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Abstract

Although the importance of communication is recognized in several disciplines, it is rarely studied in the context of online
social interactions and joint actions. During online joint actions, language and gesture are often insufficient and humans
typically use non-verbal, sensorimotor forms of communication to send coordination signals. For example, when playing
volleyball, an athlete can exaggerate her movements to signal her intentions to her teammates (say, a pass to the right) or
to feint an adversary. Similarly, a person who is transporting a table together with a co-actor can push the table in a certain
direction to signal where and when he intends to place it. Other examples of ‘‘signaling’’ are over-articulating in noisy
environments and over-emphasizing vowels in child-directed speech. In all these examples, humans intentionally modify
their action kinematics to make their goals easier to disambiguate. At the moment no formal theory exists of these forms of
sensorimotor communication and signaling. We present one such theory that describes signaling as a combination of a
pragmatic and a communicative action, and explains how it simplifies coordination in online social interactions. We cast
signaling within a ‘‘joint action optimization’’ framework in which co-actors optimize the success of their interaction and
joint goals rather than only their part of the joint action. The decision of whether and how much to signal requires solving a
trade-off between the costs of modifying one’s behavior and the benefits in terms of interaction success. Signaling is thus
an intentional strategy that supports social interactions; it acts in concert with automatic mechanisms of resonance,
prediction, and imitation, especially when the context makes actions and intentions ambiguous and difficult to read. Our
theory suggests that communication dynamics should be studied within theories of coordination and interaction rather
than only in terms of the maximization of information transmission.
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Introduction

The study of human communication is central in several

disciplines, including linguistics, cognitive science, neuroscience,

anthropology, biology, and philosophy [1–5]. Most studies have

focused on linguistic communication or non-linguistic forms such

as gesture, deictics (e.g., pointing, using turn signals when driving,

or looking at objects to help another’s referential processes), facial

expressions, body language and posture.

Less attention has been devoted to human sensorimotor communi-

cation during online social interactions and joint actions, such as for

instance when two persons play volleyball or jointly lift a table.

Unlike conversation, these joint actions are not exclusively

communicative but have non-communicative, pragmatic goals

(winning a match or transporting the table somewhere). Still, as

recognized by early scholars [4,6–8] and also more recently [9],

joint actions offer a vantage point from which to study

communication and its origins.

In online sensorimotor interactions and joint actions, commu-

nication is not only linguistic. Several studies have focused on

other forms of communication, which include deictics, gesturing,

and facial expressions, see [10] for a recent review. A common

feature of all these forms of communication is that the ‘‘channel’’

used for communication (say, language or gaze) is different from

the channel used for action (say, the movements required to pass

the ball in a volleyball game or to lift a table). In this article we

focus instead in a less-studied form of communication that uses the

same channel as the to-be-executed action. Consider the case of a

volleyball player exaggerating her movements to help her

teammates discriminating between a pass to the right or left. In

this case, the same channel (i.e. hand and body movements) is used

for both reaching/lifting and sending coordination signals to the

co-actor.

How can we distinguish when a given action (say, making a

pass) is used for its pragmatic goal (e.g., passing the ball to the

teammate) or for signaling something to a co-actor (e.g., letting her

infer the direction of the pass)? Evidence accumulates that

distinguishing features can be found at the kinematic level. For

example, it has been reported that in social contexts actions have

subtle still significant kinematic peculiarities: the deceleration

phase was slower when a ‘‘giving’’ action was directed to another

individual that in an individualistic set-up (placing an object) [11].

In turn, these subtle changes in the action kinematics are highly

informative of the performer’s goals and might help inferring their

distal intentions; thus, they have communicative and not only

pragmatic effects [12–14]. Other studies have reported that co-
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actors engaged in joint actions modify the kinematics of their

actions, and in particular make their behavior more predictable

and discriminable [15–18]. This can be done by minimizing its

variance [19] or selecting trajectories that permit a faster

disambiguation of the action from the alternatives [16,17]. In a

previous study we found that in joint actions with asymmetric

knowledge (e.g., only one of the co-actors knew the joint goal) the

knowledgeable subject modified her actions, and stopped doing so

when the co-actor’s uncertainty lowered, showing that the

signaling mechanisms can adapt flexibly to task demands [20].

Note that signaling is not limited to one modality but can exploit

multiple communication channels such as visuomotor, auditory,

and haptic coupling [21]. Furthermore, signaling can be used at a

larger scale than in the previous examples; for instance in the

coordination of an entire orchestra, and be responsible for the

quality of the artistic results [22].

Sensorimotor strategies of communication can also work

synergistically with other forms of communication (e.g., linguistic).

It has been consistently reported that child-directed speech (a

‘‘motherese’’) has certain characteristics that facilitate recognition

and perceptual processing, such as for instance an exaggeration of

the vowels [23]. Mothers’ infant-directed action (‘‘motionese’’) has

similar characteristics of the motherese, including the ‘‘exagger-

ations’’ and the choice of actions that have low perceptual

ambiguity [24,25]. Exaggeration is not the only strategy; speaking

slower achieves the same goal. Besides teaching, signaling helps

conveying communicative intentions when the context makes

them ambiguous. For example, interlocutors often over-articulate

and modulate their choice of words to help the receiver’s

perceptual processing in noisy environments (the so-called Lombard

effect). Studies of sign language reveal dissimilation effects, too:

performers chose movement parameters that make two successive

actions more easily discriminable for the perceiver [26]. Exagger-

ation of movements can be used to convey misleading commu-

nicative messages, too, such as when feinting in soccer [27,28].

Despite these empirical demonstrations, the nature and

functioning of human sensorimotor communication is largely

unknown. There is currently no normative framework or analytic

description of human signaling and sensorimotor communication

that provides them with a theoretical ground. Besides its

importance per se, the study of sensorimotor communication

provides an excellent opportunity to understand the adaptive and

evolutionary value of communication in terms of coordination and

interaction success. Indeed, joint action scenarios are interesting

because they are not essentially communicative but have first and

foremost pragmatic goals. This makes it possible to study the

trade-offs between the costs and benefits of communication in

terms of interaction success, not (only) of communication success,

as it is instead common in theories focusing on maximization of

information transmission.

Overview of the Proposed Theory
In this article we present a formal theory of signaling in online

sensorimotor interactions. Signaling refers to the intentional

modification of one’s own behavior to convey information to

another person, typically a co-actor. In addition to a pragmatic

goal (e.g., performing the joint task), the signaler generally has the

communicative goal of changing the co-actor’s belief (e.g.,

facilitate his understanding of the signaler’s goals). In some cases,

but not always, the signaler wants also the co-actor to be aware

that she is intentionally communicating or cooperating. Note that

in competitive scenarios the signal can also be misleading (e.g., a

feint in soccer [28]). Note that our use of the term ‘‘signaling’’ is

different from the use in animal communication, because it is

intentional and tailored to the addressee and his uncertainty;

rather, the jump of a gazelle signals its strength but is less flexible

and can be executed irrespective of the presence of a mate or a

lion [29,30].

The proposed theory starts from the premise that in joint action

contexts co-actors optimize the success of joint goals (e.g., lifting a

table together) rather than their individual ones (e.g., lifting my

part of the table), and take into consideration the joint outcome

(e.g., ensure that the table surface is horizontal) and when

necessary also the parameters of the co-actor (trajectories, sensory

feedback, uncertainty, task knowledge) rather than only their own.

Signaling is part of this joint action optimization. To optimize the joint

goal, the actor can choose to pay a cost in terms of her individual

performance. For example, to make her action more predictable

and discriminable, she can chose an exaggerated trajectory

requiring higher muscular effort or a biomechanically awkward

posture.

We formalize signaling in terms of parametrizable deviations

from the action’s optimal trajectory so that the signaling action

retains its pragmatic goal (e.g., grasping an object) but the changes

in the kinematic parameters are informative of the performer’s

action choice. To choose whether or not to signal, and how much

to signal, subjects perform a cost-benefit analysis (considering, for

instance, the uncertainty of the co-actor, the accuracy of the end

state if a signaling action is selected, the usefulness of signaling by

varying one or more parameters). As it requires a cost-benefit

analysis, we consider signaling as an intentional form of

sensorimotor communication, not a byproduct of interaction

dynamics.

Our theory makes four assumptions. First, the computational

objective of signaling is permitting the co-actor to better

discriminate the signaler’s action goal (and/or distal intention)

against the alternatives (i.e., raising the co-actor’s

P(AsignalerDOsignaler), where A is the action goal of the signaler

and O is the observed movement of the signaler). As we will

discuss, because we assume that perceivers use predictive strategies

to recognize the performer’s action goal, the signaling action has to

improve the perceiver’s predictions. Second, the decision of wether

or not and how much to signal requires solving a trade-off between

the immediate costs of signaling (e.g., the biomechanical costs

linked to the execution of an awkward trajectory) and its benefits

in terms of interaction success. Third, signaling actions consist in

the dissimilation (or differentiation) of one’s own action parameters

(e.g., trajectory, speed, or hand size) from those of the alternative

actions that are most likely given the context and the perceiver’s

prior information. Fourth, our parametrization permits to select

different ‘‘degrees’’ of signaling actions, and to consider their costs

(roughly, the bigger the deviation from the optimal trajectories, the

higher the cost) in addition to their benefits (in terms of how much

signaling facilitates the discrimination of different actions by the

perceiver).

Methods

Computational Framework
The theory starts from the premise that a performer agent wants

to influence (typically facilitate) the action recognition process of a

perceiver agent. Consider the case of a volleyball player who can

execute one of two possible action alternatives: passing the ball to

the left or right. A teammate sees the scene but is uncertain relative

to the performer’s action: action 1 (say, pass to the left) or action 2

(say, pass to the right). The teammate can estimate the most likely

action of the performer based on multiple sources of information,

such as the performer’s arm trajectory, body posture, hand

Human Sensorimotor Communication

PLOS ONE | www.plosone.org 2 November 2013 | Volume 8 | Issue 11 | e79876



movements, gaze direction, and various kinds of prior information

(e.g. the performer’s preference and skills). The essence of our

signaling theory is that the performer can purposively modify one or

more of said variables for communicative purposes; for example,

to help the teammate recognize and predict the performed action.

Let’s describe more formally the computational problems that

performer and perceiver must solve. Each goal-directed action can

be performed in a number of different ways (e.g. a pass to the left

can be achieved in several ways). An authoritative view in

computational motor control is that each particular instantiation

of an action can be associated to an internal model m [31,32]. In

our approach, the internal model maps to a probabilistic

trajectory; each trajectory is associated to a goal-directed action

(e.g., reaching an object to the left or right). From the

computational point of view, each model (and thus a particular

action choice) can be represented as a stochastic process modeling

the temporal evolution of the system’s state. Without loss of

generality, we can represent the evolution of a model as p(xtDmi),

where xt is the state of the system at time t (e.g. the value of the

performer’s kinematic parameters at time t). By p(xDmi) instead,

we denote the entire sequence of states of the system during the

action associated to the model mi.

During an interaction, the perceiver’s goal is to infer which

model mi has generated the observed data by inverting the

generative model above (this implies that interacting agents share

similar models, and are thus able to perform similar goal-oriented

actions, see [33]). In other words, the perceiver’s goal is to infer:

argmaxip(mi Dx1:t), i[1,2, . . . n ð1Þ

where n is the number of available models (generally, the state xt

of the system is not directly observable. Rather, a set of variables ot
is observed and the distribution linking those variables to the state,

p(otDxt), is supposed to be known). For a computationally efficient

solution to this problem please consult [33].

The performer’s goal, on the other hand, is to facilitate such an

inferential process. Here we argue that this result can be achieved

by actively modifying the parameters of the currently executed

model, and thus the resulting trajectory x1:t, in order to minimize

the probability of a misclassification in Equation 1. We call this

process signaling.

Signaling Distribution
Signaling can be defined as the process of altering one’s own

behavior to facilitate its recognition by other persons. In our

framework, a signaling agent tries to ‘‘dissimilate’’ her trajectory

from the alternative ones that are possible (or likely) given the

context [26], where dissimilation is defined as the amplification of

the differences between the selected trajectory and the alternative

one(s). At the same time, however, the action choice has to be a

valid one to preserve its pragmatic effect (i.e., not to fail the action)

and make the recognition by the perceiver possible. Thus, samples

from the signaling distribution for a given model mi at time t shall

be representative of the ‘‘original’’ distribution p(xtDmi) while

having a low probability of being sampled from other competing

models, mj , in a given context.

In line with the requirements above, samples from the signaling

distribution can be obtained via a modified rejection sampling

technique [34]. Let x̂xt be a sample from the ‘‘ideal’’ distribution

p(xtDmi). Given K random values, uk[½0,1�, sampled from the

uniform distribution over ½0,p(xtDmk)=p
max
k �, we decide to accept the

sample x̂xt if the following holds:

uivwi
:p(x̂xtDmi) and ujwwj

:p(x̂xtDmj), Vj=i ð2Þ

where w~½w1,w2, . . . ,wK � is a vector of weights which modulate

the contribution of individual models to the the signaling

distribution.

In the case of continuous distributions p(xtDmj) the procedure

above leads to the formal definition of the signaling distribution:

psig(xtDmi;w)!wi
:p(xtDmi)

j=i
(1{wj

:p(xtDmj)=p
max
j ) ð3Þ

where pmax
j is the maximum value for the distribution p(xtDmj). By

means of p(xtDmi) it is possible to compute the entire sequence of

states of the system during the signaling of the action associated to

the model mi which we denote with p(xDmi).

To Signal or not to Signal (and How Much to Signal)
Intuitively, the signaling distribution for the model mi should be

as close as possible to the original distribution p(xDmi)~pi, while

having at the same time a high discriminative power as to facilitate

action recognition. This can be formally represented as an

optimization problem where the goal is to find the components

of the weight vector w of the signaling distribution which

minimizes the following:

wi(t)~argminw(t) KL p
sig
i (w(t)),pi

h i

zlS h{psimulated
i

� �

h i

ð4Þ

where:

N KL(:,:) is the Kullback-Leibler divergence between the

signaling distribution with the set of weights w and the original

one (i.e., the one with no signaling);

N l is the amount of signaling in the given action;

N psimulated
i is an estimation of the perceiver’s posterior probabil-

ity of correctly recognizing the model mi under the assumption

that performer and perceiver share the same set of internal

models;

N h is the experimentally fixed threshold that the perceiver uses

during model recognition (in our experiments, h~0:9);

N S is the logistic function.

The minimization of Eq. 4 considers jointly three factors. The

KL term considers the cost of signaling, where cost can be

associated to biomechanical factors, effort, and other forms of costs

(e.g., cognitive costs associated to planning and executing non-

familiar or non-habitual movements). The l term permits to

modulate the amount of signaling, where l~0means no signaling.

Note that our formulation permits to modulate the amount of

signaling during the task, for example signaling only during the

first part of the action or stopping signaling when the perceiver’s

feedback indicates that it is not necessary. The psimulated
i term

describes a simulation of the perceiver’s action recognition process

(for mathematical details of how to efficiently compute this

probability please refer to [20,33]. It permits estimating the

potential benefit that the perceiver will have from signaling actions

of having different l, where the benefit consists in better and faster

recognition of the executed action. All these factors are jointly

considered in the cost-benefit analysis that selects whether or not,

and how much to signal.

Human Sensorimotor Communication
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Example of Signaling Distribution
As an example of signaling distribution, consider a system

governed by two independent Gaussian processes corresponding

to models m1 and m2, respectively. Assume that the system

commits to the model m1, the corresponding signaling distribution

is given by:

psig xDm1;w1,2~1ð Þ~A:e
{
1
2

(x{m1)
2

s2
1

� �

1{e
{
1
2

(x{m2)
2

s2
2

� �0

B

B

@

1

C

C

A

with

A~1=
ffiffiffiffiffiffi

2p
p ffiffiffiffiffiffiffiffiffiffiffi

s1ð Þ2
q

{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s1ð Þ2 s2ð Þ2

s1ð Þ2z s2ð Þ2

s

e
{

1
2

m1{m2ð Þ2
s2
1
zs2

2

0

B

B

@

1

C

C

A

0

B

B

@

1

C

C

A

For the sake of simplicity we assume that the contribution of

each internal model to the state can be expressed by a Gaussian

distribution with mean mi and a standard deviation si:

p(xDmi)~N (xDmi,si)

However, the theory is independent from the particular density

function chosen.

Results

To test our model, we performed three experiments. The first

experiment uses a synthetic dataset to tests if, when the performer

uses the signaling strategy elucidated earlier, the perceiver can

better discriminate the right action from an alternative one. The

second experiment consists in using our proposed approach to

model human data on a joint action task that requires signaling.

The third experiment is similar to the first experiment but

considers the case of three actions to be disambiguated.

Experiment 1: The Effects and Benefits of Signaling
To test the efficacy of the proposed signaling model in terms of

improved action recognition, we designed an experiment using a

synthetic dataset with two trajectories corresponding to two goal-

directed actions: A1 (e.g. reach an object to the left) and A2 (e.g.

reach an object to the right). These can be considered as

idealization of passing actions of the volleyball player (passing the

ball to the left or right). Figure 1a shows the synthetic data points

for the two trajectories corresponding to A1 and A2. Full lines

show the means of the trajectories, while the points represent the

noisy data forming the dataset.

Figure 1b shows the trajectories of the two probabilistic

internal models p(xDm1) and p(xDm2) (where m1 is the internal

model for A1 and m2 is the internal model for A2) as learned

by using the Echo State Gaussian Process algorithm [35] on

100 time series per action in a supervised learning scheme.

These are considered to be the ‘‘original’’ internal models and

trajectories (i.e., without signaling) in our experiment. The

superposition of the two distributions in the figure represents the

perceiver’s probability of observing the two movements when no

hypothesis is done on which is the action actually being

performed. Figure 1c shows the internal models for the same

two actions (A1 and A2) when the signaling distribution is used

instead. By comparing figure 1b (without signaling) and figure 1c

(with signaling) it can be noted that sampling from the signaling

distribution leads to a characteristic dissimilation effect at the

beginning of the action.

Figure 2a and figure 2b permits to better appreciate this

dissimilation effect. Figure 2a shows the difference between the

trajectories for the action A1 when the original distribution

(blue) or the signaling distribution (magenta) are used. Figure 2b

shows the same difference between the distributions, but at a

particular time step t~250 ms. As evident from the figures, the

differences between the original and the signaling distributions

are not the same throughout the action but are more prominent

at the beginning, where the trajectories of A1 and A2 overlap.

To assess this difference quantitatively, we calculated the

Kullback-Leibler (KL) divergence between the correct and

incorrect actions (m1 vs. m2) in the original and signaling

distributions, see Figure 2c. Our results indicate that, after a

short initial phase where ambiguity cannot be minimized, the

signaling distribution quickly diverges from the original one; at

the end of the action the signaling trajectory becomes close

again to the original trajectory.

We argued that the effect of signaling and dissimilation is

minimizing the probability of misclassification of a perceiver agent.

To assess this hypothesis, we compared the performance of a

(synthetic) perceiver agent asked to recognize a performed action

when its trajectory is sampled from (i) the original distribution and

(ii) a signaling distribution. The synthetic perceiver agent is modeled

using a Bayesian action recognition method that integrates over

time (noisy) trajectory estimates, see [33] for details.

Figure 2d shows the results of the comparison and the

probability recognizing the two actions m1 and m2 using the

original distribution (blue and red) and the signaling distribution

(magenta and black). The results indicate that the observer agent is

able to recognize the correct action faster when a signaling

distribution is used. Taken together, the results of this synthetic

experiment show that using signaling strategies permitting

dissimilating the two actions in the parts where their trajectories

are more ambiguous; in turn, signaling permits perceivers to

recognize a performed action faster and more accurately.

Experiment 2. Comparison with Human Data
The objective of experiment 2 is is assessing if our method can

be used to model human signaling data. A recent experiment [17]

investigated signaling in a joint task consisting in grasping jointly

and synchronously a bottle-like object in one of two possible

points: up (top of the bottle) or down (bottom of the bottle). In one

condition, only one of the co-actors, called the Leader, knows the

task to be jointly performed (i.e., up-reach or down-reach). Results

show that in this case the Leader modifies her trajectory to signal

her co-actor, called the Follower, the task to be performed.

Specifically, if the Leader is required to do an up-reaching, she

significantly raises the trajectory; if she is required to do a down-

reaching, she significantly lowers the trajectory. Figure 3a shows a

plot of the trajectories obtained in the human study and permits

appreciating the significant differences between the signaling

trajectories and the baseline trajectories (i.e., when no signaling is

required).

We used the proposed signaling method to model the human

data reported in [17]. We firstly acquired the internal models

corresponding to the baseline trajectories (i.e., without signaling)

for reaching up and reaching down. This was done by using the

Human Sensorimotor Communication
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baseline human data in a supervised learning scheme, adopting

the Echo State Gaussian Process algorithm [35].

Then, we calculated various signaling distributions using different

values of l, and compared the results to the Leader’s movements

in the human study. Figure 3b shows that without signaling (l~0)

the reconstruction error is higher. The reconstruction error drops

close to zero with various values of l, and the best model of the

data is one in which l changes dynamically over time; see the

dynamics of the l-profile in figure 3c. This result suggests that our

signaling method can successfully model the unfolding of the

Leader’s actions over time. Furthermore, it indicates that the

Leader might modify dynamically her signaling strategies within

trials. One possibility is that the Leader does so depending on the

Follower’s feedback. For example, a Follower could start the trial

with a high level of uncertainty, prompting the Leader’s signaling.

During the trial, the Follower could understand the correct action

and move to the target with increased confidence; the Leader can

use this feedback information to infer that the Follower has no

uncertainty and stop signaling. Note that biomechanical con-

straints and other costs plausibly exert an influence on the

dynamics of l. Indeed, the costs of deviating from the original

trajectory are not constant within trials; in particular, they could

increase at the end of the trajectory when it is important not to

miss the pragmatic goal (e.g., grasping the bottle correctly). Future

studies should address the costs and dynamics of signaling within

and across trials.

Figure 1. Experiment 1. Panel a shows the dataset composed of synthetic data points for two goal-directed actions: A1 (e.g. reach an object to the
left) and A2 (e.g. reach an object to the right). The lines show the trajectories from which the noisy data (shown as circles) were sampled. Synthetic
points were generated by adding Gaussian noise to each trajectory with a signal-to-noise ratio of 18dB. The trajectories were generated with a strong
superposition over the 20% of their time length, in order to simulate movements not simply distinguishable. Panel b shows the probability density of
the superposition of the two original models internal models p(xDm1) and p(xDm2) learned on the dataset of Panel a. The red color represents the
highest probability density values, and the blue color the lowest. Panel c shows the corresponding trajectories of the signaling distributions psig(xDm1)

and psig(xDm2).
doi:10.1371/journal.pone.0079876.g001
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Experiment 3: The Case of Three or More Actions
Up to now we have considered the case of two actions A1 and

A2. However, in realistic scenarios each context is linked to

multiple possible actions. In such cases signaling strategies need to

be different depending on what are the (most likely) action

alternatives, say A1 vs. A2 or A1 vs. A3 (or even A1 vs. both A2 and

A3). The aim of Experiment 3 is studying if and how signaling

strategies change depending on the action alternatives.

Figure 4 illustrates this situation in the case of three actions (say,

three goal-directed actions to the left, center, and right). In

particular, Figure 4a shows the trajectories associated with the

three actions, generated using a synthetic dataset that uses the

method elucidated earlier but includes three rather than two

actions. Figure 4b shows the means of the distributions for A1, A2,

and A3 (in blue, red and green, respectively). It shows that

trajectories using the sampling distribution are different if the same

action A1 has to be dissimilated from A3 (A1 vs. A3 shown in

turquoise) or from A2 (A1 vs. A2 shown in magenta). In particular,

a larger and longer deviation from the original trajectory is needed

to dissimilate A1 from A3 than A1 from A2. This difference can be

appreciated by comparing figure 4c and figure 4d that compare

the KL divergence of the original and signaling distributions in the

case of A1 vs. A2 and A1 vs. A3, respectively.

Figure 2. Further analyses of Experiment 1. Panel a shows the means of the original distributions for A1 and A2 in blue and red, respectively. In
magenta the means of the signaling distribution of A1 (i.e., for a leftward movement) is shown. Panel b shows an example of signaling distribution at
a given time step rather than the whole trajectory. Sample distributions p(xt Dm1) and p(xtDm2) are taken at time t~250 ms of the dynamic Gaussian
Process of the two primitives. The parameters of the Gaussian distributions at time t are m1~0:53, m2~0:47, s1~0:06 and s2~0:05. The resulting
distribution psig(xt Dm1;w) is computed from Eq. (2). The weights coefficients are set as w1~w2~1. This means that the two distributions are equally
weighted in the computing of the signaling distribution. Panel c shows the KL divergence between two actions: A1 vs. A2 . Panel d shows the
perceiver’s probability of recognizing the right action (i.e., the probability p(mi Do1:t) of perceiving m1 given the observations o until time t) when the
performer uses the original m1 distribution (blue= left, red = right) and the signaling distribution (magenta= left, black = right).
doi:10.1371/journal.pone.0079876.g002
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These results show that signaling strategies are flexible and

tailored to the action alternatives. The success of a signaling

action depends on the action alternatives that are considered.

Let’s imagine that a perceiver action is uncertain between A1

and A3. If the performer uses a signaling action that

disambiguates between A1 and A2 rather than A1 and A3,

he would stop signaling too early and this would make the

perceiver’s task harder. We hypothesize that the performer

modifies its signaling strategies using an estimation of the

perceiver’s belief of the possible alternatives and the associated

uncertainty. This novel empirical prediction of our model

remains to be studied empirically. However, ongoing joint

action experiments with several action alternatives show that the

leader’s movement amplitude contains information about the

target location (which is unknown to the co-actor) and the

amplitude increases when the target-to-target distance increases

(Cordula Vesper, personal communication).

Figure 3. Experiment 2. Panel a shows the average trajectories (Leader vs. baseline condition) to reach the top and bottom of the bottle in the
human study reported in [17]. Panel b shows the reconstruction error (sum of squares error between the human data and the modeled trajectories)
for the trajectories of the Leader, using the signaling distribution and various values of l. The Figure shows a time window in the data, not the whole
trajectory. The specific window is between 0.5 and 0.66 (trajectory length is normalized to 1). Panel c shows a l-profile: the values of optimized l for
each time step t on the sequences of the Leaders’ reaching up movements. It measures the amount of signaling during the reaching up action.
doi:10.1371/journal.pone.0079876.g003
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Discussion

Although the importance of communication is recognized in

several disciplines, it is rarely studied in the context of on-line

social interactions and joint actions. We offered a normative

framework in which a performer agent can decide to pay a cost in

order to send coordination signals and help the co-actor’s

recognition process. In this framework, signaling is not concep-

tualized as an ‘‘altruistic’’ action (although in some cases it can be)

but as part of a strategy for joint action optimization [20]. The

minimization of uncertainty is important in individualistic

planning. Here we extend this argument to joint actions, arguing

that if performers maintain a model of the perceiver agent,

minimizing his uncertainty is part of the optimization and this

entails some form of signaling and communication. Thus,

sensorimotor communication emerges as part of a strategy that

enhances coordination and the success of joint actions.

The Importance of Signaling in Joint Actions
Recent research in social neuroscience has revealed that

understanding the intentions of co-actors and predicting their

next actions are fundamental for successful joint actions and social

interactions, cooperative and competitive. In joint task such as

building something together or running a dialogue, action

understanding helps planning complementary actions and con-

tributes to the success of the joint goal. Furthermore, predictive

mechanisms help the real-time coordination of one’s own and the

co-actor’s actions [36–41].

Figure 4. Experiment 3. Panel a shows the dataset of the synthetic data of the trajectories for actions A1 (left), A2 (right), and A3 (center). The lines
show the sample trajectories from which the noisy data (shown as circles) were sampled. Panel b shows the means of the original distribution of A1

(blue), the means of the original distribution of A3 (green), the means of the original distribution of A2 (red), the means of the signaling distribution
A1 vs. A3 (turquoise), the means of the signaling distribution A1 vs. A2 (magenta). Panels c and d compare the KL divergence of the original and
signaling distributions in the case of A1 vs. A2 and A1 vs. A3 , respectively.
doi:10.1371/journal.pone.0079876.g004
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However, action understanding and prediction are hard and

often under-constrained computational problems, and it is still

unclear how humans (and other animals) solve them in real time

while at the same time planning their complementary or

competitive actions [42–46]. It has been argued that action and

intention recognition are facilitated in joint action but also more in

general in social set-ups because co-actors tend to automatically

‘‘align’’ at multiple levels, imitate each other, and share

representations; in turn, this facilitates prediction, understanding,

and ultimately coordination [42,45,47]. Dynamic theories of joint

action argue that due to alignment processes and the synchroni-

zation of behavior, coordination dynamics could be self-reinforc-

ing, so that joint actions (or at least those requiring only immediate

coordination) do not require cognitive representations [48,49].

Despite the importance of automatic mechanisms, we argue that

co-actors adopt also intentional strategies to enhance coordination.

In keeping with this view, human experiments show that signaling

is versatile and takes into account the communicative implications

of the executed actions, its ambiguity and its costs, as well as the

uncertainty of the co-actor [17,19,20], and for this can be

considered an intentional strategy, although not necessarily

conscious.

We argue that signaling strategies help solving coordination

problems and joint actions by making actions easier to predict and

disambiguate. In the long run, signaling actions can also support

common ground formation by disambiguating an actor’s intended

plan rather than only her next action [3,20,39,50]. Signaling

actions are thus part of a joint action optimization process that

takes the co-actors costs into consideration; similar examples of

collaborative strategies for solving joint problems are the principle

of least collaborative effort [51] and the active management of

resources [52] in dialogue.

An open objective for future research is investigating empirically

the multifarious methods humans use for sensorimotor commu-

nication and signaling, which are not fixed but depend on task

demands and goals [53,54]. We have focused on a specific form of

signaling consisting in modifying the kinematic parameters of a

given internal model; however, there are other methods to convey

communicative message through one’s choice of actions, such as

for example selecting a different internal model that nevertheless

achieves the desired pragmatic goal [20]. Furthermore, our

formulation considers the case where the alternatives are known.

In certain circumstances the producer can be uncertain on the

number of alternatives, or they can be too numerous to be

considered all together. In these cases, the producer can decide to

make the selected action easier to disambiguate by lowering its

variance or by amplifying its specificities; one example is making

the word ‘‘house’’ easier to understand by uttering ‘‘hoooouse’’.

Note also that although we focused principally on cooperative

scenarios, signaling is widely used in competitive set-ups, too, as in

the case of feinting adversaries during volleyball or soccer games

[27,28]. As for cooperative scenarios, the costs and benefits of

feinting can be considered within an action optimization

framework. Note that in some cases signaling actions can also be

detrimental, because trajectory deviations can increase the risk of

missing a target. For example, football players who want to

dissimulate their penalty kick sometimes miss the target. Future

studies are needed to elucidate the functioning of sensorimotor

communication strategies in realistic human interactions.

The Adaptive Value of Communication in Pragmatic
Contexts
When communication is studied in purely communicative

scenarios (e.g., conversations) it is tempting to argue that it

maximizes information measures such as the correct reproduction

of a message, as indeed assumed by prominent frameworks such as

Communication Theory [55]. We studied instead communication

in the context of joint actions in which the pragmatic, non-

communicative goals are more prominent. In joint action set-ups

the adaptive value of communication is linked to the achievement

of pragmatic goals, not to information transmission per se [4,6–9].

Thus, the trade-off between the costs of communication (e.g.,

biomechanical costs, slower performance) and its benefits for

interaction success has to be considered, especially if, as in our

volleyball example, the same ‘‘channels’’ (hand and arm move-

ments) are used for both for action performance and communi-

cation. In our framework signaling and sensorimotor communi-

cation strategies emerge naturally from the objective of optimizing

a joint goal. We believe that the proposed normative framework

can contribute to shed light on the adaptive and evolutionary value

of communication in terms of enhanced coordination and joint

action success rather than only in terms of the maximization of

information transmission.

The theory we have presented does not require that the

perceiver recognizes the communicative nature of the performer’s

action, i.e., that the performer intended to communicate. Still,

several researchers argue that recognizing the communicative

intention is be a fundamental element of pedagogical contexts [56]

and linguistic communication [5]. It is worth noting that if the

perceiver uses the computational framework elucidated in this

article, he could be able to to distinguish a communicative from a

non-communicative action by recognizing if the perceived action

was generated using an ‘‘original’’ distribution or a ‘‘signaling’’

distribution. The latter is often not the optimal trajectory to

achieve a pragmatic goal and this information can be used to

estimate communicative intent. Future studies will need to

elucidate the importance of recognizing communicative intention

in joint actions, besides pedagogical contexts.

The current model has some limitations that should be

addressed by future research. First, we adopted a simplified action

execution model that does not consider action biomechanics,

muscle activation, and detailed planning mechanisms. Further-

more, for the sake of simplicity we assumed that the costs of

signaling (e.g., biomechanical costs, costs for planning unfamiliar

trajectories) are proportional to the amount of the deviation from

the ‘‘original’’ trajectory. These limitations can be overcome by

introducing in our formulation more detailed action models based

on optimal control theory [57,58]. A second limitation is that the

performer’s choice of the amount of signaling l is not explicitly

modeled. In the human experiment described in section 0 l varies

over time, but it remains to be empirically assessed which factors

(e.g., the perceiver’s feedback, the varying biomechanical costs)

affect it. A more complete approach should consider the

perceiver’s behavior and the reciprocal interactions between

performer and perceiver, including the fact that they can build a

model of one another. Finally, the cost-benefit analysis of Eq. 4 is

demanding and it is unclear if and how the brain might implement

it. The more demanding part consists in calculating the perceiver’s

benefits for each level of l. In cognitive science and neuroscience,

it has been proposed that action perception can be implemented as

a mental simulation that reuses the same internal model as those

used for action control [59]; several computational models have

been proposed that implement this process [33,60–62]. A similar

mechanism could allow simulating the perceiver’s action observa-

tion process. In keeping with this view,recent evidence indicates

that the neural underpinnings of the ability to tailor the

communicative message to the receiver could overlap with the

brain substrate for intention recognition [63–65]. Developing
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computationally feasible solutions for such computations remains

an important open issue.

Another promising direction for future research is linking more

directly the proposed approach to established frameworks in

computational motor control and social interaction. The proposed

theory can be linked to existing models of Bayesian decision theory

and reward-directed motor control [66–68] by reformulating the

costs and benefits of signaling in terms of a reward function. In this

framework, the choice of signaling or not signaling would result

from the optimization of the reward function rather than eq. 4.

The proposed theory would also benefit from a linkage with game

theory, which is an established framework for studying coordination

problems. in this vein, a few recent studies linked sensorimotor or

cognitive processes to equivalent game-theoretic concepts, but did

not consider communication [69–71]. Different from game theory,

our framework aims at clarifying the micro-dynamics and

cognitive mechanisms that support joint actions; linking game-

theoretic concepts to cognitive mechanisms could help realizing

theories of coordination dynamics that span several levels or

explanation. Our proposed method of joint action optimization

resonates with game-theoretic concepts of team reasoning [72,73];

exploring the linkage between these concepts is an open objective

for future research.
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