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Abstract

In recent years, automated human tracking over camera networks is getting essential for video surveillance. The

tasks of tracking human over camera networks are not only inherently challenging due to changing human

appearance, but also have enormous potentials for a wide range of practical applications, ranging from security

surveillance to retail and health care. This review paper surveys the most widely used techniques and recent

advances for human tracking over camera networks. Two important functional modules for the human tracking

over camera networks are addressed, including human tracking within a camera and human tracking across non-

overlapping cameras. The core techniques of human tracking within a camera are discussed based on two aspects,

i.e., generative trackers and discriminative trackers. The core techniques of human tracking across non-overlapping

cameras are then discussed based on the aspects of human re-identification, camera-link model-based tracking and

graph model-based tracking. Our survey aims to address existing problems, challenges, and future research

directions based on the analyses of the current progress made toward human tracking techniques over camera

networks.

Keywords: Human tracking, Generative trackers, Discriminative trackers, Human re-identification, Camera-link

model-based tracking, Graph model-based tracking

1 Review
1.1 Introduction

Nowadays, the growing demand of video surveillance sys-

tems in some applications such as public security, transpor-

tation control, defense, military, urban planning, and

business information statistics has attracted increasing at-

tention, and a large number of networked video surveil-

lance systems are getting installed in public places, for

instance, airports, subways, railway stations, highways,

parking lots, banks, schools, shopping malls, and military

areas. These video surveillance systems not only effectively

protect the security of public facilities and citizens, but also

seamlessly help to transform to smart city, which has

attracted more and more scientific researchers to invest

huge funds in research related to intelligent video surveil-

lance. It is observed that the main focus of the current re-

search on intelligent video surveillance mainly lies on video

object detection/tracking, and video object activity analysis/

recognition. The video object tracking is not only one of

the most important techniques in intelligent video surveil-

lance, but also the base of high-level video processing and

applications such as the subsequent video object activity

analysis and recognition. However, in the video object

tracking, human tracking is the most challenging since

human may vary greatly in appearance on account of

changes in illumination and viewpoint, background clutter,

occlusion, non-rigid deformations, intra-class variability in

shape and pose. Human tracking includes human tracking

within a camera and human tracking across multiple

cameras. When a person enters into the field of view

(FOV) of a camera, human tracking within a camera is

needed. However, when he/she leaves the FOV, the

human information is no longer available, thus the

limited FOV of a camera cannot meet the needs of

wide-area human tracking. In order to widen the FOV,

human tracking across multiple cameras has to be

used since video streams across multiple cameras covering

a wider range of areas, which helps to analyze global activ-

ities in the real world. Tracking human across multiple
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cameras includes two different scenarios, i.e., overlapping

camera views and non-overlapping camera views. In the

overlapping camera views’ scenario, there is a common

FOV area between two cameras’ views, and human located

in the common area (as shown in the area between cam-

eras 1 and 2 in Fig. 1) will appear simultaneously in both

cameras’ views. In the non-overlapping camera views’ sce-

nario, there is not a common FOV area between two cam-

eras’ views, i.e., every camera’s view is completely

disjointed, and human cannot be seen in the so-called

blind area (as shown in the area between cameras 2 and 3

in Fig. 1). Compared with human tracking across overlap-

ping cameras, human tracking across non-overlapping

cameras will be more challenging and practical. As a

result, human tracking over camera networks is neces-

sary and quite challenging in the intelligent video

surveillance.

Many issues have made human tracking over camera

networks very challenging, including real-time human

tracking, variable number of human tracking, and chan-

ging human appearance caused by several complicated

attributes such as illumination variation, occlusion, non-

rigid shape deformation, background clutters, pose vari-

ation within a camera, and dramatically varying human

appearance due to greatly changing illuminations, view-

points, and intra-class variability in shape and pose

across non-overlapping cameras. In order to deal with

the above challenges during human tracking over cam-

era networks, numerous researchers have proposed a

variety of tracking approaches. Different approaches

focus on solving different issues in human tracking over

camera networks. Typically, they attempt to answer the

following questions:

� What should be tracked such as bounding box,

ellipse, articulation block, and contour?

� What visual features and their pros/cons are robust

and suitable for various human tracking tasks?

� Which kinds of statistical learning approaches and

the associated properties are appropriate for human

tracking?

Although there are some well-known surveys [1–3] in

terms of object tracking. However, existing surveys

mainly focus on object tracking within a camera. In this

survey, we focus on human tracking over camera net-

works. The main contributions of this survey are as

follows:

1) We divide human tracking over camera networks

into two inter-related modules: human tracking

within a camera and human tracking across non-

overlapping cameras.

2) We review the literatures of human tracking within a

camera based on the correlation among the human

objects. Specifically, we hierarchically categorize the

human tracking approaches within a camera into

generative trackers and discriminative trackers.

3) We review the literatures of human tracking across

non-overlapping cameras from human objects’

matching viewpoint. Specifically, we hierarchically

categorize the human tracking across non-

overlapping cameras into human re-identification

(re-id), camera-link model (CLM)-based tracking

and graph model (GM)-based tracking.

The rest of the paper is organized as follows: Section 2

gives an overview of the taxonomy of human tracking. Sec-

tion 3 reviews some core techniques for human tracking

within a camera. Section 4 reviews some core techniques for

human tracking across non-overlapping cameras, followed

by the Conclusions in Section 5.

2 Taxonomy of human tracking
Figure 2 shows the taxonomy of human tracking over

camera networks, which is composed of two crucial

Camera 2 Camera 3

Blind area

Camera 1

Common 

area

Fig. 1 An example for the topology of a camera network
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functional modules, i.e., human tracking within a camera

and human tracking across non-overlapping cameras.

The human tracking within a camera focuses on locating

human objects in each frame of a given video sequence

from a camera, while the human tracking across non-

overlapping cameras concentrates on associating one

tracked human object from the FOV of a camera with

that from the FOV of another camera. Figure 3 shows

the inter-relation between both functional modules.

In the human tracking module within a camera, two

kinds of tracking methods including generative trackers

and discriminative trackers are discussed, as illustrated

by the tree-structured taxonomy in the left part of Fig. 2.

The generative trackers focus on searching the most

similar target candidate with the minimal reconstruction

error in each video frame, while the discriminative

trackers aim to separate targets from the background

through a classifier, and then to associate the targets

frame-by-frame. For a clear illustration of this module, a

more detailed literature review of human tracking within

a camera is given in Section 3.

As shown in the right part of Fig. 2, the human track-

ing module across non-overlapping cameras includes

three types of tracking methods, i.e., human re-id, CLM-

based tracking and GM-based tracking. The human re-

id focuses on using visual features of a human object to

match with those of the other human objects from

different cameras’ FOVs based on distance metrics. The

spatial (geometrical) relationship, e.g., how far away be-

tween a pair of cameras, of these cameras is usually not

considered in the process of human re-id. While the

CLM-based tracking concentrates on adopting available

training data in the corresponding entry/exit zone of

two adjacent or multiple neighboring cameras’ views to

estimate features’ mapping relationship (i.e., temporal-

spatial relationship and appearance relationship) called a

CLM, which can be applied to compensating for the fea-

ture differences before computing the feature distance

between both human objects across non-overlapping

cameras. From the perspective of the optimization

framework, the GM-based tracking aims to addressing

data association across cameras, which can be modeled

as a probabilistic graphical model that represents a set

of random variables and their conditional dependencies

via a directed acyclic graph (DAG), based on human

appearance and motion features. For a clear illustration

of this module, a detailed literature review of human

tracking within a camera is given in Section 4.

3 Human tracking within a camera
Human tracking within a camera generates the moving

trajectories of human objects over time by locating their

positions in each frame of a given video sequence. Based

on the correlation among the human objects, the human

Human tracking 
within a camera 

Section 3.1

Generative 
trackers

Discriminative 
trackers

Section 3.2

Human tracking across 
non-overlapping cameras 

Human re-id CLM based tracking

Section 4.1 Section 4.2

Human tracking 
over camera networks 

GM based tracking

Section 4.3

Fig. 2 The taxonomy of human tracking over camera networks

Camera i Camera j

Human tracking

within a camera

Human tracking across

non-overlapping cameras

Video sequence

Human tracking

within a camera

Video sequence

Fig. 3 The inter-relation between functional modules of human tracking over camera networks
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tracking within a camera can be categorized as two

types, the generative trackers and the discriminative

trackers.

For the generative trackers, each target location and

correspondence are estimated by iteratively updating

respective location obtained from the previous frame.

During the iterative search process for human objects, in

order to avoid exhaustive search of the new target location

to reduce the cost of computation, the most widely used

tracking methods include Kalman filtering (KF) [4–7],

Particle filtering (PF) [8–11], and kernel-based tracking

(KT) [12–16]. KF expresses a target movement as a dy-

namic process over the temporal frames and uses the pre-

vious target state to predict the next location (and

possible size), and then uses the current observation to

update the target location. KF can be widely applied to lin-

ear/Gaussian real-time tracking. However, when the target

state variables do not follow the linear state transition and

measurement relationship with Gaussian noise distribu-

tions, the KF will give poor state variable estimation re-

sults. Moreover, this tracking method cannot deal with

target occlusion problem. PF realizes recursive Bayesian

filtering through sequential Monte Carlo sampling based

on particle representations of probability densities with as-

sociated weights. Since the PF generalizes the traditional

KF and can be applied to solving non-linear/non-Gaussian

tracking problems, it has a wider range of applications due

to the superiority in the non-linear and non-Gaussian

conditions as well as the multi-modal processing ability.

However, PF has relatively high computational complexity,

resulting in difficulty in achieving real-time tracking. KT

adopts the mean shift (a gradient descent search based

optimization method to find local optimal solution) search

procedure to find the target candidate which has the high-

est similarity to the target model, that is represented by a

spatially weighted color histogram. KT has gained more

popularity for its fast convergence speed and low compu-

tation requirement, and thus can achieve real-time track-

ing. However, when a target is occluded, the conventional

KT tends to lose the tracked target because of mismatch

between target model and target candidate. Multiple-

kernel tracking (MKT) can help to solve the target occlu-

sion problem. The MKT, which extends the conventional

KT through representing the tracked target model with

multiple kernels, e.g., two kernels (a kernel is expressed as

an ellipse) are used to represent the upper/lower half of

the human body separately, as shown in Fig. 4. When the

lower half of the human body is occluded (left of Fig. 4),

using the kernel histogram of the visible upper half of

the human body as the target model (right of Fig. 4),

the robust human tracking under occlusion can thus

be achieved [13]. In order to track the objects more

effectively, some constraints among kernels need be

considered in the MKT.

While for the discriminative trackers, all the human

locations in each video frame are first obtained through

a human detection algorithm [17], and then the tracker

jointly establishes these human objects’ correspondences

across frames through a target association technique.

The most widely used target association techniques in-

clude joint probability data association filtering (JPDAF)

[18–21], multiple-hypothesis tracking (MHT) [22–25],

and flow network framework (FNF) [26–29]. The JPDAF

computes a Bayesian estimate of the correspondence be-

tween two consecutive frames, based on calculating all

possible target-measurement association probabilities

jointly. However, JPDAF only applied to performing data

association between a fixed number of tracked targets,

otherwise the tracking accuracy will be significantly de-

graded. The MHT overcomes this limitation by attempt-

ing to track all of possible associated hypothesis over

several temporal frames and then to determine the most

likely target correspondences in the several detected ob-

servations. More specifically, the MHT performs data

association through building a tree of potential track hy-

potheses for each candidate target, where the likelihood

of each track needs be calculated, and the most likely

combination of tracks is selected as the finalized meas-

urement association. However, with the increase in the

number of associated objects, its computational cost will

increase exponentially. The FNF formulates the target

association problem as a minimum cost flow network

problem with global optimization for all of the target

trajectories. More specifically, the FNF represents the

number of targets in the video/image as the amount

of flow in the network, while the number of targets is

unknown in advance. The goal of the FNF is to

globally search for the amount of flow that produces

the minimum cost. FNF can effectively achieve multi-

target tracking. However, when there are a large number

of associated objects, it needs a very high computational

cost. Table 1 shows the list of the human tracking algo-

rithms within a camera.

Fig. 4 Red ellipses represent kernels. Single kernel (left) and two

kernels (right) with occlusion [13]
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3.1 Generative trackers

Generative trackers are widely applied to human track-

ing within a camera. Based on different iterative search

method for human objects, the generative trackers can

be divided into three types, i.e., KF, PF, and KT. Table 2

lists qualitative comparison of generative trackers-based

human tracking within a camera.

3.1.1 KF

KF, which has been widely used for tracking problems,

can be utilized to predict target motion information to

reduce the search area of moving objects. Jang et al. [4]

propose active models-based KF tracking algorithm to

handle inter-frame changes of non-rigid human objects

such as illumination changes and shape deformation.

This method applies the framework of energy

minimization to active models which characterizes struc-

tural and regional features of a human object such as

edge, shape, color as well as texture, and hence, adapts

dynamically the changes of non-rigid human objects in

the consecutive video frames. Moreover, the proposed

algorithm adopts KF to predict human objects’ motion

information to reduce the search space during the hu-

man matching process. However, the proposed approach

is not applicable to track human objects in occlusion.

Jang et al. [5] further propose structural KF to handle

objects’ occlusion during the human tracking. The pro-

posed algorithm uses relational information of objects’

sub-regions to compensate the unreliable measurements

of occluded sub-regions. More specifically, the structural

KF is composed of two kinds of KFs: cell KF and relation

KF. The cell KF estimates motion information of each

sub-region of a human body, and the relation KF esti-

mates the relative relationship between two adjacent

sub-regions. The final estimation of a sub-region is ob-

tained through combining the involved KFs’ estimations.

Table 1 Human tracking algorithms within a camera

Method Description Typical
techniques

Pros Cons

Generative
trackers

To estimate each target’s location and
correspondence through searching the
most similar target candidate with the
minimal reconstruction error

KF Real-time tracking Subject to linear target state transition
and Gaussian noise distributions;
apt to lose the tracked target when
a target is occluded

PF Non-linear/non-Gaussian tracking
and multi-modal processing

High computational complexity

KT Real-time tracking Cannot deal with long-term total target
occlusion

Discriminative
trackers

To separate targets from the background
through a classifier, and then jointly to
establish these targets’ correspondences
across frames through a target association
algorithm

JPDAF Multi-target tracking Subject to data association between
a fixed number of tracked targets

MHT Variable number of multi-target
tracking under occlusion

Vitally high computational requirement

FNF Variable number of multi-target
tracking under occlusion

Cannot effectively deal with long-time
target occlusion

Table 2 Qualitative comparison of generative trackers-based human tracking within a camera

Item no. Used generative trackers Speed Occlusion Scale change Shape deformation

1 Active models-based KF (Jang et al. [4]) High × √ √

2 Structural KF (Jang et al. [5]) Moderate √ √ √

3 adaptive KF (Weng et al. [6]) High √ √ √

4 features-based KF (Li et al. [7]) Moderate √ √ √

5 MCMC-based PF (Chong et al. [8]) Low √ √ √

6 Swarm intelligence-based PF (Zhang et al. [9]) Moderate × √ √

7 Occlusion-aware PF (Meshgi et al. [10]) Low √ √ √

8 interactive PF (Yang et al. [11]) Low √ √ √

9 Eigenshape-based KT (Liu et al. [12]) High √ √ √

10 adaptive MKT (Chu et al. [13]) High √ √ √

11 fragments-based MKT (Fang et al. [14]) High √ √ √

12 deformable MKT (Hou et al. [15, 16]) Moderate √ √ √

Symbols √ and× mean that the used generative trackers-based human tracking within a camera can or cannot deal with the situations of occlusion, scale change,

and shape deformation
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However, the proposed approach is difficult to select a

criterion to partition human objects’ sub-regions, espe-

cially when tracking multiple human objects. Moreover,

it needs the other mechanism to judge each human ob-

ject’s degree of occlusion, resulting in a very complex

human tracking system. To overcome this drawback,

Weng et al. [6] propose a real-time and robust human

tracking algorithm in a real-world environment, such as

occlusion, lighting changes, fast moving human object,

etc., based on adaptive KF, which allows the parameter

estimations of KF to adjust automatically. More specific-

ally, the proposed algorithm constructs a motion model

to build the system state, which is then applied to pre-

diction step, and uses color features in HSI color space

to detect the moving human object so as to obtain the

system measurement, where occlusion ratio is used to

adaptively adjust the error covariance of KF. Li et al. [7]

propose a multi-target (i.e., moving human/vehicle)

tracking algorithm using a KF motion model, based on

features including the center of mass and tracking win-

dow of moving targets. More specifically, the proposed

algorithm uses the background subtraction method to

detect and extract moving objects, and then the detec-

tion results are used to determine whether there is a

merge/split among targets. When targets’ regions have

merged together, multiple moving targets are regarded

as a whole target to track for the moment, while when

splitting multiple moving targets, feature matching is

used to establish corresponding relationship of multiple

merged targets, such an example of tracking three hu-

man targets in an outdoor scene is shown in Fig. 5. In

short, the KF-based tracking algorithm can effectively

track objects, but it is only applicable for linear/Gaussian

tracking problems.

3.1.2 PF

PF, which generalizes the traditional KF, can be applied

to non-linear/non-Gaussian tracking problems. The

Markov Chain Monte Carlo (MCMC) method, which

samples from a probability distribution based on con-

structing a Markov chain that has the desired distribu-

tion as its equilibrium distribution, is well applied to

tracking problems to overcome the limitation of import-

ant sampling of original PF in high dimensional state

space. Cong et al. [8] propose a robust MCMC-based PF

tracking framework, which combines a color-based ob-

servation model with detection confidence density de-

rived from histograms of oriented gradients (HOG)

descriptor, and adopts MCMC-based particle algorithm

to estimate the posterior distribution of the state of a

human object to solve the robust human tracking prob-

lem. To further handle sample impoverishment problem

suffered by conventional PF, Zhang et al. [9] propose a

swarm intelligence-based PF tracking algorithm, where

particles are firstly propagated through the state transi-

tion model, and then corporately evolved according to

particle swarm optimization (PSO) iterations based on

the cognitive and social aspects of particle populations.

The proposed algorithm regards particles as intelligent

individuals, and these particles evolve by communicating

and cooperating with each other. In this way, the newest

observations are gradually considered to approximate

the sampling results from the optimal proposal distribu-

tion and hence overcome the sample impoverishment

problem suffered by conventional PF. To deal with the

challenging occlusion problem during human tracking,

Meshgi et al. [10] propose an occlusion-aware particle

filter framework to deal with complex and persistent oc-

clusions during human tracking. More specifically, the

proposed method adopts a binary occlusion flag attached

to each particle and treats occlusions in a probabilistic

manner. The “occlusion flag” signals whether the corre-

sponding bounding box is occluded, and then triggers

the stochastic mechanism to enlarge the objects’ search

area to accommodate possible trajectory changes during

occlusions, meanwhile stops the template updating to

prevent the model from being corrupted by irrelevant

data. Yang et al. [11] propose interactive PF with

(a)                           (b)                        (c)

Fig. 5 Illustration of tracking three human targets in an outdoor scene. a Three human targets tracked with red rectangle bounding boxes labeled

1, 2, and 3. b Target labeled 2 and target labeled 3 merge together as a new target labeled 4. c Merged targets split into target labeled 2 and 3

by feature matching [7]
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occlusion handing for multi-person tracking. More spe-

cifically, they use RGB color space model of each human

object obtained by human detection operation, and then

use the PF on each human object. Further, the proposed

algorithm adopts a particle location conflict set to judge

the occlusion relationship between different human ob-

jects, and chooses the right appearance model adaptively

for similarity measurement to update the corresponding

particle weights, thus successfully resolves a fully mutual

occlusion problem when tracking multiple pedestrians,

such an example of tracking multiple human targets in

an outdoor scene is shown in Fig. 6. In short, the PF-

based tracking algorithms can effectively track the mov-

ing human objects, applicable to both linear/Gaussian

and non-linear/non-Gaussian tracking problems. How-

ever, it requires matching a large number of particles to

approximate the posterior probability distribution of the

target state, hence it is not applicable to real-time object

tracking.

3.1.3 KT

KT has been widely used for real-time target tracking

problems. During the target tracking, when a target is

moving toward or away from a camera, the scale of the

target often changes over temporal frames. In order to

overcome the problem, by taking the merit from asym-

metric kernel template, Liu et al. [12] propose an eigen-

shape kernel-based mean shift tracking algorithm to

handle the scale changes of tracked objects. The so-

called eigenshape kernel refers to an adaptively changing

kernel shape by depending on the projection of each

tracking window into an eigenshape space. The pro-

posed algorithm utilizes the eigenshape representation,

which is obtained by using a principle component ana-

lysis method, to construct an arbitrarily shaped kernel so

as to adapt to object shape. By making the best of posi-

tive correlation between the target size and the corre-

sponding kernel bandwidth, Chu et al. [13] adopt the

gradient of the density estimator with respect to the ker-

nel bandwidth to update the scale of tracked objects.

The proposed scale-updating method is a simple and

effective solution to deal with the target scale change

issue. In addition, a target often suffers from the occlu-

sion during target tracking, especially in crowd scenes; it

is very difficult for the KT to robustly track the target

since single kernel is insufficient to represent the target.

To overcome this drawback, MKT is thus proposed in

recent years [13–16]. Fang et al. [14] propose MKT

based on fragments to deal with occlusion issue. The

tracked target is divided into several fragments by inte-

grating the log-likelihood ratio image and morphological

operation, and each fragment is tracked through a kernel

using the mean shift procedure. Further, to make the

best of the inter-relationship among kernels that can

provide useful information for tracking, Chu et al. [13]

propose adaptive MKT based on the projected gradient

optimization algorithm, which combines the total cost

function with the constraint functions that defined the

inter-relationship among kernels, and hence enables

multiple kernels that represents different human body

parts to find the best match of the tracked human ob-

jects under predefined geometric constraints. However,

arbitrary kernel partitioning makes it difficult to define

effective geometric constraints among kernels. To better

deal with this issue to improve the robustness and effect-

iveness under occlusion further, Hou et al. [15, 16]

propose a deformable multiple-kernel-based human

tracking system using a moving camera. This system

regards each part model of a deformable part model

(DPM) detected human [30] as a kernel, where the DPM

represents a human object by a so-called star model,

that is composed of a coarse root filter and several

higher resolution part filters as shown in Fig. 7, and adopts

the deformation cost provided by the DPM detector to re-

strict the displacement of kernels during human tracking.

Moreover, the proposed algorithm iteratively shifts the

(a)                           (b)                        (c)

Fig. 6 Illustration of tracking multiple human targets in an outdoor scene. a Human targets tracked with different color rectangle bounding

boxes. b Two human targets tracked successfully under fully mutual occlusion with a red/green rectangle bounding box. c Two human targets

split correctly after fully mutual occlusion with a red/green rectangle bounding box[11]
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kernels based on kernel histogram (i.e., spatially weighted

color histogram) and histogram of oriented gradient

(HOG) [31] in each video frame, and hence enables a ro-

bust and efficient human tracking solution without train-

ing required. In short, KT can achieve effective and robust

as well as real-time human tracking by selecting excellent

kernel function and sufficient human object representa-

tion. However, when a pedestrian move too fast or is to-

tally occluded for a long time, the KT tends to lose the

tracked human target.

3.2 Discriminative trackers

Discriminative trackers are another widely applied human

tracking technique within a camera. Based on different

disposal method of the human objects’ association, the

joint multiple-human tracking can be divided into three

categories, i.e., JPDAF, MHT, and FNF. Table 3 lists quali-

tative comparison of discriminative trackers-based human

tracking within a camera.

3.2.1 JPDAF

JPDAF is one of widely used techniques for data associ-

ation in multi-target tracking. It jointly achieves multi-

target tracking by associating all measurements with

each track, where a track is defined through a sequence

of measurements assumed to derive from the same ob-

ject. Occlusion between tracked objects is one of the

most difficult problems in multi-target tracking. To

solve the issue, Rasmussen et al. [18] propose to track

complex visual objects based on the JPDAF algorithm,

where a related technique called Joint Likelihood Filter

(JLF), i.e., relating the exclusion principle at the heart of

the JPDAF to the method of masking out image data, is

used to deal with occlusions between tracked objects.

However, this method calls for very high computational

requirements with the number of associated objects in-

creasing. To take full advantage of more available infor-

mation to further improve the tracking performance,

Schulz et al. [19] propose sample-based JPDAF for track-

ing multiple moving human objects using a mobile

robot, where the JPDAF algorithm is directly applied to

the sample sets of the individual particle filter to deter-

mine the correspondence between the individual object

and measurement. Moreover, the proposed approach

adopts different features extracted from consecutive sen-

sor measurements to explicitly deal with occlusions.

However, the proposed method adopts fixed sample

sizes for the particle filters, and randomly introduces

samples whenever a new human object has been discov-

ered. Therefore, more intelligent sampling techniques

may result in improved results and faster convergence.

To better deal with complex inter-target occlusion prob-

lems, with the aid of clustering process and extracted

image features, Naqvi et al. [20] propose clustering and

JPDAF for coping with occlusions in multi-target

Root Filter Part Filter Deformation cost

Fig. 7 Illustration of a pre-trained DPM. (Left) A coarse DPM root filter.

(Middle) Several higher-resolution DPM part filters. (Right) Deformation

cost associated with each DPM part filter [30]

Table 3 Qualitative comparison of discriminative trackers-based human tracking within a camera

Item No. Used discriminative trackers Speed Occlusion Scale change Shape deformation

1 JLF-based JPDAF (Rasmussen et al. [18]) Low √ √ √

2 Sample-based JPDAF (Schulz et al. [19]) Low √ √ √

3 Clustering-based JPDAF (Naqvi et al. [20]) Low √ √ √

4 JPDAF revisited (Rezatofighi et al. [21]) Moderate √ √ √

5 Reliability measure-driven MHT (Zúñiga et al. [22]) High √ √ √

6 MHT revisited (Kim et al. [23]) Moderate √ √ √

7 Multiple association-based MHT (Joo et al. [24]) High √ √ √

8 Hierarchical MHT (Zulkifley et al. [25]) Low √ √ √

9 EOM-based FNF (Zhang et al. [26]) High √ √ √

10 Greedy algorithms-based FNF (Pirsiavash et al. [27]) High √ √ √

11 Lagrangian relaxation-based FNF (Butt et al. [28]) High √ √ √

12 Multi-way data association-based FNF (Wu et al. [29]) Low √ √ √

Symbol √ means that the used discriminative trackers-based human tracking within a camera can deal with the situations of occlusion, scale change, and

shape deformation
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tracking. More specifically, the proposed algorithm

adopts the variational Bayesian method for grouping

measurements into clusters, and then uses a JPDAF

technique to associate measurements to targets based on

clustering image features; occlusion problems can thus

be dealt with more effectively in multi-target tracking.

However, this method is difficult to deal with numerous

targets and measurements such as multiple human

objects tracking in crowded scenes. To overcome this

drawback, Rezatofighi et al. [21] revisit the JPDAF tech-

nique and propose a novel solution in formulating the

problem as an integer linear program, which is embed-

ded in a simple tracking framework. More specifically,

the proposed method reformulates the calculation of in-

dividual JPDA assignment scores as a series of integer

linear programs, and approximates the joint score by the

m-best solutions, which is efficiently calculated by using

a binary tree partition method, and hence addresses the

issue of high computational complexity associated with

JPDAF without forfeiting tracking performance. Such an

example of tracking multiple human targets in a

crowded scene is shown in Fig. 8. In short, the JPDAF is

a good technique for data association in multi-target

tracking, but it is very difficult to effectively track vari-

able number of objects, such as a new object entering

the field of view (FOV) or a tracked object exiting the

FOV. Also, the JPDAF establishes the targets’ corres-

pondence using only two frames information; sometimes

it will inevitably bring an incorrect correspondence.

3.2.2 MHT

MHT is another widely used technique for data associ-

ation in multi-target tracking. It maintains several

correspondence hypotheses for each object at each video

frame and establishes the targets’ correspondence

through several frames of observations. However, the

MHT has very high computational load since it exhaust-

ively enumerates all possible associations. To reduce the

computational requirement, Zúñiga et al. [22] propose a

real-time MHT-based multi-human tracking approach,

which can reliably track multiple human objects even in

noisy environments. The proposed approach takes ad-

vantage of a dual object model through combining 2D

with 3D features through reliability measures to generate

tracking hypotheses of the moving human objects in the

scene. Moreover, the proposed approach can manage

many-to-many human objects’ correspondences in real

time. Kim et al. [23] revisit the MHT technique in a

tracking-by-detection framework and propose a novel

and more efficient MHT algorithm, which embeds on-

line learned appearance models for each track hypothesis

through a regularized least squares framework, and

hence achieves pruning the hypothesis space more ef-

fectively and accurately so as to reduce the ambiguities

in data association. However, the above MHT algorithm

is still difficult to deal with complex interactions be-

tween the objects. To handle the issue, Joo et al. [24]

propose multiple association-based MHT algorithms,

relaxing the association constraint of conventional MHT

to allow association of a single target with multiple mea-

surements and multiple targets with a single measure-

ment. More specifically, the proposed method regards

the data association among multiple objects as a mini-

mum weight bipartite graph edge, which is defined as a

subset of edges such that each vertex is incident on at

least one edge and the sum of the weights in the subset

of edges is minimum, given an edge weighted graph. In

addition, they develop a polynomial-time algorithm to

generate only the best multiple association hypotheses,

achieving robust and real-time target tracking. Zulkifley

et al. [25] propose hierarchical two-level MHT for

multiple-object tracking. The first level adopts fore-

ground segmentation detection and clusters optical flow

detection to generate observations so as to obtain stable

velocity values and to filter out false track. The second

level combines the outputs of the first-level with two

additional virtual measurements based on appearance

modeling and a big foreground blob to find the best

combination of the observations. In short, the MHT al-

gorithm has a wider practical application in multi-target

tracking; it not only can track variable number of

objects, but also can deal with the occlusion problem.

Fig. 8 Illustration of tracking multiple human targets in a crowded scene [21]
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However, it has vitally high computational requirement,

especially with the increased number of associated

objects.

3.2.3 FNF

It becomes more and more popular in recent years to

solve target association problems based on FNF, which is

widely applied to multiple target tracking. Zhang et al.

[26] propose an explicit occlusion model (EOM)-based

minimal cost FNF to achieve robust multi-human track-

ing. The proposed approach maps the maximum a pos-

teriori (MAP) data association problem into a cost-flow

network with a non-overlap constraint on trajectories

and adopts a min-cost flow algorithm to find the global

optimal trajectory association in the network, given a set

of human object detection results in each video frame as

input observations, where observation likelihood and

transition probabilities are modeled as flow costs, and

non-overlapping trajectory hypotheses are modeled as

disjoint flow paths. In addition, the proposed approach

constructs an EOM through adding occlusion nodes and

constraints to the network to solve long-term inter-

object occlusion problems, and thus achieves real-time

and robust multi-human tracking. Following the min-

cost flow approach of EOM, Pirsiavash et al. [27] use a

cost function that needs estimating the number of

tracks, the objects’ birth (i.e., a new object entering the

FOV) and death state (i.e., a tracked object exiting the

FOV) to formulate the computational problem of multi-

object tracking. A greedy but globally optimal algorithm,

which adopts shortest path computations based on a

min-cost flow framework, is used for tracking a variable

number of human objects. Such an example of tracking

variable number of human objects in an outdoor scene

is shown in Fig. 9. However, the above methods do not

allow for path smoothness constraints. To solve the

issue further, Butt et al. [28] develop a graph formulation

that allows for encoding constant velocity constraints to

evaluate the path smoothness over three adjacent

frames, where candidate match pairs of observations are

viewed as nodes in the graph, allowing each graph edge

to encode an observation-based cost, and adopt the

principle of Lagrangian relaxation to form a modified-

cost network framework for global multi-human track-

ing. However, the above methods impose a constraint

that one measurement is associated with only one target,

i.e., one-to-one data association. To deal with many-to-

one or one-to-many data associations, Park et al. [29]

propose a general formulation called binary integer pro-

gramming to handle a min-cost data association prob-

lem among target-measurement data associations

through one-to-one, many-to-one, and one-to-many

data associations (also called multi-way data associa-

tions) to track multiple interacting targets in video

frames. The proposed method adopts Lagrangian dual

relaxation to solve the binary integer programming

problem, and hence achieves integer-valued solution

with smaller duality gap than classical linear program-

ming (LP) relaxation so as to improve the accuracy of

data associations. However, the multi-way data associa-

tions are difficult to achieve real-time multiple human

tracking. In short, the FNF-based tracking performance

highly depends on the reliable detection. When the

missing detection or long-time occlusion occurs, the

tracking performance deteriorates significantly.

4 Human tracking across non-overlapping
cameras
Human tracking across non-overlapping cameras estab-

lishes detected/tracked human objects’ correspondence

between two non-overlapping cameras so as to success-

fully perform label handoff. Based on the approaches

used for target matching, human tracking across cam-

eras can be divided into three main categories, human

re-id, CLM-based tracking, and GM-based tracking.

For human re-id, which is to identify whether a human

taken from one camera is the same as one taken from

another camera or not. Human image-pair captured in

two different cameras often varies greatly in appearance

due to changes in illumination, viewpoint as well as

intra-class variability in shape and pose. Such examples

in VIPeR dataset [32] are shown in Fig. 10. The current

research on the human re-id is primarily focused on two

aspects [33]: one is extracting discriminative visual fea-

tures to characterize human appearance and shape, the

other is identifying suitable distance metrics that

Fig. 9 Illustration of tracking variable number of human objects in an outdoor scene, including estimated track births and deaths [27]
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maximize the likelihood of a correct correspondence.

However, most visual features are either insufficiently

discriminative for cross-view matching or insufficiently

robust to viewpoint changes, resulting in a significant

challenge for automated human re-id. Distance metric

learning shifts the focus from capturing feature descrip-

tors to learning distance metrics that maximize the

human matching accuracy to improve human re-id

performance. However, most distance metric learning re-

quires pairwise supervised labeling of training datasets.

It will become infeasible since the labeling needs a large

amount of manual effort with the increased size of data-

sets or number of camera pairs.

For the CLM-based tracking, which is to track humans

through establishing the link (correlation) models between

two adjacent or among multiple neighboring cameras to

compensate for the feature difference derived from differ-

ent cameras. It is mainly applicable for tracking humans

across multiple static cameras. The current research on

the CLM-based tracking is primarily based on temporal

and spatial relationships to reduce mismatch across cam-

eras tracking, as well as appearance relationship to com-

pensate for the appearance difference between two

adjacent cameras. The CLM can be estimated in a super-

vised learning manner, i.e., with manually labeling the hu-

man objects’ correspondence from given training data in

advance; or an unsupervised learning manner, i.e., without

manually labeling the human objects’ correspondence

from given training data. As a result, compared to the su-

pervised learning-based CLM, which needs a lot of human

labeling efforts, especially with the increased size of datasets

or number of camera pairs, the unsupervised learning-

based CLM is more feasible to achieve self-organized and

scalable large-scale camera networks.

For the GM-based tracking, which is to track humans

through a graph modeling technique to form a solvable

GM based on input observations (detections, tracklets,

trajectories or pairs) to deal with data association across

cameras, where the GM is composed of nodes, edges,

and weights and solved using an optimization solution

through MAP estimation framework, to obtain optimal

or suboptimal solutions. This tracking method can

effectively track humans in complex scenes, such as oc-

clusion, crowd, and interference of human appearance

similarity. However, it is difficult to get the optimal solu-

tion of data association across cameras. Table 4 shows

the list of the human tracking algorithms across non-

overlapping cameras.

4.1 Human re-id

Human re-id is widely applied to human tracking across

non-overlapping cameras. The current research on hu-

man re-id techniques mainly includes two aspects, i.e.,

feature extraction and distance metric learning. Table 5

lists quantitative comparison of human re-id across

cameras on a quite challenging VIPeR benchmark data-

set, using cumulative matching scores to evaluate the

performance of human re-id, where the higher the

cumulative matching scores are, the better the perform-

ance of human re-id is.

Fig. 10 Some human image-pair captured in two different cameras
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4.1.1 Feature extraction

Extracting discriminative and robust features from raw

pixel data in an image/video has become one of the im-

portant tasks in human re-id. There are a lot of feature

types proposed for human re-id, such as color [34], tex-

ture [35], shape [36], global features [34, 36], regional

features [37], patch-based features [35], and semantic

features [38]. In general, compared to other features,

color feature is dominant under slight lighting changes

since it is robust to changes in viewpoint. Texture or

shape feature is stable under significant lighting changes,

but they are subject to changes in viewpoint and occlu-

sion. Global features, which reflect the global statistical

characteristics of human appearance, have some invari-

ance to changes in viewpoint and pose, but their

discriminative power is not enough due to loss of spatial

information which represents human object structure.

Regional features and patch-based features increase the

discriminative power further by taking into account the

spatial information derived from partitioning the whole

human region into several different regions, such as

horizontal stripes, localized patches, and etc. Semantic

features have better discriminative power and robustness

to the cross-view variations. However, the semantic fea-

tures require more labeling efforts, therefore, their

generalization capability is limited. When executing

cross-view human matching, the humans’ appearance

normally changes significantly due to the changes in illu-

mination and viewpoint, therefore the use of a single

feature to identify cross-view human objects is not

enough. Most human re-id approaches benefit from in-

tegrating several features types to improve the cross-

view human matching accuracy and robustness by taking

advantage of the complementary nature among various

features. Gray and Tao [39] propose the ensemble of lo-

calized features (ELF) to deal with viewpoint variations

across cameras. More specifically, the ELF integrates

RGB, YCbCr, HSV color features, and two kinds of tex-

ture features extracted through Schmid and Gabor filters

with different radiuses and scales. An effective feature

selection is performed through the AdaBoost machine

learning algorithm to find the most discriminating fea-

tures out of a large pool of color and texture features.

Farenzena et al. [40] propose the Symmetry-Driven

Accumulation of Local Features (SDALF) to describe

human appearance across cameras. The SDALF encodes

three complementary visual characteristics of the human

appearance including the overall chromatic content

represented through HSV color histogram, the spatial

arrangement of colors into stable regions represented

Table 4 Human tracking algorithms across non-overlapping cameras

Method Description Typical technique Pros Cons

Human re-id To identify whether a human taken
from one camera is the same as one
taken from another camera or not

Feature extraction Extracting discriminative and
robust visual features help to
improve human re-id accuracy

Difficult to find suitable feature
combination to effectively
describe human appearance

Distance metric learning Learning a distance metric helps
to mitigate cross-view human
appearances’ variations.

Require manually pairwise
labeling of training data

CLM-based
tracking

To track humans through establishing
the link (correlation) models between
two adjacent or among multiple
neighboring cameras

Supervised learning-based
CLM

Easy to establish and learn CLM Unfeasible to scale up to
large-scale camera networks
due to a mass of manually
labeled efforts

Unsupervised learning-
based CLM

Help to achieve self-organized
and scalable large-scale camera
networks due to no need of
human labeling efforts

Estimated CLM may decrease
the accuracy due to higher
outlier percentage.

GM-based
tracking

To track humans through partite
graph matching based on input
observations (detections, tracklets,
trajectories, or pairs)

MAP optimization solution
framework

Human tracking in complex
scenes such as occlusion,
crowd, and interference of
appearance similarity

It is difficult to get the optimal
solution.

Table 5 Quantitative comparison of human re-id across cameras

on a quite challenging VIPeR benchmark dataset

Item no. Used human
re-id method

Rank on VIPeR Reference

1 10 20

1 ELF 12.00 44.00 61.00 2008 ECCV [39]

2 SDALF 19.87 49.37 65.73 2010 CVPR [40]

3 ColorInv 24.21 57.09 69.65 2013 TPAMI [41]

4 SCNCD 37.80 81.20 90.40 2014 ECCV [42]

5 LOMO+ XQDA 40.00 80.51 91.08 2015 CVPR [43]

6 FFN 51.1 91.4 96.9 2016 WACV [44]

7 KISSME 19.6 62.2 77.0 2012CVPR [45]

8 LFDA 24.18 67.12 82.00 2013 CVPR [46]

9 KLFDA 32.3 79.7 90.9 2014 ECCV [47]

10 MetricEnsb 45.9 88.9 95.8 2015 CVPR [48]

11 LSSL 47.8 87.6 94.2 2016 AAAI [49]

12 SCSP 53.5 91.5 96.6 2016 CVPR [50]

The cumulative matching scores (%) at rank 1, 10, and 20 are listed
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through maximally stable color regions (MSCR), and the

presence of recurrent local motifs with high entropy rep-

resented through recurrent highly structured patches

(RHSP), where the symmetry and asymmetry property is

considered to handle viewpoint variations. Kviatkovsky

et al. [41] propose to use color invariants (ColorInv) to

perform human re-id. The ColorInv combines three

component signatures over log color space including

color histogram, covariance descriptor, and parts-based

shape context (PartsSC), to describe human appearance,

where the PartsSC, as an invariant shape descriptor

using different parts of a human object, is used to de-

scribe the discriminative intra-distribution structure of

color distributions. Yang et al. [42] propose salient color

names-based color descriptor (SCNCD) for human re-id

to deal with illumination changes across cameras, where

the SCNCD and color histograms computed in four dif-

ferent color spaces, i.e., original RGB, rgb, l1l2l3, and

HSV, are fused to describe color features of human ap-

pearance. Note that the salient color names indicate that

a color only has a certain probability of being assigned

to several nearest color names, and that the closer the

color name is to the color, the higher probability the

color has of being assigned to this color name. Liao et

al. [43] propose an effective feature representation of hu-

man appearance called Local Maximal Occurrence

(LOMO) for human re-id, where the LOMO analyzes

local color and texture features’ horizontal occurrence

and maximizes the occurrence so as to obtain a robust

feature representation against viewpoint changes, based

on HSV color histogram and scale invariant local ternary

pattern (SILTP) texture descriptor. Such an illustration

of the LOMO feature extraction method is shown in

Fig. 11. Wu et al. [44] propose Feature Fusion Net (FFN)

to describe human appearance for human re-id, where

the FFN combines convolutional neural network (CNN)

deep feature with handcrafted features, including color

histogram computed in five different color spaces, i.e.,

RGB, HSV, YCbCr, Lab and YIQ, and Gabor texture de-

scriptors with multi-scale and multi-orientation. The

CNN deep feature is constrained by the handcrafted fea-

tures through backpropagation to form a more discrim-

inative feature fusion deep neural network. In short,

discriminant multi-feature extraction with complemen-

tary nature helps to improve the accuracy of human re-

id. However, the constructed feature vectors have very

high dimension, resulting in very high computation

requirement.

4.1.2 Distance metric learning

Since standard metrics, such as Euclidean distance for

cross-view human matching in human re-id, based on

the extracted features discussed previously, normally

produce poor performance due to the potentially enor-

mous changes in illumination, pose, and viewpoint. In

order to mitigate cross-view variations and better iden-

tify more humans in human re-id, recent approaches

[43, 45–50] are focused on learning an optimal metric

model that aims to making features associated with the

same human to be closer than features associated with

different human objects. It is essential to learn a linear

transformation that achieves a mapping from the ori-

ginal feature space to a new feature space so as to effect-

ively execute human re-id. Mahalanobis metric learning

is widely used to globally find the linear transformation

of the feature space. Motivated by a statistical inference

Fig. 11 Illustration of the LOMO feature extraction method [43]
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perspective based on a likelihood-ratio test, Koestinger

et al. [45] adopt equivalence constraints to learn a metric

model called KISSME (keep it simple and straightfor-

ward metric). The proposed method only needs to com-

pute two small-sized covariance matrices of dissimilar

pairs and similar pairs, and thus is scalable to large data-

sets. Pedagadi et al. [46] adopt a low manifold distance

metric learning framework through unsupervised PCA

dimensionality reduction and supervised local fisher dis-

criminant analysis (LFDA) dimensionality reduction,

where the LFDA preserves the local neighborhood struc-

ture when maximizing between-class separation so as to

achieve multi-class modality of the sample data, and the

LFDA transformation is estimated via generalized eigen-

values. However, when this metric framework is applied

to relatively small datasets, it may produce an undesir-

able compression of the most discriminative features. To

solve this problem, by taking the merits from both ker-

nel method and LFDA, Xiong et al. [47] further adopt

kernel LFDA (KLFDA) to learn a metric model, where

the KLFDA is a closed-form non-linear method that uses

a kernel trick to handle large-dimensional feature vec-

tors while maximizing a Fischer optimization criteria.

The proposed method preserves discriminant features

while achieving a better dimensionality reduction and

takes full advantage of the flexibility in choosing the ker-

nel to improve the accuracy of human re-id. However,

its computational speed is relatively slow, especially

when using non-linear kernel. Liao et al. [43] propose to

learn a discriminant metric called cross-view quadratic

discriminant analysis (XQDA), which aims to learn a

low-dimensional subspace with cross-view data, and

meanwhile learns a distance function in the low-

dimensional subspace so as to measure the cross-view

similarity. The proposed XQDA can be formulated as a

generalized Rayleigh quotient, which can be solved by

the generalized eigenvalue decomposition. However, the

above proposed metric learning methods only adopt sin-

gle metric learning model; integrating multiple metric

learning models are thus also proposed in order to fur-

ther improve the accuracy of human re-id. Paisitkriangk-

rai et al. [48] propose to learn to rank in human re-id

with metric ensembles. More specifically, the proposed

method first adopts several different features to train in-

dividual base metric of each feature using a linear

KISSME and a non-linear KLFDA and then adopts two

optimization approaches, i.e., relative distance-based ap-

proach and top recognition at rank-k, to learn weights

of the base metrics. The two optimization approaches

directly optimize a cumulative matching characteristic

(CMC) curve, which is an evaluation measure commonly

used in person re-id. The relative distance-based ap-

proach uses triplet information to optimize the relative

distance, while the top recognition at rank-k approach

maximizes the average rank-k recognition rate. Yang et

al. [49] propose large-scale similarity learning (LSSL)

using similar pairs for human re-id. More specifically,

the proposed method jointly learns a Mahalanobis

metric and a bilinear similarity metric using difference

and commonness of an image pair to increase discrimin-

ation. Under a pair-constrained Gaussian assumption,

the Gaussian priors (i.e., corresponding covariance

matrices) of dissimilar pairs are obtained from those of

similar pairs, and the application of a log likelihood ratio

makes the whole learning process simple and fast and

thus scalable to large datasets. However, the above

metric learning methods just focus on a holistic metric,

which discard the geometric structure of human objects

and thus affect the discriminative power. To deal with

the issue effectively, considering a relatively stable space

distribution of human body parts such as head, torso,

and legs, Chen et al. [50] propose spatially constrained

similarity learning using polynomial feature map (SCSP)

for human re-id. The proposed method, which combines

a global similarity metric for the whole human body

image region and multiple local similarity metrics for as-

sociating local human body parts regions using multiple

visual cues, executes human matching across cameras

based on multiple polynomial-kernel feature maps to

represent human image pairs, which aims to learn a

similarity function that could yield high score so as to

measure the similarity between human image descriptors

across cameras. Such an illustration of the similarity

learning using spatial constraints based on polynomial-

kernel feature map is shown in Fig. 12. In short, distance

metric learning can improve the accuracy of human re-

id effectively. However, most existing distance metric

learning methods for human re-id follow a supervised

learning framework, where a large number of labeled

matching pairs are used for training, and hence severely

limit the scalability in real-world applications. Moreover,

the pre-trained distance metric model may not have bet-

ter generalization ability.

4.2 CLM-based tracking

Since the human appearance may vary dramatically due

to different viewpoints, poses, and illuminations, based

on whether to use manually labeling the training data

representing human correspondences or not, the re-

search on the CLM-based tracking can be divided into

two categories: the supervised learning-based CLM and

the unsupervised learning-based CLM. Since most

CLM-based tracking methods adopt different multiple

camera tracking datasets, which is difficult to list all

quantitative comparison of each CLM-based tracking

method. Table 6 lists several quantitative comparison re-

sults of CLM-based tracking across non-overlapping

cameras on NLPR datasets, using multiple camera
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tracking accuracy (MCTA) to evaluate the performance

of CLM-based tracking, where the higher the MCTA is,

the better the performance of CLM-based tracking.

4.2.1 Supervised learning-based CLM

A supervised learning-based CLM, that is, the correspon-

dences of pairs of individuals across every adjacent camera-

pair are known in advance based on manually labeled

training data, which can then be used to train a CLM. A

number of studies have been reported to estimate the

brightness transfer function (BTF), which is applied to

compensating for the color difference between two adjacent

cameras before computing the color feature distance

between two observations. Javed et al. [51] propose to learn

a low-dimensional subspace of the color brightness transfer

function (BTF) from the training data for each camera-

pairs using probabilistic PCA. However, this method de-

pends on training data with a wide range of brightness

values so as to accurately model the BTF, and it is difficult

to meet this condition in a real-world scenario. To solve

this problem, Prosser et al. [52] propose to adopt a cumula-

tive brightness transfer function (CBTF) for mapping color

information between adjacent cameras, which makes the

best of the available color information from a very sparse

training data set. This method can preserve uncommon

brightness values in the training, resulting in more accurate

representation of a color mapping function, therefore can

help to improve the accuracy of human tracking across

cameras. However, it only takes into account the color in-

formation and discards the spatial structural information

for human representation. To cope with this problem, built

upon the research of CRIPAC-MCT [51], Javed et al. [53]

further adopt kernel density estimator to estimate the inter-

camera space-time probabilities through computing the

(e.g., walking) transition time values between pairs of cor-

rect correspondences based on the difference between the

entry and exit time stamps. However, fully supervised learn-

ing usually requires a mass of manually labeled training

data, which limits the scalability to more realistic open-

world applications. To cope with this problem, Kuo et al.

[54] adopt multiple instances learning (MIL) to learn an ap-

pearance affinity model, which is then integrated with the

spatial-temporal information to train an improved inter-

camera track association framework to tackle the target

Fig. 12 Illustration of the similarity learning using spatial constraints based on polynomial-kernel feature map [50]

Table 6 MCTA quantitative comparison of CLM/GM-based tracking across non-overlapping cameras on the existing NLPR datasets

Item no. Used MCT method CLM-based tracking GM-based tracking NLPR 1 NLPR 2 NLPR 3 NLPR 4 Reference

1 Duke MTMC √ × 0.7967 0.7336 0.6543 0.7616 2016 ECCV [64]

2 USC √ × 0.9152 0.9132 0.5163 0.7052 2014 WACV [55]

3 SG-CRF × √ 0.8383 0.8015 0.6645 0.7266 2016 TCSVT [61]

4 CRIPAC-MCT × √ 0.6617 0.5907 0.7105 0.5703 2014 ICIP [62]

5 EG × √ 0.8353 0.7034 0.7417 0.3845 2016 TCSVT [63]

Symbols √ and × mean whether CLM/GM based tracking is used or not
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handover tasks across cameras. In addition, people often

walk in groups in crowded scenes, thus group information

is also applied to appearance matching across cameras. Cai

et al. [55] propose context information including spatio-

temporal context and relative appearance context for non-

overlapping inter-camera human tracking. The spatio-

temporal context indicates a way of collecting samples for

discriminative appearance learning, and the relative appear-

ance context using RGB color histograms and histogram of

gradients as appearance features models inter-object ap-

pearance similarities for people walking in proximity. The

proposed method can distinguish visually very similar hu-

man targets and hence obviously improves human tracking

accuracy across non-overlapping cameras. In short, the su-

pervised learning-based CLM helps to achieve robust hu-

man tracking across non-overlapping cameras. However, it

is unfeasible to scale up to large-scale camera networks due

to a mass of manually labeled efforts.

4.2.2 Unsupervised learning-based CLM

Contrary to the supervised learning-based CLM, an un-

supervised learning-based CLM, that is, the correspon-

dences of pairs of individuals across every adjacent

camera-pair are unknown in advance, which can still be

estimated and then be used to train a CLM. The time-

space and appearance relationships between adjacent

cameras are usually used to learn the CLM across

camera-pairs. Makris et al. [56] adopt the cross-

correlation of the exit and entry time stamps of the

training data to estimate the transition time distribution.

However, they only consider the single-mode distribu-

tion, thus it is difficult to describe most cases in the real

world. Gilbert et al. [57] propose an incremental learn-

ing method to model the color variations and the transi-

tion time distribution between cameras. The proposed

method allows to increase human tracking accuracy over

time without any supervised input. However, they con-

sider all the possible correspondences within a given

time window including the true and false correspon-

dences, and hence large amount of noises are produced

due to a large number of false correspondences during

the whole estimation process, resulting in unreliable

model estimation. Chu et al. [58] adopt transition time

distribution and brightness transfer function, based on

space–time relationship and holistic and regional color/

texture information, respectively, between a pair of

directly connected cameras, to estimate a CLM. A per-

mutation matrix is introduced as an intermediate vari-

able to be solved by using a deterministic annealing and

the barrier method. This approach also takes into

account the outliers, which refers to those people who

depart from a camera without entering the other con-

nected camera, or enter into a camera without coming

from the other connected camera. In order to make the

estimated CLM more accurately and adapt to environ-

mental changes, by effective estimation of the feature fu-

sion weights, the CLM can be persistently updated

based on the human re-id results during tracking in the

testing stage. The proposed CLM estimation method is

applied in a deployed 4-camera real-world scenario with

non-overlapping views, whose camera topology is shown

in Fig. 13, achieving 79.5% tracking accuracy out of

20 min (more than 280 people) of video testing. How-

ever, their approach of coping with the outliers only con-

siders a link of a pair of directly connected cameras. In

many real-world camera networks, there are often sev-

eral links due to multiple directly connected cameras; in

this case, their estimated CLM will decrease the accur-

acy due to higher outlier percentage. In order to solve

this problem, built upon the research of Ref. [58], Lee et

al. [59] propose to combine multi-camera links and

build bidirectional transition time distribution during

the estimation of the CLM between directly connected

camera pairs, and several camera link models are simul-

taneously estimated for the same deployed 4-camera

real-world camera network with non-overlapping views

in the presence of the outliers, resulting in more accur-

ate camera link model and achieving 87.3% tracking ac-

curacy. In short, the unsupervised learning-based CLM

helps to achieve robust human tracking across non-

overlapping cameras, and can be easily applied to real-

world systems with continuous updates of the link

models when the conditions between cameras change.

Moreover, it is feasible to achieve self-organized and

scalable large-scale camera networks due to no need of

human labeling efforts.

4.3 GM-based tracking

GM-based tracking using the optimization framework is

also applied to human tracking across non-overlapping

cameras. Javed et al. [60] propose to establish human ob-

jects’ correspondences across non-overlapping cameras

through the MAP estimation framework based on hu-

man motion trends and appearance of human objects.

More specifically, the proposed method adopts Parzen

windows, i.e., kernel density estimators, to estimate

inter-camera space-time probabilities from the training

data between each pair of cameras, and models the

changes in human appearance using the distances be-

tween color models. To estimate the human correspon-

dences across non-overlapping cameras, the proposed

method then models the issue of finding the hypothesis

that maximizes the MAP as finding the path of a di-

rected graph. In addition, to keep up with the changing

human motion and appearance patterns, the proposed

method continuously updates the learned parameters

during the human tracking across non-overlapping

cameras. However, the above method only focuses on
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appearance and spatio-temporal cues, Chen et al. [61]

combine high-level contextual information called social

grouping behavior with traditionally used appearance

and spatiotemporal cues into a non-overlapping inter-

camera human tracking system, and adopt an online

learned conditional random field model that minimizes

a global energy cost to associate tracks from the same

person of different cameras, and hence effectively

achieve human tracking across non-overlapping cam-

eras. The above proposed methods adopt the trajectories

obtained from single camera human tracking to achieve

inter-camera data association, and hence the overall

tracking performance depends on the results of single

camera human tracking, especially in challenging scene

videos, the direct disturbance of false positives and frag-

ments will seriously decrease the overall tracking per-

formance. Such an example of human tracking across

non-overlapping cameras on NLPR 4 is shown in Fig. 14.

To deal with human tracklet mismatching and missing

issues (as shown in Fig. 15) across non-overlapping cam-

eras, Chen et al. [62] propose a global tracklet associ-

ation for human tracking across non-overlapping

cameras to improve the overall tracking performance.

More specifically, the proposed method adopts fragmen-

tary tracklets as the inputs based on a piecewise major

color spectrum histogram representation (PMCSHR)

and models a global tracklet association as a global

MAP problem, which is mapped into a cost-flow

network and solved by a min-cost flow algorithm. In

addition, to better achieve tracklet matching across mul-

tiple camera views, the minimum uncertainty gap-based

measurement, i.e., using the lowest and highest similarity

to define the lower and upper bounds of the similarity

for two tracklets to obtain a distance metric, is applied

to computing the matching result of two tracklets’

PMCSHRs. Built upon the research of PMCSHR [62],

Chen et al. [63] equalize similarity metrics in the global

graph based on appearance and motion features, and

hence further reduce the number of mismatch errors in

non-overlapping inter-camera human tracking so as to

further improve human tracking performance across

non-overlapping cameras. Table 6 lists several quantita-

tive comparison results of GM-based tracking across

non-overlapping cameras on NLPR datasets, using mul-

tiple camera tracking accuracy (MCTA) to evaluate the

performance of GM-based tracking, where the higher

the MCTA is, the better the performance of GM-based

tracking.

5 Conclusions
This paper provides an extensive review of existing re-

search efforts on human tracking over camera networks,

covering all the core image/vision technologies, such as

generative trackers, discriminative trackers, human re-id,

CLM-based tracking, and GM-based tracking. We dis-

cuss the most recent development of these technologies

Fig. 13 Camera topology. Blue broken lines denote four links, and red ellipses denote the corresponding entry or exit zones. Black rectangles are

the other entry or exit zones that have no any link between both cameras [58]
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and compare pros/cons of different solutions. In spite of

the great progress made on the human tracking over

camera networks including human tracking within a

camera and human tracking across non-overlapping

cameras, there are still many technical challenges that

need to be resolved, especially for real-world camera

networks. For example, (1) when a human target is

totally occluded for a long time or the background is ex-

tremely complex in the same camera scene, it is difficult

to extract robust and discriminant features that denote

human targets, resulting in the decline of performance

for human tracking within a camera; (2) extracting

robust and discriminant features adaptive to changes in

illumination, viewpoint, occlusion, background clutter,

and image quality/resolution across non-overlapping

cameras, is still a challenging issue; (3) most learned

distance metric models from an initial annotated

camera-pair in human re-id are difficult to expand or

(a) Human tracklet mismatching           (b) Human tracklet missing

Fig. 15 Illustration for human tracklet mismatching and missing. Blue and red lines indicate two human targets, and arrows show the best

matching. Human target B is mismatched to human tracklet A2 in (a). Human tracklet A1 is missing in (b) [62]

Fig. 14 Illustration of human tracking results across non-overlapping in cameras on NLPR 4. Bounding boxes with the same color indicate the

same human, and the dashed lines illustrate the trajectories generated by human targets walking across different cameras [61]
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adapt to a new camera-pair due to differences in illu-

mination and viewpoint. Moreover, these models cannot

be updated adaptively with the real-world environment

changes. Also, it is impractical to manually label a large

number of training data from every camera-pairs for a

large camera networks; (4) so far, the performance of

human re-id is still far from satisfactory, for example,

the rank-1 accuracy of state-of-the-art, based on cumu-

lative matching scores evaluation, is less than 60% on

the representative VIPeR dataset, which will bring huge

challenges for the human tracking across non-overlapping

cameras when spatio-temporal reasoning between cam-

eras is unreliable, especially for the human tracking across

multiple moving cameras due to the fact that the mapping

between two cameras will change with the cameras’ move-

ment; (5) the larger the spatio-temporal separation be-

tween camera views is, the greater the chance that human

may appear with more appearance changes in different

camera views is, resulting in difficulty to track human

across non-overlapping cameras; (6) most existing re-

search efforts on human tracking across non-overlapping

cameras are based on available small camera networks

composed of no more than five cameras; how to expand

these techniques for human tracking over larger-scale

camera networks.

In terms of the above unsolved technical challenges of

tracking human over camera networks, future research

directions on human tracking over camera networks can

be summarized as follows:

1) Robust and discriminant feature fusion adaptive to

camera scene changes for human tracking over

camera networks.

2) Robust and discriminant spatio-temporal and appear-

ance context information for inter-camera human

tracking.

3) Effective distance metric learning fusion to improve

human re-id accuracy.

4) Online human tracking across non-overlapping cam-

eras using unsupervised learning.

5) Effective global data association for human tracking

over camera networks.

6) Human tracking on larger-scale camera networks as

well as benchmark datasets and comprehensive experi-

mental evaluations on larger-scale camera networks.
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