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Human3.6M:
Large Scale Datasets and Predictive Methods

for 3D Human Sensing in Natural Environments
Catalin Ionescu∗†‡, Dragos Papava∗‡, Vlad Olaru∗, Cristian Sminchisescu§∗

Abstract—We introduce a new dataset, Human3.6M, of 3.6 Million accurate 3D Human poses, acquired by recording the performance

of 5 female and 6 male subjects, under 4 different viewpoints, for training realistic human sensing systems and for evaluating the next

generation of human pose estimation models and algorithms. Besides increasing the size of the datasets in the current state of the art

by several orders of magnitude, we also aim to complement such datasets with a diverse set of motions and poses encountered as

part of typical human activities (taking photos, talking on the phone, posing, greeting, eating, etc.), with additional synchronized image,

human motion capture and time of flight (depth) data, and with accurate 3D body scans of all the subject actors involved. We also

provide controlled mixed reality evaluation scenarios where 3D human models are animated using motion capture and inserted using

correct 3D geometry, in complex real environments, viewed with moving cameras, and under occlusion. Finally, we provide a set of

large scale statistical models and detailed evaluation baselines for the dataset illustrating its diversity and the scope for improvement

by future work in the research community. Our experiments show that our best large scale model can leverage our full training set to

obtain a 20% improvement in performance compared to a training set of the scale of the largest existing public dataset for this problem.

Yet the potential for improvement by leveraging higher capacity, more complex models with our large dataset, is substantially vaster and

should stimulate future research. The dataset together with code for the associated large-scale learning models, features, visualization

tools, as well as the evaluation server, is available online at http://vision.imar.ro/human3.6m.

Index Terms—3D human pose estimation, human motion capture data, articulated body modeling, optimization, large scale learning,

structured prediction, Fourier kernel approximations.

✦

1 INTRODUCTION

Accurately reconstructing the 3D human poses of peo-
ple from real images, in a variety of indoor and out-
door scenarios, has a broad spectrum of applications
in entertainment, environmental awareness, or human-
computer interaction[1], [2], [3]. Over the past 15 years
the field has made significant progress fueled by new
optimization and modeling methodology, discriminative
methods, feature design and standardized datasets for
model training. It is now widely agreed that any suc-
cessful human sensing system, be it generative, discrim-
inative or combined, would need a significant training
component, together with strong constraints from image
measurements, in order to be successful, particularly
under monocular viewing and (self-) occlusion. Such
situations are not infrequent but rather commonplace
in the analysis of images acquired in real world situ-
ations. Yet these images cannot be handled well with
the human models and training tools currently available
in computer vision. Part of the problem is that hu-
mans are highly flexible, move in complex ways against
natural backgrounds, and their clothing and muscles
deform. Other confounding factors like occlusion may
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also require comprehensive scene modeling, beyond just
the humans in the scene. Such image understanding
scenarios stretch the ability of the pose sensing system
to exploit prior knowledge and structural correlations,
by using the incomplete visible information in order
to constrain estimates of unobserved body parts. One
of the key challenges for trainable systems is insuffi-
cient data coverage. Existing state of the art datasets
like HumanEva[4], contain about 40,000 different poses
and the class of motions covered is somewhat small,
reflecting its design purpose geared primarily towards
algorithm evaluation. In contrast, while we want to
continue to be able to offer difficult benchmarks, we
also wish to collect datasets that can be used to build
operational systems for realistic environments. People
in the real world move less regularly than assumed in
many existing datasets. Consider the case of a pedes-
trian, for instance. It is not that frequent, particularly in
busy urban environments, to encounter ‘perfect’ walkers.
Driven by their daily tasks, people carry bags, walk
with hands in their pockets and gesticulate when talking
to other people or on the phone. Since the human
kinematic space is too large to be sampled regularly and
densely, we chose to collect data by focusing on a set
of poses which are likely to be of interest because they
are common in urban and office scenes. The poses are
derived from 15 chosen scenarios for which our actors
were given general instructions, but were also left ample
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freedom to improvise. This choice helps us cover more
densely some of the common pose variations and at
the same time control the difference between training
and testing data (or covariate shift[5]) without placing
unrealistic restrictions on their similarity. However that
variability within daily tasks like “talking on the phone”
or “Eating” is subtle as functionally, similar programs
are being performed, irrespective of the exact execution.
In contrast, the distributions of any two such different
scenarios are likely to contain wider separated poses,
although the manifolds from which this data is sampled
may intersect.
In this paper we present a large dataset collected us-

ing accurate marker-based motion capture systems and
actors dressed with moderately realistic clothing, viewed
against indoor backgrounds. Other recent experimental
systems have explored the possibility of unconstrained
capture based on non-invasive sensors or attached body
cameras[6], [7], and could represent attractive alterna-
tives, as they develop, in the long run. As technology
matures, progress on all fronts is welcome, particularly
as the data we provide is complementary in its choice
of poses, with respect to existing datasets [8], [4], [7].
Even by means of a combined community effort, we are
not likely to be able to densely sample or easily handle
the 30+ dimensional space of all human poses. However,
an emphasis on typical scenarios and larger datasets, in
line with current efforts in visual recognition, may still
offer a degree of prior knowledge bootstrapping that can
significantly improve the performance of existing human
sensing systems. Specifically, by design, we aim to cover
the following aspects:
Large Set of Human Poses, Diverse Motion and Ac-
tivity Scenarios: We collected over 3.6 million different
human poses, viewed from 4 different angles, using an
accurate human motion capture system. The motions
were executed by 11 professional actors, and cover a di-
verse set of everyday scenarios including conversations,
eating, greeting, talking on the phone, posing, sitting,
smoking, taking photos, waiting, walking in various
non-typical scenarios (with a hand in the pocket, talking
on the phone, walking a dog, or buying an item).
Synchronized Modalities, 2D and 3D data, Subject
Body Scans: We collect and fully synchronize both the
2D and the 3D data, in particular images from 4 high-
speed progressive scan, high-resolution video cameras,
a time of flight (TOF) depth sensor, as well as human
motion capture data acquired by 10 high-speed cameras.
We also provide 3D full body models of all subjects in
the dataset, acquired with an accurate 3D laser scanner.
Evaluation Benchmarks, Complex Backgrounds, Oc-
clusion: The dataset provides not only training, vali-
dation and testing sources for the data collected in the
laboratory, but also a variety of mixed-reality settings
where realistic graphical characters have been inserted in
video environments collected using real, moving digital
cameras, and animated using our motion capture data.
The insertions and occlusions are geometrically correct,

based on estimates of the camera motion and its internal
parameters, reconstructions of the 3D environment and
ground plane estimates.
Online Large-Scale Models, Features, Visualization
and Evaluation Tools: We provide online models for
feature extraction as well as pose estimation, including
linear and kernel regressors and structured predictors
based on kernel dependency estimation. All these mod-
els are complemented with linear Fourier approxima-
tions, in order to allow the training of non-linear kernel
models at large scale. The design of such models is
currently non-trivial and the task of processing millions
of images and 3D poses, or training using such large
repositories, remains daunting for most existing human
pose estimation methodologies. We also supply methods
for background subtraction and for extracting the bound-
ing boxes of people, as well as a variety of precomputed
features (pyramids of SIFT grids) over these, in order to
allow rapid prototyping, experimentation, and parallel
work streams in both computer vision and machine
learning. Software for the visualization of skeleton rep-
resentations based on 3D joint positions as well as 3D
joint angle formats is provided, too.

1.1 Related Work

Over the past decade, inferring the 3D human pose from
images or video has received significant attention in
the research community. While a comprehensive survey
would be impossible, we refer the reader to recently
edited volumes by Moeslund et al. [1] and Rosenhahn et
al. [2] as well as [3], [9] for a comprehensive overview.
Initially, work in 3D human sensing focused on 3D
body modeling and relied on non-linear optimization
techniques. More recently, the interest shifted somewhat
towards systems where components are trained based
on datasets of human motion capture. Within the realm
of 3D pose inference, some methods focus on auto-
matic discriminative prediction [10], [11], [12], [13], [14],
whereas others aim at model-image alignment [15], [16],
[17], [18], [19], [20], [21], [22], [23] or accurate modeling
of 3D shape[24], [25] or clothing[26]. This process is
ongoing and was made possible by the availability of
3D human motion capture[8], [4], as well as human body
scan datasets like the commercially available CAESAR,
or smaller academic repositories like SCAPE[27] and
INRIA4D[28]. Training models for 3D human sensing
is not straightforward, however. The CMU dataset[8]
contains a diverse collection of human poses, yet these
are not synchronized with the image data, making end to
end training and performance evaluation difficult. Due
to difficulties in obtaining accurate 3D pose information
with synchronized image data, evaluations were initially
qualitative. Quantitative evaluations were pursued later
using graphic renderings of synthetic models [29], [30],
[12]. The release of high-quality synchronized data in the
HumaEva benchmark [4] has represented a significant
step forward, but its size and pose diversity remain
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Fig. 1. A real image showing multiple people in different poses (left), and a matching sample of our actors in similar poses (middle)
together with their reconstructed 3D poses from the dataset, displayed using a synthetic 3D model (right). The desire to cover the
diversity of 3D poses present in such real-world environments has been one of our motivations for the creation of Human3.6M.

somewhat small. Commercial datasets of human body
scans like CAESAR are comprehensive and offer sta-
tistically significant body shape variations of an entire
population, but provide no motion or corresponding
image data for the subjects involved. An ambitious effort
to obtain 3D pose information by manual annotation
was pursued in [31], although the 2D and 3D labelings
are only qualitative, and the size of the gathered data
is small: 1000 people in 300 images. Approaches to 2D
human body localization have also been pursued [32],
[33], [34], [31]. For 2D pose estimation, ground truth
data can be obtained by simply labeling human body
parts in the image. Existing datasets include stickmen
annotations [33], [35] and extensions of poselets with 2D
annotations [36].
The advances on various fronts, 2D and 3D, both

in terms of methodology and data availability, have
motivated the recent interest towards realistic 3D human
motion capture in natural environments[37], [6], [38],
[7]. Very encouraging results have been obtained, but
there are still challenges that need to be solved before
the technology will enable the acquisition of millions
of human poses. Recent interest in 3D motion capture
technologies has been spurred by the public availability
of time-of-flight, infrared or structured light sensors [39],
[40]. The most well-known of these, the Kinect system,
represents a vivid illustration of a successful real-time
pose estimation solution deployed in a commercial set-
ting. Its performance is in part due to a large scale
training set of roughly 1 million pose samples, which
remains proprietary, and in part due to the availability
of depth information that simplifies the segmentation of
the person from its surroundings, and limits 3D inference
ambiguities for limbs. By its size and complexity Hu-
man3.6M is meant to provide the research community
with data necessary to achieve similar performance in
the arguably more difficult case of only working with
intensity images, or alternatively–through our time-of-
flight data–, in similar setups as Kinect, by means of
open access and larger and more diverse datasets.

2 DATASET COLLECTION AND DESIGN

In this section we describe the capture space and the
recording conditions, as well as our dataset composition

and its design considerations.

2.1 Experimental setting

Our laboratory setup, represented in figure 2(c), lets us
capture data from 15 sensors (4 digital video cameras,
1 time-of-flight sensor, 10 motion cameras), using hard-
ware and software synchronization (see 2(b) for details).
The designated laboratory area is about 6m x 5m, and
within it we obtain a region of approximately 4m x 3m of
effective capture space, where subjects were fully visible
in all video cameras. Digital video (DV) cameras (4 units)
are placed in the corners of the effective capture space. A
time-of-flight sensor (TOF) is also placed on top of one of
the digital cameras. A set of 10 motion capture (MoCap)
cameras are rigged on the walls to maximize the effective
experimentation volume, 4 on each left and right edge
and 2 roughly mid-way on the horizontal edges. A 3D
laser body scanner from Human Solutions (Vitus LC3)
was used to obtain accurate 3D volumetric models for
each of the actors participating in the experiments.
The 3D motion capture system relies on small reflec-

tive markers attached to the subject’s body and tracks
them over time. Tracking maintains the label identity
and propagates it through time from an initial pose
which is labeled either manually or automatically. A
fitting process uses the position and identity of each of
the body labels, as well as proprietary human motion
models, to infer accurate pose parameters.

2.2 Dataset Structure

In this section we describe the choice of human motions
captured in the dataset, the output data types provided
as well as the image processing and input annotations
that we pre-compute.
Actors and Human Pose Set: The motions in the dataset
were performed by 11 professional actors, 5 female and 6
male, chosen to span a body mass index (BMI) ranging
from 17 to 29. We have reserved 7 subjects, 3 female
and 4 male, for training and validation, and 4 subjects
(2 female and 2 male) for testing. This choice provides
a moderate amount of body shape variability as well as
different ranges of mobility. Volumetric information in
the form of 3D body scans was gathered for each actor
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Type of action Scenarios Train Validation Test
Upper body Directions 83,856 50,808 114,080
movement Discussion 154,392 68,640 140,764
Full body upright Greeting 69,984 33,096 84,980
variations Posing 70,948 25,800 85,912

Purchases 49,096 33,268 48,496
Taking Photo 67,152 38,216 89,608
Waiting 98,232 54,928 123,432

Walking variations Walking 114,468 47,540 93,320
Walking Dog 77,068 30,648 59,032
Walking Pair 76,620 36,876 52,724

Variations while Eating 109,360 39,372 97,192
seated on a chair Phone Talk 132,612 39,308 92,036

Sitting 110,228 46,520 89,616
Smoking 138,028 50,776 85,520

Sitting on the floor Sitting Down 112,172 50,384 105,396
Various Movements Miscellaneous - - 105,576

Total 1,464,216 646,180 1,467,684

(a) The number of 3D human poses in Human3.6M in training,

validation and testing aggregated over each scenario. We used 5

subjects for training (2 female and 3 male), 2 for validation (1 female

and 1 male) and 4 subjects for testing (2 female and 2 male). The

number of video frames is the same as the number of poses (4

cameras capturing at 50Hz). The number of TOF frames can be

obtained by dividing the table entries by 8 (1 sensor capturing at

25Hz).

MoCap System DV System
No x Sensor 10 x Vicon T40 No x Sensor 4 x Basler piA1000
Resolution 4 Megapixels Resolution 1000x1000
Freq. 200Hz Freq. 50Hz
Sync hardware Sync hardware

TOF System Body Scanner
No x Sensor 1 x Mesa SR4000 Sensor Vitus Smart LC3
Resolution 176x144 No. Lasers 3
Freq. 25Hz Point Density 7dots/cm3
Sync software Tolerance < 1mm

(b) Technical summary of our different sensors.

(c) Floor plan showing the capture region and the

placement of the video, MoCap and TOF cameras.

Fig. 2. Overview of the data and the experimental setup. (a) Number of frames in training, validation and testing by scenario. (b)
Technical specification of our sensors. (c) Schema of our capture space and camera placement.

Fig. 3. A sample of the data provided in our dataset from left to right: RGB image, person silhouette (bounding box is also
available), time-of-flight (depth) data (range image shown here), 3D pose data (shown using a synthetic graphics model), accurate
body surface obtained using a 3D laser scanner.

to complement the joint position information alone. This
data can be used also to evaluate human body shape
estimation algorithms[24]. The meshes are released as
part of the dataset. The subjects wore their own regular
clothing, as opposed to special motion capture outfits, to
maintain as much realism as possible. The actors were
given detailed tasks and were shown visual examples
(images of people) in order to help them plan a stable
set of poses for the creation of training, validation and
test sets. However, when executing these tasks, the actors
were given quite a bit of freedom to move naturally
instead of being forced into a strict interpretation of the
motions or poses corresponding to each task.

The dataset consists of 3.6 million different human
poses collected with 4 digital cameras. Data is organized
into 15 training scenarios including walking with many

types of asymmetries (e.g. walking with a hand in a
pocket, walking with a bag on the shoulder), sitting and
lying down, various types of waiting poses and so on.
The structure of the dataset is shown in table 2(a).

Joint Positions and Joint Angle Skeleton Representa-
tions: Common pose parametrizations considered in the
literature include relative 3D joint positions (R3DJP) and
kinematic representation (KR). Our dataset provides data
in both parametrizations, with a full skeleton containing
the same number of joints (32) in both cases. In the
first case (R3DJP), the joint positions in a 3D coordinate
system are provided. The data is obtained from the joint
angles (provided by Vicon’s skeleton fitting procedure)
by applying forward kinematics on the skeleton of the
subject. The parametrization is called relative because
there is a specially designated joint, usually called the
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Fig. 4. Sample images from our dataset, showing the variability of subjects, poses and viewing angles.

Fig. 5. High resolution meshes (body scans) of the actors involved in our experiments, illustrating the body shape variations in the
dataset.

root (roughly corresponding to the pelvis bone position),
which is taken as the center of the coordinate system,
while the other joints are estimated relative to it. The
kinematic representation (KR) considers the relative joint
angles between limbs and is more convenient because
it is invariant to both scale and body proportions. The
dependencies between variables are, however, much
more complex, making estimation more difficult. The
process of estimating the joint angles involves non-linear
optimization under joint limit constraints.

We devoted significant efforts to ensure that the data
is clean and the fitting process accurate, by also mon-
itoring the image projection errors of body joint posi-
tions. These positions were obtained based on forward
kinematics, after fitting, and compared against image
marker tracks. Outputs were visually inspected multi-
ple times, during different processing phases, to ensure
accuracy. These representations can be directly used in
independent monocular predictions or in a multi camera
estimation setting. The monocular prediction dataset can
be increased 4-fold by globally rotating and translating

the pose coordinates to map the 4 DV cameras into a
unique coordinate system (we also provide code for this
data manipulation). As seen in table 2(b), poses from
motion capture are also available at (4-fold) faster rates
compared to the images from DV cameras. Our code also
provides the option to double both the image and the 3D
pose data by generating their mirror symmetries. This
procedure can yield 7 million images with corresponding
3D poses.
Image Processing, Silhouettes and Person Bounding
Boxes: Pixel-wise, figure-ground segmentations for all
images were obtained using background models. We
trained image models as mixtures of Gaussian distri-
butions in each of the RGB and HSV color channels
as well as the gradient in each RGB channel1 (total of
3+3+2x3=12 channels). We used the background models
in a graph cut framework to obtain the final figure-
ground pixel labeling. The weights of the input features
for the graph cut model were learned by optimizing
a measure of pixel segmentation accuracy on a set of

1. Note that gradients are stable because the cameras are fixed.
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manually labeled ground truth silhouettes for a subset of
images sampled from different videos. The segmentation
measure we used was the standard overlap, expressed
as pixel-wise intersection over the union between the
hypothesis and the ground-truth silhouette. A Nelder-
Mead optimization algorithm was used in order to han-
dle non-smooth objectives.

The dataset also provides accurate bounding box an-
notations for people. This data was obtained by project-
ing the skeleton in the image and fitting a rectangular
box around the projection. For accurate estimates, a
separate camera calibration procedure was performed to
improve the accuracy of the default one provided by the
Vicon system. This extra calibration is necessary because
the camera distortion parameters are not estimated by
the default calibration method. The calibration data is
also provided with the release of the dataset. It was
obtained by positioning 30 reflective markers on the
capture surface and by manually labeling them in each of
the cameras with subpixel accuracy. Models with second
order radial distortion parameters were fitted to this
data, separately for each of the four DV cameras. This
procedure resulted in significantly improved calibration
parameters, with .17 pixels mean re-projection error.

Additional Mixed Reality Test Data: Besides creating
laboratory test sets, we also focused on providing test
data to cover variations in clothing and complex back-
grounds, as well as camera motion and occlusion (fig.
6). We created the mixed reality videos by inserting high
quality 3D rigged animation models in real videos with
realistic and complex backgrounds, good quality image
data and accurate 3D pose information. The movies
were created by inserting and rendering 3D models of a
fully clothed synthetic character (male or female) in real
videos. We are not aware of any setting of this level of
difficulty in the literature. Real images may show people
in complex poses, but the diverse backgrounds as well
as the scene illumination and the occlusions can vary
independently and represent important nuisance factors
the vision systems should be robust against. Although
approaches to offset such nuisance factors exist in the
literature, it is difficult to evaluate their effectiveness
because ground truth pose information for real images
is hard to obtain. Our dataset features a component that
has been especially designed to address such hard cases.
This is not the only possible realistic testing scenario
– other datasets in the literature [7], [6] also contain
realistic testing scenarios such as different sport motions
or backgrounds. Prior efforts to create mixed reality se-
tups for training and testing 3D human pose estimation
methods exist, including our own prior work [41], [42]
but also [43] and more recently [44]. However, none of
the prior work datasets were sufficiently large. Perhaps
more importantly, the insertion of the 3D synthetic hu-
man character was not taking into account the geometry
of the camera that captured the background and the
one of the 3D scene (e.g. ground plane, occluders), as

we do in this work.2 The poses used for animating
the models were selected directly from our laboratory
test set. The Euler ZXY joint angles extracted by the
motion capture system were used to create files where
limb lengths were matched automatically to the models.
The limb lengths were necessary in the next step, where
we retargeted the captured motion data to the skeletons
of the graphics models, using animation software. The
actual insertion required solving for the (rigid) camera
motion, as well as for its internal parameters[45], for
good quality rendering. The exported camera tracks as
well as the model were then imported into animation
software, where the actual rendering was performed.
The scene was set up and rendered using the mental
ray, ray-tracing renderer, with several well-placed area
lights and skylights. To improve quality, we placed a
transparent plane on the ground, to receive shadows.
Scenes with occlusion were also created. The dataset
contains 5 different dynamic backgrounds obtained with
a moving camera, a total of 7,466 frames, out of which
1,270 frames contain various degrees of occlusion. A
sample of the images created is shown in fig. 6. We
see this component of Human3.6M as a taster. Given
the large volume of motion capture data we collected,
we can easily generate large volumes of mixed reality
video with people having different body proportions and
with different clothing, and against different real static
or moving backgrounds, for both training and testing.

3 LARGE SCALE POSE ESTIMATION MODELS

We provide several large scale evaluation models with
our dataset and we focus on automatic discriminative
frameworks due to their conceptual simplicity and po-
tential for scalability. The estimation problem is framed
as learning a mapping (or an index) from image descrip-
tors extracted over the person silhouette or its bounding
box, to the pose represented based on either joint posi-
tions or joint angles. Let Xi be the image descriptor for
frame i, Yi the pose representation for frame i, and f

(or fW) the mapping with parameters W. Our goal is
to estimate a model with fW(X) ≃ Y, for X and Y not
seen in training. Specifically, the methods we considered
are: k-nearest neighbor (kNN), linear and kernel ridge re-
gression (LinKRR, KRR), as well as structured prediction
methods based on kernel dependency estimation (KDE)
[46], [12], where, for scalability reasons, we used Fourier
kernel approximations [47], [48], [38]. Training such
models (or any other human pose prediction method,
for that matter) using millions of examples is highly
non-trivial and has not been demonstrated so far in the
context of such a continuous prediction problem, with
structured, highly correlated outputs.
k-Nearest neighbor regression (kNN) is one of the
simplest methods for learning f [49]. ‘Training’ implies

2. The insertion process involved the composition of the character
silhouette sprite with the image background, with all the 3D geometric
inconsistency and the image processing artifacts this can lead to.
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Fig. 6. Sample images from our mixed reality test set. The data is challenging due to the complexity of the backgrounds, viewpoints,
diverse subject poses, camera motion and occlusion.

storing all examples or a subset of them, in our case, due
to running time constraints. Depending on the distance
function used, an intermediate data structure, typically
KD or cover trees [50], can be constructed during train-
ing, in order to speed-up inference at test time. These
data structures, however, are dependent on the input
metric and pay off mostly for problems with low input
dimensionality, which is not our case. As inputs we
use the χ2 comparison metric for histograms, which is
known to perform well on gradient distributions (we
use pyramids of SIFT grids extracted over the person
silhouette or bounding box). For vectors X = [x1 . . . xd]
and Y = [y1 . . . yd], the χ2 distance is defined as

χ2(X,Y) =
1

d

∑

l

√

(xl − yl)2

xl + yl
(1)

In order to be able to run experiments within a reason-
able amount of time for certain non-approximated mod-
els, we had to work with only 400K training examples,
and subsample the data whenever this upper bound has
been exceeded. In the experiments we used k = 1. In this
case prediction is made by returning the stored target
corresponding to the closest example from the training
set under the input metric.
Kernel ridge regression (KRR) is a simple and reliable
kernel method [51] that can be applied to predict each
pose dimension (joint angles or joint positions) indepen-
dently, with separately trained models. Parameters αi

for each model are obtained by solving a non-linear l2
regularized least-squares problem:

argmin
α

1

2

∑

j

‖
∑

i

αik(Xj ,Xi)−Yj‖
2
2 + λ‖α‖22 (2)

The problem has a closed form solution

α = (K+ λI)−1
Y (3)

with Kij = k(Xi,Xj) and Y = [y1, . . . yn]. The weak-
ness of the method is the cubic scaling in the training

set size, because of a n × n matrix inversion. In our
experiments, we choose χ2 as our input metric and
the exponential map to transform the metric into a
kernel, i.e. k(Xi,Xj) = exp(−βχ2(Xi,Xj)), where β is
a scale parameter. This kernel is called the exponential-
χ2 kernel in the literature. Prediction is done using the
rule fα,β(X) =

∑

i αik(X,Xi).
Fourier Embeddings for Kernel Approximation. Our
large scale non-linear prediction approach relies on
methods to embed the data into an Euclidean space
using an approximate mapping derived from the Fourier
transform of the kernel. The procedure [52], [48], relies
on a theorem, due to Bochner, that guarantees the ex-
istence of such a mapping for the class of translation
invariant kernels. This class contains the well-known and
widely used Gaussian and Laplace kernels. The idea is to
approximate a potentially infinite-dimensional or analyt-
ically unavailable kernel lifting with a finite embedding
that can be computed explicitly. The approximation can
be derived as an expectation in the frequency domain
of a feature function φ which depends on the input.
The expectation is computed using a density µ over
frequencies, which is precisely the Fourier transform of
the kernel k

k(Xi,Xj) ≃

∫

ω

(φ(Xi;ω)φ(Xj ;ω))µ(ω) (4)

The existence of the measure is a key property be-
cause it allows an approximation of the integral with
a Monte Carlo estimate, based on a finite sample from
µ. We therefore obtain not only an explicit represen-
tation of the kernel – which is separable in the in-
puts, i.e., k(Xi,Xj) ≃ Φ(Xi)Φ(Xj)

⊤, with Φ(Xi) =
[φ(Xi;ω1) . . . φ(Xi;ωD)] a vector of the φ(Xi;ω), and ω

being D samples from µ(ω) –, but at the same time we
benefit from a kernel approximation guarantee, which
is independent of the learning cost. The explicit Fourier
feature map can then be used in conjunction with linear
methods for prediction.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014 8

Linear approximations for kernel ridge regression
(LinKRR) can be used to overcome the cubic compu-
tational burden of KRR while maintaining most of its
non-linear predictive performance. Using the Fourier
representation and standard duality arguments, one can
show that equation (2) is equivalent to

argmin
W

1

2

∑

i

‖Φ(Xi)W −Yi‖
2
2 + λ‖W‖22 (5)

This is a least squares regression model applied to non-
linearly mapped data which has a closed form solution

W = (Φ(X)⊤Φ(X) + λID)−1Φ(X)⊤Y (6)

A matrix inversion needs to be performed in this case
as well, but this time the dimension of the matrix is
D ×D, with the input size typically much smaller than
the training set (D ≪ n). The inversion is independent
of the number of examples, which makes LinKRR an
attractive model for large scale training. The construction
of the matrix Φ(X)⊤Φ(X) is a linear operation in the
dimension of the training set n and can be computed
online with little memory consumption. Note that D

is a parameter for the method and allows the trade-
off between efficiency (larger D makes inversion more
demanding) and performance (larger D makes the ap-
proximation more accurate). The experimental results
show that often, when D is large enough, there is little
or no performance loss for many interesting kernels. To
make this equivalent to the exact KRR method, we use an
exponential-χ2 kernel approximation proposed by [48].
Kernel Dependency Estimation (KDE). We also con-
sidered large-scale structured prediction models first
studied in a different pose estimation context by Ionescu
et al. [38]. The models leverage the Fourier approxi-
mation methodology for kernel dependency estimation
(KDE) [46]. Standard multiple output regression mod-
els treat each dimension independently, thus ignoring
correlations between targets. In many cases this simple
approach works well, but for 3D human pose estimation
there are strong correlations between the positions of
the skeleton joints due to the physical and anatomical
constraints of the human body, the environment where
humans operate, or the structure and synchrony of many
human actions and activities. One possibility to model
such dependencies is to first decorrelate the multivariate
output through orthogonal decomposition [53] based
on Kernel Principal Component Analysis (KPCA) [54].
KPCA is a general framework covering both parametric
kernels and data-driven kernels corresponding to non-
linear manifold models or semi-supervised learning. The
space recovered via kernel PCA gives an intermediate,
low dimensional, decoupled representation of the out-
puts, and standard KRR can now be used to regress
on each dimension independently. To obtain the final
prediction, one needs to map from the orthogonal space
obtained using Kernel PCA, and where independent
KRR predictions are made, to the (correlated) pose space

where the original output resides. This operation re-
quires solving the pre-image problem [55]

argmin
Y

‖Φ(X)W − ΦPCA(Y)‖22 (7)

For certain classes of kernels, pre-images can be com-
puted analytically, but for most kernels exact pre-image
maps are not available. The general approach is to opti-
mize (7) for the point Y in the target space whose KPCA
projection is closest to the prediction given by the input
regressor. This is a non-linear, non-convex optimization
problem, but it can be solved quite reliably using gra-
dient descent, starting from an initialization obtained
from independent predictors on the original outputs.
This process can be viewed as inducing correlations by
starting from an independent solution.
In this case, we apply the Fourier kernel approxi-

mation methodology to both covariates and targets, in
order to obtain a very efficient structured prediction
method. Once the Fourier features of the targets are com-
puted, only their dimensionality influences the complex-
ity needed to solve for kernel PCA, and training becomes
equivalent to solving a ridge regression problem to these
outputs. The resulting method is very efficient, and does
not require sub-sampling the data.

4 EVALUATION AND ERROR MEASURES

We propose several different measures to evaluate per-
formance. Each has advantages and disadvantages, so
we evaluate and provide support for all of them in order
to give a more comprehensive picture of the strengths

and weaknesses of different methods.3 Let m
(f)
f ,S(i) be

a function that returns the coordinates of the i-th joint
of skeleton S, at frame f , from the pose estimator f .

Let also m
(f)
gt,S(i) be the i-th joint of the ground truth

frame f . Let S be the subject specific skeleton and Su

be the universal skeleton. The subject specific skeleton
is the one whose limb lengths correspond to the subject
performing the motion. The universal skeleton has one
set of limb lengths, independent of the subject who
performed the motion. This allows us to obtain data in
a R3DJP parametrization, which is invariant to the size
of the subject.
MPJPE. Much of the literature reports mean per joint
position error. For a frame f and a skeleton S, MPJPE
is computed as

EMPJPE(f,S) =
1

NS

NS
∑

i=1

‖m
(f)
f ,S(i)−m

(f)
gt,S(i))‖2 (8)

where NS is the number of joints in skeleton S. For a
set of frames the error is the average over the MPJPEs
of all frames.
Depending on the evaluation setup, the joint coor-

dinates will be in 3D, and the measurements will be

3. As the field evolves towards agreement on other metrics, not
present in our dataset distribution, we plan to implement and provide
evaluation support for them as well.
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reported in millimeters (mm), or in 2D, where the error
will be reported in pixels. For systems that estimate joint
angles, we offer the option to automatically convert the
angles into positions and compute MPJPE, using direct
kinematics on the skeleton of the test subject (the ground
truth limb lengths will not be used within the error
calculation protocol).
One of the problems with this error measure is its

subject specificity. Since many methods may encounter
difficulties in predicting the parameters of the skele-
ton (e.g. limb lengths), we propose a universal MPJPE
measure which considers the same limb lengths for all
subjects, by means of a normalization process. We denote
this error measure UMPJPE.
MPJAE. A different approach to compare poses would
be to use the angles between the joints of the skeleton.
We offer this possibility for methods that predict the pose
in a joint angle parametrization. We call this error mean
per joint angle error (MPJAE). The angles are computed
in 3D.

EMPJAE(f,S) =
1

3NS

3NS
∑

i=1

|(m
(f)
f ,S(i)−m

(f)
gt,S(i)) mod ±180|

(9)
In this case, the function m returns the joints angles
instead of joint positions. This error is relatively unin-
tuitive since, perceptually, not all errors should count
equally. If one makes a 30◦ error in predicting the elbow,
only one joint, the wrist, is wrongly predicted but a 30◦

error in the global rotation will misalign all joints.
MPJLE. The two previously proposed error measures,
MPJPE and MPJAE, have two disadvantages. One issue
is that they are not robust – one badly predicted joint
can have unbounded impact on the error of the entire
dataset. Secondly, errors that are difficult to perceive by
humans can be overemphasized in the final result.
To address some of these observations, we propose a

new error measure, the mean per joint localization error,
that uses a perceptual tolerance parameter t

EMPJLE@t(f,S) =
1

NS

NS
∑

i=1

1
‖m

(f)

f,S
(i)−m

(f)

gt,S
(i)‖2≥t

(10)

This error measure can be used by fixing the tolerance
level using a perceptual threshold. For instance, errors
below a couple of centimeters are often perceptually
indistinguishable. Alternatively, errors corresponding to
different tolerance levels can be plotted together. By
integrating t over an interval, say [0, 200], we can obtain
an estimate of the average error in the same way mean
average precision gives an estimate of the performance
of a classifier. This error can be used also for evaluating
a pose estimator that may not predict all joints, and such
an estimator will be penalized only moderately. A related
approach based on PCP curves has been pursued, for
2d pose estimation, in [35]. Here we differ in that we
work in 3D as opposed to 2D, and we consider the joints
independently as opposed to pairwise. More complex

perceptual error measures beyond the ones we explore
here can be envisaged. They could encode the contact
between the person and its environment, including in-
teraction with objects or contact with the ground plane.
Our dataset does not contain people-object interactions
but the ground plane can be easily recovered. Alterna-
tively, in order to better understand what represents a
good perceptual threshold, one can explore the degree
to which people can re-enact (reproduce) a variety of
human poses shown to them, in different images. This
methodology is pursued in our recent work [56], and we
refer the interested reader to it for details.

5 EXPERIMENTAL ANALYSIS

5.1 Data Analysis

This dataset places us in the unique position of having
both large amounts of data gathered from relatively
unconstrained actors, with regard to stage direction,
and high accuracy 3D ground-truth information. In this
section we use this ground-truth information to try to
gain insight into the diversity and repeatability of the
poses contained in the dataset we have captured. We
also take advantage of the data annotation in order to
easily assess the occurrence of certain visual phenomena
such as foreshortening, ambiguities and self-occlusions.
Diversity. An easy way to assess the diversity of our
data is to check how many distinct poses have been
obtained. We consider two poses to be distinct, if at
least one joint is different than the corresponding joint
from the other pose, beyond a certain tolerance t i.e.
maxi ‖m1(i) − m2(i)‖2 > t. Since our goal is to provide
not only pose, but also appearance variations, poses of
different subjects are considered different, independently
of how similar they are in 3D. This experiment reveals
that for a 100mm tolerance, 12% of the frames are distinct
for a total of about 438,654 images. These figures grow
to 24% or 886,409 when the tolerance is down to 50mm.
Repeatability. Pose estimation from images is a diffi-
cult problem because appearance varies not only with
pose, but also with a number of “nuisance” factors like
body shape and clothing. One way to deal with this
problem is to isolate pose variation from all the other
factors by generating a dataset of pairs of highly similar
poses originating from different subjects (see figure 8 for
examples, as well as early work on learning distance
functions that preserve different levels of invariance
in a hierarchical framework [42]). We compare poses
using the distance between the most distant joints with
a threshold at 100mm. Note that whenever a pair of
similar poses is detected, temporally adjacent frames are
also very similar. We eliminate these redundant pairs
by clustering them in time and picking only the most
similar as the representative pair. In the end, we obtain a
dataset with 10,926 pairs, half of which are coming from
the “Discussion”,“Eating” and “Walking” scenarios.
Foreshortening. To assess the occurrence of foreshorten-
ing we consider the projections for the 3 joints of one
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Fig. 7. Examples of visual ambiguities naturally occurring in our dataset, and automatically identified. The first two examples show
foreshortening events for the left and right arm respectively. The next four images show a “Type 1” ambiguity for the right and left
arm. The last two images show one “Type 2” ambiguity event: first the ambiguous leg pose and then the pose with respect to which
the ambiguity was detected.

Fig. 8. Illustration of additional annotations in our dataset. The first 4 images show 2 pairs of consistent poses found from different
subjects. The last 3 images are obtained using 3D pose data. We render a simple geometric model and project it in the image to
obtain additional annotation: joint visibility, body part support in the image and even rough pixel-wise 3D information. This allows
us to detect joint occlusion, partial limb occlusion and obtain depth discontinuities.

limb (shoulder, elbow and wrist for the arms and hip,
knee and ankle for the legs). We claim that such an event
has happened when all these projections are very close to
each other and the depth ordering of the joints is correct.
In our experiments we calibrate a 20 pixel tolerance in
the center of the capture surface and normalize it using
the distance to the camera. We observe that although
these events are rare in our dataset, they do happen.
After clustering and removing redundant events, we
counted 138 foreshortening events for arms and 12 for
legs in the training data, and 82 and 2 respectively,
for the test data. Since most of our scenarios contain
mainly standing poses, foreshortening happens mostly
for arms, although for the “Sitting” and “Sitting Down”
scenarios they occur for legs as well (14 occurrences in
total). As one might expect, the “Directions” scenario,
where the subject points in different directions, has the
most foreshortening occurrences (60 in total), while some
scenarios like “Smoking” had none.

Ambiguities. When predicting 3D human pose from
static images we are inverting an inherently lossy non-
linear transformation that combines perspective projec-
tion and kinematics[18], [19]. This ambiguity makes it
difficult, in the absence of priors other than the joint

angle limits or the body non self-intersection constraints,
to recover the original 3D pose from its projection,
and the ambiguities may persist temporally [57]. The
existence of monocular 3D ambiguities is well known
[18], [57] but it is interesting to study to what extent
these are present among the poses of a large, ecological
dataset. We can assess the occurrence of ambiguities by
looking at 3D and 2D ground truth pose information.
We separate ambiguity events in two types. “Type 1”
(T1) is an ambiguity that occurs at the level of one limb.
We consider that two poses for a limb are ambiguous
if the projections are closer than a threshold d2D while
the MPJPE is larger than some distance d3D. In our
experiment we use d2D = 5 pixels and d3D = 100
mm. These thresholds provide a large number of pairs
of frames, many of which are consecutive. For a result
that is easier to interpret, we group the pairs using their
temporal indices and keep only one example per group.
The second type of ambiguity occurs between two limbs
of the same type, i.e. arms or legs. If for two different
poses the projections of the joints of one limb are close to
the projections of those of another limb corresponding to
the second pose, while the poses are still relatively con-
sistent, i.e. MPJPE is not too large, then we consider to
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have a “Type 2” (T2) ambiguity. The constraint on MPJPE
is added to remove forward-backward flips which are
the most likely cause of similar projections for different
limbs. Examples of both types of ambiguities are given
in figure 7. Notice however that the presence of a subset
of ambiguities in our captured data does not imply that
such ambiguities and their number would immediately
correlate to the ones obtained by an automatic monoc-
ular pose estimation system–we know that a larger set
of geometric ambiguities exists, ex-ante. The question is
to what extent the pose estimation system can be made
‘not see them’ using image constraints, prior knowledge,
or information from the environment and the task. The
results are summarized in table 1.

T1LArm T1RArm T1LLeg T1RLeg T2Legs
Directions 1235 2512 3022 3219 425
Discussion 7501 9503 8226 6167 881
Eating 2451 3130 3277 3100 175
Greeting 1507 2099 2392 2066 228
Phone Talk 2255 3154 3316 3045 191
Posing 1767 2468 2431 2145 117
Buying 922 1311 1205 962 96
Sitting 2398 3220 3508 3693 4
Sitting Down 2200 2996 3270 3407 66
Smoking 2109 3574 3660 3320 232
Taking Photo 1096 1407 1831 1611 109
Waiting 2893 3820 4387 3353 265
Walking 2407 3017 3266 2225 965
Walking Dog 1142 1395 1592 1468 298
Walking Pair 925 1406 1828 1778 366

TABLE 1

A summary of the results for our type 1 (T1) and type 2 (T2)

ambiguity experiments showing counts of distinct ambiguity

events by scenario, in our dataset.

Self-occlusion. Unlike 2D pose estimation datasets, our
data does not directly provide information about joint
and limb visibility. This can be computed using the avail-
able data by considering the 3D pose information and
using it to render a simple geometric model which can
then be projected onto the image. In figure 8, we show
examples of the joint locations from which body part label
visibility can be easily obtained. Moreover, we can obtain
dense part labels from which part visibility can be derived
and depth information which can be used to label depth
discontinuity edges. All these detailed annotations are
very difficult to obtain in general, and are highly relevant
in the context of human pose estimation.

5.2 Prediction Experiments

In this section we provide quantitative results for sev-
eral methods including nearest neighbors, regression
and large-scale structured predictors. Additionally, we
evaluate subject and activity specific models, as well as
general models trained on the entire dataset. We also
study the degree of success of the methodology in more
challenging situations, like the ones available in our
mixed reality dataset.
Image Descriptors. For silhouette and person bounding
box description, we use a pyramid of grid SIFT descrip-
tors with 3 levels (2x2, 4x4 and 8x8) and 9 orientation
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Fig. 9. The evolution of the test error as a function of the train-
ing set size. Larger training sets offer important performance
benefits for all models we have tried.

bins. Variants of these features have been shown to work
well on previous datasets (e.g. HumanEva [4])[41], [14]
and we show that these are quite effective even in this
more complex setting. Since both background subtrac-
tion (BS) and bounding box (BB) localization of our
subjects are provided, we performed the experiments
using both features extracted over the entire bounding
box, and using descriptors where the BS mask is used,
in order to filter out some of the background.

Pose Data. Our 3D pose data is mapped to the coordi-
nate system of one of the 4 cameras, and all predictions
are performed in that coordinate system. When we re-
port joint position errors, the root joint of the skeleton
is always in the center of the coordinate system used
for prediction. Errors are reported mostly in mm using
MPJPE. Sometimes we use MPJAE which reports errors
in angle degrees. Human poses are represented using a
skeleton with 17 joints. This limitation of the number
of joints helps discard the smallest links associated to
details for the hands and feet, going as far down the
kinematic chain to only reach the wrist and the ankle
joints.

Training set size. We first studied the manner in which
test errors vary with the size of the training set (fig. 9).
Due to the limited memory and computational resources
available, the largest exact KRR model was learnt using
50,000 samples, and the largest kNN model was based
on 400,000 samples. The results show that our best
performing approximate non-linear model, LinKDE, cap-
italizes on a 2 orders of magnitude increase in training
set size by reducing the test error by roughly 20%.
This experiment clearly shows the potential impact of
using Human3.6M in increasing the accuracy of pose
estimation models. In fact, the potential for research
progress is significantly vaster, as more sophisticated
models with increased capacity, beyond our baselines
here, can be used, with two orders of magnitude more
data than in the largest available dataset.

Results. Linear Fourier methods use input kernel em-
beddings based on 15,000-dimensional random feature
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maps (corresponding to exponentiated χ2), and 4000-
d output kernel embedding (corresponding to Gaussian
kernels). Typical running times on an 8 core PC with the
full dataset include 16 hours for testing kNN models
(with a training set subsampled to 300K examples), 1h
for training and 12h for testing KRR (40K example train-
ing set). For the full training set of 2.1 million examples
where only linear approximations to non-linear models
can be effectively applied, training LinKRR takes 5h and
testing takes about 2h. LinKDE takes about 5h to train
and 40h to test. Code for all of the methods is provided
on our website as well.
Several training and testing model scenarios were

prepared. The simplest one considers data from each
subject separately (we call this Subject Specific Model or
SSM). The motions for our 15 scenarios are each captured
in 2 trials which are used for training and validation,
respectively. A set of 2 motions from each subject were
reserved for testing (these were data captured in distinct
motions performed by the subjects, not subsampled from
single training sequences). The setup includes different
poses that appear in the 15 training scenarios (one
involves sitting, the second one does not). This type of
experiment was designed to isolate the pose variability
from the body shape and clothing variability. A second,
more challenging scenario, considers prediction with a
model trained on a set of 7 fixed training subjects (5
for training, and 2 for validation) and tested on the
remaining 4 subjects on a per motion basis (we call it
Activity Specific Model or the ASM). Finally, we used
a setup where all motions are considered together using
the same split among subjects (our General Model, GM).
We first tested the baseline methods on the simplest

setup, SSM. We noticed a difference between results
obtained using background subtraction (BS) and bound-
ing box (BB) inputs with a slight edge to BB. This is
not entirely surprising when considering, for instance,
examples involving sitting poses. There, the presence of
the chair makes background subtraction very difficult
and that affects the positioning of the object within the
descriptor’s coordinate system. This problem only affects
our background subtraction data since the bounding
boxes are computed from the joint projections alone.
In our second setup we tested our models on each mo-

tion separately. These are referred to as Activity Specific
Models (ASM). We noticed that errors are considerably
higher both because of the large size of our test set and
the significant subject body variation introduced. Our
‘sitting down’ motion is one of the most challenging.
It consists of subjects sitting on the floor in different
poses. This scenario is complex to analyze because of the
high rate of self-occlusion, as well as the bounding box
aspect ratio changes. It also stretches the use of image
descriptors extracted on regular grids, confirming that,
while these may be reasonable for standing poses or
pedestrians, they are not adequate for general human
motion sensing. The other ‘sitting’ scenario in the dataset
is challenging too due to the use of external objects,

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Tolerance

A
v
e
ra

g
e
 L

o
c
a
liz

a
ti
o
n
 E

rr
o
r

 

 

KNN(132.18)
KRR(118.60)
LinKRR(123.89)
LinKDE (93.01)

0 50 100 150 200
0.2

0.4

0.6

0.8

1

Tolerance

A
v
e
ra

g
e
 L

o
c
a
liz

a
ti
o
n
 E

rr
o
r

 

 

KNN(182.59)

KRR(151.73)

LinKRR(162.51)

LinKDE (137.98)

Fig. 10. The proposed perceptual MPJLE error measure. In
the left plot we show the MPJLE for the ‘Eating’ ASM. We
compare all our predictors, where features are computed on
input segments given by background subtraction. The right
plot shows similar results for the background subtraction GM.
MPJPE errors for each model are given in parentheses. The
results are computed using the full test set (including subject
S10).

in this case a chair. The ‘taking photo’ and ‘walking
dog’ motions are also difficult because of bounding
box variations, and because they are less repeatable
and more liberty was granted to the actors performing
them. Overall, we feel that the dataset offers a good
balance between somewhat ‘easier’ settings, as well as
moderately difficult and challenging ones, making it
a plausible benchmark for testing new and improved
features, models or algorithms.
Due to certain privacy concerns, we have decided

to withhold the images of one of our testing subjects,
S10. However, we make all the other data associated
to this subject available, including silhouettes, bounding
boxes as well as corresponding image descriptors. In
this article we report results for both ASM and GM
models, including S10 in the test set (tables 3 and 4). In
the future, as other features are developed by external
researchers or by us, we will strive to compute those
and make them available for download for S10, too. Our
evaluation server allows error evaluation on the test set,
both including and excluding S10.
The MPJLE measure gives insight into the success and

failures of our tested methods (fig. 10). For the ‘Eating’
ASM, one of the easier activities, LinKDE correctly pre-
dicts, on average, 14 out of 17 joints, at 150mm tolerance.
In contrast KRR and LinKRR correctly predict only 12
joints at the same level of tolerance.
Our final evaluation setup is the one where models

are trained based on all motions from all subjects. Due
to the size of the dataset, this is a highly non-trivial
process and very few existing methodologies can handle
it. We refer to this as the general motion (GM) setup
and show the results in table 4. The models we have
tested appear not to be able yet to effectively leverage
the structure in the data, but it is encouraging that linear
Fourier approximations to non-linear methods can be
applied on such large datasets with promising results,
and within a reasonable time budget. Future research
towards better image descriptors, improved modeling
of correlations among the limbs of the human body, or
the design of large scale learning methods should offer
new insights into the structure of the data and should
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method mask S1 S7 S8 S9 S11 S5 S6
kNN BB 118.93 129.60 74.90 113.31 127.98 132.00 155.65
kNN BS 127.91 112.19 63.27 108.68 132.96 113.65 139.35
KRR BB 99.96 96.41 58.94 95.75 106.50 108.35 117.90
KRR BS 107.96 100.66 58.19 97.73 114.84 112.18 114.60
LinKRR BB 114.98 114.30 81.69 119.55 126.35 128.00 140.86
LinKRR BS 125.46 122.89 82.09 122.29 136.81 134.84 141.01
LinKDE BB 94.07 93.63 55.32 91.80 97.25 96.35 113.80
LinKDE BS 96.13 93.51 51.95 89.54 100.96 105.89 102.74

TABLE 2

Results of the different methods, corresponding to the subject specific modeling (SSM) setup, and for all training subjects in the

dataset. kNN indicates nearest neighbor (k=1), KRR is kernel ridge regression, and LinKRR represents a linear Fourier

approximation of KRR. LinKDE is the linear Fourier approximation corresponding to a structured predictor based on Kernel

Dependency Estimation (KDE). Errors are given in mm, using the MPJPE metric.

method mask Directions Discussion Eating Greeting Phone Talk Posing Buying Sitting
kNN BB 154.23 151.18 136.23 165.94 147.51 175.58 180.82 194.09
kNN BS 166.28 163.68 132.19 188.33 145.89 199.89 174.38 174.67
KRR BB 118.96 116.77 109.65 128.51 123.05 136.23 153.55 176.90
KRR BS 130.04 124.96 118.60 140.73 125.35 152.21 157.45 159.30
LinKRR BB 123.67 121.23 116.09 136.77 130.60 142.40 165.14 180.69
LinKRR BS 136.07 132.33 123.90 149.99 132.83 158.98 162.36 168.12
LinKDE BB 115.79 113.27 99.52 128.80 113.44 131.01 144.89 160.92
LinKDE BS 124.19 117.44 93.01 138.90 111.40 145.43 136.94 139.29
method mask Sitting Down Smoking Taking Photo Waiting Walking Walking Dog Walking Pair
kNN BB 209.06 161.22 234.05 176.16 167.00 239.38 180.91
kNN BS 237.05 169.41 247.57 193.78 158.27 216.53 189.80
KRR BB 184.58 120.19 182.50 139.66 129.13 183.27 143.19
KRR BS 213.72 130.47 197.21 150.39 119.28 175.34 150.43
LinKRR BB 204.62 128.62 194.32 144.54 133.49 191.92 147.87
LinKRR BS 231.57 139.88 208.14 157.92 126.90 185.64 156.33
LinKDE BB 172.98 114.00 183.09 138.95 131.15 180.56 146.14
LinKDE BS 203.10 118.37 197.13 146.30 115.28 166.10 153.59

TABLE 3
Comparison of predictors for the activity specific setting (ASM), on the test set (including S10). kNN indicates nearest neighbor

(k=1), KRR kernel ridge regression, LinKRR is a linear Fourier approximation of KRR, and LinKDE is the linear Fourier model for a

structured predictor based on Kernel Dependency Estimation (KDE). Errors are given in mm, using the MPJPE metric.

Joint Positions
BB BS

kNN KRR LKRR LKDE kNN KRR LKRR LKDE
172.12 138.85 150.73 127.92 182.79 151.73 162.51 137.98

Joint Angles
BB BS

kNN KRR LKRR LKDE kNN KRR LKRR LKDE
18.28 13.83 13.86 13.68 17.75 13.83 13.92 13.74

TABLE 4
Results of our GM setup, with models estimated based on data from all subjects and activities in the training set, and evaluated on

the full test set, including S10. LinKRR (LKRR) and LinKDE (LKDE) are kernel models based on random Fourier approximations

trained and tested on 2.1M and 1.4M poses respectively. The exact KRR results are obtained by using a subset of only 40,000

human poses sampled from the training set. The results for joint positions are in mm using MPJPE and the results with angles are

in degrees computed using MPJAE.

ultimately improve the 3D prediction accuracy.

Mixed Reality Results. We use models trained on our
laboratory data and test on mixed reality data. The
results are given in table 5. The test videos are named
mixed-reality (MR) 1 to 7. We consider 2 scenarios: one
using the ASM of the activity from which the test video
was generated and one using the GM. In this experiment
we use MPJAE (in degrees) and, for technical reasons,
ignore the error corresponding to the global rotation. The
ASM results are in general better than the GM results
reflecting a more constrained prediction problem. As
expected, BS results are better than BB results, showing
that benefits from slightly more stable training features,
observed for BB in the laboratory setting, are offset by
the contribution of real background features.

6 CONCLUSIONS

We have introduced a large scale dataset, Human3.6M
containing 3.6 million different 3D articulated poses
captured from a set of professional men and women
actors. Human3.6M complements the existing datasets
with a variety of human poses typical of people seen in
real-world environments, and provides synchronized 2D
and 3D data (including time of flight, high quality image
and motion capture data), accurate 3D human models
(body surface scans) of the actors, and mixed reality
settings for performance evaluation under realistic
backgrounds, correct 3D scene geometry, and occlusion.
We also provide studies and evaluation benchmarks
based on discriminative pose prediction methods.
Our analysis includes not only nearest neighbor or
standard linear and non-linear regression methods, but
also advanced structured predictors and large-scale
approximations to non-linear models based on explicit
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Activity Specific Model (ASM) General Model (GM)
BB BS BB BS

kNN KRR LKRR LKDE kNN KRR LKRR LKDE kNN KRR LKRR LKDE kNN KRR LKRR LKDE
MR1 25.83 20.09 19.81 19.85 21.23 18.04 18.58 18.47 24.99 20.64 20.11 19.61 22.76 19.44 18.82 18.45
MR2 20.40 16.40 17.27 16.81 19.43 16.16 16.28 15.28 20.29 18.00 18.02 16.53 19.21 16.64 16.91 15.51
MR3 24.08 20.75 21.53 21.20 25.60 22.40 21.89 21.84 23.40 20.91 21.95 21.23 25.78 21.75 22.02 21.75
MR4 25.69 19.86 20.64 20.26 22.40 19.67 20.12 19.35 26.31 21.53 20.76 19.89 23.36 20.08 19.90 19.03
MR5 19.36 17.13 17.54 17.31 19.04 16.52 16.72 16.51 21.50 20.87 21.49 19.99 25.57 20.85 22.14 19.33
MR6 20.47 18.49 19.55 18.81 20.95 18.07 18.11 17.36 26.26 22.58 22.29 20.58 23.00 20.16 20.24 18.79
MR7 19.03 16.83 17.13 14.70 18.35 13.87 15.52 13.88 20.28 19.12 17.78 16.21 20.21 19.03 18.71 16.53

TABLE 5

Pose estimation error for our mixed reality dataset, obtained with moving cameras, and under challenging non-uniform

backgrounds and occlusion (see fig. 6). The errors are computed using MPJAE and do not include the global rotation. LinKRR

(here LKRR) and LinKDE (LKDE) are linear Fourier approximation methods. The models were trained on the data captured in the

laboratory and we tested on the mixed-reality sequences. For ASM, we used the model trained on motions of the same type as

the test motion. The results are promising but also show clear scope for feature design and model improvements (the methods

shown do not model or predict occlusion explicitly).

Fourier feature maps. The ability to train complex
approximations to non-linear models on millions of
examples opens up possibilities to develop alternative
feature descriptors and correlation kernels, and to test
them seamlessly, at large scale. We show that our
full dataset delivers important performance benefits
compared to smaller equivalent datasets, but also that
significant space for improvement exists. The data,
as well as the large-scale structure models, the image
descriptors, as well as the visualization and software
evaluation tools we have developed are freely available
online, for academic use. We hope that Human3.6M
and its associated tools will stimulate further research
in computer vision, machine learning, and will help
in the development of improved 3D human sensing
systems that can operate robustly in the real world.
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