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Abstract. In this paper, we incorporate the concept of Multiple Kernel
Learning (MKL) algorithm, which is used in object categorization, into
human tracking field. For efficiency, we devise an algorithm called Mul-
tiple Kernel Boosting (MKB), instead of directly adopting MKL. MKB
aims to find an optimal combination of many single kernel SVMs focus-
ing on different features and kernels by boosting technique. Besides, we
apply Locality Affinity Constraints (LAC) to each selected SVM. LAC
is computed from the distribution of support vectors of respective SVM,
recording the underlying locality of training data. An update scheme to
reselect good SVMs, adjust their weights and recalculate LAC is also
included. Experiments on standard and our own testing sequences show
that our MKB tracking outperforms some other state-of-the-art algo-
rithms in handling various conditions.

1 Introduction

Visual tracking has been popular in the computer vision community for decades.
In this paper, we consider tracking as a binary classification, aiming to discrim-
inate the object from the background in successive frames. Collins et al. [1] pro-
pose a method to adaptively select color features that best separate the object
from the background. Grabner et al. [2] design an online version of Adaboost clas-
sifier for object tracking, which accumulates samples to train a strong classifier
and then use the classifier to find the object in videos. To solve drifting problem,
SemiBoost tracker [3], also a boosting classifier combined with semi-supervised
learning, is proposed. Avidan proposes support vector tracking (SVT) [4] which
utilizes an off-line SVM to discriminate the target vehicle from the background,
and an ensemble tracking approach [5]. The main concept of “ensemble” is to
collect a number of weak classifiers to learn the difference between the object
and the background, and then iteratively train new weak classifiers to replace old
ones. Tian et al. [6] devise an ensemble SVM classifier based tracking algorithm.
They use linear SVM to automatically select “key frame” of the target as sup-
port vectors. By combining several linear SVM classifiers, history information is
integrated into the tracking framework. More recently, Babenko et al. [7] propose
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a tracking framework utilizing Multiple Instance Learning (MIL) algorithm to
augment training and update samples.

Noticing that the SVM-based classifier can effectively solve classification
problem in tracking field, we focus on the kernel learning technique used in
object classification. The basic idea of kernel used in non-linear SVM is to map
training samples from the input space to a higher dimensional feature space,
where they are linearly separable, without explicitly defining the mapping func-
tion. In particular, we are interested in Multiple Kernel Learning (MKL) [8–10],
which has shown great advantages in the recent object classification task [11,
12]. MKL aims to learn an optimal kernel combination and assign appropriate
weight to each kernel in supervised learning settings. Standard MKL displays
remarkable ability to solve multi-class classification problems. However, for bet-
ter classification, many improvements have been proposed. Rakotomamonjy et
al. [8] propose an improved MKL algorithm, named SimpleMKL, for simpli-
fying the optimization process based on mixed-norm regularization. Localized
MKL (LMKL) [13] and Bayesian Localized MKL (BLMKL) [14] are devised to
exploit the distribution of training data on each kernel space and give higher
weights to appropriate kernel functions if data has underlying localities. Moti-
vated by LMKL, Cao et al. [15] propose Heterogeneous Feature Machines (HFM)
to learn a non-linear combination of multiple kernels; Yang et al. [16] propose
group-sensitive multiple kernel learning (GS-MKL) to accommodate the intra-
class diversity and the inter-class correlation for object categorization. Boosting
method is also incorporated into MKL to implement feature combination [17]
and feature selection [18].

Impressed by the remarkable performance of MKL, we propose a Multiple
Kernel Boosting (MKB) algorithm with Locality Affinity Constraints (LAC)
for human tracking. To describe an object, we use 3 feature descriptors, RGB
histogram, Histogram of Gradient (HoG) [19] and SIFT [20]; to map the input
space to the kernel space, we use 4 kernels, linear kernel, polynomial kernel,
RBF kernel and sigmoid kernel. We consider each single kernel SVM as a “weak
classifier”. To find the best combination of these SVMs, we utilize boosting
technique instead of a global optimization used in most MKL algorithms. We
also introduce locality affinity information of input data, which is computed
from the distribution of support vectors of the respective single kernel SVM,
into the final decision function. In each new frame, we apply particle sampling
to generate a number of candidates. Tracking is then accomplished by finding
the best candidate. For update, we retrain the set of single kernel SVMs, reselect
some discriminative ones by MKB, and recalculate LAC.

The remainder of the paper is organized as follows: Section 2 and Section 3
introduce our Multiple Kernel Boosting (MKB) algorithm and Locality Affinity
Constraints (LAC) respectively. Main tracking framework is in Section 4 and
experimental results on various sequences are shown and discussed in Section 5.
The last section gives out conclusion.
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2 Multiple Kernel Boosting

2.1 Standard MKL

The main difficulty of single SVM is to choose a proper kernel for the given
training dataset. However, MKL aims to find an optimal convex combination of
multiple kernels and the associated classifier simultaneously. For binary classifi-
cation, assuming that we have training samples {xi, yi}D

i=1, where xi is the ith

sample and yi = {±1} indicates the label of the sample, our task is to train a
multi-kernel based classifier F (x) to classify an unlabeled sample into a class.
Let {Km}M

m=1 be the kernel matrices computed for different feature modalities.
The combination of multiple kernels is defined as

K(x, xi) =
M∑

m=1

βmKm(x, xi) (1)

where kernel weights βm ≥ 0 and
M∑

m=1
βm = 1. Km can be the same kernels

with different hyperparameters or different kernels. Also, they can be applied to
different feature sets. Then the decision function is defined as

F (x) =
D∑

i=1

αiyi

M∑
m=1

βmKm(x, xi) + b (2)

where {αi} and b are the Lagrange multipliers and the bias in the standard SVM
algorithm. We can learn {αi}, {βm} and b from a joint optimization process.
Details can be found in [10].

2.2 Multiple Kernel Boosting

Despite its success in object categorization, MKL cannot be directly applied to
tracking due to time-consuming optimization process, large amount of training
samples and constant weights. However, Gehler and Nowozin [17] have discussed
a boosting version of MKL for feature combination, which inspires us to propose
Multiple Kernel Boosting (MKB) for tracking applications. For a sample x, we
construct a vector by concatenating its kernel values with all the training samples
{xi, yi}D

i=1 to indicate the mth kernel response

Km(x) = [Km(x, x1),Km(x, x2), ...,Km(x, xD)]T (3)

So we can rewrite Equation 2 as the following form

F (x) =
M∑

m=1
βm

D∑
i=1

αiyiKm(x, xi) + b

=
M∑

m=1
βm(Km(x)T α + b)

(4)
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where α = (α1y1, α2y2, ..., αDyD)T . So we convert standard MKL to a linear
combination of the real value output of M separate SVMs Km(x)T α+b. Accord-
ing to [17], we can separately train M SVMs with different parameters {αm, bm}
at first, and then optimize {βm} in the second step. Each individual SVM is
not restricted to share the same parameter. By letting hm(x) = Km(x)T α + b,

we convert the decision function of standard MKL to F (x) =
M∑

m=1
βmhm(x). To

determine {βm}, we can simply use other methods. In this paper, we use boost-
ing method, so we name our algorithm Multiple Kernel Boosting (MKB). In the
boosting form, the decision function can be written as

F (x) =
L∑

l=1

βlhl(x) (5)

where L indicates the iteration time. We regard MKL as choosing multiple
“weak” single kernel SVMs into a final strong classifier. MKB avoids complex
global optimization, thereby making the concept of MKL applicable to tracking.
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Fig. 1. Illustration of Multiple Kernel Boosting (MKB) process.

As Figure 1 shows, we extract {f1, f2, ..., fN} features from a set of positive
and negative samples and send them into {K1,K2, ...,KM} kernels. Then we get
M ×N combinations; for each combination, we train a single kernel SVM. The
classification error of a single kernel SVM is defined as

ε =

D∑
i=1

w(i) · |h(xi)| · U(−yih(xi))

D∑
i=1

w(i) · |h(xi)|
(6)

Here U(x) is a function that equals 1 when x > 0, otherwise it equals 0. w(i)
is training samples’ weight. h(xi) is the real value classification output of the
SVM on the input xi. We aim to adaptively select multiple features and kernels
that are of the most discriminative ability from the pool. So we use boosting
technique to iteratively choose an SVM and add it to the final decision function.
The complete process of MKB is shown in Algorithm 1.
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Algorithm 1 Multiple Kernel Boosting (MKB)

Input: training sets {xi, yi}Di=1, feature functions {fn}Nn=1, kernel functions
{Km}Mm=1, the decision function F (x) = 0
1: for each n ∈ N and m ∈M , train a single kernel SVM hm,n(x) on feature fn and

kernel Km on the entire training set {xi, yi}Di=1 to form a pool of candidate single
kernel SVMs, denoted as h

2: initialize samples’ weights w1(i) = 1/D
3: for l = 1 to L do

1) For each hm,n(x), compute classification error εm,n using Equation 6
2) Select hl(x) = arg min

hm,n∈h
εm,n

3) Compute weight βl = 1
2

log 1−εl
εl

for hl(x)

4) If βl < 0, break; otherwise add hl(x) to F (x)← F (x) + βlhl(x)

5) wl+1(i) = wl(i)
Zl

e−βlyihl(xi)

4: end for

Output: final strong classifier F (x) =
L∑

l=1

βlhl(x)

3 Locality Affinity Constraints

Although MKB produces promising tracking results, we find that it is not stable
enough in some cases. So we try to improve the original MKB. Motivated by
LMKL [13] and GS-MKL [16], we incorporate the distribution of training data
into F (x) to enhance the robustness of MKB. Rewriting Equation 2, we obtain

F (x) =
D∑

i=1

αiyi

M∑
m=1

βm(x)Km(x, xi) + b (7)

where βm(x) is a function of input x, rather than a constant βm in the standard
MKL. It can be learned from an iteration algorithm [13]. However, we find that
the optimization process is intolerantly time-consuming [16]. Moreover, iteration
cannot guarantee convergence to global optimum and unsuitable initial param-
eters may also degrade the performance. Considering the problem of limited
training samples in tracking, we devise a simple but effective method to exploit
the underlying distribution of training data.

We assume that an SVM trained in MKB has recorded the property of train-
ing data with respect to the feature and kernel. Since support vectors of each
SVM reserve most information, we utilize those support vectors for computing
the locality of data. Letting βl = β∗

l Al(x) and rewriting Equation 5, we get

F (x) =
L∑

l=1

β∗
l Al(x)hl(x) (8)

where β∗
l is the same as βl in Equation 5, which is calculated by MKB. Al(x)

is a function of input x, indicating the similarity of x with the trained SVM,
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which is called Locality Affinity Constraint (LAC) in our algorithm. Locality
affinity means that if the input sample complies with the distribution of support
vectors in a specific SVM, we think that the importance of the corresponding
SVM is high, thus assigning it larger weight. We construct a probability model
to describe the locality affinity, which is defined as

Al(x) = 1− exp(− |σl(x)|) (9)

where σl(x) = log
[

pl(y=1|x)
pl(y=−1|x)

]
. For each trained SVM hl(x), we compute the

mean µ+
l and µ−l of positive and negative support vectors respectively. Then

pl(y = 1|x) and pl(y = −1|x) are computed as follows

pl(y∗|x) = exp(− |x− µ∗l |) (10)

where y∗ = 1 or y∗ = −1 when µ∗l is µ+
l or µ−l . Here, Al(x) ∈ (0, 1), which

can be seen as the probability of sample x belonging to the support vectors. If
x is similar with training data on a specific combination of feature and kernel,
the importance of the corresponding SVM is high, and vice versa. Therefore,
we formulate the distribution of training samples and impose such constraints
on testing samples, thereby improving the discriminative ability of the decision
function.

4 Main Tracking Framework

In this section, we will introduce how tracking proceeds based on the afore-
mentioned algorithms. In 1st frame, we draw a bounding box x1 enclosing the
object we want to track, where x1 = (c1

x, c1
y, s1, θ1) records the center, size and

rotation angle of the object. The superscript indicates the current frame num-
ber. To augment the number of training samples, we crop out a set of images
X+ = {xi|0 ≤ l(xi)− l(x1) < rα}D+

i=1 to collect positive samples. Here rα is a
small constant and l(x) indicates the center of x. Similarly, we crop out a set
of negative samples X− = {xi|rβ ≤ l(xi)− l(x1) < rγ}D−

i=1. We set rβ > rα to
allow less than 1/4 overlap between positive and negative samples. Note that we
only use 1st frame to collect (D+ + D−) training samples. Extracting features
on these samples, performing MKB and adding locality affinity functions, we
obtain a multi-kernel based decision function.

To improve efficiency, we adopt particle sampling technique in the following
frames. The predicting distribution of xt given all available observations z1:t−1 =
{z1, z2, ..., zt−1}, denoted by p(xt|z1:t−1), is recursively computed as

p(xt|z1:t−1) =
∫

p(xt|xt−1)p(xt−1|z1:t−1)dxt−1 (11)

When the observation zt is obtained at time t, the state vector is updated as

p(xt|z1:t) =
p(zt|xt)p(xt|z1:t−1)

p(zt|z1:t−1)
(12)
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Algorithm 2 MKB Tracking with Locality Affinity Constraints

Input: training sets {xi, yi}Di=1, feature functions {fn}Nn=1, kernel functions
{Km}Mm=1, the decision function F (x) = 0, empty sample queue Q
Output: tracking results in each frame {x1, x2, ..., xt}
For the first frame It (t = 1)
1: given the bounding box x1 = (c1

x, c1
y, s1, θ1), extract D+ positive samples and D−

negative samples

2: extract features {fn(xi)}D
++D−

i=1 and train individual single kernel SVMs hm,n(x)
3: compute the locality affinity function Am,n(x) according to the distribution of

support vectors for each trained SVM hm,n(x)

4. apply Algorithm 1 to obtain the strong classifier F (x) =
L∑

l=1

β∗l Al(x)hl(x)

For each new frame It (t > 1)
1: sample D particles {xt

i}Di=1 around the tracked object xt−1 according to distribution
p(xt|xt−1). The weight of each particles {wt

i = 1}Di=1

2: use F (x) to compute classification results of {xt
i}Di=1, then {wt

i =
exp(F (xt

i))/Z
t}Di=1, where Zt is a normalized value

3: the tracked object is find by xt =
D∑

i=1

wt
ix

t
i

4: regard xt as positive sample and collect 4 negative samples around xt, push them
into the sample queue Q

5: if the length of sample queue Length(Q) = 5Tu, do
1) select SVM hm,n(x) from weak SVM pool h, extract feature SQ = fn(x), x ∈

Q. Form new training sample groups S
′
m,n = Sm,n ∪ SQ, where Sm,n are

support vectors of hm,n(x). Train hm,n(x) again using S
′
m,n

2) remove hm,n(x) from the pool h
3) repeat 1) and 2) until the pool is empty
4) update µ+

m,n and µ−m,n of new trained support vectors to obtain new Am,n(x)
5) perform Algorithm 1 again to reselect appropriate hl(x) to form a new

F (x) =
L∑

l=1

β∗l Al(x)hl(x)

6) clean up the sample queue Q
6: otherwise output xt and proceed to the next frame

where p(zt|xt) is the observation likelihood. The posterior probability p(xt|z1:t)
is approximated by D particles {xt

i}D
i=1 with importance weight wt

i , which are
drawn from a reference distribution q(xt|x1:t−1, z1:t). We let q(xt|x1:t−1, z1:t) =
p(xt|xt−1) then the weights wt

i = wt−1
i p(zt|xt

i). We think that p(xt|xt−1) com-
plies with a Gaussian distribution and affine parameters in xt are independent.
So in frame It, we have D candidates with different affine parameters around the
tracked object xt−1 in frame It−1. Then we apply p (zt|xt

i) = eF (xt
i) to compute

p(zt|xt
i), which is particle’s weight. Subsequently, we normalize {wt

i}D
i=1 and com-

pute the weighted sum of particles to find the object, denoted as xt =
D∑

i=1

wt
ix

t
i.
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Moreover, to capture the variance of the object, we also incorporate an up-
date scheme into the tracking framework. In each frame, we consider the tracked
object xt as positive sample, and extract four negative samples from four direc-
tions (up, down, left, right) without overlap with the positive one. We accumulate
these samples for Tu frames, then retrain individual SVMs using new samples
and corresponding support vectors. Subsequently, we perform MKB again to
obtain a new F (x). Al(x) is also recalculated from new support vectors. The
complete process is shown in Algorithm 2.

5 Experiments

5.1 Experimental Settings

We implement our tracking algorithm by Matlab. In 1st frame, both positive
and negative samples are 20. The pool of weak SVMs contains 12 single kernel
SVMs, each of which focuses on a specific combination of 3 features (64-dim RGB
histogram, 128-dim HoG and 128-dim SIFT descriptor) and 4 kernels (linear
kernel, polynomial kernel, RBF kernel and sigmoid kernel). The iteration time
of MKB is 10, while the number of selected SVMs varies according to different
sequences. In each new frame, we sample 200 particles according to a pre-defined
distribution and send them to F (x) to get 200 real values. The update rate also
varies according to the property of different sequences. Note that all parameters
are fixed except the distribution for sampling affine parameters of sequences.

We also run other three tracking systems: Online Adaboost tracking (OAB)
[2], Multiple Instance Learning tracking (MIL) [7] and color-based particle filter
tracking (PF) [21]. Similar with our MKB tracking, both OAB and MIL tracking
rely on a boosting technique and use new samples to change weak classifiers and
corresponding weights. Also, our approach includes the particle sampling that
generates a number of candidates used to approximate the current state of the
object. We are going to show that the good performance of our MKB tracking is
not necessarily attributed to particle sampling, so our approach outperforms PF
in most sequences. In our experiments, the number of selectors in OAB remains
100; PF uses 512-dim RGB feature (8×8×8 bins) and its sampling parameters
are constant on all sequences.

5.2 Results

We compare our method with OAB, MIL and PF tracking. To better display the
advantages of the proposed method, we will analyze the tracking results under
various situations.

Occlusion. Figure 2 shows a comparison under occlusion. The testing se-
quence is from CAVIAR database. Our MKB tracking continuously keeps track
of the person even when he is occluded by another person in similar color. While
all other methods drift away from the object when occlusion occurs (OAB and
MIL) or when the object’s size changes (PF). We also find that HoG plays the
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PF PF MIL OAB

Fig. 2. Comparison of tracking results when there is occlusion. Top row shows results
of our approach. Results of other approaches are shown in the bottom row.

PFMILOABOAB

Fig. 3. Comparison of tracking results when there is scale change. Top row shows
results of our approach. Results of other approaches are shown in the bottom row.

most important part when occlusion occurs. Because the color of the two persons
is almost the same, color feature is unreliable.

Scale change. To test the ability to handle the object’s scale change, we also
compare the four algorithms on another sequence also from CAVIAR database,
as shown in Figure 3. In the sequence, a person walks away from the camera,
so his size becomes smaller than that in the first few frames. There is also
simple occlusion by other people. Our approach can locate the person’s position
accurately and the tracking result is quite stable. In contrast, lacking a scheme
of adaptively adjusting the size of the tracking window, both OAB and MIL lose
the object when large scale change occurs. PF is even confused by the other three
persons close to the real object, even though they do not occlude the object.

Complex background. We also run the four algorithms on our own testing
sequences. Figure 4 shows tracking results on a sequence, in which a figure skater
exhibits a set of actions in a skating rink. As the figure shows, the background
is complex, including various colors. Sometimes the dark background is even the
same as the skater’s black clothes. MIL, OAB and PF cannot find the precise
position of the skater, especially when he changes his poses under the dark back-
ground; while PF even loses the skater when he changes his skating direction. In
contrast, our approach can locate the skater, resulting in more accurate results.
Therefore, our MKB tracking has the ability to deal with complex background.
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MILMIL OAB PF

Fig. 4. Comparison of tracking results when background is complex. Top row shows
results of our approach. Results of other approaches are shown in the bottom row.

PFPF MILOAB

Fig. 5. Comparison of tracking results when there is fast motion. Top row shows results
of our approach. Results of other approaches are shown in the bottom row.

Fast motion. The last experiment we will report is to show the ability to
handle fast motion of the object. We aim to keep track of the famous sprinter
Bolt in the sequence that includes part of a 100m dash competition. The main
difficulty is that the runner moves fast. From Figure 5, we can see that both MIL
and OAB drifts away just in the first few frames when Bolt starts to accelerate;
while our MKB tracking and PF find Bolt accurately until about 120th frame.
However, we also find that PF is much sensitive to the sampling parameters:
slight change of initial parameters may affect the performance severely. Com-
pared with it, our method is more robust. The change of sampling parameters
within an appropriate range does not decrease the accuracy.

5.3 Discussions

In this section, we will briefly discuss some properties of our proposed method.
Table 1 shows quantitative comparisons on 7 testing sequences. Numbers indicate
the average error of center of the object per frame on testing sequences.

MKB tracking vs. single kernel SVM. First, we compare the proposed
algorithm with single kernel SVM using only one feature. We observe that in
most sequences, HoG+linear kernel and SIFT+linear kernel perform well. So we
compare the tracking results of the two single kernel methods. In Table 1, S1
and S2 indicate HoG+linear kernel and SIFT+linear kernel respectively. From
Table 1, we can see that only using one combination of feature and kernel cannot
achieve good results. Both the average position errors of the two methods are
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Table 1. The average position error per frame.

OAB MIL PF MKB S1 S2 LAC-

ShopAssistant2cor 67.6 68.2 13.1 4.5 4.8 19.8 2.8

ThreePastShop2cor 15.2 17.7 35.8 3.5 129.8 19.8 4.2

MeetWalkSplit 9.0 21.5 9.0 8.0 12.0 89.4 11.9

skate 20.7 13.8 25.1 12.4 26.3 23.4 13.3

dash 129.4 206.9 11.1 4.1 18.8 12.4 16.1

Browse1 13.6 8.4 36.0 7.5 152.5 108.6 5.4

OneLeaveShopR1cor 7.3 10.7 8.9 4.6 31.8 46.2 51.6

much larger than that of our MKB tracking, although in some cases HoG+linear
kernel can produce more accurate results than other state-of-the-art approaches.

MKB tracking vs. other approaches. Besides qualitative comparisons in
the previous section, we also give out quantitative comparisons of our proposed
tracking and other algorithms. From the table, we can see that our MKB tracking
is much more robust. The adaptive selection of kernels and features shows its
advantage, compared with other approaches.

Impact of LAC. To test the effectiveness of LAC, we also run our tracking
system without such constraints (see “LAC-” column in Table 1). LAC shows
predominant advantage in most cases, leading to lower average position error,
although in only two sequences it does not outperform MKB tracking without
LAC. Therefore, by incorporating LAC, we boost the performance of original
MKB tracking. Moreover, we can see that even we use standard MKB for track-
ing, the results are not inferior to other existing approaches.

6 Conclusion

In this paper, we incorporate the concept of Multiple Kernel Learning (MKL)
algorithm, which is used in object categorization, into human tracking field. We
devise an algorithm called Multiple Kernel Boosting (MKB), instead of directly
adopting MKL. In MKB, we treat individual single kernel SVMs as weak classi-
fiers and utilize boosting technique to adaptively select a number of good SVMs
into a final decision function focusing on different features and kernels. Compared
with standard MKL, MKB is much efficient. To strengthen the discriminative
ability of the stong classifier formed in MKB, we also apply Locality Affinity
Constraints (LAC) to each selected SVM. LAC is computed from the distribu-
tion of support vectors of respective SVM, recording the underlying locality of
training data. An update scheme to reselect good SVMs, adjust their weights
and recalculate LAC is also included in our tracking framework. Experiments
on some standard and our own testing sequences show that our MKB tracking
outperforms some of its rivals in handling simple occlusion, scale change and
complex background.
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