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Abstract. We propose a model of the human circadian system. The sleep-wake 

and body temperature rhythms are assumed to be driven by a pair of  coupled 

nonlinear oscillators described by phase variables alone. The novel aspect of 

the model is that its equations may be solved analytically. Computer  simula- 

tions are used to test the model against sleep-wake data pooled from 15 

studies of subjects living for weeks in unscheduled, time-free environments. 

On these tests the model performs about as well as the existing models, 

although its mathematical structure is far simpler. 
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1. Introduction 

In the first half of this decade, the time seemed ripe for mathematical modeling 

of the human sleep-wake cycle. Czeisler [8, 9] and Wever [38] had recently 

summarized the results of  years of "free-run" experiments, in which subjects had 

lived alone for weeks or even months in clockless chambers, eating and sleeping 

when they pleased, isolated from the external light-dark cycle and the other 24-h 

periodicities of the outside world. The experimental data revealed some striking 

and unexpected regularities in the timing of the subjects' spontaneous sleep 

episodes, leading Winfree [42] to write: "A Rosetta Stone has appeared in our 

mids t . . . " .  

In this atmosphere of excitement, a number of mathematical models were 

born [12, 22, 26, 27, 31, 34, 35, 43]. All postulated at least a pair of oscillators in 

order to explain the phenomenon of "spontaneous internal desynchronization" 

[1, 8, 38] between the sleep-wake cycle and various autonomic circadian rhythms. 

During internal desynchronization, a free-running subject unknowingly lives on 

a "day"  which is 30-50 h long, while body temperature and neuroendocrine 

variables controlled by the circadian pacemaker continue to oscillate with a stable 

* Supported by NIGMS Grant No. 5-R01-GM-30719-03 
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period of  24-25 h. This strange phenomenon has no counterpart in ordinary life. 

In the outside world, the dual oscillator structure of the circadian system is 

concealed - -  for those of us on a regular schedule, the circadian and sleep-wake 

rhythms are typically phase-locked to one another and to the 24-h environment. 

It is only during a disruption of our usual schedule, as a result of jet lag or 

a rotating shift work schedule, that the interplay among the sleep-wake cycle, 

the circadian cycle and the environment becomes all too apparent. The effects 

of jet lag, shift work schedules, and insomnia have great clinical and economic 

importance, affecting millions of people each year [30], and these provide some 

of the principal motivations for research on human sleep and circadian rhythms. 

Since the initial flurry of theoretical work on the sleep-wake cycle, the debates 

between the proponents of the various models have been lively [24, 28, 39, 42] 

but little consensus has emerged. There seem to be two obstacles. First, the 

authors have tested their models against different sets of  data, and have expressed 

doubts about the reliability of the data used by others. In an attempt to remedy 

this problem, we have recently reanalyzed much of the world literature on internal 

desynchronization [34, 36], the one phenomenon which all modelers consider to 

be of prime theoretical importance. The rules of sleep-wake timing extracted 

from those data will be used often in what follows. 

A second obstacle in the way of consensus is that most of the existing models 

have a nonlinear mathematical structure, rendering analytical work difficult and 

forcing one to resort to comparing computer simulations against actual experi- 

mental records. Even when the match between theory and experiment appears 

good, one is left wonde r ing - -does  the accuracy of the fit reveal some essential 

"correctness" of the model, or could alternative models have done as well? 

The purpose of this article is to propose a simple model of the human 

sleep-wake cycle. It is not intended to be realistic in detail, but only to capture 

the key features of the experimental phenomena. The novel aspect of the model 

is that its equations may be solved exactly. The resulting analytical transparency 

allows us to sort out which of the observed phenomena follow from simple 

mathematical considerations alone, as distinct from those which require some 

additional biological explanation. 

The remainder of this paper is organized as follows. Section 2 reviews the 

main findings of free-run experiments. In Sect. 3, we propose and analyze a new 

model of the human sleep-wake Cycle. It is tested against both data and other 

models in Sect. 4. The discussion in Sect. 5 indicates the limitations of the present 

study, its relation to earlier work, and directions for future research. 

The analysis presented in this paper is drawn from my doctoral thesis, 

published as [34]. In particular, Sect. 3 and the Appendices are taken essentially 

verbatim from [34], pp. 157-171. Section 4 is a synopsis of results discussed in 

[35] and in Chap. 7 of [34]. 

2. Experimental background 

Free-run studies of human subjects began in the 1960's [ 1, 32] following a decade 

of vigorous research on circadian rhythms in plants and animals. The free-run 
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protocol is designed to highlight the endogenous generation of circadian rhythms 

by shielding the organism from 24-h time cues and environmental cycles. Only 

after this simplest situation is understood does one try to characterize the influence 

of the light-dark cycle and other external synchronizers on the circadian system�9 

Figure 1 shows the sleep-wake record of one of the longest free-run studies 

ever conducted [33]. In that experiment, Michel Siffre spent six months alone in 

a cave. His account of that harrowing experience [33] is unforgettable reading, 

including encounters with bat guano, mice, near-suicidal depression, and an 

electrical shock delivered through cardiac electrodes that he happened to be 

wearing during a lightning storm. All in the name of science - -  Siffre was himself 

the leader of the research team, as well as the subject. 

As shown in Fig. 1, for the first 35 days of the experiment, Siffre lived on a 

fairly regular 26-h schedule, rising and retiring about two hours later each day. 

On day 37, he unintentionally skipped his expected bedtime, and stayed up for 

several extra hours�9 He then slept and slept�9 This odd pattern of long wakes and 

sleeps occurred intermittently for the next month. Spontaneously on day 63 he 

reverted to the 26-h "day".  After 9 more weeks, "wild variations" [33] appeared 

again on day 130, and continued in a "seemingly random pattern" for 20 days. 
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Fig. 1. Sleep-wake record of Siffre's [33] time- 

isolation study in Midnight Cave, Texas, 1972. 

Black bars represent time when subject was 

asleep. Each sleep episode is plotted twice: 

beneath the previous episode and also to the 

right of it. This "double raster-plot" 

emphasizes the continuity in the data across 

the artifactual edge at 24:00 h. Internal de- 

synchronization occurs spontaneously after 

day 37 and again after day 130 (see text) 
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These again gave way (day 150) to a 26-h day, which persisted until the end of 

the experiment. 

The-means for decoding records such as Fig. 1 have been furnished by Czeisler 

[8, 9] and Wever [38]. They and their colleagues have conducted free-run 

experiments in settings far more hospitable than Sitire's cave - -  their experiments 

take place in soundproofed, windowless apartments. The subjects in Czeisler's 

studies have their rectal temperature recorded continuously. Tiny samples of 

blood are drawn frequently through an indwelling catheter and monitored for 

hormone levels, and the subjects' brain waves are recorded while they sleep. 

Czeisler's work [8, 9] demonstrates that the circadian cycle, most prominently 

marked by the body temperature rhythm, is the key to deciphering the timing of 

sleep-wake patterns in free-run. For example, the minimum of the temperature 

cycle has been shown to coincide with a time of minimum alertness and a 

maximum tendency to fall asleep [9]. Free-running subjects usually go to bed 

when their temperature cycle reaches its t r o u g h - - i n  this case, the sleep-wake 

and temperature rhythms remain "internally synchronized" even though external 

synchronization to the 24-h clock has been lost. In Fig. 1, the first 35 days 

correspond to a state of internal synchronization. 

Even when the sleep-wake cycle spontaneously desynchronizes from the 

circadian temperature cycle, there is still an ongoing circadian modulation of 

sleep. To emphasize this modulation, the records of four of Czeisler's [8] desyn- 

chronized subjects have been replotted on a circadian basis (Fig. 2). Each record 

is plotted modulo the period of the subject's circadian temperature cycle, with 

phase 0 defined as the mid-trough of the subject's average temperature cycle. 

Thus points on the same vertical line correspond to the same phase of the circadian 

cycle. 

It now becomes apparent that there are regularities which are consistent across 

internally desynchronized subjects: (1) Long sleep episodes begin near high 

temperature, and shorter sleep episodes begin near the temperature trough. (2) 

Almost all awakenings occur on the rising limb of the temperature cycle, and 

practically none occurs in the quarter-cycle before the temperature minimum. 

(3) Many sleep episodes begin at one of two peak phases in the circadian 

cycle- -  near the temperature trough, or just before the temperature maximum. 

There are also two zones (stippled bands) in which the subjects rarely fall asleep. 

These and other regularities were found [34] to be present throughout the 

world literature on internally desynchronized subjects. Four such regularities are 

shown in Fig. 3, which contains data pooled from 15 desynchronized subjects 

[36]. Notice that the durations of sleep, prior wakefulness, and the wake-sleep 

cycle are all highly dependent on the phase of the circadian cycle at bedtime. 

For example, when bedtime occurs near the phase of maximum temperature, the 

preceding wake episode (Fig. 3b) and the subsequent sleep episode (Fig. 3a) 

both tend to be long, and hence they sum to a long wake-sleep cycle length (Fig. 

3c). Other interesting features of Figs. 3a-c are the steep vertical sections of data, 

representing phases at which sleep or wake durations are discontinuous or even 

double-valued [15, 36, 43]. 

In the next section, we show that a simple model can illuminate these empirical 

relationships. In particular, the relation between sleep length and circadian phase 

of sleep onset (Fig. 3a) is discussed as a test case in Sect. 3.5. 
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Fig. 2 a-d. Double raster plots of four of  

Czeisler's [8] internally desynchronized 

subjects. As in Fig. 1, black bars represent 

sleep. Rasters are normalized with respect to 

period and phase of each subject's average 

temperature rhythm, to show relation of sleep 

timing and duration relative to circadian 

temperature cycle. Stippled bands show zones 

where subjects rarely fall asleep, e Average 

waveform of body temperature (mean • 

standard error) for the four subjects of a-d 
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Fig. 3 a-d. The phase of the circadian 

temperature cycle at bedtime is related to: a 

the length of the subsequent sleep episode; b 

the length of the preceding wake episode and c 

the combined wake-sleep cycle length, d Sleep 

onsets are distributed bimodally in the 

circadian cycle. A frequency of 1 corresponds 

to the mean across all phases. The s h a d e d  and 

o p e n  p a r t s  ,of the histogram correspond to the 

LONG and SHORT cycles in e, respectively. 

Here and henceforth, period of average 

temperature cycle is divided into 25 "circadian 

hours". N = 359 sleep episodes, pooled from 

15 subjects listed in [36] (Reprinted from [36], 

with permission) 

3. P H A S E  model 

3 . 1 .  I n t r o d u c t i o n  

We now propose one of the simplest  possible differential equat ion  models  of the 

h u m a n  ci rcadian system. It is based on two pacemakers ,  one manifes ted by the 

circadian rhythm of body  temperature  and  the other by the s leep-wake cycle. 

The pacemakers  are assumed to be coupled in such a way that each accelerates 

or slows the other, depend ing  only on their mutua l  phase relation. Because this 

model  ignores such variables as ampl i tude  and  considers only phase,  it will be 

called the PHASE model .  

The mathemat ica l  simplicity of our  model  stems from the assumpt ions  that 

its const i tuent  oscillators have circular state spaces and  that  they interact  through 

phase differences only. This convenient  mathemat ica l  structure has been  exploited 
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by modelers of various physiological oscillations. To mention just a few examples, 

phase models have been proposed in the context of circadian activity rhythm 

splitting in rodents [13, 21, 25], flashing rhythms of fireflies [17], frequency 

plateaus in the intestine [ 16], and swimming rhythms controlled by central pattern 

generators in fish [7, 23]. The model presented here extends this approach to 

human sleep and circadian rhythms. 

3.2. Model  structure 

The structure of the PHASE model is summarized in Fig. 4. The phases of the 

two oscillators are denoted 01, 02. Although the phases are real numbers, we 

often regard them as points on the circle of unit circumference. The governing 

equations are 

01 = (.01 -- C 1 c o s  2 7 ( 0 2  - 01) (la) 

02 = w2+ C2 cos 2~'(01 - 02) (lb) 

where 

and 

to1, w2 are intrinsic frequencies 

C1, C2 are coupling strengths. 

The overdot signifies time differentiation. All the parameters are taken to be 

non-negative. The chosen form of the coupling is such that the first oscillator 

slows down and the second speeds up when they are in phase. This property is 

suggested by the observed modulations of sleep-wake cycle lengths (e.g. Fig. 2d) 

as the activity and temperature rhythms cross through each other during internal 

desynchronization. 

Temperature Sleep-wake 

oscillator oscillator 

temperature sleep onset 

g: 
Coupling 

01 = (dl-C! COS 2T(02-01) 02=(d2 + C2COS 2"tr (01-02) 

Fig. 4. Structure of  the PHASE model. Sleep-wake and temperature rhythms are controlled by different 

"phase-only"  oscillators, but  these oscillators are coupled. Low temperature occurs when 01 = 0 and 

sleep occurs when 0 <~ 02 <~ F, where F is a parameter  controlling the sleep fraction. Note that all 

phases  are regarded as real numbers  (mod 1) 
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We adopt the conventions that oscillator # 1 drives the circadian temperature 

rhythm and oscillator # 2 drives the sleep-wake cycle. Sleep is defined to occupy 

some fraction F of the 02 circle: 

0 2 = 0 a t  sleep o n s e t  

(e) 
02 = F at wake-up. 

Here 0 ~  < F<~ 1, and typically F - 1 / 3 ,  since people sleep about a third of the 

time. Since sleep onset during internal synchrony occurs near low temperature 

[8, 38], we take 01 = 0 as circadian phase 0, the minimum of the endogenous 

temperature cycle. 

3.3. Synchrony 

To study the synchronization and desynchronization of the constituent oscillators, 

consider the phase difference 

~b = 01-  02. (3) 

Subtracting the equations in (1) we see 

= 12 - C cos 2~r~b (4) 

where 

12 = tOl-W2 (5a) 

C = C1 + C2> 0. (5b) 

Here 12 is the difference of  the intrinsic frequencies of the two oscil)ators and C 

is the total coupling in the system. 

Synchrony is enforced when the total coupling C is larger than the magnitude 

1121 of the frequency difference, so that ~ = 0 has a solution. Otherwise the 

phase-difference ~b continues to grow as one oscillator periodically overtakes the 

other. This desynchronized case will be considered in Sect. 3.4. For now consider 

the synchronized case, i.e., assume 

k =  C > 1. (6) 

Then the internally synchronized phase relation 0* is obtained by solving (4) 

for ~ = 0: 

---- 4 - - -  COS- ~b* . (7) 
27r 

These are two solutions implicit in (7); the stable one is that for which d~/d~ < O. 

Here the range of cos -1 is taken as [0, ~-], so 

~b* = (-1/2~-)  cos-1(12/C) (8) 

is the stable solution. 
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Using (7) we can also find the "compromise" frequency w* adopted by the 

synchronized system. During internal synchrony (1) becomes 

02 = (-02 "~- C2 ( ~ - )  . (9b) 

Since tJl = 02 = w* during synchrony, either of these two expressions simplifies to 

00" - CLW2+ C2Wl 

CI_{_ C 2 (10) 

This frequency differs from the intrinsic frequencies o)1 and ~o2 by amounts AWl 

and A(.o 2: 

Awl  = w* -- Wl = - C 1 ~ / C  (1 la) 

and 

A w 2 =  w * - -w2  = C 2 ~ /  C. ( l lb)  

Note that during synchrony the oscillators' frequencies are shifted from their 

intrinsic values in proportion to the coupling strengths: 

ao.) 1 C~ 
Aw2 = " (12) 

Estimates of the absolute magnitudes of the parameters C1, C2, for human 

subjects are obtained in Appendix A. 

3.4. D e s y n c h r o n y  

Equation (4) corresponds to desynchrony when k <  1, i.e. when C<]S2]. The 

phase difference q~ between the oscillators always increases, sometimes slowly 

and sometimes rapidly, exhibiting what circadian biologists call "internal relative 

coordination" [8, 38]. The oscillators periodically move through a full cycle of 

mutual phase relations, with a "beat" frequency/3, obtained as follows. From 

(4) the time required for qJ to change from 0 to 1 is 1//3, given by 

f l / ~  f01 dO 1/ fl = dt  = 
J0 *2 - C cos 2rr~0 

= ( 0  2 -  C2) -1/2. (13) 

(For a derivation of the beat frequency, see Appendix B.) Hence the beat 

frequency/3 satisfies 

/3 = ( n 2 _  c2 )1 /2  

[ C2,~ -1/2 
= I2~1-~-~) . (14) 

Two special cases: 

(i) For C = 0, the beat frequency reduces to/3 = ~ = Wl - o~2, the noninterac- 
tive beat frequency. 
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(ii) As C + 1121,/3 + 0 according to a square root dependence (14). Thus the 

tendency to synchronize grows rapidly as C approaches the critical coupling. 

An analytically convenient special case of the model is that in which C1 = 0, 

i.e. there is no feedback onto the circadian pacemaker. As discussed in Appendix 

A this is a reasonable first approximation, and it will be assumed in what follows. 

Let the arbitrary zero of time be chosen such that 01(0) = 0. Then scaling time 

such that 

w a = l  (15) 

we obtain 

8 1 ( t )  = t. ( 1 6 )  

As shown in Appendix B, Eq. (4) may be solved exactly to yield a complicated 

(but monotonic and hence invertible) function ~0(t). Rather than writing this 

function explicitly here, it will be referred to simply as ~b(t). 

Having solved for 81(t) and ~(t) ,  we obtain 82(0: 

02(t)=Ol(t)-qt(t) 

= t - ~b(t). (17) 

3.5. Model prediction of an empirical relationship 

It would be pleasant if the model's predictions of various empirical relations 

could be extracted explicitly from the solutions to the model equations. Unfortu- 

nately, only implicit solutions are possible. For example, consider the model's 

prediction of the dependence of the duration p of the sleep episode on the phase 

~bs of the circadian temperature cycle at sleep onset. As discussed briefly in Sect. 

2 (Fig. 3a) the experimental finding is that sleep episodes beginning near the 

temperature trough tend to be short ( - 7  h), while those beginning near the 

temperature maximum are long ( - 1 5  h). The robustness of this ~bs : p relationship 

came as a surprise, and has been discussed extensively in the literature [9, 15, 

22, 36, 41-44]. Many theoreticians have used it as a benchmark to test their 

models [11, 12, 22, 26, 35, 43]. Hence it is of interest to derive the form of the 

~hs : p relationship predicted by the PHASE model. 

According to the conventions established in (2), sleep duration/9 is given by 

the time required for 02 to move from 0 to F. The circadian phase qSs of sleep 

onset is given by 01 when 02---0. To calculate the qSs :p relationship it is most 

convenient to choose a new origin of time, with t = 0 at sleep onset, i.e. 

82(0) = 0 (18a) 

81(0) = 4~, (18b) 

I / /(0) = 81(0  ) --  82(0  ) = (bs" (18C)  

Now to find the time at which wake-up occurs, we seek p such that 

82(p) = F (19a) 
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O~(p)=qbs + p (19b) 

@(p) = cks + p -  F. (19c) 

Together  (18c) and (19c) constitute an implicit set o f  equations for p, as a funct ion 

of  ~bs and F. Because o f  the t r igonometr ic  form of  @ (see Eqs. (B14), (B15) o f  

A]apendix B), the solution for p requires graphical  or numerical  techniques�9 

One such graphical  method  is indicated in Fig. 5. As shown in Sect. 3.4 and 

Appendix  B, the governing equations,  with C] -- 0, may  be integrated exactly to 

yield the curves 02(0 and @(t). Initial condit ions were 0~(0)= 02(0) = 0, and the 

integrat ion cont inued until all mutual  phase relations @ between 0 and 1 had 

been attained. Thus all possible circadian phases o f  sleep onset are attained, 

since ~b~ = ~ when 02 = 0. TO find p(~b,), we follow a multi-step procedure  (Fig. 5):. 

(i) Choose  the, the phase  o f  sleep onset. 

(ii) Find ts such that  O(t~) = ~bs. This is always possible since @ is invertible. 

(iii) Regarding t~ as the time of  sleep onset, find (the first) t~ such that 

02(tw) = 02(t,) + E 
(iv) Thus t~ represents the time of  wake-up and so p = t w -  ts. As Fig. 5b 

reveals, long sleeps arise when the phase o f  mid-sleep falls near  the inflection 

point  o f  02(t). Thus the longest sleeps are predicted to begin in the first ha l f  o f  

the circadian cycle (Fig. 5c), as observed in real data  (Fig. 3a). Figure 5c also 

mimics the sheared sinusoidal shape of  the observed qS~ :p  relation (Fig. 3a). 

The steps o f  the graphical  construct ion can be summarized in terms of  @-~ 

and 02 ~, the inverse funct ions to @(t) and 02(t),  respectively. (We have not  yet 

shown that  02 is invertible - -  see Appendix  B for  the condit ions under  which it 

0.8 

~,(t) 0.6 Giv(~ ~, 
OA r find t s ~  

@s = 0.2F'""-""-:># 

: time I 
i Q  Find 8 2(t s) 

~ "  t ~ t i i m ~ ~ }  F ~ 8z (tw '" 8?ie:t ts: 

I I time t s tw 
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( ~  Plot (~s' P) for different ~s 

/ 
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length l p ..'".. c 
(~" �9149149149 

,�9149149 �9149 . . . . . . .  

i 

o ,e=O.a *s i 

circodion phoee of sleep onset 

Fig. 5 a-c. Graphical construction of ~b s : p relationship in PHASE model. The method is illustrated 
for ~s = 0.2- 5 h after the temperature minimum, a The time t s corresponding to ~s = 0.2 is located 
on the ~0 (t) curve, b The phases 02( t s) and 02(ts) + F are obtained. They represent the beginning and 
end of sleep. Wake-up occurs at t = tw; hence sleep length p = t w - t~. c The point (6s, P) is plotted, 
for a sequence of different 4~ values. Compare Fig. 3a 
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is.) For notational simplicity, let 

g=~O -1 and h=021.  (20) 

From step (ii) above, 

From step (iii), 

Thus 

g(chs) = ts. (21) 

tw = h( O2( t~) + F)  = h( O2(g( qbs) ) + F).  (22) 

p((as) = h(O2(g(ga~)) + F) - g(gas). (23) 

Equation (23) is the first instance of an exact expression for the ~bs : p relation 

derived from a mathematical model of the sleep-wake cycle. 

4. Testing the PHASE model against data and other models 

4.1. Strategy 

In this section the PHASE model is tested against experimental data on the timing 

and duration of sleep episodes recorded during internally desynchronized free-run 

(see Sect. 2). To gain perspective on the model's performance, we compare its 

predictions to those of the two leading models [12, 26], both of which are more 

sophisticated than the PHASE model. For the sake of further comparison, we 

also include the predictions of a fourth model, which is even simpler than the 

PHASE model. 

Other authors have not attempted this sort of comparative analysis, but we 

believe it yields certain important insights not otherwise available. For example, 

both Kronauer et al. [26] and Daan et al. [12] claim that their models provide 

a good fit to the data (Fig. 3a) relating sleep duration to circadian phase of sleep 

onset [9, 36, 44]. The problem is that we have no way of knowing a priori whether 

that test is a discriminating o n e - -  perhaps many other models could do as well. 

A comparative analysis allows us to distinguish mild tests from stringent ones, 

and provides a rational basis for the evaluation of models. 

Because such a comparative analysis of models of the sleep-wake cycle is 

presented in detail elsewhere [34, 35], only a brief discussion is offered here. It 

begins with a rev iew of the other models and then tests them against data on the 

duration of  sleep, the timing of wake-up, and the timing of sleep onset. 

4.2. Other models o f  internal desynchronization 

The model of Kronauer et al. [26, 27] postulates that the human circadian system 

is dominated by two mutually coupled, weakly nonlinear van der Pol oscillators, 
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x and y. The circadian pacemaker (x) strongly influences the sleep-wake rhythm 

generator (y), and receives feedback from it which is small but significant. 

Desynchronization between x and y occurs as a result of an assumed spontaneous 

lengthening of the intrinsic period of y. The main difference between this model 

and the PHASE model is that the van der Pol oscillators x and y have more 

degrees of freedom (amplitudes as well as phases) and consequently richer 

dynamical behavior (for example, the possibility of "phase-trapping", in which 

x and y have the same average period but periodically varying phase-difference). 

The model of Daan, Beersma, and Borb~ly [2, 3, 11, 12] contains a circadian 

pacemaker (C)  which corresponds to oscillator ~ 1 of the PHASE model and 

the x-oscillator of Kronauer 's  model. It is the treatment of the sleep-wake 

oscillator (S) which distinguishes the model of Daan et al. from other models. 

Process S is an integrate-and-fire or relaxation o sc i l l a to r - -S  builds up during 

wakefulness until it strikes a threshold which triggers sleep onset. Then S declines 

until it strikes a wake-up threshold, and the cycle repeats. Both thresholds are 

modulated by the circadian oscillator C and subjected to some random jitter in 

their mean levels. Desynchronization between C and S occurs as a result of an 

assumed weakening of the circadian modulation of the thresholds. 

The final model of internal desynchronization to be considered here is called 

BEATS [34, 35] because it models desynchronization as a beat phenomenon 

between two sine waves. These sinusoids represent the outputs of two circadian 

oscillators of different frequencies, and they are added in different proportions 

to yield the activity-rest rhythm (A) and the circadian temperature rhythm (T). 

This simple model was suggested by Wever ([38], p. 229) as a pedagogical example 

to demonstrate that many phenomena observed in desynchronization do not 

require dynamical coupling of the two oscillators, but merely an output summa- 

tion. Whereas Wever [38] assumed that sleep occurs when A falls below some 

level A0, we assume that sleep occurs in a certain wedge of (A, A), phase space 

[34, 353. 

For brevity, the models shall henceforth be called PHASE, KRONAUER, 

DAAN, and BEATS. We also consider a slightly MODIFIED DAAN model 

involving a change in a parameter value. The ranges of all parameters used in 

the computer simulations presented here have been reported in [34, 35]. 

We now summarize the method by which the models were tested (see [34] 

for further description.) Five simulations of 50 sleep-wake cycles each were run 

for all the models, except the DAAN model, for which six simulations of 45 

cycles were performed. Each of the simulations explored a different degree of 

internal desynchronization. The circadian period was fixed at 25 h, but sleep-wake 

cycle periods were chosen in the range 29-41 h. The intrinsic period of the 

sleep-wake cycle was always fixed within a simulation, but varied across simula- 

tions. In the DAAN and MODIFIED DAAN model, the same effect was produced 

by altering the mean level of the sleep-wake thresholds. Moreover, in the BEATS 

and PHASE models, the coupling from the circadian oscillator to the sleep-wake 

oscillator decreased linearly throughout the simulation, to allow a more general 

view of the behavior of  these simple models. 

The resulting simulations were then pooled and compared to experimental 

data, as discussed next. 
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4.3. Duration of sleep 

Figure 6 shows the ~bs : p relationships (Sect. 3.5) predicted by the models as well 

as the observed data pooled from 15 desynchronized subjects (Fig. 3a and 

[34-36]). The quadratic arc which was fit to the data has been replotted in each 

panel to aid comparison between theory and experiment�9 

All the models are able to simulate the general shape of the ~bs :p relationship. 

Yet only MODIFIED DAAN produces anything like a quantitative fit - -  DAAN 

is too short at all phases, KRONAUER is too long. BEATS predicts that for 

sleeps beginning during the temperature trough, sleep length p is nearly indepen- 

dent of phase ~bs, instead of decreasing as in the observed data. PHASE predicts 

that the ~bs : p relation is most variable near the temperature maximum and tightest 

near the trough, whereas the data show the opposite trend. 
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Fig. 6. Observed data and model predictions of  ~b s :p relationships. A quadratic arc was fit to the 

data by the method of least squares, as in Fig. 3a, and then reproduced in each panel for easier 

comparison between theory and experiment 
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4.4. Timing of wake-up 

Winfree [41-43] has emphasized the existence of a zone in the  circadian cycle 

when spontaneous wake-up is "forbidden".  It occurs just before the temperature 

minimum and is about 6 h wide (Fig. 7). About 85% of all awakenings occur on 

the rising limb of the circadian cycle [9, 34], which thus seems to signal the 

ringing of the body's  internal alarm clock. 

This regularity is well simulated by the simple models PHASE and BEATS, 

and also by M O D I F I E D  DAAN. However, note that DAAN produces an unreal- 

istic bimodal  distribution, while K R O N A U E R  generates a peak frequency of 

only 1.5 times the mean across all phases, which is too low. 

4.5. Timing of sleep onset 

The frequency distribution of sleep onsets in the circadian cycle is bimodal (Fig. 

3d), with one peak near the temperature trough and a second peak about 9 h 

later. In the ordinary 24-h world, the phase of  this second peak would coincide 

with the time of afternoon napping [34], suggesting that the siesta common in 

many cultures is at least in part  biologically based [4, 37]. 
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Fig. 7. Observed data and model predictions of distribution of spontaneous awakenings, relative to 
circadian temperature cycle. A frequency of 1 corresponds to the mean across all phases 
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The bimodal distribution of sleep onsets poses a stringent test of models (Fig. 

8). PHASE, BEATS, and KRONAUER incorrectly predict a unimodal distribu- 

tion, a deficiency which stems from the lack of a significant second harmonic 

component in these models. DAAN and MODIFIED DAAN generate bimodal 

distributions but with the nap peak incorrectly phased after the temperature 

maximum instead of before it, as in the observed data. 

4.6. Summary 

The PHASE model captures the qualitative features of the observed timing and 

duration of sleep. It correctly predicts the shape of the q~s : p relation (Fig. 6), 

the unimodality of the wake-up distribution (Fig. 7), and the tendency for sleep 

episodes to begin near the temperature trough (Fig. 8). In these respects it performs 

about as well as DAAN [11, 12] and KRONAUER [26,27], the two leading 

models of  the human circadian system. 

However, none of these models achieves quantitative accuracy when tested 

against sleep duration data (Fig. 6) or the bimodal distribution of sleep onsets 

(Fig. 8). On the whole, the MODIFIED DAAN model [12, 34, 35] appears to be 
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corresponds to the mean across all phases�9 Compare Fig. 3d 
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the most accurate model of the sleep-wake cycle during internal desynchroniz- 

ation. 

5. Discussion 

We have shown that a simple model of the human sleep-wake cycle can account 

for a variety of phenomena observed in temporal isolation experiments. The 

model proposed -here is the first analytically tractable model of the human 

circadian system, yet its performance is comparable to that of more elaborate 

models proposed by others [12, 22, 26, 40]. 

However there are a number of limitations in the present study. First, we 

have concentrated on the a u t o n o m o u s  sleep-wake dynamics revealed in free-run 

experiments. While this is a necessary first step, one would ultimately like to 

address the e n t r a i n m e n t  of the human circadian system by external synchronizers, 

and its disruption during jet lag or rotating shift work schedules. Gander and 

colleagues [18-20] have made some impressive attempts in this direction, includ- 

ing simulations of Wever's [38] entrainment experiments. Beersma et al. [2] have 

recently begun to incorporate entrainment phenomena in their model. The PHASE 

model proposed here (Section 3) could be modified easily to include external 

forcing. On the other hand, it may be somewhat premature to theorize about 

external forcing of the human circadian system because of a lack of hard data. 

The phase-shifting effects of sleep, meals, light, social cues, etc. have yet to be 

quantified. Only recently has it been shown that bright light can reset the human 

circadian pacemaker [10], and that case study does not support extensive gen- 

eralization as yet. 

A second limitation of our approach is its phenomenological character. The 

model parameters do not correspond in any obvious way to anatomical, neural, 

or pharmacological entities. It is also unclear how to relate the human circadian 

system to that of other organisms including mammals. These problems are rectified 

somewhat in the neural models of Enright [14] and Carpenter and Grossberg 

[5, 6], but at the expense of mathematical complexity. 

Finally, the model proposed here treats sleep as a homogeneous state. It 

ignores the fascinating questions surrounding the various stages of sleep: rapid 

eye-movement (REM) sleep, in which dreams occur; slow-wave sleep, the deepest 

stage which in pathological cases is associated with bedwetting, sleepwalking, 

and night terrors; and the lighter stages of non-REM sleep, which mediate the 

transitions between dreaming, deep sleep, and wakefulness. These sleep stages 

oscillate in a 90-min cycle, and the interaction of this REM/non-REM cycle with 

the circadian cycle [3, 29] represents one of the most exciting open problems of 

theoretical sleep research. 

Acknowledgements. I thank Richard E. Kronauer  and Charles A. Czeisler for many helpful and 

stimulating discussions. 

Appendix A: Parameter estimates for human subjects 

The earlier Eqs. (7-11) may he used to estimate the coupling strengths C~, C2 for typical human 
subjects. When internal synchrony is lost, the period of the sleep-wake cycle lengthens by much 
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more  t h a n  tha t  of  the t empera tu re  cycle shor tens  [8, 34, 38]. Hence  we expec t  

C1<< C 2. (A1) 

S i n c e / 2  = C at the onset  of  desynchrony ,  and  C = C 1 + C 2 - C2, the f requency  difference 12 provides  

an es t imate  of  C2: 

C 2 ~ f requency  d i f f e r ence /2  observed  at  onset  o f  desynchrony.  (A2) 

Choos ing  uni ts  where  to 1 = 1, a typica l  va lue  o f / 2  wou ld  be 

12 ~ 1 / 6 ~ 0 . 1 6  ( - 6  day  bea t  per iod) .  (A3) 

Hence,  

F rom (11), (A1),  and  (A3),  

C 2 - 0.16. (A4) 

Ao)  2 ~ O. 16 .  (A5) 

To obta in  C1, we recal l  Wever ' s  [38] resul t  tha t  af ter  desynchrony ,  the t empera tu re  cycle shor tens  

by - 0 . 7  h. For  a synchron ized  per iod  of  25.5 h, this  co r responds  to 

w* = 24.8/25.5 m 0.97. (A6) 

Since 

we find f rom (11) tha t  

AO)l  : o)~ --  LOl 

- 0 . 9 7 - 1 . 0  

- - 0 .03  (A7) 

Then  

where  

Resca le  t ime again:  Set 

Appendix B: Exact solution for 01 and 02 

We cons ider  the sys tem 

b~= 1 

0 2 = W - c  C c o s  27r(01 - 02). (B1) 

This  sys tem subsumes  Eq. (1) o f  Sect. 3.2, for the case C I = 0. Time is scaled so tha t  w~ = 1; then  w 2 

becomes  w and  C 2 becomes  C in this  new notat ion.  

Let 

= 01 - 02. (B2) 

~b = 1 - w  - C cos 2~r~b (B3) 

= / 2  - C cos 2~-~0 (B4) 

/2 = 1 - w .  (B5) 

T = Ot  (B6) 

c ,  = [c2a~ol/ a~o21 

--0.03. (A8) 

[Cl /C2[-  [0 .03 /0 .161-1 /5 .  (A9) 
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and let 

Then 

wh6re 

345 

0'  = 1 - k cos 27r0 (B8) 

k = C/~Q. (B9) 

we obtain 

where 

Here k represents a dimensionless coupling constant; desynchrony occurs when 

k < 1. (B10) 

Equation (B8) can be solved by separation of variables, followed by integration. Using the substitution 

x = tan ~-~9 (B11) 

I d0 
T + constant = 1 - k cos 27r 0 

= ( ~ )  arctan(x/b) 

where 

b E= ( 1 - k ) / ( l + k ) .  

Equation (B12) may be solved for x and then for ~ to yield 

O(t) = (1/It) arctan u(t) 

u(t) = b tan(crflt + Co) (B15) 

fl = O(1 - k2) 1/2 is the beat frequency (B16) 

Co = arctan((1/b) tan z0o) (B17) 

0o = 0(t  = 0) is the initial condition (B18) 

b 2= ( 1 - k ) / ( l + k )  (S19) 

k = C/(1 - w) is the dimensionless coupling. (B20) 

The Eqs. (B 14)- (B20) soNe the equation given by (B3) for the desynchronized case assumed in (B 10). 

Then 01 and 02 are easily solved for, as shown in Eqs. (16), (17) of Sect. 3.4. 

Monotonicity of 02(t ) 

Around the discussion of Fig. 5, it was stated that 02(t ) is a monotonic function of t, for certain 

reasonable choices of parameters. All that is required in fact is C < [~2[ (the condition characterizing 

desynchrony) and w2> 1/2 (activity rhythm period is less than - 5 0  h). The monotonicity of 02 is 

established as follows: 

o)2> 1 / 2 ~ w 2 >  1 - w  2 

~ t o 2 >  ~ (from (15) and (5a)) 

~ w 2 + / 2  cos2~r0>0  forall  0 

w2 + C2 cos 2770 > 0, since C2 <~ C ~< ]~[ 

0 0 2 > 0  ( f rom(l ) )  

02(t) is monotone in t, as required. 

(B12) 

(B13) 

(B14) 

0 '= dO/dT. (B7) 
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As a corollary, the function p(qSs) is continuous; the graphical argument of Fig. 5b shows that 

discontinuities in p arise only at points where 02(tw)= 0. Hence in the PHASE model, desynchrony 

with a discontinuous &s : P relation is impossible until ~2 exceeds bicircadian lengths. 

The continuity of p ( ~ )  may be a drawback of the model if, as is suggested in [15, 34, 36, 43], 

the experimental data contain a genuine discontinuity at &s ~ 9 (Fig. 3a) and not merely a steep section. 
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