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a b s t r a c t

Tracking moving objects is one of the most important but problematic features of

motion analysis and understanding. The Kalman filter (KF) has commonly been used for

estimation and prediction of the target position in succeeding frames. In this paper, we

propose a novel and efficient method of tracking, which performs well even when the

target takes a sudden turn during its motion. The proposed method arbitrates between

KF and Optical flow (OF) to improve the tracking performance. Our system utilizes a

laser to measure the distance to the nearest obstacle and an infrared camera to find the

target. The relative data is then fused with the Arbitrate OFKF filter to perform real-time

tracking. Experimental results show our suggested approach is very effective and

reliable for estimating and tracking moving objects.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

Human tracking using mobile robots serves a lot of

attention because an automated system estimating and

tracking moving objects has many potential applica-

tions in the field of surveillance and engineering [46].

The mobile robot target tracking mechanism essentially

needs the motion analysis of the target behavior. A

number of approaches on prediction and tracking are

based on the traditional Kalman filter (KF) [10–15]. In

the KF approach, it is presumed that the behavior of a

moving target could be characterized by a predefined

model, and the models can be represented in terms of a

state vector. In reality, however, these models fail to

characterize the motion of moving targets accurately.

As a result of this, KF fails to track a target, especially

when there are occlusions caused by other objects or

sudden changes in the trajectory of the motion [13]. In

this paper, we propose an efficient method of tracking

the target called Arbitrate OFKF, which will overcome

the abovementioned problem and work successfully

even when sudden changes in trajectory occur. This

proposed method arbitrates the output of OF and KF

depending on the trajectory of the previous motion. Our

arbitration algorithm is such that the output, during

sharp turns, will be taken from OF algorithm, and, in all

other instances, from KF algorithm.

There are some visual restrictions in which any meth-

ods cannot be applicable, for instance in industrial appli-

cations, like the ones examined in visual environments

and applications [48], airports with crowded conditions,

industrial process monitoring [49] and environmental

monitoring. We have exploited an infra-camera for visual

content, in which the presented technique is applicable as

other types of visual contents that can potentially solve

these existing issues in [48,49].

The paper is organized as follows. Section 2 introduces

the related work in the tracking using a mobile robot.

Section 3 explains the piecewise constant acceleration

model for implementation of KF. In Section 4, a solution

for improving KF based tracking using arbitration

between KF and OF. Section 5 reports experimental
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results and considerations. Finally, conclusions and future

work are illustrated in Section 6.

2. Related works

2.1. Mobile robot

Tracking people by the use of a mobile robot is an

essential task for the coming generation of service and

human-interaction robots. In the field of computer vision,

the tracking of moving objects by mobile robot is a

relatively hard problem. The system described in [1] uses

a sample-based joint probabilistic data association filter

for human tracking with a mobile robot. A fuzzy logic

approach is used for navigation of the mobile robot [2]

whereas the neurofuzzy-based approach for tracking

described in [3–6] uses a learning algorithm based on

neural network techniques to tune the parameters of

membership functions. Artificial potential functions [7]

and vector-field histograms [8] are also used for mobile

robot navigation. Most of the tracking methods focus on

tracking humans in image sequences from a single camera

view. In [9], each walking subject image was bounded by

a rectangular box, and the centroid of the bounding box

was used as the feature to track. We have used the KF and

the OF for the navigation of the mobile robot because it

will predict next state from the previous state.

2.2. Kalman filter-based target tracking

Human tracking by mobile robots has been an area of

intense research for years. Humans can be tracked by

mobile robots using 3D or 2D data by any normal KF

[10,13], or using segmentation of the main target from the

background [11,12]. Other approaches are based on hier-

archical KF [14] and quaternion [15]. Extended KF [16]

and the interactive multiple model [17] have successfully

been used for human tracking using mobile robots in the

past. In [18], stereo vision and KFs are used to track and

follow a single person using a mobile robot for short

distances. But sudden deformation in the target motion

can cause the failure of the predefined behavior model of

KF [13]. In [19], a robot equipped with two laser range

sensors, one pointing forward and another backward, can

track several people using a combination of particle filters

and joint probabilistic data association. The system

described in [21] uses a classic histogram intersection to

identify people together with a standard KF for laser-

based tracking. In [20], a particle filter is used for the data

fusion of a laser and an omnidirectional camera is used for

multiple people tracking. Particle filters are the sequential

of Markov chain Monte Carlo methods, and alternative to

the KF with the advantage that, with sufficient samples,

they approach the Bayesian optimal estimate. We also

have specifically developed a new KF framework of

Interactive Multiple Model-based Estimation (IMME)

[43–46], and showed the best prediction performance.

While the methods described above are computationally

expensive, our proposed method is, by comparison, inex-

pensive and also produces better results in the event of

sudden deformations of the target motion. The experimental

sections demonstrate the performance and comparisons

with respect to the particle filers [47].

2.3. Optical flow-based target tracking

Optical flow can arise from relative motion between

objects and the viewer [22]. OF can give important informa-

tion about the spatial arrangement of the viewed objects and

the rate of change of this arrangement [26]. There are a

number of methods for calculating OF. The primitive meth-

ods are Sum of Squared Difference [23–25] and the Normal-

ized Cross-Correlation [27] [29]. The other methods are

based on Laplacian derivative [28,30]. In these algorithms,

a small area of the image is used as a template, searched

later throughout the interested region in the next frame for

finding the target location. Another template-matching

method called contour matching [31–33] uses a non-rigid

contour as a model, and is relatively robust to a cluttered

background. All of these methods are, however, computa-

tionally expensive. The algorithm for calculating OF is made

a little more efficient as in [34]. Our proposed method for

calculating OF does not involve much computational cost.

Since, in our setup, the camera is also moving, we have to

use the concept of superposition. According to superposition,

OF generated by the target is the difference of the total

OF generated and the OF generated by camera motion.

OF-based tracking works well only when the target is

moving and its surroundings are still. Due to this property,

OF gives the best tracking results in an indoor environment.

2.4. Arbitration

Arbitration is the process of selecting one action or

behavior from multiple possible candidates. When two or

more algorithms control the motion of the robot, in order

to use mutually exclusive condition for the controller, we

have to use the concept of arbitration [35]. Depending on

the task, the algorithm for arbitration is decided. In the

tasks of recognition and detection, the arbitration is

decided by the threshold value [36,39], and sensor fusion

is handled by the probability based on priority [38–42].

An arbitration operator based on Revesz’s definition of

arbitration must use an arbitration algorithm [37]. We

have developed our own algorithm for the arbitration

module, which arbitrates between KF and OF depending

on the trajectory of the target motion.

3. Traditional methods: Framing the model of target

tracking

First, we choose a state vector to contain information

about the position and the velocity of the man. We then

update the state according to our model called the constant

acceleration model, in which the value of acceleration is

calculated from the last few states, using a Taylor series

expansion of the present expansion. The state can thus be

thought of as being updated through the equations:

xkþ1 ¼ AxkþB
dxk
dtk

þwk ð1Þ
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And the output equations may be written as

yk ¼ Cxkþzk, ð2Þ

where A, B and C are matrices of the required order to be

multiplied with the state vectors. The terms ‘w’ and ‘z’ are

noise matrices of the same order as ‘x’ and ‘y’ vectors,

respectively. The noise matrices can be preset to the

maximum error value possible in the measurements,

and may vary as the readings get more and more accurate.

3.1. Kalman filter using piecewise constant acceleration

model

If the time difference of the two readings is taken to be

‘Dt’, we can write the present velocity of the man as

vkþ1 ¼ vkþukDt, ð3Þ

where uk is the calculated acceleration of the man at the

previous instant. We assume that ‘Dt’ being small the

acceleration of the man remains small. In reality, ‘Dt’ is of

the order of 0.05�0.067 s. So our assumption does not

become a source of error.

Let us consider two variables in our state vector—one

being the position of the man (p), and the other being the

velocity at that instant (v). We can write the updated

equations for the position and the velocity, taking into

account the noise:

vkþ1 ¼ vkþuktkþ v̂k ð4Þ

pkþ1 ¼ pkþtkvkþ
1
2t

2ukþ p̂k ð5Þ

Thus the state matrix becomes xk ¼
pk

vk

" #

.

We can thus update Eqs. (1) and (2) as follows:

xkþ1 ¼
1 Dt

0 1

� �

xkþ
Dt2

2

Dt

" #

ukþwk ð6Þ

yk ¼ 1 0
� �

xkþzk ð7Þ

The process noise covariance may be written as

Sw ¼ Eðwkw
T
k Þ: ð8Þ

Similarly the measurement covariance noise may be

written as

Sz ¼ Eðzkz
T
k Þ: ð9Þ

The superscript ‘T’ suggests the transpose of the

matrices. Thus, we have obtained the basic matrices:

A¼
1 Dt

0 1

� �

ð10Þ

B¼
Dt2=2

Dt

" #

ð11Þ

C ¼ 1 0
� �

ð12Þ

We use two matrices—one called the estimation error

covariance matrix, which we shall denote by ‘P’, and the

other called the Kalman gain matrix, which will be

denoted by ‘K’. Initially we set P as

P¼ Sw: ð13Þ

And we set our initial estimate

~xk ¼ x: ð14Þ

We first calculate the Kalman gain matrix, which is

given by

K ¼ APkC
T ðCPkC

TþSzÞ
�1: ð15Þ

We then predict the next state, which is given by

~xkþ1 ¼ A ~xkþBuk: ð16Þ

Based on the data we obtain from the sensor, i.e. the

infrared camera and then the range finder, we update the

estimate. We develop a correction term ‘Corr’, which gives

us the error that has propagated in our state estimate. We

thus have to correct our state estimate by that amount

Corrk ¼ ykþ1�Cxk, ð17Þ

~xkþ1 ¼ ~xkþ1þKkðCorrkÞ: ð18Þ

We then update the estimation error covariance

matrix:

Pkþ1 ¼ APkA
TþSw�APkC

TS�1
z CPkA

T : ð19Þ

The first element of the estimation vector thus gives

the predicted position of the man, and the second element

gives its predicted velocity. Using this data, the robot is

maneuvered accordingly.

3.2. Feedback mechanism

There is a time lag between the initiation of a movement

by the robot, and the rate at which frames are scanned by the

infrared camera. Hence we use a feedback mechanism to

overwrite the command given to the robot as shown in Fig. 1.

The rate at which commands are issued to the robot

depends on the rate of the camera, which is faster com-

pared to the robot. Thus, at each stage, while the robot is in

motion, frames are grabbed by the camera, and the remain-

ing angle left to rotate is calculated and estimated. After

this has been calculated, the command in the robot buffer is

over-written by the remaining angle left to rotate.

One advantage of the feedback motion is the angle, by

which the robot movement is constantly updated. Hence, the

robot comes to a standstill when it is centered on the man it

is tracking. When the man moves again from the central

Computer
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Fig. 1. Semantic diagram for feedback system of human target tracking.
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position of the camera, the same process is again initiated to

bring the man back to the center of the image. Thus, the

camera never loses the man.

Say at (kþ1)th frame, the estimated angle is y with

respect to reference, and the camera facing angle at (k)th

frame is a with respect to same reference frame so that

the robot should be moved for tracking the man, only by b

which is equal to

b¼ y7a, ð20Þ

where the sign in (20) depends upon the direction of

angle. If both angles are in same direction, take minus

sign, otherwise plus sign will be used.

Another advantage of the feedback motion comes into

play when the man suddenly changes direction while walk-

ing, or moves further away. If the feedback system had not

been implemented, the man could have disappeared from

the camera visibility by the time the robot rotated and got to

the man’s original position. With the system in place, even if

the man moves further away or changes direction, the

commands for robot rotation or translation will be changed

immediately. We ensure that the Kalman filter is continu-

ously updated, and new commands immediately overwrite

the old commands in the robot buffer.

4. Proposed pan-tilt operation

In the target region of interest (ROI) tracking, we need

to find the required pan and tilt angle for the specific

camera configuration as shown in Fig. 2 so that the

camera head can rotate to track the target. In other words,

this is the angle vector y required to make image center

coincident with the target centroid:

y¼
yx

yy

" #

, ð21Þ

where the rotational angle (yx) with respect of the center

of the image is the only angle associated with pan defined

by DX. It is similar with (yy), when there is only tilt

operation. We calculate the degree of these values using

the geometry:

yx ¼ tan�1 DX

l

� �

, ð22Þ

yy ¼ tan�1 DY

l

� �

, ð23Þ

where (l) is the focal length of camera, and yx and yy are

unknown. We need to now calculate the rotation angles

to be operated by the pan-tilt-camera. The following is

our solution to this problem.

Optical flow is the pattern of apparent motion of objects

in a visual scene caused by the relative motion between a

camera and the scene. The concept behind the Optical flow

based tracking is—if the target motion is known, then the

camera may be made to eliminate relative motion between it

and the target, hence facilitating tracking. In particular, if the

motion of the target is known well, then ‘‘perfect tracking’’

may be achieved, i.e. center position of the target region of

interest (ROI) can always be kept at the center of image.

Target motion can be estimated through the change of the

image position, which is called ‘‘Optical flow’’ or image

displacement. By calculating the image displacement or

optical flow, which is induced by target motion, one can

estimate the motion of the target when the camera is

stationary. For a stationary object and a moving camera,

the optical flow induced by the camera motion is as follows:

uO ¼
xRz

Z
�
lRx

Z

� �

þ
xywx

l
�
l
2
þx2

l
wyþywz

 !

ð24Þ

vO ¼
yRz

Z
�
lRy

Z

� �

þ
l
2
þy2

l
wx�

xywy

l
�xwz

 !

ð25Þ

where uO and vO are obtained from the optical flow, and wx,

wy, wz and Rx, Ry, Rz are rotational and translational velocity

of the camera, respectively, ‘x’ and ’y’ are center of ROI in

image frame, ‘Z’ is the Z coordinate of the target in camera

frame, l is a focal length and subscript ‘O’ is denoted as an

object. If we assume a moving object and a stationary

camera instead of a moving camera and a stationary object,

then we can obtain the same result as (24) and (25) except

for a sign reversal [23].

In our tracking environment, both the camera and the

target are non-stationary. The optical flow is thus subject

to both the camera and the target movement. In order to

take this into account we have to modify the optical flow

equation such that the optical flow induced only by target

motion is taken into account. According to superposition,

the total optical flow is equal to the sum of the optical

flow of target and that of camera. Suppose that the optical

flow at the time instant k during the tracking phase is

[u(k), v(k)], then the optical flows Are [23]

uðkÞ ¼ uOðkÞþucaðkÞ, ð26Þ

vðkÞ ¼ vOðkÞþvcaðkÞ, ð27Þ

where u(k) and v(k) are the total optical flow, vO(k) and uO(k)

are the optical flow induced by the target motion, whereas

uca(k) and vca(k) are the optical flows induced by the tracking

motion of the camera in X and Y directions, respectively.

Therefore, the optical flow induced by the target motionFig. 2. Camera configuration.
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during the tracking phase can be obtained by modifying (26)

and (27) as follows:

uOðkÞ ¼ uðkÞ�ucaðkÞ, ð28Þ

vOðkÞ ¼ vðkÞ�vcaðkÞ: ð29Þ

Pan-directional angle wx and tilt-directional angle wy

in Fig. 3 allow the camera to rotate only in the direction

with respect to the image plane X–Y. So the motion vector

of camera is

R¼ wx wy 0
h iT

: ð30Þ

Usually cross-correlation and sum-of-difference method

are used for calculating observable modified optical flow, but

we will use our own method for finding this. By using our

ownmotion estimation algorithm, we can estimate the target

image position at any time. Assume that the center of ROI at

(k�1)th frame is [x(k�1) y(k�1)]T and our camera’s angular

velocity is wx(k�1)¼Dyx/Dt and wy(k�1)¼Dyy/Dt, where

Dyx and Dyy are the changes in pan and tilt angles,

respectively, and Dt is the time interval between two

consecutive frames. Let the target move to the position

[x(k), y(k)]T at the next frame, then u(k�1), v(k�1), uca(k�1)

and vca(k�1) at the (k)th frame may be derived as follows

using (24), (25) and (30):

uðk�1Þ ¼
xðkÞ�xðk�1Þ

Dt
ð31Þ

vðk�1Þ ¼
yðkÞ�yðk�1Þ

Dt
, ð32Þ

uca ¼
xðk�1Þyðk�1Þ

l

� �

oxðk�1Þ�
l2þx2ðk�1Þ

l

 !

oyðk�1Þ,

ð33Þ

vca ¼
l2þy2ðk�1Þ

l

 !

oxðk�1Þ�
xðk�1Þyðk�1Þ

l

� �

oyðk�1Þ,

ð34Þ

and using (28) and (29)

uOðk�1Þ ¼
xðkÞ�xðk�1Þ

Dt
�

xðk�1Þyðk�1Þ

l

� �

oxðk�1Þþ
l2þx2ðk�1Þ

l

 !

oyðk�1Þ ð35Þ

vOðk�1Þ ¼
yðkÞ�yðk�1Þ

Dt
�

l2þy2ðk�1Þ

l

 !

oxðk�1Þþ
xðk�1Þyðk�1Þ

l

� �

oyðk�1Þ ð36Þ

We can estimate the motion using the above modified

optical flow equation. The motion estimation algorithm is

based on the estimation of rotation velocity wx and wy.

Our algorithm can estimate the motion of the target

without knowing the actual depth information. We write

equations (24) and (25) in discrete time expression as

uOðk�1Þ

vOðk�1Þ

" #

¼ Jðxðk�1Þ,yðk�1Þ,zðk�1ÞÞ
Rðk�1Þ

wðk�1Þ

" #

, ð37Þ

where

Jðxðk�1Þ,yðk�1Þ,zðk�1ÞÞ ¼

� l
Zðk�1Þ

0 xðk�1Þ
Zðk�1Þ

xðk�1Þyðk�1Þ
l

� x2ðk�1Þþl2

l
yðk�1Þ

0 � l
Zðk�1Þ

yðk�1Þ
Zðk�1Þ

y2ðk�1Þþl2

l � xðk�1Þyðk�1Þ
l �xðk�1Þ

2

6

4

3

7

5

ð38Þ

The matrix J(x(k�1), y(k�1), z(k�1) is called the

Image Jacobian and R¼[Rx, Ry, Rz]
T
AR3 and w¼[wx, wy,

wz]
T
AR3 are the translational and rotational velocities of

camera, respectively.

In order to keep tracking, the ROI centroid in image

frame should pass through the center of the image. Accord-

ing to the content above, we use (x(k�1), y(k�1)) to

represent the center of ROI at (k-1)th frame. Using (30)

and (37) and perspective projection model [35] gives

uOðk�1Þ

vOðk�1Þ

" #

¼

xðk�1Þyðk�1Þ
l � x2ðk�1Þþl

2

l

y2ðk�1Þþl
2

l � xðk�1Þyðk�1Þ
l

2

4

3

5

oxðk�1Þ

oyðk�1Þ

" #

:

ð39Þ
Let

P¼

xðk�1Þyðk�1Þ
l � x2ðk�1Þþl2

l

y2ðk�1Þþl2

l
� xðk�1Þyðk�1Þ

l

2

4

3

5

, V ¼
oxðk�1Þ

oyðk�1Þ

" #

and C ¼
uOðk�1Þ

vOðk�1Þ

" #

Rewrite (39) as

C ¼ P V , ð40Þ

where C is the optical flow induced by target motion, P is

composed of feature’s image coordinate and focal length

and V consists of rotational velocity of camera with

respect to the camera frame. For non-singular matrix P,

(40) can be easily solved as follows:

V ¼ P�1C: ð41Þ

Thus, we can calculate the unknown values for wx and

wy using (41).

The next step of our tracking algorithm is the predic-

tion. The purpose herein is to predict where the target

image location will ‘move to’ in the next (k)th frame

predicted. Thus, the prediction (xpredict(k), ypredict(k)) can

be obtained as follows:

xpredictðkÞ ¼ xðk�1ÞþuOðk�1ÞDt, ð42Þ

ypredictðkÞ ¼ yðk�1ÞþvOðk�1ÞDt: ð43Þ

The value (x, y) is fed to the tracking module to

generate the desired camera angular motion yx(k) and

Fig. 3. Camera pan-tilt motion in 3-D plane.
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yy(k) so that we can calculate the camera parameters for

tracking ROI at the (k)th frame:

yxðkÞ ¼ tan�1 xpredictðkÞ�xcenterðk�1Þ

l

� �

, ð44Þ

yyðkÞ ¼ tan�1 ypredictðkÞ�ycenterðk�1Þ

l

� �

, ð45Þ

where (xcenter(k�1), ycenter(k�1)) is the center of the

image, and not the center of ROI, obtained from the

pan-tilt camera position using the triangulation shown

in Fig. 2 at (k�1)th frame. Note that Eqs. (44) and (45)

correspond to Eqs. (21), (22) and (23) to calculate the

desired camera pan-tilt-parameters shown in Fig. 3.

5. Arbitration of Optical flow and Kalman filter

We have applied the Optical flow as shown in the flow

chart in Fig. 4 for the tracking process. We further propose

the Arbitrate OF and KF algorithm to calculate the estimated

value of the pan angle, which will be used for our prediction.

In our proposed method, both KF and OF will predict the

value of the pan angle but, depending on the situation, we

will decide which value should be fed to the robot for track-

ing the target. If the man walks smoothly, then the pan angle

value predicted by KF will be fed to the robot. Otherwise, the

Extraction of Center of Target from Infrared Image

Optical Flow induced by the target in X and Y

Target motion vector V is estimated

Pan angle is calculated (44), (45). 

Evaluated the predicted target center using (35), (36). 

Fig. 4. Flow chart of optical-flow based target tracking.

Fig. 5. Previous trajectory of man’s motion by which the required pan

angle is decided.

Raytheon Infrared 

Camera @15Hz,

Image size 640×480

pixel

SICK Laser 

Range Finder

PC

Mobile Robot

Fig. 6. Pioneer mobile robot platform.

Fig. 7. Sample images from (a) Ground Proof, (b) Human Target and

(c) Human Target with a noisy background.
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pan angle value predicted by OF will be fed to the robot. The

proposed algorithm for arbitration is as follows:

Step 1:Make a triangle using the center of the target in

(k)th, (k�1)th and (k�2)th as vertices as shown in

Fig. 5. Say (Xk, Yk), (Xk�1, Yk�1) and (Xk�2, Yk�2) are the

centers of the target in (k)th, (k�1)th and (k�2)th

frames, respectively. Find out the length of each side:

a¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðXk�1�Xk�2Þ
2þðYk�1�Yk�2Þ

2
q

ð46Þ

b¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðXk�Xk�1Þ
2þðYk�Yk�1Þ

2
q

ð47Þ

c¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðXk�Xk�2Þ
2þðYk�Yk�2Þ

2
q

ð48Þ

Step 2: Using a, b and c from (46), (47) and (48), the

angle y between side of length a and b equals to

y¼ cos�1 a2þb2�c2

2ab

� �

ð49Þ

Step 3: From (49) y is an angle of the triangle, so its

value will be less than 1801. If 1601ryr1801, then we

are assuming that the man is walking in a straight line.

The pan angle value will in this case be estimated by

KF. In all other cases, the pan angle value is estimated

by the OF. As one example, the pan angle will be

estimated by OF for the trajectories shown by rectan-

gular boxes in Fig. 5, otherwise KF will estimate the

pan angle.
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Fig. 8. Angular position of Ground Proof for (a) slow mode, (b) moderate

mode and (c) fast mode.
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Fig. 9. Angular position of Human Target versus time for (a) slow

walking mode, (b) moderate moving mode and (c) fast walking mode.

Please cite this article as: Y. Motai, et al., Human tracking from a mobile agent: Optical flow and Kalman
filter arbitration, Signal Process. Image Commun. (2011), doi:10.1016/j.image.2011.06.005

Y. Motai et al. / Signal Processing: Image Communication ] (]]]]) ]]]–]]] 7

dx.doi.org/10.1016/j.image.2011.06.005


6. Experimental results

This section compares the results obtained from algo-

rithms using only KF, only OF, and finally the Arbitrate

OFKF model developed in this paper. Since we have tracked

a single point in the KF, we have used only one feature

point in the OF for comparisons. A final comparison is made

between Arbitrate OFKF and the particle filter at the end of

the section. In the series of the experiments, we have

specifically evaluated pan angle values.

6.1. Input datasets

Online data was collected using a Raytheon Infrared

Camera operated at 15 Hz frame rate and image size of
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Fig. 10. Angular position of Human Target with a noisy background versus time for (a) slow walking mode, (b) moderate walking mode and (c) fast

walking mode.
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640�480 pixels. The data collection procedure consisted

of a target moving in front of an infrared camera, which

was mounted on the Active Media robot shown in Fig. 6.

Data was collected for the three modes of walking: slow,

moderate and fast. In slow walking mode, the target

moved slowly in front of the camera without taking any

sudden turns. In the moderate walking mode, the target

moved with moderate speed in front of the camera taking

smooth turns. In the fast walking mode, the target moved

with high velocity taking sudden turns during the course

of its motion.

Fig. 7a–c is collections of images that show the various

target types during their motion. Each of these images is

30 frames apart in the time reference. The white line, as

shown in Fig. 7, is the most salient image column, which

is our measured tracking location through our algorithms.

Instead of showing specific Human Target tracking

results, we have evaluated three different target cases.

Fig. 7a is a ground proof experiment, which involves a

simple target in a noiseless background, Fig. 7b involves a

human target walking in a low noise environment and

Fig. 7c shows a human target walking in a very noisy

environment. The ground proof was examined using a

simple hot spot shown in Fig. 7a to make sure whether

the experimental condition was under control or not. The

noise was simulated using numerous light and heat

sources in the area of the experiment to attract the

thermal cameras.

In any Kalman filter implementation, the next state

prediction depends on the previous state vector. So without

correct initialization the predicted values become erroneous.

The piecewise constant acceleration model carries the

assumption that the initial state vector is equal to zero,

i.e. the initial angular position of the target is zero (with

respect to Sick) and the initial velocity of the target is zero.

Mathematically, x0 ¼
p0

v0

" #

¼
0

0

� �

.

In optical flow, we don’t have to initialize any variable

because we are not using an initial state vector.

6.2. Prediction accuracy of OF, KF and arbitrate OFKF

In fact, moderate and slow walking modes, both the

algorithms track well when the target moves in one

direction, i.e. along a straight line. However, during a
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Fig. 11. Pan angle versus (X, Y) coordinate of Human Target in image plane for KF, OF, arbitrate OFKF and Actual.

Table 1

Error analysis of Arbitrate OFKF for (A) Ground Proof, (B) Human Target and (C) Human Target with noisy background.

Filter Slow walking Moderate walking Fast walking

Avg. err. (o) OS (%) Avg. (o) Max. (o) Avg. err. (o) OS (%) Avg. (o) Max. (o) Avg. err. (o) OS (%) Avg. (o) Max. (o)

(A)

OF 2.1171.36 30.30 2.13 5.85 2.1171.43 33.57 2.09 13.22 2.5972.75 31.76 2.58 37.58

KF 1.9071.82 34.78 2.07 6.62 2.6372.35 37.02 2.99 8.12 2.6672.71 28.81 3.06 19.57

Arbitrate OFKF 1.6971.30 26.37 1.76 5.85 2.0671.69 29.30 2.23 7.80 2.1171.88 21.23 2.20 19.57

(B)

OF 2.0474.15 8.88 1.89 45.98 2.8674.57 12.77 2.73 41.25 3.3174.96 15.02 3.33 44.33

KF 1.7672.44 6.66 1.71 23.80 2.6973.36 14.07 3.29 20.05 3.6473.68 20.18 4.50 24.16

Arbitrate OFKF 1.7473.43 7.98 1.68 40.44 2.3473.73 11.96 2.52 41.25 2.6874.24 14.11 3.06 39.42

(C)

OF 2.5371.94 19.53 2.49 20.58 2.8672.15 45.58 2.81 35.50 2.8872.39 27.30 2.86 23.06

KF 1.0071.02 13.98 1.40 9.16 1.8071.71 36.32 2.30 16.89 3.5973.08 37.50 4.53 11.77

Arbitrate OFKF 1.3771.63 14.34 1.80 11.10 1.3071.63 34.66 1.79 16.89 1.7071.67 24.74 2.14 15.01
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walk if the target takes a sudden turn, OF gives a better

estimate of angular position of the target as compared to

the KF as shown in Figs. 8–10.

The main problem lies in the fact that in KF, the

prediction of present state is based on the previous state

vector. So when the target takes a sudden turn, the KF

has no way to predict using only the previous data. On

the contrary, the KF would predict a motion along the

previous direction. The OF uses positional coordinates of

the target in the previous frame to predict the pan angle.

Figs. 8–10 show that optical flow works better than the

Kalman filter in regions of sharp turns and zigzag motion.

As shown in Figs. 8–10 the error in angular position at

turning points is the highest in the fast walking mode and

the lowest in the slow walking mode. When the target

walks slowly, the acceleration change on a turn is very

small when compared to the same value for a fast walk.

When we compared the targets variations among

Figs. 8–10, the prediction performance of ground proof

object was the best, and the background noise was the

worst, although the difference between them was the

modest.

The arbitration of either KF and OF will provide a good

estimation of the angular position of the target. Depend-

ing on the situation we will decide which value should be

fed to the robot for efficient tracking. We have used (41)

for estimating the required pan angle. The Arbitrate OFKF

gives relatively less error in estimation of angular position

for all walking mode as shown in Figs. 8–10.

A 3-D plot of pan angle corresponding to the (x, y)

coordinate of target in the image plane is shown in Fig. 11.

Fig. 11 shows that the pan angle estimated by Arbitrate

OFKF closely matches the actual value of the pan angle.

We have chosen OF prediction at sharp turning points

(shown by rectangular boxes in Fig. 11) and for the rest of

the motion we have followed the KF prediction. It is thus

evident that the arbitrate OFKF works better than either

the KF or the OF individually.

6.3. Prediction error with overshoot

This section presents statistical analysis of the errors in

the prediction of pan angle by OF and KF. The error in

angular position shows how precisely the algorithm

estimates the angular position of the target. A compre-

hensive table for average error and Overshoot (OS) for OF

and KF is shown in Table 1.

We defined the percentage overshoot (OS) as the num-

ber of times the error in the estimation of the pan angle

exceeded a certain threshold value. Since a large error

generally occurs during points where the target turns, the

OS can indirectly give us information about turning point

prediction accuracy. From Table 1, it is evident that the KF,

in general, works better than the OF for all three walking

modes. Around turning points, however, the OS of the error

is relatively less in the OF than KF.

The percentage OS of the error is drastically improved

by the Arbitrate OFKF as shown in Fig. 12. As shown in

Table 1, it is clear that Arbitrate OFKF predicts the angular

position more accurately than OF and KF for all three

modes of walking. The percentage OS of the error is

improved by the Arbitrate OFKF as shown in Fig. 12. As

shown in Table 1, it is clear that Arbitrate OFKF predicts

the angular position much more accurately than OF and

KF especially in the moderate and fast modes of walking.

The outcomes of Table 1 Error Analysis shows (A)

Ground Proof has reached the best prediction performance,

although (C) Human Target with Noise background has

not degenerated as expected, compared to (B) Human

Target case.

6.4. Execution time

The execution time per iteration was observed for the

KF, the OF and the arbitrate OFKF. Since the number of

mathematical operations involved per iteration in the KF

Fig. 12. Comparison of average overshoot angle for the turning periods

for the three walking modes for (a) Ground Proof, (b) Human Target and

(c) Human Target with noisy background.
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algorithm is higher than that required in the OF algorithms,

the time required for the OF was experimentally confirmed

to be lower than that required for the KF computations. In

fact, the OF algorithms took only 58% of the time taken by

the KF algorithm. The data was collected for the 6.5 s of

motion of the man in front of the infrared camera operated

at 15 frames per second, and the corresponding plot of the

time required per iteration is shown in Fig. 13.

Regarding time complexity, the arbitrate OFKF will

require, on average, 2.5�10�5 s more than the KF. It is

much less, however, in comparison to the time interval

between two consecutive frames, which is equal to

0.067 s, so the time factor won’t matter much. However,

we gain in accuracy when we use the arbitrate OFKF.

6.5. Performance analysis of arbitrate OFKF versus particle

filter

Finally in Table 2, we compared the overall perfor-

mance of arbitrate OFKF versus particle filter [47] using

Human Target in the different speed settings as shown.

The particle filter was initialized with 50 particles and its

likelihood was measured by a Gaussian weight (Fig. 14).

In all walking modes, the filters had similar perfor-

mances. The particle filter had less error on average from

the measured track; however it also had a higher percent

overshoot. Most notably, the particle filter required much

more computation time per frame than the arbitrate OFKF

algorithm.

7. Conclusion

In this paper, a novel tracking method is proposed,

which is able to predict a target position very efficiently

even if the target object turns suddenly during its motion.

The proposed method is based on an arbitration between

OF and KF. It takes into consideration the trajectory of the

target motion, and gives a much better result of tracking

than individual OF or KF filters. In this paper, attention

has been drawn to different scenarios where either the KF

works better or the OF does. A comparison has also been

made with the particle filter and been shown to have a

similar performance with a great decrease in computation

time. Our algorithm for the arbitrate OFKF has been

successfully tested on our mobile robot in real-time

tracking of a man in an indoor lab environment. As a part

of future work, we will address the design of an autono-

mous mobile robot, which can track two or more targets

simultaneously. We also feel our system might be made

even more robust and efficient by insertion of other

sensors resulting in asynchronous and heterogeneous

multiple sensory fusions.
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Fig. 13. Computation time required for each iteration versus no. of

iteration for (a) Ground Proof, (b) Human Target and (c) Human Target

with noisy background.

Table 2

Comparison of Arbitrate OFKF versus Particle Filter for Human Target.

Filter Slow walking Moderate walking Fast walking

Error (o) OS

(%)

Computation time

(ms)

Error (o) OS

(%)

Computation time

(ms)

Error (o) OS

(%)

Computation time

(ms)

Arbitrate

OFKF

1.2173.45 5.56 0.08 1.5973.14 9.24 0.08 1.8373.56 11.91 0.09

Particle Filter 1.1474.40 4.43 1.17 1.3974.24 11.44 1.16 1.6274.37 15.67 1.18
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Fig. 14. Comparison of arbitrate OFKF versus a Particle Filter tracking

Human Target in (a) slow walking mode, (b) moderate walking mode

and (c) fast walking mode.

Please cite this article as: Y. Motai, et al., Human tracking from a mobile agent: Optical flow and Kalman
filter arbitration, Signal Process. Image Commun. (2011), doi:10.1016/j.image.2011.06.005

Y. Motai et al. / Signal Processing: Image Communication ] (]]]]) ]]]–]]]12

dx.doi.org/10.1016/j.image.2011.06.005


[27] J. Schilling Robert, Fundamentals of Robotics Analysis and Control,

in: B. Horn, B. Schunck (Eds.), ‘‘Determining Optical Flow’’. Artificial

Intelligence, vol. 17, Prentice-Hall, Englewood Cliffs, N.J., 1990,

pp. 185–203in: B. Horn, B. Schunck (Eds.), ‘‘Determining Optical

Flow’’. Artificial Intelligence, vol. 17, Prentice-Hall, Englewood Cliffs,

N.J., 1981, pp. 185–203.

[28] B. Horn, B. Schunck, Determining optical flow, Artificial Intelligence

17 (1981) 185–203.

[29] N. Sawasaki, T. Morita, T. Uchiyama, Design and implementation of

high-speed visual tracking systems for real-time motion analysis,

IEEE International Conference on Pattern Recognition 3 (1996)

478–483.

[30] Kazutoshi Koga, Hidetoshi Miike, Determining optical flow from

sequential images, Systems and Computers in Japan 19 (8) (1988)

77–86.

[31] G.D. Hager, P.N. Belhumeur, efficient region tracking with para-

metric models of geometry and illumination, IEEE Transactions on

Pattern Analysis and Machine Intelligence 20 (10) (1998)

1025–1039.

[32] A. Blake, R. Curwen, A. Zisserman, A framework for spatiotemporal

control in the tracking of visual contours, International Journal of

Computer Vision 11 (2) (1993) 127–145.

[33] J.S. Park, J.H. Han, Contour matching: a curvature-based approach,

Image and Vision Computing 16 (1998) 181–189.

[34] W.G. Yau, Design and implementation of visual servoing system for

realistic air target tracking, Master’s thesis, Dept. Elec. Eng.,

National Taiwan University, 2000.

[35] J. Mataric Maja, The Robotics Primer, MIT Press, Cambridge, 2007,

p. 300.

[36] H.A. Rowley, S. Baluja, T. Kanade, Neural network-based face

detection, IEEE Transactions on Pattern Analysis and Machine

Intelligence 20 (1998) 23–38.

[37] P. Liberatore, M. Schaerf, Arbitration (or how to merge knowledge

bases), IEEE Transactions on Knowledge and Data Engineering 10

(1998) 76–90.

[38] R.O. Atienza, M.H. Ang, A flexible control architecture for mobile
robots: an application for a walking robot, Journal of Intelligent &
Robotic Systems 30 (2001) 29–48.

[39] K. Jung, Neural network-based text location in color images,
Pattern Recognition Letters 22 (2001) 1503–1515.

[40] T. Kampke, Functional arbitration for multipurpose senso-motory
systems, Robotics and Autonomous Systems 27 (1999) 129–150.

[41] M. Kam, X.X. Zhu, P. Kalata, Sensor fusion for mobile robot
navigation, Proceedings of the IEEE 85 (1997) 108–119.

[42] R.T. Pack, D. Mitchell Wilkes, K. Kawamura, A software architecture
for integrated service robot development, in: Proceedings of the
IEEE International Conference on Systems, Man, and Cybernetics,
vol. 4, 1997, pp. 3774–3779.

[43] H. Himberg, Y. Motai, Head orientation prediction: delta quaternion
versus quaternion, IEEE Transactions on Systems, Man and Cyber-
netics. Part B: Cybernetics 39 (6) (2009) 1382–1392.

[44] H. Himberg, Y. Motai, C. Barrios, R-Adaptive Kalman filtering
approach to estimate head orientation for driving simulator,
Proceedings of International IEEE Conference on Intelligent Trans-
portation Systems (2006) 851–857.

[45] C. Barrios, H. Himberg, Y. Motai, A. Sadek, Multiple model frame-
work of adaptive extended Kalman filtering for predicting vehicle
location, Proceedings of International IEEE Conference on Intelli-
gent Transportation Systems (2006) 1053–1059.

[46] F. Tafazzoli, R. Safabakhsh, Model-based human gait recognition
using leg and arm movements, Engineering Applications of Artifi-
cial Intelligence 23 (2006) 1237–1246.

[47] M. Isard, A. Blake, CONDENSATION—conditional density propaga-
tion for visual tracking, International Journal of Computer Vision 29
(1) (1998) 5–28.

[48] A. Doulamis, N. Matsatsinis, Visual understanding industrial work-
flows under uncertainty on distributed service oriented architec-
tures, Future Generation Computer Systems, in press.

[49] Y. Motai, Visual-based human–robotic interaction for extracting
salient features of an industrial object for an automated assembly
system, Special Issue on Machine Vision, International Journal of
Computers in Industry 56 (8–9) (2005) 943–957.

Please cite this article as: Y. Motai, et al., Human tracking from a mobile agent: Optical flow and Kalman
filter arbitration, Signal Process. Image Commun. (2011), doi:10.1016/j.image.2011.06.005

Y. Motai et al. / Signal Processing: Image Communication ] (]]]]) ]]]–]]] 13

dx.doi.org/10.1016/j.image.2011.06.005

	Human tracking from a mobile agent: Optical flow and Kalman filter arbitration
	Introduction
	Related works
	Mobile robot
	Kalman filter-based target tracking
	Optical flow-based target tracking
	Arbitration

	Traditional methods: Framing the model of target tracking
	Kalman filter using piecewise constant acceleration model
	Feedback mechanism

	Proposed pan-tilt operation
	Arbitration of Optical flow and Kalman filter
	Experimental results
	Input datasets
	Prediction accuracy of OF, KF and arbitrate OFKF
	Prediction error with overshoot
	Execution time
	Performance analysis of arbitrate OFKF versus particle filter

	Conclusion
	Acknowledgment
	References


