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Abstract. The public perception of selenium has changed 
signifi cantly over the last decades. Originally mainly 
known for its high toxicity, it was later recognized as 
an essential trace element and is now (despite its narrow 
therapeutic window) almost being marketed as a life-
style drug. Indeed, some clinical and preclinical studies 
suggest that selenium supplementation may be benefi cial 
in a large number of clinical conditions. However, its 
mode of action is unresolved in most of these cases. 
Selenocysteine – identifi ed as the 21st amino acid used 

in ribosome-mediated protein synthesis – is incorporated 
in at least 25 specifi c, genetically determined human se-
lenoproteins, many of which have only recently been dis-
covered. Restoration of normal selenoprotein levels may 
be – apart from direct supranutritional effects – one pos-
sible explanation for the effects of selenium supplements. 
In this review we provide a brief but up-to-date overview 
of what is currently known about these 25 acknowledged 
human selenoproteins and their synthesis.
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Historical landmarks

The essential trace element selenium was discovered in 
1817 by the Swedish physician and chemist Jöns Jakob 
Berzelius when he was seeking the etiology of a mysteri-
ous disease amongst workers at a sulfuric acid plant in 
Gripsholm (Sweden). 
With reference to the Greek moon goddess Selene, 
Berzelius named it selenium (Se), as it is closely related 
to the element tellurium (Te; tellus (Lat.) = earth) discov-
ered afore. Most selenium derivatives are rather toxic, 
some even more than intravenously applied cyanide [1]. 
Moreover, selenium and most of its compounds exhibit a 
characteristic, very penetrative and acrid, garlicky smell, 
which is often already detectable at extremely low con-

centrations and persists on contaminated surfaces and 
skin. These features make selenium and selenocom-
pounds a rather unattractive research problem. It is thus 
not surprising that biomedical studies remained scarce 
for over a century after selenium’s discovery. Those 
published [2, 3] – such as the study by Gassmann [2] on 
selenium content of bones and teeth in healthy individu-
als (In this publication, Gassmann also speculated on the 
biological importance of selenium.) – were largely ne-
glected, or – as pointed out by Behne and Kyriakopoulos 
[4] – rejected by the scientifi c authorities of the time.
Selenium’s reputation went from bad to worse when fi eld 
research showed that selenium poisoning was the leading 
cause of alkali and blind staggers disease [5], threatening 
livestock in large farming communities such as the Great 
Plains in the US and elsewhere. In addition, laboratory 
studies declared selenium a potential carcinogen [6, 7].
Today’s favourable view of selenium, even referred to as 
selenophilia [8], is inseparably associated with the name 
of Klaus Schwarz. His publication (Schwarz and Foltz, 
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1957), which provides strong evidence for a benefi cial and 
essential role for selenium, is a milestone in biochemical 
and biomedical research [9] and changed the perception 
of the moon element. Schwarz, a German biochemist, 
had started his work on vitamins and selenium in Rich-
ard Kuhn’s laboratory at the Kaiser-Wilhelm Institute for 
Medical Research (now Max-Planck Institute) in Heidel-
berg (Germany) in 1939. He emigrated to the US where 
he fi nished his studies on the protective effect of the se-
lenium-containing (still not well defi ned) factor 3 against 
liver necrosis at the Bethesda National Institute of Health 
(NIH) [10,11]. During the same era, Patterson and co-
workers independently published a study in 1957 showing 
that selenium supplements prevented exudative diathesis 
in poultry [12]. Selenium’s essential role for certain physi-
ological processes was confi rmed later [13, 14].
In 1973, the same year Turner and Stadtman [15] estab-
lished bacterial glycine reductase (EC 1.21.4.2) as a se-
lenoprotein, glutathione peroxidase (GPx, EC 1.11.9.1) 
was the fi rst specifi c (that is genetically coded) mam-
malian selenoprotein discovered. Following initial work 
in Hoekstra’s group [16, 17], Leopold Flohé (granted 
the Klaus Schwarz Commemorative Medal in 1997 [8]) 
succeeded in showing that selenium is an integral part 
– covalently bound in stoichiometric quantities – of glu-
tathione peroxidase [18]. Selenium was shown to be in-
corporated as selenocysteine (Sec; U in one-letter code) 
fi rst in bacterial glycine reductase in 1976 [19] and in 
GPx in 1978 [20] where Sec is located and required in 
the enzyme’s active site [21–23]. Still being in the prege-
nomic era, it took another 6 years until the amino acid 
sequence of glutathione peroxidase was solved by Günzler 
et al. [24]. This subsequently led to the establishment of 
selenocysteine as the 21st proteinogenic amino acid 
(‘Proteinogenic’ describes an amino acid used in ribos-
ome-mediated protein synthesis.) [25]. In the next two 
decades following the discovery of selenium in GPx, only 
a handful of other proteins were detected in pro- and 
eukaryotic cells and shown to be specifi c selenoproteins 
[15, 26–28]. This diffi culty in detecting selenoproteins 
is attributed to the fact that the codon used for seleno-
cysteine incorporation is not as unambiguous as for the 
other proteinogenic amino acids. Indeed, the codon-de-
fi ning selenocysteine, TGA, is normally interpreted as a 
stop signal by the cell’s protein biosynthesis machinery 
(UGA also codes for tryptophan in mitochondria and 
some bacterial organisms [29].), (Recently, an addi-
tional amino acid, pyrrolysine, was identifi ed as the 22nd 
proteinogenic amino acid. It is inserted in response to 
a UAG codon – serving normally also as a stop-codon 
– in some methanogenic archaea [30]. However, the 
incorporation mechanism of pyrrolysine seems to differ 
from the mechanism used for selenocysteine [31].). The 
dual use of the stop codon, another key observation in 
understanding selenoprotein biosynthesis, was fi rst made 

by Chambers and co-workers for murine GPx [32] and 
later confi rmed for all other (specifi c) selenoproteins 
[28, 33]. Therefore, selenocysteine insertion requires ad-
ditional signals, allowing the reinterpretation of the stop 
signal as a selenocysteine incorporation command. This 
signaling is achieved via the interaction of several pro-
teins with a special messenger RNA (mRNA) secondary 
structure, known as the SECIS element (seleno cyste ine 
insertation sequence). Our current understanding of this 
process is primarily built upon the work of August Böck 
and Thressa Stadtman [34–36]. The details of the steps 
involved apparently differ between species – particularly 
between pro- and eukaryotes [23, 37, 38]. Furthermore, 
no simple mRNA sequence exists that allows an easy 
and defi nite prediction of additional selenoproteins in a 
genome, even though radiolabeling studies can indicate 
their existence [39, 40].
With the rapid advancements of genome sequencing and 
its concomitant success in bioinformatics over the last 
decade, the number of newly identifi ed selenoproteins 
has almost doubled within a short period of time [38, 
41–43]. In fact, the number of identifi ed prokaryotic 
selenoprotein genes has increased by more than 100 to 
a total now of approximately 310 in a recent publication 
by Zhang et al. using a computational approach [44]. 
Functional analysis of recently discovered selenopro-
teins has not kept pace with the rapid identifi cation of 
new selenoproteins. Yet, their vital importance – at least 
for mammals – is underlined by selenocysteine transfer-
specifi c RNA (tRNA)-knockout experiments, which are 
lethal in utero [45].
In addition to basic biochemical research, various 
studies, particularly in livestock farming [46], popula-
tion-based surveys [47] and many clinical trials [48, 49] 
indicate the biological importance of selenium. One of 
the most infl uential, that is most cited, publications on 
clinical selenium research is the study by Clark et al. 
[48], indicating a tumor-preventive effect of selenium. 
However, as discussed later, in a subsequent follow-up 
reanalysis the protective effects were not reproducible 
for all carcinomas as initially reported [50, 51]. Further-
more, a closer look at the data reveals that patients with 
a very low baseline selenium status profi ted most from 
selenium supplementation, whereas those participants 
with higher levels might actually be at increased risk of 
cancer.
At present, most clinical and many animal studies are 
phenomenological in nature: the study participants or 
laboratory animals essentially serve as black boxes 
studied in the presence or absence of selenium (sup-
plements). Since many of these studies do not consider 
a precise mode of action, the recorded parameters are 
diffi cult to interpret and often inadequate to reach valid 
conclusions. With uncontrolled confounding variables, 
the general applicability of the results is limited.



2416 S. Gromer et al. Human selenoproteins at a glance

At this stage further progress in clinically applied se-
lenology would be more substantial if a more rational 
approach was pursued. This requires a sounder under-
standing not only of the metabolic functions and effects 
of selenium and its derivatives, but also of selenoproteins 
and their roles in cellular and intercellular processes.
Since it is diffi cult to address all aspects of this highly 
complex subject, we will narrow our focus to human 
selenoproteins (Recently discovered selenoproteins, such 
as SelU, where only cysteine homologues are found in 
man [52] are not discussed here. Nor are prokaryotic 
selenoproteins dealt with. It is noteworthy, however, that 
unlike earlier assumptions [53], prokaryotic and eukary-
otic selenoprotein sets exhibit signifi cant overlap [44].) 
and review our current (still rather limited) knowledge 
about their roles and functions in physiological proc-
esses. Furthermore, many highly interesting topics – in 
particular metabolic aspects of low molecular weight 
selenium compounds – are not included in this review, 
and a few reviews are recommended: see e. g. [8, 54–57] 
and references therein.

Biochemistry in brief

Selenium is a rare element comprising only ~8 × 10–5% 
of the earth crust’s mass. Selenium is almost three or-
ders of magnitude less abundant than its closely related 
neighbour sulfur (~ 0.05 %) [58]. Both elements belong 
to the chalcogen group and are similar in many of their 
physicochemical properties. However, the redox poten-
tial of selenium compounds is lower compared with their 
respective sulfur analogues. Furthermore, selenium com-
pounds are generally more reactive [59, 60].
Three different possibilities for selenoprotein formation 
are currently known: (i) posttranslational binding as a 
cofactor, (ii) non-specifi c incorporation and (iii) specifi c 
incorporation during translation.
The posttranslational concept has so far only been found 
in a number of bacterial molybdenum-containing pro-
teins [61–63], but not in higher eukaryotes.
Until now, only two selenium containing amino acids have 
been detected in proteins (However, further selenium-
containing amino acids have been identifi ed in nature 
[10].): selenomethionine (Sem) and selenocysteine (Sec). 
They can be incorporated in a non-specifi c (Sem), but also 
in a specifi c (Sec) way into proteins.
The cotranslational incorporation of selenoamino acids 
into proteins is affected by the close relationship between 
selenium and sulfur. The latter outnumbers selenium also 
in cells. In normal cellular metabolism methionine and 
selenomethionine are essentially treated equally (Apart 
from the classical methionine pathway, there is evidence 
– at least in rats – for an alternative pathway for the 
degradation of selenomethionine: g-lyase activity seems 

to allow the direct conversion of selenomethionine to 
monomethylselenol [55].), leading to an unselective sub-
stitution of methionine for selenomethionine in tRNAMet 
and, therefore, in the total body protein pool [8]. The 
selenomethionine content in mammalian proteins thus 
correlates with the nutritional selenomethionine supply 
(Species capable of forming methionine using inorganic 
precursor provided by their environment may exhibit a 
higher content of selenomethionine in their proteins. 
This results from the fact that the metabolic routes for 
methionine and selenomethionine formation are identi-
cal. This is for example the case in some yeast [56].). The 
relative Sem content in tissues is proportional to its level 
in protein synthesis [56]. The non-specifi c incorporation 
of selenomethionine is also underlined by the fact that 
thus far, there is no evidence for a specifi c tRNASem in 
any organism. It should be noted that enzymes containing 
selenomethionine instead of their genome-encoded me-
thionine counterparts may differ in their activities, even 
though no signifi cant structural differences are expected 
[64–66]. Due to the unselective nature of selenomethio-
nine incorporation, the physiological relevance of Sem-
containing proteins remains unclear (yet it is a helpful 
tool for protein structure analysis [67, 68]).
Unlike selenomethionine, selenocysteine is (at least in 
mammals [The extent of non-specifi c incorporation is in-
creased in organisms challenged with high selenium sup-
ply: e. g. plants grown on soil with high selenium content 
and appropriate pH conditions typically exhibit a higher 
degree of non-specifi c selenium incorporation.]) prima-
rily incorporated specifi cally into proteins. However, it is 
not the free selenocysteine that is directly used for load-
ing its respective tRNA for at least two reasons: the cellu-
lar abundance of cysteine compared with selenocysteine 
competitively inhibits this process [69]. Vice versa, the 
situation might be even worse: signifi cant improper load-
ing of Sec onto a tRNACys could result in a replacement 
of Cys by Sec, which would lead to signifi cantly different 
properties of the protein, e. g. in iron-sulfur proteins [70]. 
In fact, when artifi cially reversing the selenium-to-sulfur 
ratio, selenocysteine is incorporated into proteins instead 
of cysteine via misloaded tRNACys [71, 72]. Thus, higher 
levels of free Sec, which would be required for an effi -
cient direct tRNASec loading, are undesirable.
Nature has solved the problem by creating a multistep 
process. Most of our knowledge about the steps involved 
in selenoprotein biosynthesis is derived from studies of 
the bacterial system [25, 73, 74]. Even though overall 
concepts are comparable in prokaryotic and eukaryotic 
cells, differences certainly exist. Therefore, any model 
of this process in eukaryotes is still speculative, yet we 
outline a conceptual model that is mostly evidence based 
(fi gure 1). At fi rst serine is loaded onto Sec-tRNA (SelC 
in prokaryotes) which is then converted to Sec while 
the amino acid remains bound to the tRNA [75, 76]. 
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Therefore, the selenocysteine tRNA is referred to as 
tRNA[Ser]Sec [77]. The converting step(s) are, however, 
still rather poorly defi ned: the presence of signifi cant 
amounts of O-phosphoseryl-tRNA[Ser]Sec and a respective 
kinase (PSTK; 10q26.13, [78]) gave rise to the concept 
that phosphoseryl-tRNA[Ser]Sec may be the intermediate 
that is consecutively converted to tRNA-bound seleno-
cysteine using monoselenophosphate as the selenium do-
nor [78–81]. Others consider phosphoseryl-tRNA[Ser]Sec a 
storage form, and experimental data suggest that a direct 
conversion from seryl-tRNA[Ser]Sec to selenocysteinyl-
tRNA[Ser]Sec is possible [76, 82]. The latter pathway would 
more closely resemble the established pathway found in 
prokaryotes [35, 83]. While both views have their strong 
supporters, it is noteworthy that they are not per se mutu-
ally exclusive.
It should be emphasized that the tRNA[Ser]Sec is not a 
standard serine tRNA used for selenocysteine incorpora-
tion, but in fact a unique tRNA that differs from other 
tRNAs in certain aspects [76] (for review see e. g. [84]). 
In the light of recent results, one structural feature of 
mammalian tRNA[Ser]Sec merits mention: adenosine 37 
is N6-isopentenylated (i6A). This modifi cation is not 
reserved solely to tRNA[Ser]Sec, yet it is of importance 
because it is involved in the maturation process of 
tRNA[Ser]Sec. The fi nal maturation step requires the con-
version of methylcarboxymethyl-5’-uridine (mcm5U) of 

tRNA[Ser]Sec to methylcarboxymethyl-5’-uridine-2’-O-
methylribose (mcm5Um) at position 34 [85] – the site 
that forms the wobble position of tRNA[Ser]Sec’s anticodon 
[84]. The mcm5Um:mcm5U ratio is dependent on the 
selenium status and increases with increasing selenium 
supply [84]. These two tRNA forms apparently provide 
different effi ciencies for the formation of certain seleno-
proteins, which seem to be partly tissue dependent as 
well [86–88]. For example, mcm5Um seems to favour 
GPx1 synthesis, whereas mcm5U supports mitochondrial 
thioredoxin reductase (TrxR2) formation [87]. Indirect 
evidence also suggests that a lack of mcm5Um tRNA[Ser]Sec 
affects the synthesis of mammalian selenoproteins to dif-
ferent degrees. Carlson et al.’s study suggests that thiore-
doxin reductase 1 and 2 expression is minimally affected 
by the absence of mcm5Um, whereas the translation of 
other proteins – such as GPx2, GPx4, SelP and Sep15 
– is infl uenced and in the case of GPx1, GPx3, SelR, 
SelT and SelW highly reduced [87, 89, 90]. However, 
the mRNA levels (as detected by Northern blot analysis) 
of some of the poorly transcribed proteins were lower as 
well, suggesting a potential bias in the interpretation of 
the relative proportions. This differential behaviour – if 
confi rmed – is not fully understood, but implies a further 
possibility of explaining how the expression levels of 
individual selenoproteins are maintained in the organism 
under varying conditions of selenium supply [91].

Figure 1. (A) Scheme of human SECIS elements. Two forms are known to exist, differing in the absence (form 1) or presence (form 2) of 
an additional (mini)stem-loop motif as part of the apical loop [107]. Overall, the total number of nucleotides in the apical loop is almost 
unchanged in form 2 since the main apical loop becomes smaller. The so-called invariant adenosines are occasionally replaced by cytosines. 
The quartet or SECIS core is invariant and formed by non-Watson-Crick base pairs (after [107–109] with modifi cations). (B) Simplifi ed 
draft of selenoprotein biosynthesis in humans. Serine-loaded tRNA[Ser]Sec is either directly converted to selenocysteinyl-tRNA[Ser]Sec or via an 
O-phosphorylated intermediate involving a phosphoseryl-tRNA[Ser]Sec kinase (PSTK). Monoselenophosphate [formed by selenophosphate 
synthetases [SPS] (not shown)] is the assumed selenium donor. These steps are marked with dotted lines and question marks as their relative 
importance and existence is still not fully established. It should be noted that these two are not per se mutually exclusive. Sec-tRNA[Ser]Sec is 
now loaded on a specifi c elongation factor (EFSec). The mRNA attaches to the ribosome, to which SECIS-binding protein 2 is presumably 
already attached, and protein biosynthesis commences. The stem of the SECIS element is bound by SBP2, while translation progresses. 
Due to the distance between the coding UGA and the SECIS-element in the 3’-UTR (see A), any in-frame UGA can now be encoded as 
selenocysteine since EFSec-bound Sec-tRNA[Ser]Sec serves as a selenocysteine donor during translation. How the decision is made to cease 
translation is still not completely resolved [53, 84]. Not shown are standard factors required for protein biosynthesis.
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As indicated above, the methylation step is dependent 
on cellular selenium, and the regulating effector(s) me-
diating selenium concentration to methylation activity 
apparently require a N6-isopentenyladenosine at position 
37 [85, 87]. This has potential clinical importance since 
statins [b-hydroxymethylglutaryl-coenzymeA-reductase 
inhibitors] inhibit the isopentenylation of adenosine 37 
[92]. These drugs currently form the therapeutic back-
bone for the treatment of hypercholesterolemia and its 
associated cardiovascular diseases [93]. As recently sug-
gested, this might be an important link between statins 
and their adverse side effects, which include myositis, 
fatal rhabdomyolysis and neuropathy [94–96]. A pos-
sible explanation for these adverse effects could involve 
selenoprotein N (SelN, see below), whose function is not 
elucidated. SelN involvement is suspected since several 
mutations in its gene cause rigid spine muscular dystro-
phy 1 (RSMD1, [97, 98]), which shares many symptoms 
with statin-induced myositis [94, 95]. However, it is 
necessary to add that mice overexpressing a mutant 
tRNA[Ser]Sec incapable of forming the i6A did not show 
signs of muscular damage, but in fact an enhanced ex-
ercise-induced muscle growth [90]. The conclusions that 
might be drawn from this experiment are yet limited, as 
wild-type tRNA – and thus mcm5Um tRNA[Ser]Sec – was 
still present in these mice. The selenoprotein levels deter-
mined are affected to different extents, but unfortunately 
SelN levels were not determined. Therefore, valuable 
information about the involvement of this selenoprotein 
is still missing. Nevertheless, if the statin hypothesis out-
lined above holds true and given convincing evidence for 
an involvement of selenoproteins in the anticancer effects 
of selenium, the question must be raised whether statin 
therapy – apart from its undoubtedly benefi cial effects in 
cardiovascular diseases – increases one’s cancer risk. So 
far, there is no compelling evidence for such a disastrous 
long-term effect of statins (nor for a proposed benefi t 
[99]). However, considering the widespread use of stat-
ins, the point that statin therapy could affect selenopro-
tein synthesis should be further investigated. Current 
and future trials should closely monitor this possibility. 
A general recommendation for a nutritional selenium 
supplement to prevent possible adverse side effects as-
sociated with statin therapy cannot be made, as it is also 
unclear whether statins actually exert some of their thera-
peutic effects via inhibition of selenoprotein biosynthesis 
[95]. In fact, a clinical trial published by Brown et al. 
provides evidence that the benefi cial cardiovascular ef-
fects of simvastatin + niacin are signifi cantly attenuated 
by the addition of several antioxidants, including 100 µg 
of selenium per day to the therapeutic regime [100].
Once the serine residue in tRNA[Ser]Sec (provided as a 
single-copy gene at 19q13.2-q13.3) is converted to se-
lenocysteine – a process presumably involving seleno-
phosphate formed by selenophosphate synthetase (SPS, 

isoform 2 being a selenoenzyme by itself, see below) 
– incorporation into specifi c selenoproteins requires fur-
ther factors. Apart from the encoding the UGA codon on 
the mRNA, a special structure – the cis-acting so-called 
SECIS-element (selenocysteine insertation sequence, fi g. 
1A) – is a conditio sine qua non for selenocysteine incor-
poration. The SECIS element is located in the 3’-untrans-
lated region (UTR) of the mRNA. A minimum distance 
of 58–111 nucleotides (up to a maximum of ~2.7 kb or 
even 5.4 kb in some cases [101]) is required for the up-
stream Sec-encoding UGA [53,102]. This is in contrast 
to the prokaryotic system. where the SECIS element is 
typically found within the coding sequence (Recently it 
was shown that a SECIS element can also be functional 
in the 3’-UTR of prokaryotic selenoprotein mRNA [103]. 
However, this position is apparently less effi cient and 
required an artifi cial base-pairing sequence to bring the 
SECIS element in suffi cient proximity to the Sec-encod-
ing UGA. This methodology is highly interesting for the 
recombinant production of eukaryotic selenoproteins and 
may provide further insight in the evolution of selenopro-
teins. Its relevance for prokaryotic selenoprotein expres-
sion in general has, however, not been shown yet.) in very 
close proximity to the UGA [44].
The SECIS element is recognized and bound by SECIS-
binding protein 2 (SBP2; discovered by Copeland et al. 
[104, 105]), which is presumably already attached to ri-
bosomes. This facilitates selenoprotein synthesis on such 
selected ribosomes [84].
A specifi c elongation factor (EFsec = mSelB), only if 
loaded with Sec-containing tRNA[Ser]Sec, can now attach 
to the SBP2-SECIS-ribosome complex and provide se-
lenocysteine for its incorporation as directed by the UGA 
(The functionality of the eukaryotic proteins SBP2 and 
EFSec (= mSelB) is combined within a single protein 
referred to as SelB in prokaryotes [106].) [106]. How 
this decision is made whether to terminate translation 
or to incorporate selenocysteine is not fully understood. 
Apparently, sequence information as well as trans-acting 
factors (including selenium and tRNA[Ser]Sec levels) are 
involved in this process [84].
Judged by their primary sequence the human seleno-
proteins show little homology. Since the three-dimen-
sional structure is solved only in a few cases, structural 
comparison largely relies on in silico predictions. These 
predictions suggest that the overall structures are distinct, 
too. The selenocysteine is located either in the fi rst half of 
the amino acid sequence or at the very end of the protein. 
It is assumed that in the fi rst case, Sec is an essential part 
of an internally located active site, commonly in a loop 
between a (predicted) b-strand and an a-helix, whereas 
in the case of C-terminally located selenocysteines, Sec 
serves as some sort of (redox active) cofactor equivalent 
[84]. Many of the selenoproteins exhibit a CXXU motif, 
indicative of involvement in redox metabolism, transition 
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effect against lung and colon carcinomas is almost lost 
and essentially limited to participants with low baseline 
selenium levels [50, 51]. Several subsequent studies also 
show a benefi cial effect of selenium supplements; how-
ever, most report lower reduction rates than the prominent 
Clark study. About one-third even reported no benefi cial 
effects at all. So far, the most consistently preventive 
effects are generally found in prostate cancer chemopre-
vention trials. Large-scale studies such as the selenium 
and vitamin E chemoprevention trial (SELECT), (http:
//www.crab.org/select) are still ongoing [118].
It is noteworthy that currently used selenium sources are 
not equally effective for all purposes, since absorption, 
tissue distribution and metabolic fate differ to some ex-
tent [10,119,120].
Despite the focus of this article on selenoproteins, it 
should be emphasized that low molecular weight sele-
nium compounds [121] are at least as important for the 
benefi cial effects of selenium – if not more important 
[122–124]. This might suggest a higher dosage for sele-
nium supplementation than the currently recommended 
55 µg per day, which is based on glutathione peroxidase 
activity in blood [112]. However, the narrow therapeutic 
window of selenium and potential negative effects must 
be carefully considered, and any recommendation to the 
general public should be made cautiously.

The known human selenoproteins

The selenoproteins identifi ed so far in humans share little 
sequence homology and serve – at least to our knowledge 
– quite diverse functions. Many selenoproteins have no 
reliably designated function at all. With our rather frag-
mentary knowledge about (human) selenoproteins, it is 
impossible to review the proteins using a structural and 
functional classifi cation. We have thus decided to list the 
proteins in alphabetic order, and provide information 
and references about each one individually. Although 
extensive reviews are available for some selenoproteins, 
we will attempt to consolidate this information and rec-
ommend referencing the included resources for a more 
in-depth look at certain topics.

15kDa selenoprotein
The 15kDa selenoprotein was fi rst described in 75Se-la-
beling studies in the prostate by Behne et al. [125]. It has 
an apparent size of 15 kDa and is referred to as Sep15 
(Swissprot [http://www.expasy.org/sprot/]: o60613). Af-
ter its discovery, Sep15 was later purifi ed and sequenced 
by Gladyshev and co-workers from T cells [126]. Sep15 
is mainly expressed in the prostatic gland, testes, brain, 
kidney and liver, yet low levels are also detected in 
skeletal muscle, mammary gland and trachea [127]. The 

metal binding and/or antioxidative defense. The selective 
advantage of selenocysteine in the fi rst group is thought to 
be the redox reactivity of the selenolate [84]. In the case 
of proteins with C-terminally located selenocysteines, 
the decreased sensitivity to pH changes (pKa(Sec) = 5.24; 
pKa(Cys) = 8–9 [60]) or increased reactivity with certain 
(seleno)substrates has been suggested to be a selective 
advantage [110]. Furthermore, several selenoproteins are 
localized in the endoplasmatic reticulum (ER). Severe 
selenium defi ciency has been reported to be associated 
with ER disruption at least in chicks (whereas mitochon-
dria remained structurally intact) [111]. This may sug-
gest that ER-associated selenoproteins may be involved 
in disulfi de formation, ER-stress response or calcium 
homeostasis.

Medical and nutritional implications at a glance

Now, with selenium having reached the tabloids, it 
should be recalled  that selenocompounds are toxic and 
that their therapeutic index – the difference between 
benefi cial and toxic effects – is rather small. Acute and 
chronic intoxication differ in their clinical symptoms: 
chronic selenosis is characterized by brittleness and loss 
of hair and nails, rashes, gastrointestinal disturbances, fa-
tigue, depression, irritability and other neurological dis-
turbances (Symptoms of chronic selenium poisoning are 
already documented by Marco Polo, who travelled the 
silk road in China and passed through areas whose soils 
are now known to be toxic [47].). Acute intoxications are 
characterized by severe gastrointestinal and neurological 
disturbances followed by an often lethal acute respiratory 
distress syndrome, myocardial infarction and renal fail-
ure [112]. Both intoxications share the garlicky smell.
True selenium defi ciency-related diseases were fi rst iden-
tifi ed in livestock animals [11]. The most prominent ex-
amples in humans are Keshan disease, a dilatative cardio-
myopathy primarily affecting children [113], and Kashin 
Beck disease, a disabling chondronecrosis [114–116]. 
As reviewed by Rayman in The Lancet [117], many dis-
eases in different medical fi elds and clinical conditions 
seem to be ameliorated or even prevented by selenium 
supplementation. However, in many trials, study groups 
were small, and occasionally potential confounders were  
not fully ruled out. A critical review on the proposed 
mechanism of selenium and selenoproteins in diseases 
is found in [8].
The studies having gained the most attention provide evi-
dence for a tumor preventive effect of selenium. The 1996 
Clark study – mentioned above – indicates that selenium 
supplements may reduce the risk for some of the quan-
titatively and clinically most important types of cancer 
– namely prostate, lung and colon cancer – by about 50 % 
[48]. However, in a follow-up reanalysis the preventive 
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Sep15 gene is mapped to 1p31 in humans [127], a site 
occasionally mutated or deleted in various human tu-
mors [128–130]. Sep15 is localized in the ER, forming a 
complex with UDP-glucose:glycoprotein glucosyltrans-
ferase 1 (HUGT; Swissprot: q9nyu1) [131]. HUGTs are 
soluble ER enzymes, functioning as gatekeepers for 
quality control by glucosylating misfolded proteins, 
thereby preventing transport of improperly folded gly-
coproteins out of the ER until they are correctly folded 
or transferred to degradation pathways [132]. The inter-
action between Sep15 and HUGTs suggests that Sep15 
is involved in quality control of protein transport; howe-
ver, compelling evidence is still lacking. During fractio-
nation on a molecular weight column, the 75Se-15 kDa 
protein (presumably Sep15 [4]) migrates at an apparent 
molecular weight of ~300 kDa [125], which is attributed 
to oligomer formation or Sep15 binding to HUGT (150 
kDa) [133]. Increased interest in Sep15 developed after 
supranutritional selenium supplementation was shown to 
reduce the incidence of prostatic cancer [49]. In support 
of these results, certain prostate cancer cell lines have 
reduced levels of Sep15 [127]. Two polymorphisms in 
the SECIS-element gene have also been identifi ed that 
differ in their effectiveness to yield functional Sep15 at 
low selenium tissue levels [127]. However, at this stage 
relating Sep15 to cancer prevention/cancer development 
– even though tempting – is still speculative [130, 134].

Deiodinases
The fi rst deiodinase (DIO) identifi ed as a selenoenzyme 
was DIO1 in 1990 [27, 135]. Even though this fi nding 
occurred almost 20 years after Flohé’s discovery, DIO1 
was still amongst the fi rst mammalian selenoproteins 
discovered.
Deiodinases cleave specifi c iodine carbon bonds in thy-
roid hormones (fi g. 2), thereby regulating their hormonal 
activity. Thyroid hormones – particularly L-thyroxine 
(T4: 3,3´,5,5´-tetraiodo-L-thyronine; t½ = 7 days), 3,3´,5-
triiodo-L-thyronine (T3; t½ = 1 day) and 3,3´,5´-triiodo-L-
thyronine (reverse T3, rT3) – are of crucial importance to 
human health as they regulate most metabolic functions. 
Thyroid hormones act primarily via intracellular recep-
tors as transcription factors and are required for normal 
growth and development, thermogenesis and regulation 
of the basal metabolic rate. Our understanding of thyroid 
hormones has been shaped primarily by clinical observa-
tions, where low and high levels of T4, T3 and rT3 cause 
different clinical disorders, and complete absence or ex-
cess of the thyroid hormones can cause life-threatening 
conditions [136]. The normal thyroid function depends 
on the two trace elements iodine and selenium, which 
are commonly low in most Western diets. In addition, the 
thyroid gland has the highest per gram selenium content 
[137] of all organs (present not only as deiodinases, but 
also in glutathione peroxidases, which are presumably 

Figure 2. Metabolic pathways of L-thyroxine. Shown are the structures of L-thyroxine (T4), its prime metabolites T3 and reverse T3 and 
their metabolic fate. The respective deiodinases are indicated. Contrary to popular belief, the diiodo-metabolites 3,5-T2, 3,3’-T2 (but not 
3’,5’-T2) still exert hormonal function, at least in animals. Both diiodo-metabolites demonstrate a dose-dependent increase in the resting 
metabolic rate of muscle (greatest effect with 3,3’-T2), brown adipose tissue (greatest effect with 3,5-T2), liver and heart [143]. Under 
physio logical conditions, 3,3’-T2-levels decline with age. Alternative pathways, such as glucuronidation or sulfation, are not shown [143].
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required for the peroxide-dependent formation of T4). 
Iodine seems to be solely used for thyroid hormone 
production [138], which makes the thyroid system par-
ticularly vulnerable to iodine defi ciency. Diseases such 
as myxedematous cretinism and Kashin-Beck may be 
combined iodine-selenium defi ciencies [116,139].
Today three types of deiodinases are known which not 
only differ in sequence and structure but also catalyze 
different reactions. However, most enzymatic deiodina-
tion reactions require an endogenous reductant that has 
not yet been identifi ed for the deiodinases. In fact, it is 
suggested that deiodinases may act as single-use “en-
zymes” in vivo [140].
The thyroid hormone system is very complex, especially 
in the anterior pituitary of the brain, which releases the 
thyroid-stimulating hormone; but different tissues must 
also respond appropriately to circulating T3 and T4. The 
interactions of the thyroid system on a body at the tissue, 
cellular and subcellular levels are beyond the scope of 
this article. We recommend a number of excellent publi-
cations that further discuss thyroid system (see e. g. [136, 
138, 141, 142]).
Deiodinase 1 (DIO1; Swissprot: p49895; EC 1.97.1.10, 
formerly 3.8.1.4) was identifi ed in 1990 as a selenoen-
zyme by two groups independently [27,135]. The Sec-en-
coding UGA was soon discovered by Berry and co-work-
ers [144,145]. DIO1’s sequence is located at 1p32-p33 in 
the human genome [146]. At least two single nucleotide 
polymorphisms (SNPs) are known to alter plasma hor-
mone levels and cause clinical phenotypes [147]. DIO1 is 
a homodimeric plasma membrane protein and primarily 
deiodinates the 5’-position of the phenolic ring (fi g. 2), 
but it can also deiodinate the 5-position under certain 
circumstances. The fi rst reaction is a reductive deiodina-
tion converting the -Se-H group of DIO1 (similarly in 
DIO2) into a -Se-I group. Reduction releases iodide and 
regenerates the enzyme’s selenol group. Its 5’-deiodina-
tion activity converts L-thyroxine (T4) – the major form 
secreted by the thyroid – to T3, which is the major thy-
roid hormone in peripheral circulation. Furthermore, the 
almost inactive reverse T3 (rT3) can be converted to 3,3´-
diiodo-L-thyronine. DIO1 expression is high in the liver, 
kidney, thyroid and pituitary gland, even though trace 
levels are found in most tissues except the brain, where 
deiodinase 2 predominates. The relative contribution of 
different tissues to plasma T3 levels via DIO1 activity 
is diffi cult to assess. Fast-exchanging tissues, such as 
liver and kidney, appear to be primary sources. More 
than 80 % of T4 is converted to T3 outside the thyroid, 
primarily in the kidneys and the liver (conversion to T2 
and T1 is almost exclusively done outside the thyroid 
gland) [143]. Diminished DIO1 levels are frequently en-
countered in low-T3 syndrome (accompanied by elevated 
levels of rT3), a clinical condition occasionally seen in 
critically ill patients. The low-T3 syndrome indicates the 

pivotal role of DIO1 in the production of plasma T3 and 
rT3 degradation. DIO1 expression is induced by elevated 
T4 and T3 levels and responds to increased carbohydrate 
intake. The thyreostatic agent 6-propyl-2-thio-uracil 
(PTU) reportedly acts as a competitive inhibitor of the 
regenerating endogenous reductant (however, this con-
tradicts the single-use theory) [148]. Gold(I) complexes, 
such as aurothioglucose and similar antirheumatics, are 
known to inhibit several selenoenzymes [149,150] and 
also DIO1 [144].
The denomination of deiodinase 2 [151] (DIO2; Swiss-
prot: q92813, also EC 1.97.1.10) as a selenoenzyme 
had been debated until Buettner et al. showed that the 
functional SECIS element was present at an unusual far 
distance (5.4 kb) from the UGA codon in the human en-
zyme [101]. DIO2 is an ER-membrane protein, whose 
gene is at 4q24.2-q24.3 [152]. It deiodinates the 5’-posi-
tion with a preference for T4 over rT3. DIO2 is present in 
the central nervous system, pituitary and thyroid glands, 
skeletal and heart muscle, and in placental and brown 
adipose tissue, where its expression is under catecho-
lamine control. Only low levels are detectable in the 
kidney and pancreas. It is the dominant form in the brain 
that it is responsible for more than 75 % of the local T3 
production. T3 production within the brain is necessary, 
as there is minimal absorption of bloodstream T3 across 
the blood-brain barrier to enter the central nervous sys-
tem [153]. Interestingly the T4:T3 ratio is approximately 
1:1 in the brain compared with other tissues where T4 is 
more abundant. Located inside the cell, DIO2’s primary 
function is the conversion of T4 into T3 in specifi c target 
tissues. However, total T3 produced in peripheral tis-
sues provides ~50 % of total plasma T3. Unlike DIO1, 
DIO2 is downregulated with increasing T4 (as well as 
rT3) levels and rapidly degraded via ubiquitin-dependent 
pathways (half life: minutes to 1 h). DIO2 expression is 
responsive to cyclic AMP, which activates the CRE se-
quence using the DIO2 promotor [154]. All this allows 
for rapid fi ne tuning of local T3 production in response to 
changes in circulating T4 levels – presumably also in the 
TSH-feedback control mechanism in the pituitary. DIO2 
knockout mice show little gross phenotype abnormali-
ties, apart from mild growth retardation and hearing loss 
– again emphasizing the importance of thyroid hormones 
during development – and pituitary T4 resistance [155, 
156]. DIO2 activity is only minimally affected by PTU 
and aurothioglucose.
The human deiodinase 3 (DIO3; EC 1.97.1.11; Swiss-
prot: p55073) discovered in 1995 by Salvatore et al. 
[157] is mapped to 14q32 [158]. Unlike DIO2, DIO3 
deiodinates the 5-position of the tyrosyl ring (fi g. 2). 
The resulting products cannot bind to the nuclear T3 
receptor and have thus lost the classical thyromimetic 
effect. Therefore, the prime physiological function at-
tributed to DIO3 is the inactivation of T3 and T4. The 
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brain, placenta and pregnant uterus express considerably 
high amounts of DIO3. However, persistently high lev-
els of DIO3 and low levels of T3 may have deleterious 
effects upon central nervous system development and 
brain function [157]. Thus, this expression pattern may 
refl ect the organism’s attempt to protect the fetal central 
nervous system from inappropriate levels of T4 and T3 
[159]. DIO3 is induced with increasing T4 levels and, 
like DIO2, almost insensitive towards PTU and gold(I).

Glutathione peroxidases
Glutathione peroxidase [GPx, EC 1.11.1.9 (GPx4: 
1.11.1.12)] was the fi rst specifi c mammalian selenopro-
tein identifi ed [16,18] and has since received increasing 
attention. Today the family of glutathione peroxidases 
includes seven isoenzymes in humans (fi g. 3A). One of 
the last additions to the list, GPx6, was identifi ed in 2003 
[108] – 20 years after Flohé’s discovery of GPx1 [18]. The 
black sheep of the family are GPx5 and GPx7, which are 
not selenoenzymes [160, 161]. Glutathione peroxidases 
reduce and thereby detoxify different types of peroxides 
to their respective alcohols at the expense of (typically) 
glutathione (R-OOH + 2 GSH → R-OH + H2O + GSSG, 
fi g. 3C). Apparently all of them share the same catalytic 

mechanism involving a strictly conserved triad formed 
by selenocysteine, tryptophan and glutamine (fi g. 3A+B) 
[162, 163]. Glutathione peroxidases play an important 
role in the body’s antioxdative armoury. In fact, GPx1 
– at least on a quantitative basis – is probably the most 
important of all mammalian selenoproteins in this respect 
[164]. The number of research and review publications 
on these enzymes is countless [162, 163, 165].
Glutathione peroxidase 1 (GPx1; SwissProt: p07203), 
which was later found to have selenoprotein properties 
[18], was originally discovered in 1957 [168]. It is a 
ubiquitous homotetrameric cytosolic enzyme (therefore 
often referred to as cGPx). GPx1 is abundant in the liver 
and erythrocytes, with the concentration being depend-
ent on the nutritional selenium status [112]. However, 
the vast majority of H2O2 formed in erythrocytes is not 
detoxifi ed by GPx, but by catalase [169]. GPx1 knockout 
mice show no obvious phenotype under normal condi-
tions [170], yet when challenged with oxidative stress, 
signifi cant pathologies become evident [164]. One may 
interpret this as evidence that GPx1 plays a limited role 
under normal conditions. To the contrary, the following 
experiment demonstrated that we should not underesti-
mate the importance of GPx1: an avirulent coxsackie vi-
rus was inoculated in GPx1 knockout mice, and the mice 

Figure 3. (A) Sequence alignment of the known six human glutathione peroxidase isoforms (using Clustal W V1.82 from http://
www.ebi.ac.uk/clustalw). Highlighted are the catalytic triad residues. (B) The catalytic triad of GPx1. Hydrogen bonds are formed between 
the selenolate and tryptophan imino group as well as the glutamine amido group. The model is based upon structural data of bovine GPx 1 
(PDB-code: 1GP1) [21] using H. Bernstein’s RasMol V2.7.2.1.1. (C) Simplifi ed sketch of glutathione peroxidase’s catalytic mechanism. The 
enzyme’s selenocysteine is oxidized by the peroxide to a selenenic acid, which is consecutively reduced back to the selenolate by thiols, typi-
cally glutathione. Mutational exchange of selenocysteine for cysteine reduces the enzyme’s turnover by three orders of magnitude. Exchanges 
of the triad’s glutamine or tryptophan for acidic residues affect the enzyme’s activity to a similar degree [166, 167]. Modifi ed after [8].
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subsequently developed a cardiomyopathy that closely 
resembles Keshan disease [113, 171, 172]. The human 
cardiomyopathy occurring in Keshan disease almost ex-
clusively affects children and is endemic in certain parts 
of China, where dietary selenium is extremely low [47, 
115]. Mice with a functional GPx1 did not develop car-
diomyopathy under identical conditions. However, when 
coxsackie viruses isolated from cardiomyopathic GPx1 
knockout mice are transferred to their normal littermates, 
an identical cardiomyopathy develops. This indicates 
that in the absence of GPx1 activity, e. g. during sele-
nium defi ciency, avirulent strains may mutate to virulent 
pathogens or at least these conditions select for virulent 
strains [172–174]. In this context it is also interesting to 
note that apparently the genomes of several viruses, in-
cluding HIV-1, HIV-2, hepatitis C virus, coxsackievirus 
B3 and measles virus encode for GPx homologues [175]. 
In the case of HIV1, this GPx-like protein is reported to 
protect the cell from apoptosis [176] and to be involved 
in the regulation of virus production [177]. It is suggested 
that its synthesis may deprive the organism of selenium 
and other limiting resources, supporting the idea that 
selenium supplementation could be benefi cial with viral 
infections [178], even though in vitro data are not con-
vincing [179]. 
A number of GPx1-polymorphisms (particularly Pro198

Leu) are reported to be associated with an increased risk 
for cancer– mainly bladder cancer [180] – and vascular 
diseases [181].
Glutathione peroxidase 2 (GPx2; SwissProt: p18283) is 
found in the liver and within the gastrointestinal system 
(but absent in heart and kidney). Therefore, GPx2 is often 
referred to as GI-GPx. Its distribution varies in the intes-
tine with a decline from the crypts to the luminal surface 
[182]. GPx2 is a homotetrameric, cytoplasmatic enzyme 
accepting organic hydroperoxides such as t-butylhy-
droperoxide, linolic acid hydroperoxides and cumene hy-
droperoxides (but not phosphatidyl choline hydroperox-
ide) as substrates. GPx2 is conserved under conditions of 
inadequate selenium supply [183, 184], and some authors 
assume that it is the fi rst line of defense against ingested 
organic hydroperoxides [162, 184, 185]. However, regu-
latory functions are suggested as well, and GPx2 could 
be involved in apoptosis and proliferation [182].
GPx2 knockout mice do not have a unique phenotype; 
however, infl ammatory bowl disease and bacteria-in-
duced tumors are typically observed in the GPx1-GPx2 
double knockout [186].
Glutathione peroxidase 3 (GPx3; SwissProt: p22352) 
[187] is located extracellularly in the plasma, hence the 
acronym pGPx, and in the intestine [188]. GPx3 has the 
second highest plasma concentration after selenoprotein 
P. The physiological function of this homotetrameric 
glycoprotein [189] is not convincingly resolved. So 
far, an effi cient reductant [190] – present in suffi cient 

concentrations in the plasma – has not been found. It 
is speculated that GPx3 may have regulatory functions. 
GPx3 expression is induced by hypoxia [191], and its 
defi ciency seems to correlate with cardiovascular events 
and cancer [192]. Plasma GPx3 is primarily expressed 
in the renal proximal tubules and is used as a marker to 
monitor tubular integrity [193].
Glutathione peroxidase 4 (GPx4: SwissProt: p36969; 
EC 1.11.1.12) is a monomeric enzyme with a number of 
unusual features. By using alternative initiation sites (Met1 
or Met28), GPx4 synthesis can generate mitochondrial and 
cytoplasmatic isoforms. GPx4 also exhibits the broadest 
substrate specifi city of all glutathione peroxidases and can 
even reduce phospholipid hydroperoxides (and therefore 
is often referred to as ph-GPx). It is even capable of reduc-
ing hydroperoxides still integrated in membranes and may 
thus play a role as a universal antioxidant in the protection 
of biomembranes [194, 195]. GPx4 is also involved in 
redox signaling and regulatory processes, such as inhibi-
ting lipoxygenases and apoptosis [162, 196]. In the testes, 
where it accounts for almost the total selenium content 
[197], GPx4 transforms into a relevant structural compo-
nent of the sperm’s midpiece [198]. This requires alterna-
tive splicing to introduce a nuclear localization sequence 
[199]. As such, GPx4 is required for sperm fertilization 
and not for the cell’s antioxidative defense [200]. Thus, it 
is not surprising that low selenium levels [201] and pos-
sibly GPx4 polymorphisms (although gene-specifi c muta-
tions causing infertility have not yet been identifi ed) [202] 
are associated with male infertility. GPx4 knockouts are 
lethal at an early embryonic stage, and the conceptus lacks 
normal structural compartmentalization. Heterozygous 
cells are also markedly more sensitive towards induced 
oxidative stress, which reinforces the notion that GPx4 
has an important antioxidative function [203].
Glutathione peroxidase 5 (GPx5; SwissProt: o75715) 
is a non-selenocysteine containing isoform and found 
exclusively in the epididymis [161]. It is secreted or 
membrane bound, and some authors suggest it functions 
as a backup for the selenocysteine-containing isoforms 
in sperm [204]. However, it is argued that the human 
expression level of GPx5 is extremely low, which chal-
lenges its perceived importance as a potential radical 
scavenger [160]. Thus, further analyses are warranted to 
determine the relevance and function of GPx5.
Glutathione peroxidase 6 (GPx6; SwissProt: p59796) 
was discovered by Kryukov et al. using an in silico ap-
proach. So far, GPx6 expression (as judged by mRNA) is 
shown only in olfactory epithelium and embryonic tissues 
[108]. Its rat (Cys-) homologue was cloned by Dear et 
al. and is a putative odorant metabolizing enzyme [205]. 
GPx6 is expressed in or near the Bowman’s glands, which 
is a site where several olfactory-specifi c biotransforma-
tion enzymes are localized. This fi nding solely suggests, 
yet does not prove, a function for GPx6 in olfaction.
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Glutathione peroxidase 7 (GPx7; SwissProt: q96sL4) 
– like GPx5 – is also a non-selenocysteine-contain-
ing isoform. The sequence of this 22-kDa cytoplasmic 
protein is available in the databases (accession no: 
AF320068.1), where Gu et al. [unpublished] refer to it 
as GPx6. It has little detectable glutathione peroxidase 
activity in vitro [206]. GPx7 is, however, being reported 
to be involved in breast cancer cell defense against oxi-
dative stress generated from polyunsaturated fatty acid 
metabolism [206].

The gene loci of these glutathione peroxidases are estab-
lished: GPx1 is located at 3p21.3, GPx2 at 14q23.3, GPx3 
at 5q23.1, GPx4 at 19p13.3, GPx5 at 6p21.32, GPx6 at 
6p22.1 and GPx7 at 1p32 in the human genome (As pub-
lished by Kryukov et al. [108] or online by the HUGO 
Nomenclature Committee http://www.gene.ucl.ac.uk/
nomenclature). It should be noted that several pseudo-
genes are known. Like DIO1 and thioredoxin reductases, 
selenocysteine-containing GPxs are inhibited by gold(I) 
compounds [149,150].

Selenoprotein H
Selenoprotein H (SelH: Swissprot: q8izq5), a globular 
protein, comprises 122 residues, selenocysteine being 
the 44th. The genomic sequence of SelH is localized at 
11q12.1 in humans [108]. SelH is expressed in numerous 
tissues, yet no experimental data about its function are 
available. The CXXU motif suggests a redox function 
with the selenocysteine possibly forming a selenenyl-
sulfi de bridge with Cys-40.

Selenoprotein I
Selenoprotein I (SelI; Swissprot: q9c0d9) contains 397 
amino acids and its gene is mapped to 2p23.3 in humans. 
SelI mRNA is detected in many tissues [108]. In silico se-
quence analysis predicts up to 10 transmembrane helices, 
indicative of an integral membrane protein. Functional 
and structural data are unavailable for this protein.

Selenoprotein K
Selenoprotein K (SelK; Swissprot: q9y6d0) was origi-
nally cloned from CD34+ hematopoietic stem cells 
by Zhang et al. [207]. As in the case of thioredoxin 
reductase and other selenoproteins [208,209], the sele-
nocysteine UGA was misinterpreted as a stop. Kryukov 
and co-workers then identifi ed the correct sequence of 
SelK and located its gene at 3p21.31 [108]. Electron 
microscopy-assisted immunostaining and computational 
secondary structure analysis indicate that SelK is indeed 
a membrane protein [108], but its function remains to be 
elucidated.

Selenoprotein M
Selenoprotein M’s (SelM, Swissprot: q8wwx9) 
sequence was identifi ed at chromosomal position 
22q12.2 [108,210]. Its SECIS element is unusual, as 
cytosines replace the invariant adenosines (fi g. 1A) at 
the apical loop [210]. It is – as judged by mRNA levels 
– expressed in many tissues, with the highest levels 
in the brain and the lowest levels in liver and spleen. 
SelM is localized (and retained) in the endoplasmatic 
reticulum, since the fi rst 23 residues contain an ER-
signal sequence. The mature protein is presumably 
122 residues in size. The retention of SelM in the ER 
is not accomplished by one of the known sequence 
motifs and suggests a novel retention mechanism. 
Similar to many other selenoproteins, the SelM se-
quence contains a CXXU motif indicative for a redox 
active protein.

Selenoprotein N
Selenoprotein N (SelN; Swissprot: q9nzv5) was identi-
fi ed by Alain Krol’s group using a computational ap-
proach [41]. Its gene is located at 1p36.13 in the human 
genome [108, 211] and expresses two splice isoforms 
[212]. Isoform 1 corresponds to the full-length transcript, 
and when exon 3 is spliced out isoform 2 is produced. 
Both transcripts are detected in skeletal muscle, brain, 
lung and placenta, but isoform 2 is always more abun-
dant. The exon 3 sequence corresponds to an Alu cassette 
and contains a second in-frame selenocysteine codon. 
SelN is retained within the ER [212] and seems to be a 
ubiquitously expressed glycoprotein, particularly during 
fetal development, but also at lower levels in adults. The 
fact that SelN is highly expressed in cultured myoblasts 
and downregulated in differentiating myotubes sug-
gests an involvement in early development, as well as 
proliferation and regeneration in striated muscles [212]. 
However, no distinct function is defi nitely attributed to 
this selenoprotein so far. Probably a rare experimentum 
naturae may exist. As described in the biochemistry sec-
tion, mutations in the SelN gene are associated with rare 
early onset myopathies: rigid spine muscular dystrophy 
1 [211], severe classic multiminicore myopathy [97] and 
desmin-related myopathy with Mallory bodies. All of 
these conditions are now referred to as SEPN-related my-
opathy (SEPN-RM) [213] (see also NCBI-OMIm (http:
//www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM) 
entry #602771). The potential relationship of SelN to 
statin-induced myopathies has already been discussed 
above [94–96]. With a clinical and pharmacological 
connection, it is hoped that the physiological function 
of SelN will soon be elucidated – as this future step will 
probably make a signifi cant contribution to the seleno-
protein fi eld.
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Selenoprotein O
The selenoprotein O (SelO; Swissprot: q9bvL4) gene is 
mapped to 22q13.33 [108]. Similar to selenoprotein M, 
its SECIS element is also unusual because the invariant 
adenosines at the apical loop are replaced by cytosines 
[108]. With a total of 669 residues and a predicted molec-
ular weight of 73.4 kDa, SelO is a fairly large protein. Its 
C-terminal Cys-XX-Sec motif may again be indicative 
for a redox-dependent activity. Despite its known size, 
no further information on its function and localization is 
reported.

Selenoprotein P
Selenoprotein P (SelP; Swissprot: p49908) not only 
represents the major selenoprotein in plasma, but also 
provides more than 50 % of the total plasma selenium 
[214].
It was originally discovered in 1982 in rats [215] and 
later confi rmed in other species, including humans [216]. 
The gene of the SelP plasma glycoprotein [217, 218] 
was recently mapped to 5q31 in humans [108]. It is tran-
scribed in many tissues, yet the majority of the plasma 
SelP (>80 % [219]) is secreted by the liver and presum-
ably enters target cells via a receptor-mediated mecha-
nism [220]. Unlike most selenoproteins that contain only 
one selenocysteine per polypeptide chain, human SelP 
contains up to 10 residues per chain [221–223]. Two se-
lenocysteines apparently form a selenenylsulfi de bridge 
with cysteine [224]. SelP is an established marker for the 
nutritional (liver) selenium status [219, 225]. Its extracel-
lular localization and the repression of SelP expression 
during acute phase reaction [226], as well as its intrinsic 
high selenium content and plasma concentration, led re-
searchers to advocate that the primary function of SelP 
is for storage and transport of selenium [215, 227, 228]. 
75Se-radiolabeling studies support this notion by show-
ing selenium enrichment in the brain, kidney and testis 
[215, 229]. Selenium’s tendency to bind heavy metal 
ions [59,230,231] and its redox properties also suggest 
a function as a plasma antioxidant and heavy metal anti-
dote [232–236]. However, the belief that SelP functions 
as an effective antioxidant is challenged by the fact that 
no effi cient reductant has yet been identifi ed in suffi cient 
concentrations in the plasma. In 2003, more than 20 years 
after its discovery, Schomburg et al. and Hill et al. pub-
lished their results on SelP-gene disruption experiments 
in mice [237, 238]. Their results that SelP is a transport 
molecule carrying nutritional selenium from the liver to 
peripheral organs are convincing: in their experiment 
SelP-knockout decreased Se-plasma levels by 80–90 %. 
Selenium tissue concentrations and selenoenzyme activi-
ties dropped markedly in the brain, kidney and testis.
However, unlike in tRNA[Ser]Sec knockout experiments 
done by Bösl et al. [45], embryonal development showed 

no obvious phenotype in SelP knockout mice, and other 
symptoms did not become evident prior to the third post-
natal week. This excludes that SelP by itself is of vital 
importance during early development and indicates that 
SelP is not the underlying cause of embryo lethality in 
selenoprotein (<tRNA[Ser]Sec) knockout mice. However, 
starting with approximately the third week post partum, 
the mice showed reduced weight gain, sporadic fatalities 
as well as cerebral symptoms such as ataxia [239].
Interestingly, most symptoms, including the cerebral 
sign, that develop in SelP knockout mice are avoided 
if the supply of inorganic selenium is increased in the 
diet [238] or if selenium is indirectly transferred from 
the mother to the offspring by breast feeding [240]. 
The symptomatic recovery correlates with increasing 
selenoenzyme activities in the affected tissues. The only 
symptom not responding to supranutritional dietary sele-
nium supplementation in SelP-knockout mice is reduced 
fertility in males. Testicular selenium levels and enzyme 
activities remain low [238, 241]. Whether this is a rare 
cause of male infertility in humans, e. g. via SelP-recep-
tor defects, has not yet been addressed. A withdrawal of 
supranutritional selenium leads to a rapid loss of sele-
nium in all organs, including the brain, and consecutive 
clinical symptoms (re)develop [219]. 
In a subsequent study, hepatic SelP release was selec-
tively prevented via a liver-specifi c tRNA[Ser]Sec knockout 
[219]. As expected, SelP levels dropped markedly in the 
plasma. However, unlike in the complete SelP knockout 
experiments [239], neither a signifi cant decrease in the 
brain’s total selenium content or selenoprotein levels 
nor clinical cerebral symptoms were observed [219]. 
Only the kidneys’ selenium content and ability to secrete 
GPx-3 were diminished. This indicates that SelP is re-
quired in the brain to retain selenium and that transport 
mechanisms other than hepatic SelP do exist to provide 
selenium to most organs at higher nutritional supply. Yet 
hepatic SelP – even though not essential for the indi-
vidual – greatly facilitates the distribution of selenium in 
the organism.
Cumulatively, these results provide a solid basis for the 
current hypothesis of SelP function [219, 242]: nutri-
tional selenium is delivered to the liver and used for SelP 
synthesis, which is toxicologically – in contrast to most 
low molecular weight selenium compounds [1] – rather 
inert. SelP is then secreted into the plasma and delivered 
to target tissues where SelP is transported intracellularly 
via receptor-mediated mechanisms. Within the cell, SelP 
and subsequently selenocysteine are degraded to liber-
ate selenium that is recycled for the synthesis of novel 
selenoproteins.
Since the brain has a substantial need for selenium, a suf-
fi cient supply must be maintained. It seems that hepatic 
SelP is not essential as a selenium source for most tissues 
excluding the testes, which suggests that small molecules 
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such as selenite and selenomethionine could serve as the 
selenium supply. Intracellular selenium storage, howev-
er, is accompanied by the innate risk of selenium toxicity. 
Brain SelP may serve as a rapidly available local source 
of extracellular and thus less dangerous form of seleni-
um. Since brain cells are separated from the bloodstream 
by a tight blood-brain barrier, the brain SelP pool should 
not be lost to general circulation. Furthermore, SelP may 
exert cell-protective functions, such as heavy metal trap-
ping and protection from reactive oxygen species.
Decreased SelP mRNA levels occur often in prostate can-
cer and suggest that SelP expression is downregulated in 
this cancer [243]. Indeed, selenium levels are commonly 
reduced in the plasma of prostate cancer patients. How-
ever in contradiction, selenium concentrations are even 
lower in patients with benign prostate hyperplasia [244]. 
Furthermore, tissue selenium concentrations have also 
been reported to be increased in prostate cancer [245]. 
Thus, even though it is tempting to speculate, it is prema-
ture to correlate SelP fl uctuations with the development 
and progression of prostate cancer.

Selenoprotein R
Selenoprotein R is a cytosolic and nucleic protein (SelR; 
Swissprot: q9nzv6) identifi ed at position 16p13.3 in the 
human genome [109]. It is a selenoprotein in vertebrates, 
but its homologues in other eukaryotes and prokaryotes 
contain a cysteine instead of a selenocysteine. In addition 
to the selenocysteine residue, one Zn2+ ion is bound per 
12 kDa molecules via four cysteine residues [246]. SelR 
is also referred to as selenoprotein X (SelX) [41] and 
more appropriately as methionine-R-sulfoxide reductase 
1 (MsrB1) [246–248]. SelR exhibits the highest specifi c 
activity amongst the three principal types of methionine-
R-sulfoxide reductases (MsrB) in humans. It should be 
noted that a second, distinct family of methionine-sulfox-
ide reductases, called MsrA, is present as well and the 
latter is required for methionine-S-sulfoxide reduction. 
MsrB1 (SelR) is the only selenoenzyme of the MsrA and 
B families known today. SelR and its Cys counterparts are 
detected in most genomes sequenced so far and are com-
monly clustered with MsrA. Their expression is stimu-
lated by oxidative stress [246]. Both families, MsrA and 
MsrB (as judged by data obtained using the prokaryotic 
enzymes), essentially share the same catalytic mecha-
nism, even though they are structurally unrelated [249].
Interestingly, the reductant used by methionine-sulfoxide 
reductases is thioredoxin, which in turn is reduced by the 

selenoenzyme thioredoxin reductase [249] linking the 
action of these two selenoenzymes:
The catalyzed reaction, the stereospecifi c and reversible 
conversion of methionine-R/S-sulfoxides to methionine, 
is involved in numerous important biological processes, 
including antioxidant functions, regulation of enzyme 
activity and cell signaling. Methionine sulfoxide re-
ductases emerged very early during the evolution of life 
[250,251]. Disruption of this pathway is associated e. g. 
with Alzheimer’s disease [252] and reduced life expect-
ancy. In contrast, overexpression of MsrA increases life 
span [252]. As an aside, it is critical to mention that in 
periods of insuffi cient nutritional selenium supply, the 
brain’s selenium content is preferentially spared [253]. 
Selenium depletion or abnormal distribution is shown to 
cause neurodegenerative symptoms and enhance patho-
logical conditions [254,255]. In summary, although the 
relative importance of SelR is still debated, these fi ndings 
support the belief that selenoenzymes are crucial players 
in the protective armory of the brain against oxidative 
challenge [251].

Selenoprotein S
Selenoprotein S (SelS, Swissprot: q9bqe4) was fi rst pre-
dicted as a selenoprotein in silico. SelS’s genomic locali-
zation is 15q26.3 [108]. Computational secondary struc-
ture analysis indicates a single transmembrane helix (as 
well as many putative phosphorylation and glycosylation 
sites) and electron microscopy-assisted immunostaining 
shows that SelS, like SelK, is indeed a plasma and ER-
membrane protein [108,256]. Prior to its discovery as a 
selenoprotein in humans, a rodent homologue (as well 
as the human sequence) was found and cloned in 2002 
by Walder et al., yet they missed Sec as the penultimate 
amino acid by interpreting the TGA as stop codon [257]. 
Using differential polymerase chain reaction. Walder 
and co-workers looked for differences in the expression 
pattern of hepatic proteins in a rat animal model of type 
II diabetes compared with their non-diabetic littermates. 
They called the protein Tanis (Hebrew for fasting), as its 
expression is increased in fasting diabetic mice. SelS (or 
Tanis) expression is inversely correlated to the plasma 
glucose concentration (as well as insulin and triacylglyc-
erol). At least in rats, it is transcribed in almost all tissues, 
but glucose levels only affect hepatic expression of SelS 
in vivo [257]. Subsequent experiments using a – as we 
know now – truncated protein indicate an interaction with 
serum amyloid A 1b, SAA. This SelS-SAA interaction is 

SelR: R-S*(=O)-CH3 + thioredoxin-(SH)2   R-S-CH3 + H2O + thioredoxin-S2

TrxR: thioredoxin-S2 + NADPH + H+  thioredoxin-(SH)2 + NADP+

 R-S*(=O)-CH3 + NADPH + H+   R-S-CH3 + H2O + NADP+
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presumably dependent on SelS’s C-terminus, where inci-
dentally the Sec is located! SAA and other infl ammatory 
markers are indeed elevated in type II diabetes and are 
believed to be involved in the long-term complications 
associated with diabetes (i. e. diabetic nephropathy, neu-
ropathy, retinopathy and vascular disease). In review the 
in vivo and cell culture data are compelling and seem to 
show that a dysregulation of SelS expression occurs in 
diabetes and with impaired glucose tolerance, and SelS is 
important in hepatic glucose metabolism [258]. Howev-
er, to completely understand the selenoprotein nature of 
SelS, more research is needed to examine the suggested 
SAA interaction.
More recent data suggest that SelS is involved in the 
retrotransport of misfolded luminal ER proteins to the 
cytosol for proteosome degradation in a ubiquitin-de-
pendent manner. It is suggested that SelS acts as the link 
between Derlin-1 (DER1-like protein), an ER-membrane 
protein involved in the translocation of misfolded proteins 
to the cytosol, and VCP (including its cofactors Ufd1 and 
NpI4), an ATPase complex, which mediates translocation 
and ubiquitinylation of misfolded ER proteins. VCP acts 
by pulling the misfolded protein back into the cytosol 
via a protein channel and marks these proteins for deg-
radation [259]. Since SelS recruits the cytosolic VCP to 
Derlin-1, SelS is also known by the acronym VIMP for 
VCP-interacting membrane protein. As shown by Ye et 
al., a large subset of misfolded proteins are retrotrans-
located via this SelS-dependent pathway [259]. If and 
how these two different fi ndings – SelS involvement in 
hepatic glucose metabolism and retrotranslocation of ER 
proteins – are related remains to be investigated.

Selenophosphate synthetase 2
Selenophosphate synthetase 2 (SPS2, EC 2.7.9.3, Swiss-
prot: q99611) is a SelD homologue [260,261] and local-
ized at 16p11.1 in the human genome. In contrast, se-
lenophosphate synthetase 1 (SPS1) is not a selenoenzyme. 
Selenophosphate synthetases catalyze the formation of 
monoselenophosphate (HSe–+ ATP + H2O → HSePO3

2- + 
HPO4

2- + AMP) and are required not only for the forma-
tion of tRNA[Ser]Sec-bound selenocysteine but also for 
2-selenouridine synthesis in bacteria [35]. The in vivo 
selenium donor is, however, still not ultimately resolved 
as kinetic data obtained in vitro do not correlate very well 
with in vivo conditions [262]. However, local formation 
could well provide the required selenide concentrations 
in the vicinity of the SPS enzyme, leaving the concentra-
tion low in other regions of the cell. The SPS2 sequence 
contains Walker A- and B-like motifs, characteristic of 
a/b-nucleotide-binding folds. SPS2 is expressed in high 
levels particularly during the early development [261] 
and interestingly correlates with the lethal effects of 
tRNA[Ser]Sec knockouts [45]. Sec Cys-mutants of SPS2 are 

less active than the authentic enzyme, but still capable of 
performing selenoprotein synthesis in Escherichia coli 
SelD-knockout mutants [263]. Using SPS1 as the com-
plementing enzyme, inorganic sources for selenide do 
not yield high amounts of selenoproteins, whereas L-se-
lenocysteine as the selenium source does. The situation is 
reversed for SPS2: selenide derived from selenite serves 
as a good selenium source, whereas selenocysteine does 
not [263].
This led to the hypothesis that SPS1 and SPS2 serve dif-
ferent but complementary purposes: inorganic selenium 
sources provide selenide [8], which is incorporated via 
SPS2 forming monoselenophosphate. Free seleno-
cysteine liberated from selenoproteins during proteolysis 
or accidentally formed in the trans-sulfuration pathway 
[8] is assumed to be guided to and recycled by SPS1, re-
quiring further assistance by transport proteins and selen-
ocysteine b-lyase activity [263–266]. It is also suggested 
that SPS2 – due to its selenocysteine residue – may be 
involved in autoregulation of its own biosynthesis [261]. 
However, even though this hypothesis is convincing, fur-
ther experimental evidence is necessary.

Selenoprotein T
Selenoprotein T’s (SelT, Swissprot: p62341) gene is 
localized at 3q24 [108,109]. Its sequence contains a Cys-
X-X-Sec motif, similar to the active site in thioredoxins 
and glutaredoxins, which suggests that SelT has relevant 
redox properties. However, no further studies are avail-
able to validate this view.

Thioredoxin reductase family
The classical thioredoxin system is formed by thioredox-
in reductase (TrxR; EC 1.8.1.9; TrxS2 + NADPH + H+ → 
Trx(SH)2 + NADP+) and its associated substrate, the re-
dox active protein thioredoxin (Trx). Trx is reduced at the 
expense of NADPH. Reduced thioredoxin is reoxidized 
to provide reducing equivalents to various target mole-
cules such as ribonucleotide reductase [267]. Thioredox-
in reductases belong to a family of homodimeric pyridine 
nucleotide-disulfi de oxidoreductases, which includes 
lipoamide dehydrogenase, glutathione reductase and 
mercuric ion reductase [268]. Two very distinct classes of 
thioredoxin reductases have evolved: small thioredoxin 
reductases (subunit Mr ~35 kDa), present in prokaryotes 
and fungi, and large TrxRs (subunit Mr approx. 55 kDa), 
present in higher eukaryotes, including man. Histori-
cally, these two classes were considered to be mutually 
exclusive until Novoselov et al. published a report on the 
thioredoxin system in the green algae Chlamydomonas 
reinhardtii [43]. This organism is unusual since it har-
bours both classes of thioredoxin reductases. However, 
since small TrxRs are absent in the human genome, they 
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will not be further discussed (even though small TrxRs 
are interesting targets for novel antibiotic drugs). A TrxR 
from human placenta was purifi ed by Oblong et al. [269]. 
The enzyme was soon cloned, but turned out to be inac-
tive. The reason remained unknown, until Stadtman’s 
group – more or less accidentally (“Chance favours the 
prepared mind” [Louis Pasteur]) – found a selenium-
containing thioredoxin reductase in human carcinoma 
cells [28], which was soon confi rmed for all mammalian 
TrxRs [150, 270]. Its selenocysteine is identifi ed as the 
penultimate amino acid [209].
Today, three distinct human thioredoxin reductases 
are known. However, a comparatively large number of 
splice variants exist. This may be relevant for regulating 
organelle and cell specifi c localization [271, 272]. Interest-
ingly, knockout experiments that eliminated the two known 
isoforms of Trx are both lethal in utero [273, 274] as is a 
TrxR2 knockout (discussed below) [275]. The thioredoxin 
system is involved in a myriad of cellular and intercellular 
processes, and today it is diffi cult to distinguish the most 
important pathways. Numerous reviews have been pub-
lished on the thioredoxin system and highlight different as-
pects of this system. We suggest referencing these reviews 
for more detailed discussions [267, 268, 276–279]. 
It should be noted that thioredoxin reductases exhibit an 
unusual broad substrate spectrum which includes low 
molecular weight compounds and large proteins. All 
large TrxRs essentially share the same catalytic mecha-
nism, as depicted in fi gure 4 [110, 267].

A signifi cant challenge in thioredoxin reductase research 
is the use of unstandardized nomenclature, which is fre-
quently observed in the literature (Commonly used des-
ignations: TrxR1:  = TR1 = TR a; TrxR2: = TR3 = TR b  
TGR: = TR2 = TrxR3). Here we will use the systematic 
nomenclature outlined in [267].
Thioredoxin reductase 1 (TrxR1, GENE-name: TXN-
RD1; Swissprot: q16881) is a ubiquitous cytoplasmatic 
housekeeping enzyme. Its gene has been mapped to 
12q23-q24.1. It is involved in many aspects of cellular 
redox regulation [282]. It is capable of inducing apop-
tosis if the enzyme does not contain selenocysteine or if 
this residue is blocked e. g. by a chemotherapeutic agent 
[283]. These fi ndings render it an even more interesting 
target for chemotherapy than its involvement in desoxyri-
bonucleotide synthesis already does [284]. TrxR1 is also 
secreted in the plasma, yet the importance of this fi nding 
remains uncertain [285].
Thioredoxin reductase 2 (TrxR2, GENE-name: TXN-
RD2; Swissprot: q9nnw7) is located in mitochondria 
[286] with highest levels in the prostate, testis, liver, uter-
us and small intestine and intermediate levels in brain, 
skeletal muscle, heart and spleen. Two splice variants 
designated SelZf1 and SelZf2 are described at the mRNA 
level [41]. However, these isoforms lack the N-terminal 
redox active site CVNVGC and are thus catalytically 
inactive. Whether these isoforms are artefacts or serve 
a function remains to be established. TrxR2 knockout 
studies led to early embryonic death with signs of severe 

Figure 4. The catalytic mechanism of large thioredoxin reductases. Electrons from NADPH are transferred via the FAD fl avin ring to the 
N-terminal buried Cys-Cys redox active site. The electrons are subsequently transferred to a second redox-active site containing the seleno-
cysteine (GCUG), located on the enzyme’s fl exible C-terminus. The reduced C-terminal tail moves to a more solvent-exposed position and 
provides the electrons to the fi nal (typically bulky) substrate, e. g. thioredoxin. In cysteine variants, polar serine residues activate the thiol 
[110]. However, recent results by Johannson et al. [280] as well as Brandt and Wessjohann [281] indicate that this is not the only requirement 
in eliminating the need for Sec.
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anemia, apoptosis in the liver and heart abnormalities. 
A heart-specifi c knockout causes a dilatative cardiomy-
opathy and early death, similar to Keshan disease [113, 
275]. TrxR2 has been mapped to 22q11.21, a gene locus 
associated with DiGeorge syndrome (NCBI-OMIM: 
#188400). DiGeorge syndrome is a congenital disease 
caused by a developmental defect of the embryonic pha-
ryngeal system. However, no direct association between 
DiGeorge syndrome and TrxR2 has been made to date, 
and animal models as well as studies in humans suggest 
that DiGeorge syndrome is due to the loss of a transcrip-
tion factor called T-box 1 (TBX1), which is apparently 
the most important cause for the clinically observed phe-
notype [287].
Thioredoxin glutathione reductase (TGR, GENE-
name: TXNRD3; Accession no: XP_051264.6) is a 
testis-specifi c enzyme mapped to 3p13-q13.33. Unlike 
TrxR1 and TrxR2, it can reduce glutathione disulfi de 
since it contains a N-terminal 1-Cys glutaredoxin-like 
domain. It is located in the ER [288]. TGR’s specifi c 
function is currently unknown.

Selenoprotein V
Selenoprotein V (SelV, Swissprot: p59797) was identi-
fi ed using an in silico approach and shows homology to 
SelW. Its sequence is localized at 19q13.13 [108]. SelV 
expression – as judged by mRNA in situ hybridization 
– seems to be limited to the seminiferous tubules of the 
testes [108]. Unfortunately, there is little information 
available about its physiological function. The CGLU 
motif in the SelV sequence may suggest a redox-related 
function.

Selenoprotein W
Selenoprotein W (SelW, Swissprot: p63302), fi rst pub-
lished in 1993, is a small protein (9.5 kDa) initially puri-
fi ed from rat muscle [289], but later also demonstrated in 
most other tissues [290]. Only trace amounts of SelW are 
found in liver, thyroid, pancreas, eye and pituitary gland 
[291–293]. Furthermore, it was shown in rats that dif-
ferent quantities were gender specifi c in certain tissues 
[294]. The “W” is derived from the fact that SelW is 
one of the missing selenoproteins in selenium-defi cient 
lambs suffering from white muscle disease [293]. SelW 
levels in fetal heart and muscle correspond well to the 
selenium status in human fetuses [293]. SelW is mapped 
to 19q13.32 in the human genome [108,295]. It is present 
mainly in the cytosol, but small amounts are found as-
sociated with membranes as well [290]. Already in the 
fi rst report on SelW, four forms had been isolated with 
slightly different masses [289,296]. These differences 
were later shown to be due to the binding of low molecu-
lar weight compounds, in particular glutathione, which 

is bound rather fi rmly under anaerobic conditions [297] 
to Cys-36. To remove glutathione, a 1000-fold excess of 
dithiothreitol at 50 °C is required. This fi nding suggests 
that SelW has a potential function in redox metabolism, a 
view supported by cell culture studies [296,298–300]. As 
such, SelW may act in the developing brain as it exhibits 
a different and non-overlapping distribution with another 
important antioxidant – thioredoxin – as indicated by 
mRNA studies [301].
The nature and function of an additional (42 Da) low 
molecular weight compound commonly bound to SelW 
is still unresolved [293].
SelW tissue levels respond to changes in the selenium 
supply, yet the pattern differs from that of glutathione 
peroxidase [290]. SelW is effectively retained in the 
brain during times of selenium defi ciency.
However, despite all of this data, no defi nite function has 
yet been attributed to selenoprotein W.

Summary and outlook

Our understanding of selenium has progressed substan-
tially since its discovery in 1817: from a hated toxin to 
an essential trace element. With the discovery of glutath-
ione peroxidase as the fi rst specifi c mammalian seleno-
protein, scientists around the world have advanced our 
knowledge of selenium and selenoproteins, but many 
questions remain to be answered in the fi eld. Today 25 
distinct members of this elite protein family have been 
identifi ed in humans – not counting the ever-increasing 
number of splice variants. New methodologies that allow 
the recombinant expression of these proteins [103, 302] 
will certainly be advantageous in our efforts to elucidate 
the specifi c function and potential clinical importance of 
each selenoprotein. Overall, most selenoproteins are, or 
at least seem, to be involved in antioxidative defense and 
redox metabolism – but in our next glance at human se-
lenoproteins, we may discover new surprises…
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