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Abstract— In physical Human-Robot Interaction, the basic
problem of fast detection and safe robot reaction to unexpected
collisions has been addressed successfully on advanced research
robots that are torque controlled, possibly equipped with joint
torque sensors, and for which an accurate dynamic model is
available. In this paper, an end-user approach to collision de-
tection and reaction is presented for an industrial manipulator
having a closed control architecture and no additional sensors.
The proposed detection and reaction schemes have minimal
requirements: only the outer joint velocity reference to the robot
manufacturer’s controller is used, together with the available
measurements of motor currents and joint positions. No a
priori information on the robot dynamic model and existing
low-level joint controllers is strictly needed. A suitable on-line
processing of the motor currents allows to distinguish between
accidental collisions and intended human-robot contacts, so as
to switch the robot to a collaboration mode when needed. Two
examples of reaction schemes for collaboration are presented,
with the user pushing/pulling the robot at any point of its
structure (e.g., for manual guidance) or with a compliant-like
robot behavior in response to forces applied by the human.
The actual performance of the methods is illustrated through
experiments on a KUKA KR5 manipulator.

I. INTRODUCTION

Safe physical Human-Robot Interaction (pHRI) typically

requires lightweight and compliant mechanical structures,

external sensing capabilities, and effective control schemes

so as to prevent collisions and/or address the various phases

of an impact, i.e., collision detection and robot reaction [1],

[2]. These robot characteristics should be able to handle both

unexpected collisions and intentional contacts, minimizing

the risk of injuries in the first case [3] and establishing useful

human-robot collaboration in the latter [4].

To address the mechanical issues of safe pHRI, some

research robots, such as the series of DLR LWR manipu-

lators [5] or the Barrett WAM [6], have been designed by

introducing on purpose compliant joints [7], [8] (recently,

even with variable stiffness [9]) and adopting slender and

light mechanical links. In particular, the technology of the

DLR LWR-III arm has been recently transferred to an

industrial product, the KUKA LWR4+ robot.

For collision avoidance, different types of exteroceptive

sensors are used to monitor the robot workspace and a

large variety of control schemes have been proposed to

The work was performed while all authors were at the Dipartimento di
Ingegneria informatica, automatica e gestionale Antonio Ruberti, Università
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guarantee co-existence of a robot and a human operator —

see, e.g., [10]–[12].

Much attention has been devoted to the basic problem of

detecting a physical collision between the manipulator and its

environment, using only proprioceptive sensors. The classical

approach is based on recognizing abnormal variations of

the motor currents driving the robot, treated as actuation

faults [13]. This feature is present also in some industrial

robots, such as ABB manipulators running the proprietary

control software IRC5 [14]. However, collision detection

without its further isolation (i.e., recognizing which link has

collided) allows only an immediate stop of the robot after

the impact —the simplest robot reaction strategy. Advanced

model-based methods, using an adaptive impedance control

scheme [15] or monitoring the robot generalized momen-

tum [16]–[18], are able instead to extract more information

from a physical collision. In particular, the method in [16],

[17] efficiently estimates the actual joint torques due to

collision at a generic location along the manipulator through

a residual vector signal, without the need of joint torque

sensing. In turn, this allows the design of active/directional

reaction strategies that safely push the robot away from the

collision area.

A further step in pHRI research is concerned with collab-

oration. In this context, a main challenge is to distinguish

between accidental collisions and intentional contacts, the

latter being associated to the human intention to start a

physical collaboration phase. A control architecture that

integrates collision avoidance, detection, and reaction ca-

pabilities, as well as human-robot collaboration, has been

recently presented in [19]. Additional work in this direction

is the subject of the on-going European project SAPHARI.

Beside using innovative mechanical/actuation designs and

possibly involving extra sensors, the above collision detec-

tion and reaction methods rely on two specific operative

conditions: i) the availability of a reliable robot dynamic

model, which is used for residual computations; ii) the ac-

cessibility to motor torque/current commands, which can be

modified on line under strict real-time constraints. However,

wishing to realize sensor-less collision detection and reaction

also on conventional industrial manipulators, both the above

conditions fail to be satisfied. In fact, most industrial robots

come with a closed control architecture that allows only

kinematic control: the end-user can only modify the outer ve-

locity or position references to the low-level joint controllers.

Moreover, no information on the dynamic robot model is

typically available, and even the structure and parameters of

the joint-level inner control loops are unknown.
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The main goal of this paper is to present and evaluate an

approach to collision handling in pHRI for industrial robots

with a closed control architecture. No a priori knowledge

is assumed about the robot dynamic model and the low-

level controllers. As a paradigmatic example, we consider

a small-size 6R KUKA manipulator, in which joint velocity

references can be changed by a user-defined program through

the communication interface available from the robot man-

ufacturer. The interface outputs every 12 ms the actual joint

encoder measures and a signal related to the motor currents.

By processing the current measurements during robot

motion and comparing them with time-varying thresholds

that depend on the commanded joint trajectory, whole-body

collision detection can be realized. To improve sensitivity, we

first eliminate from the measured currents the configuration-

dependent part accounting for gravity, which is identified in

advance through static experiments. Furthermore, by sepa-

rately high-pass and low-pass filtering of the motor currents,

it is possible to distinguish between accidental collisions and

intentional soft contacts with a human. When an intentional

contact is recognized, the robot stops and switches to a

collaboration mode. Two examples of robot reactive behavior

in human-robot collaboration are presented, one with the

human manually driving the robot by pushing/pulling it at

any point of the structure, another with the robot realizing

a compliant-like reaction to an instantaneous force applied

(anywhere) by the human. To obtain these behaviors, we

use directional information in the joint space obtained by

measuring the small joint position variations occurring when

the user applies a force in static conditions.

The paper is organized as follows. We present the operat-

ing conditions on our KUKA KR5 robot in Sect. II, including

a gravity identification scheme that works on the motor

currents. In Sect. III, the proposed collision detection method

and the use of current filtering for distinguishing collisions

and intentional contacts are described and validated through

experiments. The robot reactive behaviors are presented and

tested in Sect. IV. The paper is accompanied by a video

attachment illustrating the performance of the approach.

II. THE KUKA KR5 ROBOT SYSTEM

The proposed collision detection and reaction schemes

have been implemented on a KUKA KR 5 sixx R650 in-

dustrial robot available in our Robotics Lab, see Fig. 1. This

is a small-size 6R manipulator with a spherical wrist, having

28 kg of weight for the moving parts, 5 kg of payload, and

maximum stretch of 0.855 m from the base. The robot uses a

KUKA KR C2sr controller that implements low-level motor

control laws and motion control in the joint or Cartesian

space. The control architecture is actually closed to the end-

user, who can program the robot through the KCP teach

pendant or using the proprietary KRL language and a human-

machine interface. When the robot is equipped with the

KUKA Robot Sensor Interface (RSI) [21], control software

can be implemented on an external PC1 that communicates

with the KUKA controller every 12 ms, possibly collecting

also data from exteroceptive sensors (e.g., vision, depth

sensor, force/torque sensor).
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Fig. 1. The KUKA KR5 robot and the used D-H frames and table

With reference to Fig. 2, the input provided to the KUKA

controller is typically in the form of velocity or position

references at the joint level, respectively q̇r or qd. The

available output from the robot system consists of the joint

position q, measured by encoders, and the (absolute value

of) applied motor current i.

Fig. 2. A generic block diagram for the joint position, velocity, and current
loops embedded at the low level of an industrial robot controller

We note the following:

1) The control block diagram in Fig. 2 is a generic one.

Though reasonable, it may not correspond necessarily

to the one used in KUKA robots. As a matter of fact,

we do not have any information neither on the low-

level control structure nor on the value of the control

parameters. In particular, the command torque τ is not

measured by any sensor and also the motor current-to-

torque gain is unknown.

2) The performance of any user-defined robot monitoring

or control scheme is hampered by the relatively slow

sampling time (T = 12 ms) of the communication

allowed by the RSI interface. Nonetheless, since the

sampling rate of the low-level KUKA digital controller

is much higher (and due to the possible presence of

1We used an Intel Core 2 Quad Q6600 @2.40GHz, with 2Gb of
RAM, under real-time operative system Ubuntu patched with Real Time
Application Interface (RTAI) for Linux.
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analog current loops), a rather accurate reproduction of

velocity reference commands q̇r is obtained, at least

at moderate speed.

3) According to the robot manufacturer, the RSI interface

provides to the user only the absolute value |ij | of

the motor currents, for j = 1, . . . , 6. In principle,

this is enough for checking the occurrence of faulty

situations for the motors and the system. Unfortunately,

this limited information complicates the use of currents

for detecting collisions (and their directional effect at

the level of robot joints), as well as for the task of

identifying the robot dynamic model.

To illustrate the above items 2) and 3), we present an

illustrative experiment performed on the first three joints of

the KUKA KR 5 robot2. The reference motion for each joint

is specified as

q̇r,j(t) = Aj cos ω(t − t0), for j = 1, 2, 3, t ≥ t0,

with the motion starting at t0 and where ω = 1.306 [rad/s],

A1 = −40, A2 = 15, and A3 = 20 [deg/s]. Figure 3 shows3

the commanded reference velocity q̇r, the resulting measured

position q, and the joint velocity q̇ reconstructed by off-

line numerical differentiation (using 5 position data centered

around the current sample). Despite a delay of about 84 ms (7

samples) is present between q̇r and q̇, this affects mainly the

performance of user-defined laws acting through the external

communication/control loop. On the other hand, the overall

performance of the KUKA internal controller appears to

be satisfactory, with the low-level control loops overcoming

most of the coupled and nonlinear dynamics of the robot.

Figure 4 shows the motor currents associated to the

previous robot motion, as provided by the RSI. Despite an

oscillatory motion is being commanded to the joints, these

signals are indeed always positive. They contain relevant

high-frequency noise, making their direct use more critical

for recognizing spurious events such as collisions. On the

other hand, the currents follow approximately the shape of

the commanded velocity (rather than the acceleration profile

associated to the reference motion), thus confirming that the

robot under low-level feedback behaves essentially as a first-

order system (with some disturbance and noise), justifying

the use of purely kinematic control laws.

A. Gravity identification

In order to specify more stringent thresholds on motor

currents so as to improve sensitivity of collision detection,

we have performed an identification of the currents needed

to sustain gravity in the different robot configurations. This

gravity contribution is then eliminated from the measured

currents before any filtering of the signals (see Sect. III-A).

Identification of the configuration-dependent gravity term

g(q) is a subtask of the robot dynamic model identification

problem [22], which can be addressed using by-now standard

2The proposed methods work also for the full 6R robot. For compactness,
only the results on the first three joints are presented throughout the paper.

3For the sake of presentation, the position of joint 2 is shifted by +90◦

with respect to the D-H convention in Fig. 1.

Fig. 3. Sinusoidal reference command velocity q̇r (dashed, red), measured
position q (solid, blue), and velocity q̇ reconstructed numerically (dotted,

black) for the first three joints of the KUKA KR5 robot

Fig. 4. Motor current signals for the first three robot joints on the motion
of Fig. 3, as made available by the KUKA RSI interface

techniques based on joint torque (viz., current) and position

measurements. However, in the present case we have to deal

explicitly also with the lack of knowledge about the current-

to-motor gains Ki and with the fact that only the absolute

values of the motor currents i are available.

The dynamic model of an electrically-driven robot manip-

ulator with N joints takes the usual form

M(q)q̈ + c(q, q̇) + f(q, q̇) + g(q) = τ , (1)

with

τ = Ki i =
(

ki,1 i1 . . . ki,N iN
)T

. (2)

In static conditions, and neglecting the friction term f(q, q̇),
one can proceed with the identification of the motor current

ig associated to gravity by using its linear parametrized form,

g(q) = Yg(q) θg =







yT
1
(q)
...

yT
N (q)






θg = Ki ig, (3)

where both the vector of dynamic coefficients θg ∈ R
M and

the square diagonal matrix Ki of size N are unknown, and
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the gravity regressor matrix Yg has been expressed in terms

of its rows yT
j , j = 1, . . . , N . Equation (3) can be rewritten

component-wise as

yT
j (q)

θg

ki,j

= ± |ig,j |, j = 1, . . . , N,

where we made explicit the fact that only absolute values of

the motor currents are available. In vector form, we obtain

Y (q) θ = i±g , (4)

leading to N linear equations in the N × M unknowns θ,

with

Y (q) = block diag{yT
j (q)},

θ =







θg/ki,1

...

θg/ki,N






, i±g =







± |ig,1|
...

± |ig,N |






.

When moving just the first three joints of our KUKA

KR5 robot, gravity is present only at the second and third

joints (N = 2). These terms can be parametrized with

M = 3 dynamic coefficients, depending on the mass and

center of mass parameters of link 2 and of the composition

of links 3 to 6 (the last three joints are kept in their zero

configuration). We gathered static data from P = 20 different

robot configurations qtest, in which the ± signs of the joint

torques (and thus of the holding currents) due to gravity

is known from physical observation. The robot was moved

to these configurations from opposite directions, so as to

average the effects of static friction at steady state. The set

of P × N eqs. (4) is solved then by pseudoinversion.

Once θ has been estimated, we can remove at a generic

configuration q the gravity components from the absolute

values of the measured motor currents, using the absolute

value of the left-hand side of eq. (4). Table I shows the results

of the identification of gravity effects on motor currents

in two validation experiments. The obtained accuracy is

acceptable for the purpose of improving collision detection.

TABLE I

EVALUATION OF GRAVITY IDENTIFICATION ON MOTOR CURRENTS

current at joint 2 current at joint 3

test # measured estimated measured estimated

1 0.77 0.76 0.1 0.05

2 -0.82 -0.8 -0.15 -0.1

III. COLLISION DETECTION

Force/torque exchanges at different locations of the robot

body can arise because of an accidental collision with the

human/environment or due to a desired physical collabora-

tion between human and robot. Detection of these contacts

with the robot is a fundamental feature for safe pHRI. A

collision instantaneously generates torques at the robot joints,

which in turn modify the planned robot motion. When the

robot is controlled in a feedback mode (e.g., as in Fig. 2),

the motor currents display then a sudden change, which

is recognized as a collision when it exceeds some given

threshold. This effect has been already used in the past

for detecting collisions. We improve this basic signal-based

method with the use of suitable filtering of the motor currents

and by adopting trajectory-dependent thresholds. In doing

so, it will also be possible to distinguish a collision from an

intended contact, under the reasonable assumption that, for

the latter case, the human is approaching and establishing

physical contact with the robot in a softer way.

A. Filtering of currents

During a desired commanded motion of the KUKA KR5

robot, the absolute value of the currents at each motor is

made available every T = 12 ms through the RSI interface.

After removing from these signals the part needed for

compensating gravity at the current configuration, as detailed

in Sect. II-A, we propose the use of two filters working in

parallel, namely a High-Pass Filter (HPF) and a Low-Pass

Filter (LPF) of motors currents. The rationale is as follows:

• In most robot tasks, the desired motion is smooth

and repetitive in nature and the frequency content of

the associated commands (in feedback of feedforward

mode) is limited and predictable in advance, especially

in position-controlled robot like the KUKA KR5. On the

other hand, noise as well as the effect of hard collisions

typically appear in the high-frequency range of closed-

loop control signals.

• A LPF cleans the current signals from high-frequency

noise, and possibly from the effect of hard collisions,

while retaining the command frequencies needed for

executing the motion task in a limited bandwidth. On

the other hand, soft contacts between the robot and a

human (intended for starting a collaboration) may be

still recognized in the filtered signal.

• A HPF removes components that are slowly varying in

time, down to constant offsets. The filtered current will

still be very noisy, but is mostly sensitive to the effect

of hard impacts (i.e., undesired/unexpected collisions).

Therefore, applying simultaneously a HPF and a LPF (or

even multiple sets with different ranges of cutting frequen-

cies) serves properly to our purposes. The filtering process is

implemented on discrete-time data, and is the same for each

motor current. Let ik = i(tk), with tk = kT , be the absolute

value of the current at the sampled instant tk for a generic

motor (as provided by the RSI) and let if,k = if (tk) be the

output of the filter, with f = {LPF, HPF}.

The HPF was chosen as

iHPF,k = h0 ik + h2 ik−1 + h2 ik−2 + h3 ik−3, (5)

with h0 = −0.239207, h1 = −0.6262528, h2 = 0.6262528,

and h3 = 0.2392073. Equation (5) represents a digital

Chebyshev filter of order 3, with cutoff frequency equal to

10 Hz. The order of the filter was limited to 3 to reduce as

much as possible the delay on the output signal. The cutoff

frequency was tuned based on the expected hardness/softness

of impacts. For instance, a contact detected by a HPF with

cutting frequency at 10 Hz but not detected when using the
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higher cutting frequency of 20 Hz is to be considered softer

than one having effects also on the HPF at 20 Hz.

For the LPF design, some initial trials with Chebyshev

or Butterworth filters did not perform well, reducing too

much the magnitude of the output signal. By analyzing the

spectrum of typical input currents, we found that noise could

be suppressed by filters with bandwidth near 20 Hz, corre-

sponding to a period of about 0.05 s (containing 4 samples).

Therefore, we could remove effectively noise by choosing a

simple average of three consecutive input samples, or

iLPF,k =
1

3
(ik + ik−1 + ik−2) . (6)

B. Thresholding

The HPF and LPF currents are compared to thresholds in

order to detect specific HRI events. To prevent false alarms

or missed detections, time-varying thresholds τHPF(t) and

τLPF(t) are specified on line depending on the commanded

joint motion, namely on the reference velocity q̇r and on its

acceleration q̈r (obtained by backward numerical differenti-

ation). This copes automatically with the different dynamic

ranges of motion commands (being gravity contributions

already eliminated from measured currents). Note that the

use of commanded rather than actual (reconstructed) velocity

q̇ avoids introducing unnecessary delays in the detection.

For a generic high-pass filtered motor current, we define

τHPF = τHmin
+ kHv

|q̇r|

vmax

+ kHa

|q̈r|

amax

> 0. (7)

The first constant τHmin
is chosen as the least value covering

any HPF current in static conditions (q̇r = q̈r = 0) at a joint

configuration with zero gravity load. The robot joint is then

run at its maximum velocity vmax > 0, and the gain kHv
> 0

is chosen so that the first two terms in the right-hand side

of (7) provide an upper bound (with some margin) of the

recorded motor currents. The same procedure is repeated in

a similar way for the gain kHa
> 0, using the maximum

acceleration amax > 0. The value τHPF will be the critical

upper bound for the HPF current, while its opposite is taken

as the critical lower bound.

For a generic low-pass filtered motor current, we have

τLPF = τLmin
+ kLv

|q̇r|

vmax

+ kLa

|q̈r|

amax

> 0, (8)

with similar definition and tuning of parameters as in eq. (7).

TABLE II

PARAMETERS OF THRESHOLDS ON FILTERED MOTOR CURRENTS

joint 1 2 3

τHmin
0.15 0.14 0.13

HPF kHv
0.1 0.123 0.81

kHa
2.1 1.5 0.9

τLmin
0.5 0.6 0.6

LPF kLv
1.5 1.45 0.6

kLa
2.1 1.5 0.9

for both vmax 200 125 100
HPF and LPF amax 1200 1050 900

In all presented experiments, we have used for eqs. (7)

and (8) the parameter values specified in Tab. II. Figure 5

[ a
m

p 
]

[ a
m

p]

Fig. 5. High-pass [top] and low-pass [bottom] filtering of motor currents,
with their time-varying thresholds. Case of no collisions during the robot
motion of Fig. 3

shows the results obtained by HPF and LPF of the motor

currents in Fig. 4, associated to the motion in Fig. 3, with the

time-varying thresholds. In this case, no collisions occur and

the thresholds are never reached. As opposed to the currents

provided as output by the KUKA RSI interface (Fig. 4), the

HPF and LPF currents take both positive and negative values

(except for iLPF,1, where gravity does not act and eq. (6)

preserves positivity).

C. Distinguishing collisions from intentional contacts

We are now in place to formulate our simple rules for

detection of accidental collisions and for detection of inten-

tional contacts, distinguishing these two instances of pHRI.

Rule 1. A collision is detected if at least one HPF current

exceeds its threshold.

Rule 2. An intentional contact is detected if no HPF current

exceeds its threshold and at least one LPF current exceeds

its threshold.

We present the results of a first experiment in which the

two situations occur. The robot is continuously executing a

given cyclic motion task defined in the joint space, when the

human hits the robot body at different places (collisions).

Each time a collision is detected (Rule 1), the robot stops

and resumes then its motion after about 3 s. Later on, the
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human seeks a soft contact with the robot, which is detected

using Rule 2. In this experiment, no reaction is commanded

and the robot continues its motion without changes.

[ a
m

p 
]

[ a
m

p 
]

Fig. 6. High-pass [top] and low-pass [bottom] filtered motor currents on
the robot motion in Fig. 7. Four collisions and then two intentional contacts
are detected

Figure 6 shows the behavior of the HPF and LPF currents.

Four collisions are detected, at about t = 8, t = 17, t = 28,

and t = 36 s; two intentional contacts are detected at about

t = 50 and t = 60 s. The joint motion q, as measured

by the robot encoders, and the associated kinematic control

commands (the velocity reference q̇r) are shown in Fig. 7.

IV. ROBOT REACTION IN COLLABORATION

In our pHRI control framework, once a soft contact is

(physically) requested by the human and detected by the

combined use of LPF and HPF motor currents, the robot

switches to a collaboration mode. In this mode, the robot

can react to contact forces applied by the user in a variety

of ways, e.g., by keeping its end-effector (or another part

of its body) fixed in place or by moving in response to

further contacts so as to approximately zeroing the forces

exchanged with the human. Such behaviors are relatively

easy to be realized on torque-controlled robots equipped with

joint torque sensors and/or a F/T sensor on the end-effector.

For instance, when the human applies a force fK to a robot

link, the resulting torque τK = JT
K(q)fK acting on the

Fig. 7. Joint position measurements (solid, blue) and velocity reference
commands (dashed, red) in a case of collisions and intentional contacts. In
the first case the robot stops for 3 s, while in the second no specific reaction
is commanded

joints (being JK the Jacobian associated to the unknown

contact point) can be measured by the joint torque sensor,

or estimated with a model-based residual as in [16], when

the robot dynamic model is available. This torque τK will

indicate the direction in which the robot should move in the

joint space, as an active response to the applied fK .

Unfortunately, no such concepts can be used directly

on a standard industrial manipulator with closed control

architecture, no extra sensors, and without a reliable dynamic

model being available. In particular, having access only to

the reference velocity q̇r, we need to overcome (or trick)

the relatively stiff embedded low-level controller in order to

implement these robot reactions. In addition, in the case of

our KUKA KR5 robot, the intrinsic uncertainty about the

sign of the actual motor currents in the available measures

makes it hard to understand —at least when using only these

current signals— which is the direction of joint motion for

properly reacting to an external force. Our idea to address

this issue is to detect small initial variations of the joint

position, as measured by the encoders, with respect to the

desired value commanded by the low-level controller so as

to recognize the joint-space direction for robot reaction (a

similar method was used also in [20]). Based on this, we

have realized a number of simple reactive strategies (see the

full set of experiments in the video attachment, containing

also other reactive behaviors).

A. Human pushing/pulling the robot

With the robot at rest and in collaboration mode, the

human can apply continuous forces at any location of the

robot and manually drive it to a desired configuration. The

event is triggered by the LPF currents (after elimination

of the components due to gravity). Looking at the (tiny)

variation of joint positions (initially under the action of the

KUKA controller with q̇r = 0), a sign function fj = {+,−}
is determined for each of the joints. These collectively

specify the actual direction that will be taken by the robot in

response to the force applied by the human. For this manual
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Fig. 8. LPF motor currents [top] and joint positions (solid, blue) and
reference velocity commands (dashed, red) [bottom] for a collaboration
mode where the human is pushing/pulling the robot with small forces
(Experiment 3)

guidance mode, the control command q̇r is chosen as

q̇r,j = fj rj iLPF,j , for j = 1, 2, 3, (9)

where rj > 0 is an arbitrary gain to be tuned. Due to lack of

space, the results are shown only in the accompanying video

(Experiment 2).

In a second similar reaction strategy, the human can

push/pull the robot away from the current configuration

by applying even small but impulsive forces to the robot.

Triggering of this event and finding the direction of robot

reaction are the same as above, but the control command

q̇r in this case is obtained by removing the presence of LPF

currents from eq. (9). As a result, the joint velocity command

will be constant, and its value is kept for some desired

number of samples. Figure 8 shows the results obtained using

rj = 40 for all joints. One can recognize the association

between larger peaks in the LPF current profiles and constant

commanded reference velocities. These plots correspond to

the pushing/pulling Experiment 3 in the video.

B. Compliant-like robot behavior

At a given initial robot configuration qd, the human applies

an instantaneous force to the robot. A compliant-like robot

[ a
m

p 
]

Fig. 9. LPF motor currents [top] and joint positions (solid, blue) and
reference velocity commands (dashed, red) [bottom] for a collaboration
mode where the robot shows a compliant-like behavior in response to
instantaneous forces applied by the human (Experiment 4)

behavior is realized at the joint level by relating the control

command q̇r to the joint error e = qd−q and to the reaction

direction in the form

q̇r,j = fjkj + kpj
ej , for j = 1, 2, 3, (10)

where kj > 0 and kpj
> 0 are gains to be tuned for

performance, and fj is defined as in Sect. IV-A. The two

terms in (10) have opposite signs by construction, the first

being constant while the latter is progressively increasing.

At some instant, the two terms will balance each other and

the robot will stop. In practice, when |q̇r,j | ≤ ǫj , being ǫj a

small positive value, the first term is removed (setting kj = 0
from there on) and the second term will bring the robot back

to the initial configuration qd. Figure 9 shows the results of a

compliant collaboration mode obtained using kj = 100 and

ǫj = 0.01 deg for all joints, kp1
= 6, kp2

= kp3
= 11.8,

while setting in the second reaction phase the compliant

gains kpi
= 2 for all joints. A rapid and smooth recover

of the initial configuration is obtained (see Experiment 4 in

the video).
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V. CONCLUSIONS

We have presented a signal-based approach to whole-

body collision detection, robot reaction, and human-robot

collaboration that works for industrial manipulators with

a closed control architecture and without the use of extra

sensors (e.g., joint torque or 6D F/T sensors). The signals

used are those available to a generic end-user through the

data interface provided by the manufacturer: joint velocity

reference (as control input to the system), joint position (as

measured output), and a signal related to the internal motor

currents. In this framework, we introduced the idea of high-

pass and low-pass filtering of currents. By applying simple

rules on these two filtered measures, one can distinguish be-

tween accidental hard collisions and intentional soft contacts

between the human and the robot. In response to a detected

intentional contact, some examples of robot reactive behavior

in collaboration mode were provided, including manual robot

guidance, pushing/pulling the robot by instantaneous forces,

and a compliant-like robot behavior in response to small

forces. In all cases, contact forces can be applied by the

human at any point of the robot structure.

The methods have been implemented on a KUKA KR5

robot using the RSI interface. With the communication and

control rates allowed by the RSI, achieving high robot

performance is indeed difficult. Although no ground truth

measure of the actual instant of human-robot collision and of

the minimum detectable collision force (needing an external

force measurement) are available at this time, we estimate

that collisions producing more than 0.2 A in at least one of

the HPF motor currents can be safely detected, with collision

detection times of the order of 36-48 ms (3-4 sampling

intervals). For comparison, in our previous experience with

the DLR LWR-III [16], [17] (or, equivalently, with the

KUKA LWR4+ and its 1 ms Fast Research Interface) we

reached detection times of the order of 2-3 ms.

While we achieved very good subjective results both in

collision detection and in distinguishing intentional from

accidental collisions, our future plan is to conduct a statistical

analysis of the sensitivity and robustness of the classification,

using a set of volunteers and a suitable experimental protocol.

Moreover, some of the introduced ideas, like using LPF

and HPF, are general and can be applied also to process

residual signals in torque-controlled robots with an accurate

dynamic model available, so as to distinguish collisions from

intentional contacts at a faster rate. Another on-going work

along the development of safe human-robot co-existence and

collaboration includes the use of exteroceptive sensors and

their integration with basic collision detection and reaction

strategies. For instance, a Kinect can be used for collision

avoidance but also to track the body parts of a human physi-

cally interacting with the KUKA KR5 robot (see Experiment

5 in the video attachment). This allows locating the area of

human contact on the robot (with its associated Jacobian),

and the implementation of more sophisticated reaction/force

control schemes based on the actual contact point.

REFERENCES

[1] J. Heinzmann and A. Zelinsky, “Quantitative safety guarantees for
physical human-robot interaction,” Int. J. of Robotics Research,
vol. 22, no. 7/8, pp. 479–504, 2003.

[2] A. De Santis, B. Siciliano, A. De Luca, and A. Bicchi, “An atlas of
physical human-robot interaction,” Mechanism and Machine Theory,
vol. 43, no. 3, pp. 253–270, 2008.
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