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Human fertilization begins when spermatozoa bind to the extracellular matrix 

coating of the oocyte, known as the zona pellucida (ZP). One spermatozoan then 

penetrates this matrix and fuses with the egg cell, generating a zygote. Although 

carbohydrate sequences on the ZP have been implicated in sperm binding, the nature of 

the ligand was unknown. Here, ultrasensitive mass spectrometric analyses revealed that  

the sialyl-Lewis
x
 sequence (NeuAc2-3Gal1-4(Fuc1-3)GlcNAc), a well-known selectin 

ligand, is the most abundant terminal sequence on the N- and O-glycans of human ZP. 

Sperm-ZP binding was largely inhibited by glycoconjugates terminated with sialyl-

Lewis
x
 sequences or by antibodies directed against this sequence. Thus, the sialyl-Lewis

x
 

sequence represents the major carbohydrate ligand for human sperm-egg binding.   

 

.  



Mammalian sperm-egg binding is primarily mediated by the interaction of an egg 

binding protein (EBP) on the sperm plasma membrane with carbohydrate sequences 

expressed on glycoproteins of the egg’s zona pellucida (ZP) (1, 2). Evidence that 

carbohydrate recognition plays a major role in human gamete binding was initially obtained 

when the polysaccharide fucoidan was shown to potently block this interaction (3). Fucoidan 

also inhibited leukocyte adhesion in the vascular and lymph systems in the same 

concentration range that it blocks human sperm-ZP interactions (3, 4). The binding of 

leukocytes to endothelial cells is mediated by C-type lectins known as selectins (5, 6). 

Therefore human sperm-ZP binding was hypothesized to involve a binding specificity that 

overlaps with the selectins (7). However, the structures of the human ZP glycans have 

remained enigmatic. Furthermore, characterization of these glycans is a challenge because of 

the scarcity of human eggs and their microscopic size. We have addressed this challenge by 

employing ultra-sensitive mass spectrometric methodologies for cell and tissue glycomics (8, 

9). In N- and O-glycans, an antenna is defined as a branch emanating from a "core" structure 

(10). We have defined the structures of the majority of N-and O-glycans attached to human 

ZP and show that sialyl-Lewis
x
 is the dominant antenna sequence. This epitope is present at 

densities that are at least two orders of magnitude higher than levels of selectin-ligand 

expressed on somatic cells (11).  

ZP from 195 unfertilized human oocytes was isolated for glycan sequencing. Purity 

was assessed by proteomics analysis.  Human ZP4 was identified as the top hit in the Mascot 

search (algorithm for Mass Spectral proteomic datasets (Table S1)). The other ZP 

glycoproteins ZP1, ZP2, and ZP3 were third, fifth, and sixth, respectively, on the Mascot list. 

At second and fourth position were haptoglobin and transthyretin, which are known 

constituents in follicular fluid (12).  



The structures of the N- and O-glycans in the ZP sample were determined by 

glycomics analysis (8). Glycans were analyzed by Matrix Assisted Laser Desorption 

Ionization-Time of Flight (MALDI-TOF) Mass Spectrometry (MS) as well as by collisionally 

activated dissociation (CAD) on a MALDI-TOF-TOF instrument (MS/MS). Mixtures of N- 

and O-glycans were released from tryptic digests by peptide N-glycosidase F and reductive 

elimination, respectively, and were permethylated before MS and MS/MS analyses.  

The MALDI-TOF N-glycan fingerprint (Fig. 1) showed four families of bi-, tri- and 

tetra-antennary structures, three of which (shaded in yellow, green and pink) displayed an 

unusually high density of sialyl-Lewis
x
 antennae (NeuAc2-3Gal1-4(Fuc1-3)GlcNAc). 

All members of the latter three families were core fucosylated, and each was fully sialylated. 

Heterogeneity was confined to differences in antenna fucosylation and length. Thus, bi-

antennary glycans carried zero, one or two sialyl-Lewis
x
 antennae (m/z 2966.6, 

3140.7/3589.9/3764.0, and 3314.8/3764.0/3938.1, respectively); tri-antennary glycans carried 

zero, one, two or three sialyl-Lewis
x
 antennae (m/z 3777.1, 3951.2, 4125.2/4574.8/4748.6, 

and 4299.3/4748.6/4922.6, respectively); and tetra-antennary glycans carried zero, one, two, 

three or four sialyl-Lewis
x
 antennae (m/z 4587.5, 4761.6, 4935.8/5384.9/5559.0, 

5109.4/5559.0/5733.1 (major portion), and 5733.1 (minor portion), respectively).  

Antennae compositions were defined by CAD-MS/MS. As shown in Fig. 2 and Fig. 

S1, the most abundant fragment ions arose from cleavage of amino-sugar glycosidic bonds. 

CAD-MS/MS data from the highest molecular weight species observed in Fig. 1 (m/z 5733), 

together with its desialylated counterpart (m/z 4287.6, Fig. S2) are shown in the upper and 

lower panels, respectively, of Fig. 2. These data demonstrated that m/z 5733 was a mixture of 

tetra-antennary glycans having one extended antenna and three or four sialyl-Lewis
x
 moieties. 

The extended antenna were largely composed of the sialyl Lewis
x
-Lewis

x 
sequence 



(NeuAc2-3Gal1-4(Fuc1-3)GlcNAc1-3Gal1-4(Fuc1-3)GlcNAc), although a minority 

of glycans had only a single fucose on this antenna (right cartoon on Fig. 2, lower panel).  

Fucose was confirmed to be 3-linked in the sialyl-Lewis
x
 moiety via its diagnostic 

elimination in CAD-MS/MS experiments (Fig. 2 and Fig. S1). Linkages involving sialic acid 

were defined by MALDI analysis of an 2-3-specific neuraminidase digest of the N-glycans 

(Fig. S2), which showed that 2-6 sialylation was confined to the aforementioned fourth 

family (Fig. 1, shaded grey), that differs from the other families in having no core 

fucosylation. The human plasma glycome is characterized by the absence of core fucose plus 

high levels of 2-6 sialylation (13, 14). Therefore we concluded that this fourth glycan 

family was largely derived from the follicular fluid constituents that co-purify with ZP (Table 

S1).  

An extended sialyl-Lewis
x
-Lewis

x
 antenna, and/or its monofucosylated counterpart, 

which was identified in the m/z 5733 component (Fig. 2), was additionally found in seven 

other members of the sialyl-Lewis
x
-containing families (Fig. 1: m/z 3589.9, 3764.0, 3938.1, 

4574.8, 4748.6, 5384.9, and 5559.0). These extended sequences were firmly established by 

MS/MS analyses; examples of diagnostic fragment ions are illustrated in Fig S1 (Panel C).  

ZP N-glycans were also investigated to determine if any were sulfated, a modification 

that is known to play a key role in selectin-mediated leukocyte trafficking (15, 16). This 

study was done after desialylation by using ultrasensitive MS methodologies which have 

been optimized for sulfo-glycomics (17). Only trace levels of sulfated N-glycans were 

observed (Fig. S3). Their compositions correspond to sulfated counterparts of the core 

fucosylated glycans shown in Fig. 1.  

ZP-associated O-glycans were released from the glycopeptides recovered from the 

peptide N-glycosidase F digestion, permethylated, and analyzed by MALDI-TOF-TOF.  A 



limited number of core 1 and core 2 O-glycans were observed (Fig. S4), the latter carrying a 

single sialyl-Lewis
x
 epitope. No sulfated O-glycans were detected in the MS experiments. 

Potential O-sulfation was also investigated by using the MECA-79 antibody, which 

recognizes 6-sulfated GlcNAc on extended core 1 sequences including those terminated by 6-

sulfo sialyl-Lewis
x
. No immunoreactivity was observed (Fig. S5). 

The high density of sialyl-Lewis
x
 antennae observed on the ZP N-glycans was 

unusual.  Examples of multivalent sialyl-Lewis
x
 N-glycans are displayed in Fig. 3.  This 

epitope is highly expressed in cells and tissues associated with many human cancers (18) and 

on orosomucoid in the sera of septic shock patients (19). However, in healthy humans, where 

sialyl-Lewis
x
 plays a vital role in leukocyte trafficking, glycomics studies have suggested that 

fewer than 1% of the N-glycans carry sialyl-Lewis
x
 and none has been found to carry more 

than one sialyl-Lewis
x
 antenna (11). Another feature of the ZP N-glycome was the presence 

of extended antennae carrying an internal Lewis
x
 sequence. This structure was found in 

members of all three families and was a particularly abundant constituent of the tetra-

antennary family. This extended sialyl-Lewis
x
-Lewis

x
 sequence has previously been found on 

tumor cells, but not on normal somatic cells (20). 

The hemizona assay was employed to determine the effect of sialyl-Lewis
x
 terminated 

glycoconjugates on sperm-ZP binding (21). In this assay, nonliving human eggs were 

bisected by surgical manipulation, generating two equivalent hemispheres of ZP (hemizona). 

This test allows for an internally controlled comparison of sperm binding to a matching zona 

surface. Compared with the untreated controls, the number of sperm bound to the hemizona 

was significantly decreased after treatment with sialyl-Lewis
x
-BSA at concentrations of 0.5 

M (p= 3.3e-4), 1 M (p= 9.4e-6), 1.5 M (p =3.7e-8) and 2.0 M (p=1.2e-7). The sialyl-

Lewis
x
 oligosaccharide also significantly decreased binding at concentrations of 100 µM (p= 

1.9e-3), 200 M (p= 3.2e-5) and 500 M (p= 6.9e-9) (Fig. 4A and Fig. S6). Except for sialyl-



N-acetyllactosamine oligosaccharide at the highest concentration, no significant inhibition 

was observed with Lewis
x
, sialyl-N-acetyllactosamine oligosaccharide or BSA conjugates of 

these sequences (Fig. 4A and Fig. S6). Fluorescently-labeled sialyl-Lewis
x
-BSA was bound 

to the head of capacitated spermatozoa (Fig. 4B) but not to the hemizona (Fig. S7). In 

contrast, Lewis
x
-BSA, sialyl-N-acetyllactosamine-BSA and BSA were not bound to the 

sperm head (Fig. S8—move these panels to the SOM). These treatments did not affect the 

acrosomal status and motility of spermatozoa (Fig. S9). Consistently, anti-sialyl-Lewis
x 
(Fig. 

4C), but not anti-Lewis
x
 antibody (Fig. S5), was bound strongly to ZP and suppressed sperm-

ZP binding dose-dependently (Fig. 4D and Fig. S10). To confirm the importance of 

sialylation, the binding of fluorescence-labeled native and desialylated solubilized ZP to 

human spermatozoa was compared. Desialylation significantly reduced the binding of 

solubilized ZP to capacitated spermatozoa (Fig. 4E).  

Previous studies indicated that antibodies directed against sialyl-Lewis
a
, sialyl-

Lewis
x
, and Lewis

b
 epitopes react with human ZP (22, 23). The anti-Lewis

b
 antibody blocked 

human sperm-ZP binding in the hemizona assay (22). Erythroagglutinating phytohemagglutin 

also binds to human ZP, indicating that bisecting type N-glycans are expressed on this matrix 

(24). However, the current results have established that only the sialyl-Lewis
x
 antigen is 

expressed at physico-chemically confirmable levels on ZP. Based on assessments of signal to 

noise for detected molecular and fragment ions, it was estimated that other antigens must be 

substantially less than 1% of the glycome. The biophysical analyses here confirm the 

expression of carbohydrate sequences. Antibodies and lectins are useful for detecting 

carbohydrate ligands once their existence is confirmed, but they would not detect the 

multivalent presentations of sialyl-Lewis
x
 and sialyl-Lewis

x
-Lewis

x
 sequences.  

Little is known about how human spermatozoa bind to eggs. The work described here 

provides insight to the key binding interactions that are essential for natural human 



fertilization, supporting the hypothesis that human gamete binding primarily involves the 

participation of the selectin ligand sialyl-Lewis
x
. Since human spermatozoa do not express 

selectins (25), the major egg binding protein is very likely a lectin with a binding specificity 

that overlaps with the selectins.   
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Fig. 1. MALDI-TOF profiling of human ZP N- and O-glycans. (A) MALDI-TOF mass 

spectrum of N-glycans of human ZP. The upper panel covers the m/z range from 2,700- 

4,500 and the lower, overlapping, panel spans m/z 4,200-5,800. Each panel was normalised 

so that the most abundant peak is 100% intensity. Structural assignments were based on 

compositions assigned from molecular weights, complemented by MS/MS information and 

the results of the neuraminidase digest (Fig. S2). Where more than one structure is shown, the 

upper structure is the more abundant. Grey structures have antennae carrying 2-6 sialic acid. 

All the other glycans are exclusively 2-3 sialylated (yellow = bi-antennary; green = tri-

antennary; pink = tetra-antennary).  

 

Fig. 2. Partial MALDI-TOF-TOF fragment ion spectra obtained after collisional activation of 

the molecular ion at m/z 5733 in Fig. 1 and, m/z 4288 in Fig. S1, (upper and lower panels, 

respectively), illustrating how the fragment ions arising from loss of antennae in sialylated and 

desialylated samples, respectively, defined the antennae sequences. A minus refers to the loss 

of the designated antenna from molecular ion, Isomeric glycans were identified, which differ in 

fucose location (see cartoons on lower panel).   

  

Fig. 3. Structures of the core fucosylated, multivalent sialy-Lewis
x
 members of each of the bi-, 

tri- and tetra-antennary families (shaded yellow, green and pink, respectively) that were found 

on human ZP.  

 

Fig. 4. Sialyl-Lewis
x
 is involved in sperm-ZP binding. (A) Comparison of hemizona binding 

index (HZI) of capacitated spermatozoa incubated in the presence of sialyl-Lewis
x
 (SLEX), 

Lewis
x
 (LEX) and sialyl-N-acetyllactosamine (SLN) oligosaccharide or their BSA conjugates 

with medium alone (control).  Each point represents the mean±SEM of the results of 10 



hemizona assays.  *p<0.05 when compared to the corresponding untreated control. †p<0.05 

when compared with the desialylated counterpart. (B) Representative fluorescent images of 

capacitated spermatozoa incubated with Alexa Fluor-594 labeled sialyl-Lewis
x
-BSA. N=5. 

(C) Immunostaining of sialyl-Lewis
x
 sequences on hemizona. Matching hemizona were 

incubated with anti-sialyl-Lewis
x
 (CSLEX1) or anti-6-sulfo lacNAc sequences on extended 

core 1 O-glycans (MECA-79) or anti-Lewis
x
 antibodies or preabsorbed antibodies. N=5. (D) 

Effect of CSLEX1 and anti-Lewis
x
 antibody on sperm-ZP binding in hemizona binding 

assays. Matching hemizona were incubated with the antibodies or preabsorbed antibody as 

outlined in the Methods supplement. N=5. *p<0.05 when compared with the control. (E) 

Left: Effect of desialylation of solubilized ZP (1 μg/ml) on sperm-ZP binding in hemizona 

binding assays. N=5. Right: Representative photographs of the binding of native or 

desialylated ZP to spermatozoa.  
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Materials and Methods 

 

Purification of solubilized zona pellucida  

Unfertilized oocytes were obtained from the assisted reproduction program at Queen 

Mary Hospital, Hong Kong. The protocol of the study was approved by the Institutional 

Review Board of the University of Hong Kong/Hospital Authority Hong Kong West 

Cluster. Informed consent was obtained from patients donated their oocytes for the study.  

The purification of solubilized ZP was performed as described (21). Briefly, the 

purification involved the isolation of the ZP from the oocytes under a dissection 

microscope. The ZPs were then washed and heat-solubilized at 70°C in 5 mM NaH2PO4 

buffer (pH 2.5) for 90 minutes. 

 

Semen samples  

Informed consent was obtained from male donors for semen collection. The protocol 

for this collection was approved by the Institutional Review Board of the University of 

Hong Kong/Hospital Authority Hong Kong West Cluster. Spermatozoa from normal 

semen were processed by density gradient centrifugation on Percoll (Pharmacia, Uppsala, 

Sweden) (26, 27). After capacitation in Earle’s balanced salt solution (EBSS; Flow 

Laboratories, Irvine, UK) supplemented with sodium pyruvate, penicillin-G, streptomycin 

sulfate, and 3% bovine serum albumin for 3 hours, the spermatozoa were resuspended in 

EBSS containing 0.3% BSA (EBSS/BSA).  

 



Proteomics analysis  

NanoLC was performed on an nanoACQUITY UPLC System (Waters, Milford, 

USA) coupled to an LTQ-Orbitrap Velos hybrid mass spectrometer (Thermo Fisher 

Scientific, Bremen, Germany) equipped with a PicoView nanospray interface (New 

Objective, Woburn, USA). Peptide mixtures were loaded onto a 75-μm × 250-mm 

nanoACQUITY UPLC BEH130 column packed with C18 resin (Waters, Milford, USA) 

and were separated at a flow rate of 300 nl/min using a linear gradient of 5 to 40% 

solvent B (95% acetonitrile with 0.1% formic acid) in 30 min, followed by a sharp 

increase to 85% B in 1 min and held at 85% B for another 10 min. Solvent A was 0.1% 

formic acid in water. The mass spectrometer was operated in the data-dependent mode. 

Briefly, survey full-scan MS spectra were acquired in the Orbitrap (m/z 350–1600) with 

the resolution set to 60,000 at m/z 400 and automatic gain control target at 106. The 20 

most intense ions were sequentially isolated for CID MS/MS fragmentation and detection 

in the linear ion trap (automatic gain control target at 5000) with previously selected ions 

dynamically excluded for 90 s. Ions with single and unrecognized charge states were also 

excluded. All the measurements in the Orbitrap were performed with the lock mass 

option for internal calibration. 

All MS and MS/MS raw data were processed by Raw2MSM and searched against 

all entries in Swissprot database (vr 2010_11), or only the human subset in taxonomy, 

using the Mascot Daemon 2.2 server, with the target-decoy database search option 

enabled. Search criteria used were: trypsin digestion; variable modifications set as 

carbamidomethylation (Cys), oxidation (Met) and deamidation (NQ); up to two missed 



cleavages allowed; and mass accuracy of 10 ppm for the parent ion and 0.60 Da for the 

fragment ions. Returned peptide hits were further filtered by the built-in Percolator 

scoring option with significant threshold set at p < 0.01 (peptide ion score > 20), which 

resulted in a zero peptide false discovery rate. 

 

Glycan sequencing by MALDI-TOF and MALDI-TOF/TOF 

Purified human ZP were digested using trypsin (Sigma) and purified by reverse-

phase Sep-Pak C18 cartridge (Waters Corp) as described (28). The N-glycans were then 

released by N-glycosidase F (Roche Applied Science) and purified on a Sep-Pak C18 

cartridge. The purified native N-glycans were permethylated as described (29), purified 

using a Sep-Pak C18 cartridge, dissolved in methanol and mixed with 20 mg/mL 2,5-

dihydrobenzoic acid in 70% methanol at a 1:1 ratio (v/v). The glycan-matrix mixture (1 

L) was spotted on a stainless steel target plate and dried in vacuum. MALDI-TOF and -

TOF/TOF data were obtained using a 4800 MALDI-TOF/TOF mass spectrometer (AB 

Sciex UK Limited).  Argon was used as the collision gas with collision energy of 1 kV. 

The MS and MS/MS data obtained were analyzed using Data Explorer 4.9. The 

assignment of glycan sequence was done by manual annotation informed by knowledge 

of human biosynthetic pathways. 

 

MALDI-MS screening of sulfated glycans  

A portion of the released native N-glycans was additionally permethylated using the 

NaOH/dimethyl sulfoxide slurry method for 3 h at 4˚C, followed by careful neutralization 



with 5% aqueous acetic acid on ice and then applied directly to a pre-washed and 

equilibrated C18 Sep-Pak cartridge (Waters), as described (29). For MALDI-MS 

analyses, the permethylated sample was redissolved in acetonitrile and mixed 1:1 with a 

3,4-diaminobenzophenone matrix solution (10 mg/ml in 75% acetonitrile/0.1% 

trifluoroacetic acid) (Acros Organics) for spotting onto the MALDI target plate. MALDI-

TOF MS analyses in negative ion mode were performed on a 4700 Proteomics Analyzer 

(Applied Biosystems), operated in the reflectron mode. 

 

Determination of acrosomal status and motility of spermatozoa 

Fluorescein isothiocyanate labeled peanut (Pisum sativum) agglutinin (FITC-PSA; 

Sigma) and Hoechst staining techniques were used to determine the acrosome reaction of 

spermatozoa (30). The fluorescence patterns of 300 spermatozoa in randomly selected 

fields were determined under a fluorescence microscope (Zeiss) with 400x magnification. 

Hobson Sperm Tracker System (Hobson Tracking Systems Ltd) was used to determine 

the motility of spermatozoa. The procedures and the set-up parameters of the system were 

described elsewhere (31).  

 

Hemizona binding assay 

The hemizona binding assay was performed as described previously (32). 

Unfertilized oocytes were micro-bisected into two identical hemizonae by a 

micromanipulator. Each hemizona was incubated with 210
6
 capacitated spermatozoa/ml 

in a 100 l droplet of EBSS/BSA for 3 hours at 37C in an atmosphere of 5% CO2 in air 



under mineral oil. The numbers of tightly bound spermatozoa on the outer surface of the 

hemizonae were counted. The hemizona binding index (HZI) was defined as the ratio of 

the number of bound spermatozoa in the test droplet to that in the control droplet times 

100.  

 

Effects of sialyl-Lewis
x
-BSA/Lewis

x
-BSA/sialyl-N-acetyllactosamine neoglycoprotein 

and sialyl-Lewis
x
/Lewis

x
/sialyl-N-acetyllactosamine oligosaccharide  

Hemizona binding assay were performed as described (31) in the presence of 

different concentrations of sialyl-Lewis
x
/Lewis

x
/sialyl-N-acetyllactosamine 

neoglycoprotein (0.01-2 µM) or sialyl-Lewis
x
/Lewis

x
/sialyl-N-acetyllactosamine 

oligosaccharide (Dextra; 0.1-500 µM) to determine their effects on the ZP binding 

capacity of capacitated spermatozoa. The effect of the neoglycoprotein and 

oligosaccharide on the acrosomal status, motility and viability of spermatozoa were also 

determined as described above. 

The binding of sialyl-Lewis
x
-BSA/Lewis

x
-BSA/sialyl-N-acetyllactosamine-BSA to 

capacitated spermatozoa and hemizona was visualized by cytochemical staining. Sialyl-

Lewis
x
-BSA/Lewis

x
-BSA/sialyl-N-acetyllactosamine-BSA (Dextra) was fluorescently 

labeled with Alexa Fluor-594 microscale fluorescence labeling kit (Invitrogen) according 

to the manufacturer's
 
protocol. Motile processed spermatozoa (2×10

6
 spermatozoa/ml) or 

hemizona were incubated with 0.5 M Alexa Fluor-594-labeled sialyl-Lewis
x
-

BSA/Lewis
x
-BSA/sialyl-N-acetyllactosamine-BSA in an atmosphere of 5% CO2 in air at 

37°C for
 
240 minutes. The treated spermatozoa or hemizona were washed with PBS 



containing 0.1% Triton-X 100 and examined under a phase-contrast microscope. 

Spermatozoa or hemizona incubated with labeled BSA were used as control. Image 

analysis was performed using Image-Pro Plus (Media Cybernetics). 

 

Effects of anti-sialyl-Lewis
x
 and Lewis

x
 antibodies 

For immunostaining, hemizona were incubated with 0.2 µg/ml of mouse monoclonal 

anti-sialyl-Lewis
x
 or anti-Lewis

x
 antibody (BD) for 3 hours at 37C. Three anti-sialyl-

Lewis
x
 antibodies with different specificities were used: CSLEX1 binds sialyl-Lewis

x
 but 

not 6-sulfo sialyl-Lewis
x
, MECA-79 only binds to 6-sulfo lacNAc on extended core 1 O-

glycans and HECA-452 binds both sialyl-Lewis
x
 and 6-sulfo sialyl-Lewis

x
 (33). 

Matching hemizona treated with irrelevant antibody or antibody preabsorbed by the 

addition of 1:100 sialyl-Lewis
x
-BSA or Lewis

x
-BSA were used as controls. Bound 

antibodies were detected by Alexa Fluor-594-conjugated goat anti-mouse IgG or anti-rat 

IgM (Invitrogen).   

To determine the effect of antibodies on the ZP binding capacity of capacitated 

spermatozoa, matching hemizona were pre-incubated either in various concentrations 

(0.1-10 µg/ml) of anti-sialyl-Lewis
x
 (CSLEX1)/Lewis

x
 antibody or preabsorbed antibody 

at 37C for 3 hours. The hemizona were then washed with fresh EBSS/BSA. The 

hemizona binding assays were performed on these treated hemizona as described (32).  

 

 



Binding of solubilized zona pellucida to spermatozoa 

Solubilized ZP was desialylated by incubation with sialidase coated agarose beads 

(Sigma) in 1M Tris-HCl (pH 7) at 37
 C for 18 hours (34). The free sialic acid produced 

was removed by dialysis with 2 mM Tris-HCl, pH 7.5 at 4C. The success of 

desialylation was verified by the decreased binding of the treated solubilized ZP to wheat 

germ agglutinin which binds strongly to sialylated glycans and weakly to other 

glycoconjugates. Both native and desialylated solubilized ZP were fluorescently labeled 

with Alexa Fluor-488 microscale fluorescence labeling kit (Invitrogen). 

The binding of native or desialylated solubilized ZP to spermatozoa was performed 

as described (35). Capacitated spermatozoa (2×10
6
/ml) were mildly fixed in 0.5% 

paraformaldehyde for 10 minutes at room temperature and washed followed by the 

incubation with 1 μg/ml solubilized ZP at 4C with slow shaking. After 24 hours, the 

spermatozoa were washed and the fluorescent signals were quantified using a microplate 

reader (Dynatech MR5000, Dynatech Laboratories). The results were expressed as 

percentage of fluorescence intensity relative to the control using native ZP. 

 

Data Analysis 

All the data were expressed as mean  standard error of the mean (SEM). The data 

were analyzed by statistical software packages (SigmaPlot 8.02 and SigmaStat 2.03, Jandel 

Scientific). For all experiments, the non-parametric repeated measures ANOVA on Rank 

test for multiple comparisons were used. If the data were normally distributed, Tukey 



Test or Parametric Student t-test was used where appropriate as the post-test. A probability 

value p<0.05 was considered to be statistically significant. 
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Fig. S1. (Continued) 
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Fig. S1. MALDI-TOF-TOF fragment ion spectra obtained after collisional activation of 

(A) m/z 3664 and (B) m/z 4114 from the desialylated N-glycan sample (see Fig. S2 for 

MS data), and (C) m/z 4575 from the sialylated N-glycan sample (see Fig. 1a for MS 

data). These data complement the spectra shown in Fig. 2, further illustrating how the 

fragment ions define the antennae sequences. The cartoons show the sites of 

fragmentation within the antennae and the horizontal green arrows show the moieties 

which are liberated from the molecular ion when each of the fragment ions is formed. 

Note the diagnostic fragment ions at m/z 3458 (panel A) and 3908 (panel B) which arise 

specifically from elimination of the 3-linked fucose. 



Fig. S2 

 

 

Fig. S2 MALDI-TOF mass spectrum of N-glycans after 2-3-specific sialidase digestion. 

Glycans shaded grey have 2-6 sialylated antennae. All sialyl-Lewis
X
 antennae observed in 

Fig. 1 have been converted to Lewis
X
 by the sialidase (see annotations).  

 

 



Fig. S3 

 

 

Fig. S3.  Identification of sulfated N-glycans in the human ZP sample. A portion of the 

released N-glycans was taken through permethylation and screened by MALDI-MS in 

negative ion mode for the presence of sulfated glycans as described (15). No significant 

peak was observed initially but several weak signals were detected and could be assigned 

as annotated if the sample was first desialylated to reduce the heterogeneity. The 

desialylated, sulfated N-glycans thus identified correspond in composition to the 

desialylated, sulfated counterparts of those multiantennary structures carrying multiple 

sialyl Lewis
x
 epitopes which are shown in Fig. 1. 



Fig. S4 
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Fig. S4.  O-glycans found on human ZP. (A) MALDI-TOF mass spectrum of O-glycans 

obtained from reductive elimination of residual glycopeptides remaining after N-glycan 

release from trypsinised human ZP. Glycans were permethylated prior to MS analysis. 

Structural assignments take into account compositions assigned from molecular weights 

together with MS/MS-derived sequence information. Unlabelled signals are from the 

matrix used in the MALDI experiment. (B) Structures of O-glycans found on human ZP. 



Fig. S5 

 

 

 

 

 

 

 

 

 

 

Fig. S5. No immunoreactivity was observed on ZP using MECA-79 and anti-Lewis
x
 

antibodies. Matching hemizona were incubated with 0.2 µg/ml anti-6-sulfo sialyl-Lewis
x
 

(MECA-79) or anti-Lewis
x
 antibodies or antibodies preabsorbed with irrelevant antibody 

or Lewis
x
-BSA for 3 hours at 37ºC. The immunoreactivites were visualized using Alexa 

Fluor 594-conjugated goat anti-mouse IgG or anti-rat IgM. The results shown are 

representative of 5 replicate experiments. LEX: Lewis
x
 

Phase contrast Alexa-594 Phase contrast Alexa-594 



Fig. S6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fig. S6. Sialyl-Lewis
x
, but not Lewis

x
 and sialyl-N-acetyllactosamine, is involved in 

sperm-ZP binding. Representative photographs of ten replicate experiments showing the 

binding of capacitated spermatozoa to hemizona in the presence of Sialyl-Lewis
x
-BSA, 

Lewis
x
-BSA and sialyl-N-acetyllactosamine-BSA neoglycoprotein or alternatively Sialyl-

Lewis
x
, Lewis

x
 and sialyl-N-acetyllactosamine-BSA oligosaccharide with medium alone 

(control). SLEX: Sialyl Lewis
x
; LEX: Lewis

x
; SLN: sialyl-N-acetyllactosamine. 



Fig. S7 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S7. Fluorescently labeled sialyl-Lewis
x
-BSA/Lewis

x
-BSA/sialyl-N-

acetyllactosamine-BSA did not bind to ZP. Matching hemizona were incubated with 0.5 

µM Alexa-594 conjugated sialyl-Lewis
x
-BSA/Lewis

x
-BSA/sialyl-N-acetyllactosamine-

BSA or BSA for 240 minutes at 37ºC. Fluorescently-labeled sialyl Lewis
x
/Lewis

x
-

BSA/sialyl-N-acetyllactosamine-BSA and BSA did not bind to the hemizona. The results 

shown are representative of 5 replicate experiments. SLEX: Sialyl Lewis
x
; LEX: Lewis

x
; 

SLN: sialyl-N-acetyllactosamine. 

Alexa-594 Phase contrast Alexa-594 Phase contrast 



Fig. S8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Fig. S8. Fluorescently labeled sialyl-Lewis
x
-BSA/Lewis

x
-BSA/sialyl-N-

acetyllactosamine-BSA did not bind to capacitated spermatozoa. Representative 

fluorescent images of capacitated spermatozoa incubated with 0.5 µM Alexa Fluor-594 

labeled sialyl-Lewis
x
-BSA, Lewis

x
-BSA, sialyl-N-acetyllactosamine-BSA or BSA for 

240 minutes at 37ºC. The results shown are representative of 5 replicate experiments. 

SLEX: Sialyl Lewis
x
; LEX: Lewis

x
; SLN: sialyl-N-acetyllactosamine 

Alexa-594 Phase contrast 



Fig. S9 

 

 

 

 

 

 

 

 

 

 

 

A 

Treatment 

Sperm motility parameters 

VAP 

(µm/s) 

VCL 

(µm/s) 

VSL 

(µm/s) 

BCF 

(Hz) 

ALH 

(µm) 

LIN 

(%) 

STR 

(%) 

HYP 

(%) 

Progressive 

 Motility (%) 

Control 54.6  2.3
 
80.1  4.0

 
42.4  2.7

 
10.4  1.4

 
7.0  1.0

 
53.4  3.8

 
78.2  6.2

 
6.6  1.5

 
48.2  4.3

 

Neoglycoprotein 

SLEX-BSA 57.6  2.0 79.9  5.7 40.4  2.7 10.4  0.8 7.0  1.1 50.8  2.0 70.4  4.9 6.4  1.2 55.6  3.3 

LEX-BSA 50.8  3.0 79.6  3.5 42.2  3.4 10.6  1.6 9.6  1.4 53.6  5.4 83.0  4.3 7.8  1.9 56.4  3.9 

SLN-BSA 50.2  2.2 73.2  3.8 41.0  4.2 10.0  0.7 7.6  1.6 57.4  8.3 81.8  7.2 9.2  2.4 47.9  5.9 

Oligosaccharide 

SLEX 55.6  3.0 76.7  4.5 39.0  2.0 9.2  1.5 8.6  1.5 50.8  1.6 71.1  6.1 8.0  3.0 56.7  4.4 

LEX 53.6  3.0
 
78.6  4.3

 
41.5  3.7

 
9.0  0.8

 
8.4  1.2

 
53.4  6.3

 
79.8  12.0

 
8.0  0.7

 
55.4  4.1

 

SLN 54.0  4.6 77.8  5.9 40.8  4.9 9.8  0.8 8.6  1.5 53.4  7.8 79.4  13.2 7.4  0.8 50.6  2.9 

 

B 

Neoglycoprotein Oligosaccharide 



 

 

 

Fig. S9. Sialyl Lewis
x
/Lewis

x
/sialyl-N-acetyllactosamine-BSA and sialyl 

Lewis
x
/Lewis

x
/sialyl-N-acetyllactosamine oligosaccharides have no effect on the 

acrosomal status and motility parameters of human spermatozoa. (A) The effect of 

neoglycoproteins (0.01-2 μM) and oligosaccharides (0.1-500 μM) on the acrosomal status 

of spermatozoa. The fluorescence patterns of 300 fluorescein isothiocyanate-labeled 

Pisum sativum agglutinin-treated spermatozoa in randomly selected fields were 

determined. Data represent mean ± SEM of 5 separate experiments. (B) The effect of 

neoglycoproteins (2 μM) and oligosaccharides (500 μM) on motility were determined 

Hobson Sperm Tracker System. Parameters of spermatozoan motility measured: average 

path velocity (VAP), curvilinear velocity (VCL), straight line velocity (VSL), beat cross 

frequency (BCF), amplitude of lateral head displacement (ALH), linearity (LIN; 

VSL/VCL), straightness (STR; VSL/VAP), percentage hyperactivation (HYP; VCL ≥ 

100 μm/s, LIN ≤ 60% and ALH ≥ 5.0 μm) and percentage progressive motility (VAP ≥ 

25 μm/s). Data represent the mean ± SEM of five separate experiments using 5 different 

samples of spermatozoa. SLEX: Sialyl Lewis
x
; LEX: Lewis

x
; SLN: sialyl-N-

acetyllactosamine. 



 

 

 

Fig. S10 

 

 

 

 

 

 

 

 

Fig. S10. Representative photographs of binding of spermatozoa to hemizona following 

incubation with anti-sialyl-Lewis
x
 or Lewis

x
 antibody. Matching hemizona were incubated 

with the 10 μg/ml anti-sialyl-Lewis
x
 (CSLEX1)/Lewis

x
 antibody or preabsorbed antibody 

antibodies at 37C for 3 hours.. The results shown are representative of 5 replicate 

experiments.  

 

 

 

 

 

 



 

 

 

 

Table S1.   

  Protein description 
protein 
score 

% 
protein 
coverage 

charge 
state 

peptide mw 
(theoretical) 

peptide 
score 

peptide sequence peptide modifications 

         
1 Zona pellucida sperm-binding 

protein 4 
1023 32.8 2 1096.5699 68.73 LPCAPSPISR Carbamidomethyl (C) 

   2 1101.5567 38.33 EGHFSIAVSR  
    2 1263.6459 152.61 AVYENELVATR  
    2 1410.7718 48.33 NVTSPPLLLDSVR Deamidated (NQ) 
    2 1439.7773 140.53 DPIYVEVSILHR  
    3 1439.7773 44.45 DPIYVEVSILHR  
    2 1617.6729 53.82 DAPDTDWCDSIPAR Carbamidomethyl (C) 
    2 1679.7831 70.34 NYGSYYGVGDYPVVK  
    2 1761.8978 152.61 FSIFTFSFVNPTVEK  
    2 2093.0252 152.61 GCPYIGDNYQTQLIPVQK Carbamidomethyl (C) 
    4 3248.4836 77.07 GPVHLHCSVSVCQPAETPSCVVTCPDLSR 4 Carbamidomethyl (C) 
    3 3248.4836 152.61 GPVHLHCSVSVCQPAETPSCVVTCPDLSR 4 Carbamidomethyl (C) 
    3 3547.3844 44.05 GDCEGLGCCYSSEEVNSCYYGNTVTLHCTR 5 Carbamidomethyl (C) 
         
2 Haptoglobin 815 38.4 2 919.4552 61.88 GSFPWQAK  
    2 979.4876 145.46 VGYVSGWGR  
    2 1202.6295 152.61 VTSIQDWVQK  
    2 1344.6384 56.31 SCAVAEYGVYVK Carbamidomethyl (C) 
    2 1438.6576 46.17 TEGDGVYTLNNEK  
    2 1459.6943 26.55 NLFLNHSENATAK 2 Deamidated (NQ) 
    2 1722.8069 26.04 YVMLPVADQDQCIR Carbamidomethyl (C) 

Oxidation (M) 
    3 1794.0040 51.14 VVLHPNYSQVDIGLIK  
    3 1856.9124 144.1 AVGDKLPECEAVCGKPK 2 Carbamidomethyl (C) 
    2 2187.0453 152.61 SPVGVQPILNEHTFCAGMSK Carbamidomethyl (C) 

Oxidation (M) 
    3 2695.3639 152.61 MVSHHNLTTGATLINEQWLLTTAK Deamidated (NQ) 

Oxidation (M) 
         
3 Zona pellucida sperm-binding 

protein 2 
780 19.9 2 992.4597 32.62 VMNNSAALR 2 Deamidated (NQ) 

Oxidation (M) 
    2 1114.5117 56.69 DFMSFSLPR Oxidation (M) 



 

 

 

  Protein description 
protein 
score 

% 
protein 
coverage 

charge 
state 

peptide mw 
(theoretical) 

peptide 
score 

peptide sequence peptide modifications 

    3 1271.6081 57.08 FHIPLNGCGTR Carbamidomethyl (C)  
Deamidated (NQ) 

    2 1390.6980 34.6 EITVEFPSSPGTK  
    2 1519.7089 53.94 VQMGWSIEVGDGAR Oxidation (M) 
    2 1860.8710 152.61 LSPDSPLCSVTCPVSSR 2 Carbamidomethyl (C) 
    2 2169.1351 152.61 NDMLLNINVESLTPPVASVK Oxidation (M) 
    3 2786.2932 152.61 WHASVVDPLGLDMPNCTYILDPEK Carbamidomethyl (C)  

Deamidated (NQ) 
Oxidation (M) 

    3 3402.6298 115.11 VIFSSQAICAPDPVTCNATHMTLTIPEFPGK 2 Carbamidomethyl (C)  
Deamidated (NQ) 

         
4 Transthyretin  658 55.1 2 1365.7517 152.61 GSPAINVAVHVFR  
    2 2359.2311 152.61 YTIAALLSPYSYSTTAVVTNPK  
    3 2450.1979 26 ALGISPFHEHAEVVFTANDSGPR  
    2 2454.1438 152.61 TSESGELHGLTTEEEFVEGIYK  
    2 2488.2737 152.61 YTIAALLSPYSYSTTAVVTNPKE  
         
5 Zona pellucida sperm-binding 

protein 3 
586 17.2 2 1278.5550 133.46 LMEENWNAEK Oxidation (M) 

   2 1470.7202 152.61 VTLAEQDPDELNK  
    2 2603.2095 152.61 AADLTLGPEACEPLVSMDTEDVVR Carbamidomethyl (C) 

Oxidation (M) 
    2 2603.2095 74.5 AADLTLGPEACEPLVSMDTEDVVR Carbamidomethyl (C) 

Oxidation (M) 
    3 3035.2670 152.61 ACSFSKPSNSWFPVEGSADICQCCNK 4 Carbamidomethyl (C) 
             
6 Zona pellucida sperm-binding 

protein 1 
570 14.1 2 1611.8257 152.61 FTVATFALLDSGSQR  

   2 1963.8557 143.56 EVPCYYGNTATVQCFR 2 Carbamidomethyl (C) 
    3 1980.9939 50.64 VDVAQDATLICPKPDPSR Carbamidomethyl (C) 
    2 2054.8745 152.61 DETFSSYYGEDDYPIVR  
    3 2767.3170 150.92 DYIGTHLSQEQCQVASGHLPCIVR 2 Carbamidomethyl (C) 
         
7 Hemopexin 483 15.6 2 1404.6456 143.71 SWPAVGNCSSALR Carbamidomethyl (C)  

Deamidated (NQ) 
    2 1494.6714 109.15 YYCFQGNQFLR Carbamidomethyl (C) 
    2 1499.6755 100.67 EWFWDLATGTMK Oxidation (M) 
    2 1711.7624 72.32 GECQAEGVLFFQGDR Carbamidomethyl (C) 
    2 2363.1580 136.94 LLQDEFPGIPSPLDAAVECHR Carbamidomethyl (C) 
         



 

 

 

  Protein description 
protein 
score 

% 
protein 
coverage 

charge 
state 

peptide mw 
(theoretical) 

peptide 
score 

peptide sequence peptide modifications 

8 Afamin 455 10 2 1589.8202 84.13 ESLLNHFLYEVAR  
    2 1621.6930 152.61 AESPEVCFNEESPK Carbamidomethyl (C) 
    2 1712.9196 152.61 IAPQLSTEELVSLGEK  
    2 1886.9302 73.35 SDVGFLPPFPTLDPEEK  
         
9 Zinc-alpha-2-glycoprotein 174 9.4 2 1450.6762 81.3 AYLEEECPATLR Carbamidomethyl (C) 
    2 1781.9352 112.24 EIPAWVPFDPAAQITK  
         
10 Ferritin light chain 153 8.6 2 1606.7991 152.61 LGGPEAGLGEYLFER  
         
11 Alpha-1-acid glycoprotein 1 153 7 2 1741.7981 152.61 EQLGEFYEALDCLR Carbamidomethyl (C) 
         
12 Alpha-1B-glycoprotein 153 3.4 2 1874.9924 152.61 VTLTCVAPLSGVDFQLR Carbamidomethyl (C) 
         
13 Major vault protein 134 1.8 2 1814.9454 133.87 LAQDPFPLYPGEVLEK  
         
14 Alpha-1-antitrypsin 123 4.3 2 1833.8996 122.61 VFSNGADLSGVTEEAPLK Deamidated (NQ) 
         
15 N-acetylmuramoyl-L-alanine 

amidase 
117 2.3 2 1491.7028 117.27 TDCPGDALFDLLR Carbamidomethyl (C) 

         
16 Prostaglandin-H2 D-isomerase 105 10 2 1919.0000 105.34 SVVAPATDGGLNLTSTFLR Deamidated (NQ) 
         
17 Polyubiquitin-B 105 7 2 1786.9200 105.17 TITLEVEPSDTIENVK  
         
18 MAP kinase-activating death 

domain protein 
50 3.3 4 6132.2975 49.71 VDIEVLPQELQPALTFALPDPSRFTLVDFPLHLP 

LELLGVDACLQVLTCILLEHK 
Deamidated (NQ) 

         
19 Trypsin-1  38 4 2 1191.6057 38.37 TLNNDIMLIK 2 Deamidated (NQ) 

Oxidation (M) 
         
20 Peripheral plasma membrane 

protein CASK 
36 1.2 2 1298.6223 36.27 MNELNHCIVAR  

         
21 Hemoglobin subunit beta 26 6.8 2 1273.7183 26.15 LLVVYPWTQR  
             

 



 

 

 

Table S1.  Shotgun proteomic analysis of the purified human ZP sample. The protein band corresponding to the purified human 

ZP sample was subjected to in-gel tryptic digestion and extracted peptides were further de-N-glycosylated by PNGase F prior to LC-

MS/MS analysis under data dependent acquisition mode. Full experimental conditions and peptide identification criteria were as 

described in Methods. 

 


