s 0.016419s

TABLE I: Runtime performance comparison with an online

policy, that updates its model while taking actions, and also

an offline policy, which only applies learned behavior.

VI. Discussion and Conclusion

This work presented an approach to allow a robot to

share the effort required to avoid collision with a person by

learning a policy that encodes stereotypical behaviors from

persons during collision avoidance. The results observed

during experimental evaluation show that the robot is capable

of sharing effort with angles 0o, 45o, 90o without simply

yielding to the person.

To our knowledge, this is the first work that approxi-

mates the human asymmetrical effort sharing during collision

avoidance in 90o crossing scenarios in different crossing

orders. This can allow a robot to better represent human-like

behavior, this is important as following stereotypical motions

were shown in recent works to reduce planning effort for

persons in the environment.

For the short term, our plan is improve our model as to

allow effort sharing with multiple persons, as our current

approach is limited to the one person scenario. This would

allow observation of cases where avoiding collisions with

someone could by consequence cause additional effort to

somebody else. Our long term goal is to apply this model

into a real robot that has to avoid collision with multiple

persons in a real environment.
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