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Human salivary Raman fingerprint 
as biomarker for the diagnosis of 
Amyotrophic Lateral Sclerosis
C. Carlomagno1, P. I. Banfi1, A. Gualerzi  1, S. Picciolini1, E. Volpato1,2, M. Meloni1, A. Lax1, 

E. Colombo3,4, N. Ticozzi  3,4, F. Verde3, V. Silani  3,4,5 & M. Bedoni  1 ✉

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease leading to progressive and 
irreversible muscle atrophy. The diagnosis of ALS is time-consuming and complex, with the clinical 
and neurophysiological evaluation accompanied by monitoring of progression and a long procedure 
for the discrimination of similar neurodegenerative diseases. The delayed diagnosis strongly slows 
the potential development of adequate therapies and the time frame for a prompt intervention. The 
discovery of new biomarkers could improve the disease diagnosis, as well as the therapeutic and 
rehabilitative effectiveness and monitoring of the pathological progression. In this work saliva collected 
from 19 patients with ALS, 10 affected by Parkinson’s disease, 10 affected by Alzheimer’s disease 
and 10 healthy subjects, was analysed using Raman spectroscopy, optimizing the parameters for 
detailed and reproducible spectra. The statistical multivariate analysis of the data revealed a significant 
difference between the groups, allowing the discrimination of the disease onset. Correlation of Raman 
data revealed a direct relationship with paraclinical scores, identifying multifactorial biochemical 
modifications related to the pathology. The proposed approach showed a promising accuracy in ALS 
onset discrimination, using a fast and sensitive procedure that can make more efficient the diagnostic 
procedure and the monitoring of therapeutic and rehabilitative processes in ALS.

Amyotrophic Lateral Sclerosis (ALS) is a complex and lethal neurodegenerative disease that progressively leads 
to irreversible muscle atrophy due to the death of motoneurons replaced by gliosis, with a life expectation from 
the onset of �rst symptoms between 2 and 5 years, depending on the cases1. �is disorder a�ects both lower 
and upper motoneurons with symptoms including generalized muscle weakness, possible cognitive dysfunction, 
cramps, fasciculations, spasticity, serious functional limitations with parallel and progressive paralysis leading 
to death, typically resulting from ventilatory failure2. An American study showed that there are 223,000 people 
a�ected by ALS worldwide with an incidence of 1.75/100,000 and a predicted increase of 69% in 2040 due to the 
population aging3. �e causes for ALS disease are still unclear with di�erent mechanisms proposed including 
genetic, environmental, viral, immunological and epidemiological factors4. Compared to other neurodegenera-
tive diseases, the identi�cation of potential biomarkers in ALS has been hampered by the long lag-time between 
symptoms onset and diagnosis (approximately 12 months) and to the low annual incidence that makes gen-
eral screening strategies not feasible5. Nowadays, no diagnostic test can speci�cally detect ALS at onset and dis-
criminate ALS from other motoneuron and similar neurodegenerative diseases, thus hindering the diagnosis, 
prognosis, patients’ strati�cation, treatment monitoring or the objective evaluation of the e�ects of new possible 
therapies. Currently, the diagnosis of ALS is achieved by the combination of clinical data and neurophysiological 
evidence together with the monitoring of the symptoms progression in a time-consuming process that limits the 
time frame for a prompt intervention and the choice of a personalized therapy6. �e discovery of a new biomarker 
easily accessible and quickly detectable represents a priority for ALS early diagnosis, strati�cation and evaluation 
of the therapeutic and rehabilitative e�ectiveness.

In recent years, several potential biomarkers were isolated from di�erent tissues and highly speci�c tech-
niques have been proposed. �e road taken by researchers regards the analysis of bio�uids, whose molecular 
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composition (i.e. proteins, lipids, nucleic acids, carbohydrates, metabolites, hormones) is representative of the 
physiological/pathological state. �e research for biomarkers related to ALS has been performed principally on 
Cerebrospinal Fluid (CSF), with a large variety of molecules associated with ALS including neuro�lament pro-
teins, components of the in�ammation process, C9orf72 dipeptide repeat proteins, TAR DNA-Binding protein 
(43 kDa), cystatin C, speci�c microRNA (miRNA181a-5p, miRNA-143-5p, miRNA-338-3p) and the mutated 
Superoxide Dismutase enzyme type 1 (SOD1)7. Some of the listed molecules have been detected also in serum 
and plasma, that share a less invasive collection procedure compared to CSF, making periodical collection feasi-
ble. Overall, no reliable and repeatable data have been obtained, so far8–11. Up to now, one of the most promising 
genetic biomarkers is the mutation of C9orf72 repeat expansion, which has been attributed to the onset of familial 
ALS, frontotemporal lobar degeneration and a small part of sporadic ALS12. Clinical studies are under develop-
ment to validate the C9-based therapies, but its restriction to familial ALS (5–10% of the total13) and the continu-
ous need for the CSF collection to monitor the disease progression using the C9orf72 dipeptide repeat proteins are 
limiting the development of this approach7. Other speci�c biomarkers are under investigation for the detection 
and discrimination of sporadic ALS (~90% of the cases) from the familial onset, although the two forms possess 
a comparable pathological mechanism with common biomarkers (e.g. TAR DNA-binding protein)14. Similarly, 
also mutations of SOD1 (~20% of familial ALS) and TAR DNA-binding protein (2–5% of familial ALS) genes, 
show the same limitations of C9-based proteins regarding the invasiveness of bio�uid collection procedures13,15. 
In the same way, neuro�lament proteins have been studied as indicator of neurodegeneration in ALS and other 
neurodegenerative diseases. Di�erent studies reported high levels of neuro�lament in CSF and blood of ALS 
patients and related pathological controls, respect to the healthy counterparts highlighting a neurodegenerative 
process in progress8,16–18.

Despite some promising results, the above cited biomarkers have also fuelled controversies, mainly regarding 
their speci�city for ALS. For example, high levels of neuro�laments and in�ammatory mediators are associated to 
generic axonal injuries and neuroin�ammation, that are present both in pathogenic processes occurring in ALS, 
but also in other neurodegenerative diseases18,19. In order to �nd an univocal correlation with ALS, a pattern of 
in�ammatory molecules (around 248 molecules) is under evaluation7, although a fast technique to detect concur-
rently such a cohort of biomarkers is still missing20.

Although CSF and blood-based samples are the most analysed bio�uids, the invasiveness of their collection 
procedure still represents a hardly surmountable obstacle, especially for degeneration and therapy monitoring in 
late-stage patients with ALS (pALS). For this reason, other bio�uids more easily accessible have been investigated 
including saliva.

Saliva is a complex bio�uid composed of di�erent molecules (proteins, metabolites, carbohydrates, nucleic 
acids and hormones) in an aqueous environment. �ese molecules undergo active and passive processes of trans-
port from oral cavity cells, salivary glands and plasma to saliva, thus representing potential biomarkers21. �e 
concentrations and presence of the salivary molecules are strictly dependent on the pathological state, indicating 
not only the onset of speci�c diseases, but also its progression and response to speci�c pharmacological and 
rehabilitation treatments. Nowadays, di�erent salivary biomarkers have been proposed and ascertained for the 
diagnosis of neurodegenerative diseases like Alzheimer’s and Parkinson’s diseases, periodontal pathologies, dia-
betes, lung cancer, Sjögren’s syndrome, virus and bacterial infections and also for the presence of drugs in the 
body22–27. Regarding ALS, few studies reported the presence of molecules in saliva that can be used as indicators 
of pathology onset, in particular Chromogranin A (ChA) and cortisol, indicating that deeper studies are needed 
to completely evaluate the potential of this bio�uid28,29.

�e methodology used was mainly based on proteomic analysis and ELISA assays that rely on expensive 
procedures and antibody speci�city, respectively. Still, the possibility to analyse with a single technique the whole 
constituents of saliva, instead of a single biomarker, is of crucial importance, in order to identify the di�erences 
between healthy subjects and pALS in a rapid way.

Raman Spectroscopy (RS) is a valid technique for the biochemical characterization of biological samples that 
doesn’t require any label or complex sample preparation. RS is a vibrational spectroscopy, non-destructive, sensi-
tive, rapid and automatable technique providing a spectrum that describes the chemical composition of a sample, 
potentially avoiding the need for single protein biomarker detection. �e output of RS represents an overview 
of all the molecules contained in a speci�c bio�uid with information regarding presence, concentration, envi-
ronment, interactions and possible mutations30. It has been used for saliva components characterization in the 
forensic �eld, but it was also investigated for its potential application in the oncologic �eld where RS was success-
fully applied for leukaemia, breast, head, neck and oral cancer with a sensitivity ranging from 75% to 95%30–33. 
One important advantage of RS relies in the existence of highly sensitive portable microRaman spectrometers 
proposed as biosensing point of care, already studied and assessed for the diagnosis of bacterial infections in CSF 
and for skin cancer34,35. Recently, also a possible role in neurodegenerative diseases diagnosis was proposed for 
RS due to the method sensitivity36,37. In case of specimen in low concentrations or hardly detectable, the RS can 
be made more sensitive due to the presence of nanostructured metallic surfaces, taking advantage of an e�ect 
called Surface Enhanced Raman Scattering (SERS), already used for the analysis of proteins in saliva samples30.

In this work, RS has been used for the analysis of saliva collected from 19 pALS and compared with data 
obtained from saliva collected from 10 Healthy Controls (CTRL), 10 patients a�ected by Parkinson’s Disease 
(PD) and 10 a�ected by Alzheimer Disease and Mild Cognitive Impairment (AD). �e acquisition methodology 
was standardized taking into consideration the e�ects of laser power, acquisition time, substrates, saliva �ltration 
and SERS inducers. �e obtained results demonstrated the possibility to distinguish pALS between the experi-
mental groups through the fast and label-free analysis of saliva, collected with a minimal invasive procedure. �e 
resulting Raman �ngerprint represents a “global” biomarker, sensitive to the presence and relative amount of all 
the molecules contained in salivary samples. Our �ndings open the way for the development of a new potential 
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diagnostic methodology, potentially able to monitor the therapeutic and rehabilitative e�ectiveness, with bene�ts 
from both the clinical and methodological point of view.

Results
Raman analysis optimization. In the �rst part of the study, we aimed to standardize the methodology for 
the RS, investigating the e�ects of analysis parameters and SERS enhancer on the quality of the �nal saliva spec-
tra, without complex saliva processing. �e chosen laser wavelength was 785 nm based on previous experiments 
reported in literature, being the optimal investigative source for the molecules mixture in saliva38. For this reason, 
we tested di�erent analytical parameters including laser power, acquisition time, Raman substrates, cut-o� �lters 
on saliva and the potential application of nanostructured materials and metal surfaces for the SERS induction. 
Figure 1 shows the e�ects of laser power (512, 256, 128 mW) and acquisition time (10, 20, 30 seconds) on the �nal 
spectra of saliva deposited on CaF2 disks. As expected, an increment of both these parameters allowed the collec-
tion of more reproducible spectra (lower standard deviation values, SD). Despite the SD reduction, the obtained 
spectra possessed a low detail level with only few characteristic peaks attributable to speci�c molecules, including 
the peak at 1270 cm−1 for the phospholipids, 719 cm−1 for the nucleic acids and 923 cm−1 for the glucose39. In 
order to implement the information obtained from the spectra, we tested di�erent substrates including glass, CaF2 
and aluminium foils. Compared to glass that partially interfered with the Raman signal, CaF2 disks were Raman 
invisible substrate, while aluminium can be used as SERS inducer due to the metallic composition and the sur-
face roughness. Before the RS analysis, saliva was �ltered using standard �lters with a cut-o� of 3 kDa in order to 
remove substances, e.g. cell fragments, albumin or protein aggregates, that can in�uence the Raman spectra and 
obstacle the formation of the “hot spot” for the SERS signal40. In Fig. 2 the spectra obtained using the three sub-
strates are shown. It was clearly visible that the SERS e�ect induced by the aluminium foil led to a more repeatable 
and detailed spectrum compared to glass (no signal detected, Fig. 2 Glass) and CaF2 (Fig. 2 Calcium Fluoride). 
Probably, the signal from the glass substrate dominated the entire spectra, being the peak at ~1400 cm−1 typical 
from these typologies of materials41. �e di�erences between the aluminium and CaF2 were due to the absorption 
of the salivary molecules on the metallic surface allowing a more detailed spectrum with the only preserved peak 
at 1261 cm−1. �e salivary �ngerprint showed the well-de�ned peaks reported in Table 1.

Such peaks are comparable with the values reported in literature, with shi�s due to the di�erent SERS inducers 
used in other works where metallic nanoparticles were considered39,42.

To further evaluate the SERS signal, we analysed the e�ects of two di�erent metallic nanoparticles in di�er-
ent ratios with �ltered saliva, in particular AgNPs and AuNPs with ratios of 5:5 and 9:1, and compared them to 
the aluminium substrate (Fig. 3). �e results for the di�erent concentrations of AgNPs are coherent with other 
analysis of saliva reported in literature38, con�rming the possibility to obtain information from the bio�uid using 
AgNPs as SERS inducers. Moreover, an increase in NP concentration led to more detailed spectra, probably due to 
the formation of protein aggregates and to the complete absorption of proteins on the NP surface. Concerning the 
use of AuNPs, the �nal spectra were similar to those obtained from �ltered saliva cast on CaF2 (Fig. 2), indicating 
a low or absent SERS signal. Compared to the other nanostructured systems (AgNPs and AuNPs), aluminium foil 
showed de�ned peaks and higher reproducibility, probably due to the uniform layer of salivary molecules created 
a�er the deposition.

Figure 1. Average Raman spectra (black line) and standard deviation (grey band) of saliva obtained using laser 
power of 128, 256 and 512 mW (le� column) and acquisition time of 10, 20 and 30 seconds (right column).
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Regarding the application of SERS methods, speci�c proteins such as albumin, tend to aggregate on NPs 
surfaces creating a layer of proteins that inhibits the SERS e�ect. Indeed, these aggregates avoid the NPs aggre-
gation and consequently the formation of the hot spot leading to the loss of SERS signal. A possible approach to 
overcome this problem is to remove a part of the hindering proteins, for example albumin, leading to the correct 
interactions between biological molecules and nanostructures40. For this reason, the optimal balance between 
protein content (concentration, type, molecular weight, charge) and NPs has to be experimentally identi�ed for 
every type of biological sample undergoing SERS analysis in order to obtain a repeatable signal without reducing 
the sample informative power.

Herein, we tested di�erent �lters with increasing values of cut-o� (3, 10 and 30 kDa) evaluating the possible 
loss of information due to the protein retention. In Fig. 4 the four spectra related to pure saliva and to saliva 
�ltered with 3, 10 and 30 kDa �lters, deposited on the aluminium foil are reported, demonstrating that the �l-
tration process did not substantially a�ect the �nal information, resulting in similar spectra without remarkable 
di�erences. �erefore, for the further analyses, we decided to use 3 kDa �lters able to remove those molecules that 
avoid the SERS e�ect and, at the same time, preserve information given by the small molecules in saliva. As result 
from the methodological part, we obtained the optimal parameters for the analysis of saliva using an aluminium 
foil as substrate a�er bio�uid �ltration with a 3 kDa cut-o�.

Raman analysis of clinical samples. In the present study we used the previously optimized parameters 
to analyse the saliva collected from 19 pALS, 10 PD, 10 AD and 10 CTRL. In Fig. 5, the average SERS spectra 

Figure 2. Average Raman spectra of saliva analyzed on aluminium foil, glass and calcium �uoride.

Raman Shi� 
(cm−1) Attribution

414 Phosphatidylinositol

486 DNA/Glicogen

540–556 Cholesterol, glucose, saccharide and acyl bands

677 Ring breathing modes in DNA bases G

823 Out of plane ring breathing/Tyrosine/Phosphodiester

851 α-Glucose/Polysaccharides

923 C-C stretch of proline ring/Glicogen/Glucose

979 C-C stretching of protein β-sheets

1056 Lipids

1111 Glucose/Lipids/C-C-H bending

1230–1280 Amide III/Phospholipids

1470 Deoxyribose, CH2 stretching

Table 1. Identi�ed peaks with an attribution attempt of most relevant molecules based on data reported by 
Movasaghi et al.75 and Virkler et al.45 (±8 cm−1).
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obtained from all the experimental groups are shown (Fig. 5A) ALS, B) PD, C) AD and D) CTRL). As it is possible 
to notice, the main di�erences were due to intensity variations of de�ned peaks suggesting changes in the concen-
tration of speci�c biomolecules present in the saliva of the examined groups. �e principal di�erences of the ALS 
group respect to the two pathological controls (Fig. 6A,B) PD and AD can be �nd in peaks at 430, 500, 576, 833, 
890, 951, 1021, 1120, 1251, 1470, 1540 and 1670 cm−1 (∆ Intensity ≥0.1). Analysing the di�erences between the 
calculated spectral means of ALS and CTRL (Fig. 6C), the main intensity changes were due to the bands at 500, 
833, 890, 923, 1021, 1445 cm−1 (∆ Intensity >0.1). Other spectral di�erences were identi�ed at 430, 472, 576, 677, 
808, 1120, 1192, 1231, 1470 cm−1 (∆ Intensity <0.1). �e intensity di�erences identi�ed can be clearly visible in 
the overlapped average spectra collected from each experimental group, where also no or slight peak shi�s were 
detected (Fig. 6D, ∆shi� ≤3 cm−1).

To verify the observed di�erences, we used a MultiVariate statistical Analysis (MVA) to build a classi�cation 
model for the discrimination between ALS, AD, PD and CTRL. �e PCA- LDA analysis was performed on all the 
collected data (Fig. 7). �e score plot in Fig. 7A allows to easily visualize how the �rst three Principal Components 
(PCs) obtained from PCA, with the highest loads (PC1 = 47.22%, PC2 = 12.96% and PC3 = 12.05%), describe 
the main spectral di�erences between the four groups. As highlighted by the graph of data dispersion, the CTRL 
and ALS regions were partially overlapped with intra-regions focus points where PCs values are concentrated. 
Similarly, also the dispersions of PCs for the pathological controls, AD and PD, were partially overlapped, with 
the focus points well separated from the ALS and CTRL one. �e �rst 10 PC scores were then used to perform the 
LDA analysis as summarized in Fig. 7B. �e dispersion of the ALS Canonical Variable (CV) values was proved 
to be statistically di�erent from the other three groups (p < 0.001, One-Way ANOVA test) indicating that RS 
analysis is able to distinguish the spectra acquired from the pALS saliva. �e error rate a�er the cross-validation 

Figure 3. Average Raman spectra of saliva mixed with silver nanoparticles (AgNPs) and gold nanoparticles 
(AuNPs) with ratios NPs:saliva of 5:5 and 9:1 compared with the one acquired on aluminium foil.

Figure 4. Average Raman spectra of saliva without and a�er �ltering with 3, 10, 30 kDa cut-o�s.
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of training data was 7.37%, while, a�er confusion matrix analysis, the method showed accuracy, precision, sensi-
bility and sensitivity to detect saliva of pALS between all the data of more than 98% for all the parameters.

Correlation. Data obtained from the MVA, in particular CV, PC1, PC2 and PC3, were correlated with clin-
ical and behavioral aspects of pALS, ascertainable during the saliva collection procedure, including patients 
age, smoking habit, dysphagia degree, PEG, time from the diagnosis and from the last meal, IMV, ALS-FRS, 
WHO-QOL scores, ECAS scores, blood pH, oxygen and carbon dioxide partial pressure (Table 2).

�e independence of the method from environmental and clinical factors that can potentially in�uence the 
saliva analysis was con�rmed by the missing correlation of CV, PC1, PC2 and PC3 with patients age, smoking 
habits, IMV and the time spent from the last meal before the saliva collection, where not statistically signi�cant 
Pearson’s coe�cients were always obtained (Table 3). �e missing correlation of these parameters with our data 
indicated the reliability of the Raman analysis of saliva, being not in�uenced by parameters which can potentially 
alter the biochemical composition of the bio�uid.

Interestingly, the statistically signi�cant coe�cients (p < 0.05) were obtained for PC1 and PC2, with ALS-FRS 
and WHO-QOL scores, and for PC3 with ECAS and time from the diagnosis, with values of Pearson’s coe�cient 
of 0.778 (PC1 - ALS-FRS), 0.863 (PC2 - WHO-QOL), 0.68 (PC3 - ECAS) and 0.539 (PC3 - time from the diagno-
sis) respectively (Table 3). �e PCs represent independent directions, with their own speci�c weights (loadings), 
used to maximize the variance between the variables examined during the PCA, in this case PC1 with a loading 
of the 47.22%, PC2 with the 12.96% and PC3 with 12.05% (Fig. 7A)43.

Discussion
In this work we have optimized the RS parameters, including laser power, acquisition time, substrates and �lters 
with di�erent cut-o�, for the analysis of human saliva samples. A�erwards, we have investigated the potentiality 
of di�erent SERS inducers to improve the reproducibility and intensity of saliva spectra, identifying aluminium 
as the ideal substrate. �e assessed procedure was used for the analysis of saliva from pALS, patients with AD, 
PD and healthy subjects, evidencing intensity di�erences between the considered groups. We report, for the �rst 
time, the RS analysis of saliva used as potential diagnostic tool for the discrimination of ALS onset. Previously, 
di�erent studies proposed RS as powerful tool for the fast and sensitive characterization of neurological diseases, 
being associated to the production of a “whole biomarker” containing information about the complete biochem-
ical composition of the chosen bio�uid44. �ese features could provide an e�ective alternative to the major and 
enduring healthcare problems for neurodegenerative diseases including the time-consuming diagnostic processes 
and the costs for the patients. One important example is given by ALS in which the complex diagnostic process 
can take up to 18 months drastically reducing the time for a prompt therapeutic intervention5. �e discovery 

Figure 5. Average Raman spectra with SD of (A) ALS, (B) PD, (C) AD and (D) CTRL groups.
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of an easily collectable biomarker could represent a solution for diagnostic/screening/predictive/monitoring 
purposes, allowing at the same time a deeper understanding of the pathological mechanism. In our work, the 
implementation of the spectral detail, leaded by the introduction of aluminium foils used as Raman substrate 
and by an optimized analysis protocol, allowed the discrimination of di�erent peaks attributed to molecules 
involved in pathological mechanisms. Regarding the di�erences highlighted between the ALS average signal 
and the two pathological controls PD and AD (Fig. 6 A,B), the principal peaks can be attributed to di�erences in 
concentration of lipids, particularly regarding phospholipids (833, 1251 and 1470 cm−1), cholesterol (430 cm−1) 
and phosphatidylinositol (500 and 576 cm−1), while all the other di�erences can be attributed to di�erent protein 
vibrational modes45. �e main di�erences in this confrontation can be attributed to structural and signaling lipids 
with a strong con�rmation in di�erent studies, where is highlighted an altered response in the free radical oxygen 

Figure 6. Subtraction spectra of the average ALS signal versus the (A) PD average signal, (B) AD average signal 
and (C) CTRL average signal. (D) Overlapped average spectra of the experimental groups.

Figure 7. (A) Principal Component Analysis (PCA) 3 axis distribution (X = PC1; Z = PC2; Y = PC3). (B) 
Linear discriminant Analysis (LDA) showing the distribution of canonical variable values for the ALS (n = 19), 
PD (n = 10), AD (n = 10) and CTRL (n = 10). ***p < 0.001, One-Way ANOVA test.
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species protection46–49. Observing the data reported in Fig. 6A,B also an increased presence of cholesterol can be 
encountered in ALS group respect to AD and PD. A possible interpretation could be �nd in cholesterol accumula-
tion observed in ALS50 and lower concentration of low-density lipoprotein cholesterol noticed in PD51. Regarding 
AD, a correlation between high concentration of cholesterol and the pathology onset has been proposed in litera-
ture52. �e reason of the lower level of cholesterol in AD respect to the ALS signal, could be �nd in the dietary pre-
scription assigned to the recruited AD patients, which includes di�erent statins for the cholesterol level control.

A further con�rmation of the obtained data with the metabolic disorders encountered in ALS, can be �nd 
in the attribution of peaks related to the phosphatidylinositol vibrational modes (500 and 576 cm−1), which 
demonstrate higher levels of these lipid molecules in the ALS group (Fig. 6A,B) due to the increased activity 
of Phosphatidylinositol 3-kinase enzyme in pALS53. Regarding the di�erences encountered in the subtraction 
spectrum of ALS and CTRL group (Fig. 6C), the principal di�erences are related to nucleic acids (472, 677, 
808 cm−1), glycogen and glucose (923 and 1021 cm−1) and to lipids, speci�cally to phospholipids (1231, 1445 and 
1470 cm−1) and phosphatidylinositol (500 and 576 cm−1). �ese results were coherent with previously reported 
data, where a change in these molecule levels has been detected in pALS and related to an alteration in carbohy-
drates metabolism (for glucose and glycogen) and to damages on proteins, nucleic acids and membrane phos-
pholipids possibly caused by free radical oxygen species accumulated as result of mutations in SOD-154–56 and to 
the dysregulation of Phosphatidylinositol 3-kinase mentioned above. �e spectral di�erences were also evaluated 
using MVA in order to extract more information from the collected data (Fig. 7). Interestingly, the distribution 
of the PCs and CV values obtained from the four groups, presented a statistical di�erence respect to the pALS 
group, allowing the precise discrimination of the signal coming from the saliva collected from the pALS. �e 
concomitant correlation of the data obtained from the MVA with behavioural, paraclinical and clinical values 
gave more information about the RS on saliva. First of all, the missing correlation of PC1, PC2, PC3 and CV with 
age, smoking habits, IMV, PEG and time from the last meal, indicates that RS is not in�uenced by factors which 
can potentially modify the biochemical composition of saliva. �e PC1 values correlated with ALS-FRS scores 
(Table 3) obtained from pALS, which take into consideration a series of clinical and behavioral parameters eval-
uated by the patient itself, including di�culties in respiration, nutrition, physical health, level of independence 
and movements. All these parameters, as well as the �nal scores, represent an overview of the subjective clinical 
state of the patient57. As described previously, RS is able to detect the overall biochemical composition of saliva 
and the positive correlation with ALS-FRS could regard a series of neurological, metabolic and musculoskeletal 
factors, that are re�ected in the bio�uid biochemical modi�cations58. A re�nement of the Raman methodology 
on a larger cohort of patients could lead to the discrimination of single or multiple clinical factors which could be 
able to directly in�uence the PC and thus individuating in this way the factor that in�uences most the saliva bio-
chemical composition. Moreover, a comparison with other neurodegenerative diseases, as well as, the de�nition 
of the genetic mutations associated with the analyzed pALS could make more speci�c the association between the 
biomarker and the ALS pathology. �ese kind of implementations and results, could lead to the determination of 
a easily measurable biological characteristic that is directly associated to normal or pathological processes or to a 
response to therapeutic or rehabilitative interventions, following the recent guidelines proposed by van den Berg 
et al.59 about the design and implementation of ALS clinical studies. Regarding the correlation of PC2 (Table 3), 
the WHO-QOL represents a measurement of the quality of life related to health care, evaluating person’s physi-
cal health, psychological state and personal belief. In case of diseases onset, the quality of life su�ers of a drastic 
decrease, especially for disabling events such as ALS. A possible explanation for the PC2-WHO-QOL correlation 
could be found in the release into saliva of proteins related to the mental stress. Indeed, it has been demonstrated 
that di�erent proteins can be assumed as “salivary stress biomarkers”, e.g. cortisol, chromogranin A and immu-
noglobulin A60. In particular, cortisol and ChA have been already proposed as potential ALS biomarkers, high-
lighting the role of these molecules in ALS onset and progression, strictly correlated with stress levels induced by 
the pathology28,29,60. In fact, ALS leads to an unrelenting decrease in patients’ quality of life accompanied to an 

Collected Data Mean ± Standard Deviation

Age (n = 19) 74.6 ± 5.6

Smoking Habits (n = 14) yes/not/ex

Dysphagia (DOSS Degree) (n = 14) 3.7 ± 2

Percutaneous Endoscopic Gastrostomy (n = 14) yes/not

Time from the Diagnosis (months) (n = 19) 69.7 ± 62.7

Invasive Mechanical Ventilation (n = 14) yes/not

Time from the Last Meal (minutes) (n = 14) 145 ± 47.1

ALS - Functional Rating Scale (n = 19) 16 ± 6.7

World Health Organization - Quality of Life (n = 14) 82 ± 9.2

Edinburgh Cognitive and Behavioural ALS Screen (n = 19) 74.6 ± 23.7

Blood pH (n = 14) 7.43 ± 0.03

Oxygen partial pressure (n = 14) 76.2 ± 17.3

Carbon Dioxide partial pressure (n = 14) 40.6 ± 4.4

Table 2. Clinical and behavioral parameters with standard deviation of pALS collected for the Raman data 
correlation. In brackets the number of patients considered for the corresponding parameter.
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increase in mental stress levels that might explain the correlation between PC2 and WHO-QOL. �e third PC 
showed a direct correlation with two parameters strictly associated: the ECAS score and the time from the diag-
nosis (Table 3). �e ECAS questionnaire is aimed to determine the multi-domain neuropsychological screening 
that assesses executive function, social cognition, verbal �uency and language (ALS-speci�c), as well as memory 
and visuospatial abilities in pALS61 with the �nal score strictly associated with the pathological progression62. �e 
PC3 correlation with these two parameters can be potentially associated to an index able to determine the overall 
cognitive and executive degeneration evaluating at the same time the pathological progression. In the same way, 
an enhancement of this correlation on a larger cohort of patients could be a powerful monitoring tool to assess 
the respiratory and cognitive rehabilitation in pALS.

In order to deepen the molecular bases of these relationships and validate the correlation between PCs with 
these paraclinical tests, further studies on a larger cohort of pALS are needed. In conclusion, our data demon-
strated the sensitivity of this SERS based technique and its ability to identify and analyse di�erent molecules at the 
same time in a biological �uid. �e reported MVA was able to detect statistical di�erences (p < 0.001) between 
the spectra of pALS respect to CTRL, PD and AD, assessing the potential of RS to be used as fast diagnostic tool 
for ALS disease and proposing the biochemical �ngerprint of saliva as a complex biomarker, obtained with a 
minimally invasive procedure. Previous studies have already demonstrated the potential of RS as diagnostic, 
prognostic and therapeutics/rehabilitative monitoring tool for di�erent neurodegenerative diseases proposing 
an alternative fast and sensitive process for the diagnosis44. Related to ALS, the diagnostic process is still complex 
and time-consuming, limiting precocious intervention and development of new potential therapies. �e acquisi-
tion of a single spectrum takes between 10 and 30 seconds, depending on the analysis parameters, explaining the 
potential of the method if compared with the current diagnostic method. �is process e�ciency on a minimal 
invasive collected sample could be exploited also for the monitoring of pathological state through the analysis of 
biochemical modi�cations for di�erent ALS progressive states and forms, as well as, for the monitoring of thera-
pies and rehabilitation e�cacy. �e proposed label free strategy based on the SERS analysis of saliva could provide 
clinicians and researchers with a powerful tool for ALS early diagnosis, personalization, and �ne tuning of the 
di�erent therapeutic and rehabilitative approaches.

Materials and Methods
Materials. All the materials and chemicals were purchased from Sigma Aldrich (USA), if not di�erently spec-
i�ed, and used without further puri�cation steps. Gold Nanoparticles (AuNPs) were synthesized following the 
Frens’s method63. Brie�y, a 200 mL water solution of 0.01 wt% tetrachloroauric acid trihydrate (HAuCl4 3H2O) 
was heated until boiling under stirring. �en, 1.4 mL of sodium citrate was quickly added and the solution was 
cooled at room temperature. Silver Nanoparticles (AgNPs) were synthesized using Lee-Meisel’s protocol64. In 
brief, 45 mg of silver nitrate (AgNO3) were dissolved in 250 mL of deionized water and heated until boiling. �en, 
5 mL of sodium citrate 1 wt% were added dropwise with the solution under vigorous stirring for 1 hour. Both the 
nanoparticle solutions were stored at 4 °C. �e Raman substrate of Calcium Fluoride (CaF2) were purchased from 
Crystran (UK), while Salivette® for the collection of saliva samples were purchased from Sarstedt (Germany). 
Commercially available aluminium foils were used as received. Filter with di�erent cut-o� ranges (3 kDa, 10 kDa 
and 30 kDa, Amicon Ultra) were purchased from Sigma-Aldrich (USA). All the materials were used following the 
manufacturer’s instructions.

Patients selection. Inclusion and exclusion criteria. pALS were recruited if they had previously received a 
diagnosis according to the El Escorial criteria65 and they were male between 50 and 85 years old at entry.

Exclusion criteria for pALS were represented by concomitant obstructive respiratory diseases; renal failure; 
cardiovascular, oncological, immune, hematological and psychiatric diseases; bacterial or fungal infections in 

ECAS Age ALS-FRS
WHO-
QOL Diagnosis Meal IMV pH PaO2 PaCO2 Smoke PEG DOSS

CV1
Pearson 0,37047 0,21649 0,05751 0,47013 −0,35528 −0,01699 0,46416 0,25035 −0,11791 −0,34783 0,12469 0,15427 0,0675

p-value 0,11844 0,40395 0,83246 0,077 0,14795 0,9502 0,15038 0,45779 0,7299 0,29456 0,69942 0,61482 0,8349

PC1
Pearson −0,04577 −0,17697 0,77874* 0,21052 −0,0349 0,40255 −0,33238 −0,02795 0,15328 −0,16333 0,22035 0,02531 0,10794

p-value 0,85241 0,49684 3,79E-04 0,45139 0,89066 0,12214 0,31795 0,935 0,65274 0,63134 0,49134 0,93458 0,73845

PC2
Pearson 0,16409 0,30449 0,19251 0,86327* −0,08801 −0,22129 0,21309 0,44248 −0,12762 −0,51816 0,06822 0,13213 0,0528

p-value 0,50205 0,23472 0,47504 3,40E-05 0,7284 0,41014 0,52929 0,17294 0,70846 0,10251 0,83314 0,66698 0,87054

PC3
Pearson 0,68096* 0,22883 −0,00528 −0,16432 −0,53948* 0,1509 0,53681 0,39122 −0,32469 −0,33661 −0,47564 −0,17633 −0,26191

p-value 0,00133 0,37701 0,98451 0,55841 0,02085 0,57695 0,08864 0,23414 0,32996 0,31145 0,11808 0,56445 0,41089

Table 3. Pearson’s coe�cients and relative p-values of Canonical Variable (CV), Principal Component 1 (PC1), 

2 (PC2) and 3 (PC3) correlated with Edinburgh Cognitive and Behavioral ALS Screen (ECAS) score, patients 

age (Age), ALS- Functional Rating Scale (ALS-FRS), World Health Organization - Quality Of Life (WHO-

QOL), time from the diagnosis expressed in months (Diagnosis), time from the last meal expressed in minutes 

(Meal), Invasive Mechanical Ventilation (IMV), blood pH (pH), oxygen (PaO2) and carbon dioxide partial 

pressure (PaCO2), smoking habit (smoke), Percutaneous Endoscopic Gastrostomy (PEG) and dysphagia degree 

(DOSS). *p < 0.05, Pearson’s test.
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progress (e.g. oral candidiasis); female sex. CTRL were considered if they did not constantly and continuously 
take drugs (e.g. anti-hypertensive and anti-diabetic drugs) and did not report chronic and in�ammatory dis-
eases, particularly the oral cavity. Furthermore, the pathological and not pathological control groups were strictly 
age matched to pALS and only male subjects were recruited to limit sex hormone variability in saliva. It is well 
known that the chemical composition of saliva is in�uenced by the presence of hormones and how this a�ects 
a di�erent Raman signature of the saliva of both men and women66. 5 pALS were under riluzone treatment 
during the sample collection. �e inclusion criteria for the PD patients were a diagnosis of PD according to 
the Movement Disorder Society Clinical Diagnostic Criteria for PD67. Exclusion criteria included vascular par-
kinsonism (de�ned by evidence of relevant cerebrovascular disease, as indicated by brain imaging computed 
tomography (CT) or magnetic resonance imaging (MRI), or by the presence of focal signs or symptoms that are 
consistent with stroke); brain tumor; drug-induced parkinsonism (neuroleptic treatment at onset of symptoms); 
other known or suspected causes of parkinsonism (e.g. metabolic, etc.), or any suggestive features of a diagno-
sis of atypical parkinsonism; severe speech problems and poor general health; concomitant neurologic and/or 
psychiatric diseases. For PD patients the clinical evaluation included the quanti�cation of the disease stage with 
H&Y and the assessment of the symptom severity with MDS-UPDRS motor part III performed by an experienced 
neurologist. For the AD experimental group, inclusion criteria were the diagnosis of dementia due to Alzheimer’s 
disease following the McKhann et al. guidelines68 and diagnosis of Mild Cognitive Impairment (MCI) due to 
Alzheimer’s Disease following the clinical criteria described by Albert et al.69. Exclusion criteria were the presence 
of neurological or major psychiatric comorbidities.

Selection process. pALS, CTRL and PD study participants, who consecutively accessed to the IRCCS Fondazione 
Don Carlo Gnocchi, in Milan (Italy) between 18th October 2017 and 22nd December 2020, were recruited. AD 
patients were recruited at Istituto Auxologico Italiano, IRCCS Department of Neurology and Laboratory of 
Neuroscience. 19 ALS patients (n = 19), 10 CTRL (n = 10), 10 PD patients (n = 10) and 10 AD patients (n = 10) 
met the relevant eligibility criteria for being included. All participants provided written informed consent and the 
study was approved by the institutional review board at IRCCS Fondazione Don Carlo Gnocchi on 12th March 2018.

Instruments. Demographic information as well as clinical data (age and comorbidities) were collected for all the 
participants. Other personal information, including smoking habits, were collected when ascertainable (Table 2, 
numbers in brackets). Moreover, the following data were gathered for the pALS: time from the diagnosis, usage of 
Non Invasive Ventilation (NIV), presence of tracheostomy or Invasive Mechanical Ventilation (IMV), dysphagia 
(Dysphagia Outcome Severity Scale, DOSS)70,71 and the presence of Percutaneous Endoscopic Gastrostomy (PEG).

Disease status was assessed with ALS Functional Rating Scale-Revised (ALS-FRS)57, which is characterised 
by 12 items (0–48 scores). �e factors of ALS-FRS correspond to �ne motor (coordinated, mostly upper, limb 
motions (e.g. writing, feeding, dressing and turning)); bulbar function (e.g. speech, swallowing, salivation); gross 
motor (less �nely controlled activities (e.g. turning, dressing, walking, climbing)) and respiratory function (e.g. 
dyspnoea, orthopnoea, respiratory insu�ciency). Respiratory functioning was assessed with spirometry and arte-
rial blood gases (ABG).

ALS participants were assessed thanks to the Edinburgh and Cognitive Assessment Screening (ECAS)61, 
which is an ALS-designed measure of cognitive and behavioural functioning. Executive, language, and ver-
bal �uency domains are described as ALS Speci�c functions, while the memory and visuospatial domains are 
described as ALS Non-Speci�c. �e ALS-Speci�c and ALS Non-Speci�c domains combine to generate a measure 
of global cognitive functioning, namely, the ECAS Total score. Wherever possible, participants were encouraged 
to respond using spoken responses to minimize testing time. Patients with marked dysarthria were allowed to 
write responses.

Finally, quality of life was assessed in a part of the participants, through the administration of the WHO-QOL, 
an abbreviated 26-item version of the WHOQOL-10072,73. �is questionnaire allows to assess four domains: 
physical (physical health and level of independence), psychological (including spirituality, religion, and personal 
beliefs), social relationships, and environment. WHO-QOL instruments can be used in a variety of settings, and 
results are comparable across cultures.

Sample collection. Saliva collection was performed following the manufacturer’s instructions. To limit var-
iability in salivary content not related to ALS, saliva was obtained from all subjects at a �xed time, a�er an appro-
priate lag time from feeding and teeth brushing. Pre-analytical parameters (i.e. storage temperature and time 
between collection and processing), dietary and smoking habit (when provided) were properly recorded. Brie�y, 
the swab was removed, placed in the mouth and chewed for 60 seconds to stimulate salivation. �en the swab 
was centrifuged for 2 minutes at 1,000 g. Collected samples were stored at −80 °C. Before the Raman acquisition, 
saliva samples were �ltered with di�erent cut-o� ranges, collecting and analysing by RS the eluted sample and 
discarding the concentrated counterpart.

Raman and SERS measurements. Raman and SERS spectra were acquired using an Aramis Raman 
microscope (Horiba Jobin-Yvon, France) equipped with a laser light source operating at 785 nm with laser power 
ranging from 25–100%. Acquisition time between 10-30 seconds were evaluated. �e instrument was calibrated 
before each analysis using the reference band of silicon at 520.7 cm−1. A drop of saliva (3 µL) was dropped on the 
designed substrate (Glass, Calcium Fluoride or Aluminium foil) and dried at room temperature. Raman spectra 
were collected from at least 10 points following a line-map from the edge to the centre of the drop. Spectra were 
acquired in the region between 400 and 1800 cm−1 using a 50x objective (Olympus, Japan). Spectra resolution is 
about 1.2 cm−1. �e so�ware package LabSpec 6 (Horiba Jobin-Yvon, France) was used for map design and the 
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acquisition of spectra. SERS measurements were performed mixing saliva samples with AuNPs and AgNPs with 
a variable ratio (1:9 and 5:5) and incubated for 30 minutes before casting. �e e�ect of the di�erent substrates, 
including aluminium foil to induce the SERS e�ect, was evaluated by simply casting saliva on the substrate, as 
explained by Muro et al.66. All the methods described in this work were performed in accordance with the rele-
vant guidelines and regulations.

Data processing and statistical analysis. All the acquired spectra were �t with a ��h-degree polynomial 
baseline and normalized by unit vector using the dedicated so�ware LabSpec 6. �e contribution of the substrate 
was removed from each spectrum. �e statistical analysis to validate the method, was performed as described by 
Gualerzi et al.74. Principal Component analysis (PCA) was performed in order to reduce data dimensions and 
to evidence major trends. �e �rst 20 resultant Principal Components (PCs) were used in a classi�cation model, 
Linear Discriminant Analysis (LDA), to discriminate the data maximizing the variance between CTRL and pALS 
groups. �e smallest number of PCs was selected to prevent data over�tting. Leave-one-out cross-validation and 
confusion matrix test were used to evaluate the method sensitivity, precision and accuracy of the LDA model. 
Mann-Whitney was performed on PCs scores to verify the di�erences statistically relevant between the analysed 
groups. Correlation and partial correlation analysis were performed using the Pearson’s test, assuming as valid 
correlation only the coe�cients with a p-value lower than 0.05. �e statistical analysis was performed using 
Origin2018 (OriginLab, USA).

Ethics approval and consent to participate. The collection procedures and data managing were 
approved in 12/03/2018 by the Ethics Committee of Fondazione Don Carlo Gnocchi with protocol number: 
9/2018/CE_FdG/SA.

Data availability
All the data and results are included in the manuscript.
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