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Human-Robot Teaming
for Search and Rescue

F
ive years ago, Hiroaki Kitano proposed

Urban Search and Rescue as a Grand

Challenge problem to the robotics com-

munity, arguing there were significant

challenges to be surmounted in the

areas of human-robot interaction and multirobot

operation. In response, the US National Institute

of Standards and Technologies

introduced physical USAR ref-

erence test arenas—environ-

ments “designed to represent, at

varying degrees of verisimili-

tude, challenges associated with

collapsed structures.”1 Since

then, USAR has emerged as the

canonical human-robot interac-

tion (HRI) problem, presenting

an obstacle-ridden, unknown

environment that can challenge

robotic exploration even with

the best of human assistance. 

NIST originally designed the arenas to advance

research in autonomous robotics, but no team

has yet succeeded in operating robots auto-

nomously. Recent NIST efforts have turned to

identifying interface features and HRI strategies

that lead to successful human-robot joint explo-

ration.2 Beyond the arena wall, little experience

exists with robots in actual USAR operations.

Most of this comprises reports by Robin Mur-

phy and her students of their experiences at the

World Trade Center3 and in disaster response

training exercises.4 Conclusions drawn from such

real-world experiments support the conventional

wisdom that robot interface design must remain

a critical aspect of USAR robotics research for

such systems to function and support real-world

disaster settings.

In cooperation with NIST, we have embarked

on a research program focusing on the enabling

technologies of effective USAR robotic rescue

devices. The program is also researching system-

level design, evaluation, and refinement of USAR

rescue architectures that include teams of sensor-

laden robots and human rescuers. Here, we pre-

sent highlights from our research, which include

our multiagent system (MAS) infrastructure, our

simulation environment, and our approach to

sensor fusion and interface design for effective

robotic control. 

An agent-based architecture
Although the vision of robots working seam-

lessly with humans and software agents to save

lives in an urban disaster is attractive, its realization

requires significant scientific advances to address

some fundamental challenges. One challenge is

coordinating the actions of a set of heterogeneous

robots; existing multirobot coordination algo-

rithms and systems are ill suited to this domain.

Most systems implemented on robots elicit emer-

gent behavior wherein individual robots follow

simple coordination rules, without any explicit

teamwork models or goals. This breaks down
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when a team includes people because the

robots can’t explain their actions and

their role as a team player. Other chal-

lenges include facilitating interoperabil-

ity between existing teams—including

robot teams and human teams developed

and trained separately—and reasoning

about dynamically changing goals across

these teams. Efficient solutions to these

problems require communication and

teamwork models.

Current MAS research addresses these

issues. An MAS is a loosely coupled net-

work of agents that interact to solve

problems that are beyond a single

agent’s capacity or knowledge. MASs

offer distributed computation; resist

individual agent failure; facilitate mul-

tiple existing legacy systems’ intercon-

nection and interoperation; and can effi-

ciently retrieve, filter, and globally

coordinate information from sources

that are spatially distributed. 

The RETSINA MAS

In our disaster response team instanti-

ation, we used RETSINA,5 an MAS that

categorizes agents into four types based

on their function. Interface agents facili-

tate user interaction. Task agents seek to

accomplish user goals. Middle agents

provide infrastructure for dynamic run-

time discovery of robots and agents that

can perform a given task. Such discovery

is important when you need to find a

replacement for a damaged or failed

robot. For example, in real disaster envi-

ronments, rescue organizations arriving

at unpredictable times must be able to

dynamically identify robots with needed

abilities while coordinating and fielding

resources. Information agents can access

various external information sources,

such as disaster site blueprints, hazardous-

materials shipping records, and other vital

information. Researchers in academia

and industry have used RETSINA success-

fully in aircraft maintenance, demining

activities, military logistics planning, and

financial portfolio management.5

Applying RETSINA to real robots

Extending the MAS infrastructure to

teams that include physical agents poses

two main challenges. First, each robot

must have social awareness—knowledge

of the MAS infrastructure’s existence

and how to use the infrastructure to

function as a team member. Although

robots may vary in morphology and

capability, they must have a reasoning

layer consistent with task agents in the

RETSINA system. We developed a novel

robot architecture that transforms a

physical robot into a robot agent. The

robot agent architecture (see Figure 1)

extends the commonly used three-tier

architecture, with each higher layer

enforcing a functional abstraction on the

layer below and each lower layer de-

creasing the look-ahead horizon while

increasing detail. The agent layer con-

tains high-level reasoning and RETSINA

communication modules, including the

necessary social awareness for interac-

tion. The executive layer is responsible

for plan execution and monitoring devi-

ations. The control layer encapsulates

the physical robot behavior implemen-

tation. This representation combines the

functional abstraction of standard three-

tier architectures with a high-level seman-

tic abstraction that transforms the robot

into a robot agent suitable for conven-

tional software agent coordination and

cooperation.

A second challenge in extending MASs

to physical agents arises from commu-

nication challenges. Physical agents

share the same high-level communica-

tion requirements as software agents but

must also communicate information

about their state and the environment

state. This low-level communication has

high frequency and low latency require-

ments, yet because the robots are mobile

and must communicate wirelessly, the

available bandwidth is significantly

lower for multirobot systems than multi-

software-agent systems. An MAS usually
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has one standard for communication

between all agents: an agent communi-

cation language. ACLs incur overhead

that makes them impractical or infeasi-

ble for the transfer of low-level data such

as video, audio, sensory, or telemetry

data. In response to these opposing needs

for high- and low-level communication,

we developed a two-tiered communica-

tion hierarchy, allowing additional,

more efficient lines for low-level com-

munication. Integrating the two-tiered

communication architecture into the

RETSINA MAS significantly improved the

system’s performance6 on physical

robots for USAR (see Figure 2). 

Simulation environment
The scarcity and expense of USAR-

capable robots has severely restricted

USAR robotics research. Field research

shows that mobility is only one problem

hindering effective use of robots for

search and rescue.3 Testing human per-

ception, situational awareness, and

teamwork depends on combining sensed

data, human interaction, and automa-

tion in experiments. Expense, unrelia-

bility, and difficulties in running partic-

ipants in parallel, especially in multiro-

bot experiments, make physical robotics

impractical for the large samples,

repeated trials, and varied conditions

needed for HRI research. To support

HRI, a robotic simulation must accu-

rately render the user interface (particu-

larly, camera video), represent robot

automation and behavior, and represent

the remote environment that links the

operator’s awareness with the robot’s

behaviors. By anchoring the simulation

to actual platforms and sensors, we hope

to extend our experiments to novel,

large, and hazardous environments with

control of greater numbers of robots. 

To meet these requirements, we devel-

oped USARsim7,8 a high-fidelity, exten-

sible simulation of the NIST USAR are-

nas using the Unreal game engine (see

Figure 3). The USAR arenas provide a

controlled environment for comparing

the effectiveness of different robotic

designs, control and mapping algo-

rithms, and team regimes. Each arena

(yellow, orange, or red) can contain mul-

tiple “victims”—mannequins outfitted

with thermal signatures, carbon dioxide

emitters, and both noise (for example,

screams for help) and motion (for exam-

ple, waving of hands and fingers) as mul-

timodal clues to the victims’ vital signs.

The quantitative challenge is discover as

many victims as possible quickly and

convey sufficient information for human

rescuers to navigate the disaster and

approach the victims. The arenas pose

search tasks with varying difficulty on

different dimensions. Challenges to

mobility progress from the office-like

environment of the yellow arena to the

nearly impassable rubble of the red

arena. Perceptual difficulties vary, from

visually confusing patterns, glass panels,

mirrors, and sonar-absorbing padding

in the yellow arena to the few perceptual

difficulties in the red arena. 

Our simulated environments include

these three arenas and the larger, fixed

USAR reference site in an abandoned

Nike silo on the NIST Gaithersburg cam-

pus. Because the Unreal engine uses stan-
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Figure 2. Interactions in our agent-based urban search and rescue system, involving the Personal Exploration Rover and Corky, two

robots we developed and deployed.



dard terrain representations reachable

through translation chains9 from most

3D-modeling and GIS (geographic infor-

mation system) formats, we can add new

environments with relative ease. The

Unreal client-server architecture for mul-

tiplayer games lets multiple, independent

robots participate in a single simulation.

We added GameBots, a modification

to the game engine that let us control

bots, synthetic players running simple

reactive programs, through a normal

TCP/IP socket. This gives us direct access

to range data needed to simulate sensors

and the ability to directly control para-

meters, such as wheel velocity, to simu-

late robot dynamics. Because synthetic

characters don’t get a rendered view of

the scene, we must provide camera views

another way. Unreal’s client options

offers a “spectate” mode. As a specta-

tor, a client can attach its viewpoint

(camera location and orientation) to any

other player, including a bot. By com-

bining a bot controlled by GameBots

with a spectator client, we can simulate

a robot with access to the bot’s simulated

sensor data and the spectating client’s

simulated video feed. 

We develop physical robots and their

simulations in parallel, which provides

complementary advantages. Simulations

let us conduct studies involving many

participants and trials, and building

robotic platforms lets us validate these

findings and identify aspects the simula-

tion missed. Robots and simulation fol-

low the same architecture with the user

interacting with the robot through

RETSINA agents. We constructed the

detailed models of the simluation’s

robots from the vehicle class of the

Karma physics engine, a component of

the Unreal engine. Because we can’t

access Unreal’s rendering engine directly,

we must acquire images from video

memory and store them compressed on

an image server. This lets us vary frame

rates to match observed camera feeds

and provide images for visual process-

ing. We can simulate high-quality ana-

log video by presenting the renderer’s

raw output. By combining accurate

models of robot dynamics and controls,

camera field of view and frame rate, and

the environment, we create HRI tasks.

These might allow the robot to become

entangled with unseen debris, and visual

clutter and unaccustomed perspective

could thwart victim recognition. Conse-

quently, operators can easily become

confused and lost just as in the actual

tasks. We developed two platforms in

this manner: Corky, an experimental

two-wheeled robot designed for USAR,

and the Personal Exploration Rover

(PER), an educational robot modified

for USAR tasks. Human-in-the-loop

simulation showed robot frame rates

were too low for effective teleoperation

and that more support for the operator’s

situation awareness was needed. This led

to our three-frame panoramic display

and the mediated and incremental tele-

operation control modes. 

We also find simulation to be a valu-

able tool for investigating general HRI

issues. In a series of experiments involv-

ing larger, more extreme terrains, we

examined an operator’s ability to use

multiple cameras under a variety of con-

trol regimes10,11 and investigated the

advantages of gravity-referenced views

over separated displays of attitude.12 The

next series of experiments prompted by

field experience at USAR competitions

will examine strategies for combining

egocentric and exocentric views to im-

prove the human operator’s situational

awareness and performance in control-

ling multirobot teams. 

Although we developed USARsim to

assist our own research into robotic

teams, the interest it aroused prompted

us to make it available to the wider

research community. (Download the

simulation at http://usl.sis.pitt.edu/ulab/

usarsim_download_page.htm.) A Robo-

cup rescue demonstration league will use
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USARsim in 2005, adding ActivMedia

Pioneer robots (P2AT and P2DX) and

the iRobot ATVR Jr. to the robot plat-

form. The simulated robots can be con-

trolled using the Player, Pyro, or native

Gamebot interfaces. 

Real-world environment and
robot platforms

Urban disaster sites’ mobility and

sensing challenges (reflected in the red,

orange, and yellow NIST arenas) vary

widely. A disaster site with small con-

fined voids and narrow passages might

require serpentine robots that can crawl

through such spaces. Conversely, you

might more efficiently search a relatively

intact building using a larger, faster robot

carrying more sensing and processing

power. Clearly, USAR robot teams need

heterogeneous platforms to successfully

tackle the myriad challenges faced. 

Our research focuses on enabling het-

erogeneous robots to work semiau-

tonomously or in conjunction with

humans to explore this challenging

environment. Although our research

emphasis is in designing algorithms and

user interfaces rather than robot plat-

forms, the lack of commercially avail-

able, robust, and inexpensive robots

prompted the design of two different

mobile platforms, which we displayed in

the 2004 RoboCup US Open Urban

Search and Rescue league competition.

In this competition, we entered two- and

three-robot teams with heterogeneous

sensors and mobility in each of seven

rounds, logging over five total robot

hours of operation and locating eight

victims, to place third overall. Our phys-

ical robot team currently consists of sev-

eral PERs and Corky (see Figure 2).

Here, we address two interesting chal-

lenges—namely, sensor fusion and inter-

face design for effective robot control.

Sensor fusion

USAR provides an excellent test bed

for the positive and negative identifica-

tion of victims. The range of heat, noise,

rubble, and lighting conditions and vic-

tim status confound any available sen-

sor. For example, infrared sensors can

detect victims entombed in rubble but

are easily confused by excess ambient

heat or alternative heat sources such as

fire. Vision systems provide data intu-

itive for humans but fail in situations

with insufficient lighting or excess dust

and debris. We thus combine data from

multiple sensors using sensor fusion

techniques.13

Each sensor has an associated proba-

bility density function, pi = fi(xi), where

xi is the measurement from sensor i and

pi is the probability that a victim is pres-

ent. To account for accuracy discrepan-

cies of various sensors in different situa-

tions, we use confidence values. Each

sensor i has its own confidence ci, where

higher values of ci indicate more reliable

sensor results. Given a set of n sensors

and associated measurements of some

location, the equation in Figure 4 repre-

sents the probability that this location

contains a victim.

This problem formulation is suffi-

ciently broad to represent the variety of

sensors available, the reliability of sen-

sors in different situations, and the fusion

of information from different robots or

information sources. We developed a sen-

sor suite that you can place on an arbi-

trary mobile platform or distribute

among multiple robots and characterized

the probability density function, pi, for

these sensors. This sensor suite consists

of a USB Web camera, microphone,

pyroelectric sensor, and infrared camera

used for detecting motion, sound, heat

waves in the human emission spectrum,

and heat and motion based on infrared

images, respectively. We employed a

series of experiments to develop the prob-

ability density function and confidence

values for each sensor in the USAR envi-

ronment.13 You can use results of the sen-

sor fusion algorithm to identify and direct

a human operator’s attention to possible

victims (see Figure 5).

Control interface

Search and rescue robots are designed

to have adjustable levels of autonomy.

This requires not only the development

of control algorithms to increase auton-

omy but also a system to enable an exter-

nal agent to exert varying degrees of con-

trol over the robot. We desig ned an

interface agent that provides the opera-

tor the necessary feedback and enables

the operator to control the robot as

desired (see Figure 6).

The interface agent has three separate

components. The communication mod-

ule handles all communication with the

robot and other agents. The feedback

module continuously polls the robot for

information on the environment (for

example, video) and robot (for example,

battery level) states and displays this data

to the user. In the feedback module, we

significantly improved operator perfor-

mance by adding the ability to request

panoramas of the environment to expand

the robot’s effective field of view. Expe-

rience in the simulator demonstrated that

operators needed a wider field of view to

maintain situational awareness and cor-

rectly locate the robot in its environment.

The control module lets the operator con-

trol the robot’s attention using the pan-tilt

head and the robot position using one of

four control paradigms:

pf =
c1f1 x1( ) + c2 f2 x2( ) + ...+ cn fn xn( )

c1 max f1 x1( )( ) + c2 max f2 x2( )( ) + ...+ cn max fn xn( )( )
=

ci pi
i=0

i=n

∑

ci max pi( )
i=0

i=n

∑

Figure 4. The probability that a particular location contains a victim. xi is the 

measurement from sensor i, and pi is the probability that a victim is present. Each 

sensor i has its own confidence ci.



• Direct teleoperation gives the opera-

tor fine-grain control of the robot by

translating joystick commands

directly to motor velocities, overrid-

ing obstacle avoidance safeguards.

• Incremental teleoperation is useful

when frame rates and frequencies are

too slow or lag is too long for direct

teleoperation. The operator com-

mands the robot to turn or drive a

short distance, stop, and sense.

Although slower than direct control,

incremental control imposes no per-

formance requirements on network

throughput and latency.

• Command mode lets the operator

direct the robot to drive or turn a cer-

tain distance. The robot performs this

action or, if prevented by an obstacle,

alerts the operator. A status bar shows

the operator the robot’s progress. The

operator can stop the robot at any

time.

• Mediated mode lets the operator select

a point of interest in the field of view

and sends the robot to that position. If

the robot can’t reach the position, it

alerts the operator. Like command

mode, driving in mediated control

mode is safe in that the robot is

actively scanning for obstacles and

avoiding them. 

M
any open problems remain

in USAR, including opti-

mally searching a space with

distributed, heterogeneous

robots with spatiotemporal coordination,

applying learning techniques to improve

sensor fusion, developing better control

interfaces for multiple robots, and improv-

ing individual robots’ autonomy, mobility,

and sensors. Future work by this and other

hybrid (simulation and real-world) research

teams holds great promise for developing

field-worthy solutions that will assist fire-

fighters in USAR conditions.

JANUARY–MARCH 2005 PERVASIVEcomputing 77

(b)

(c)

(a)

1 2 3
Step

4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
ro

ba
bi

li
ty

 o
f 
vi

ct
im

Without sound

With sound

Step: 1 2 3 4 5 6 7
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electric blanket, and a person hidden in
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Figure 6. The user interface’s (a) four 

control modules and (b) a sample screen

shot using the mediated control mode to

control the robot. The operator can, for

example, click on one of the two victims

in the robot’s field of view to direct the

robot explore that victim.
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