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Abstract While research on articulated human motion and

pose estimation has progressed rapidly in the last few years,

there has been no systematic quantitative evaluation of com-

peting methods to establish the current state of the art. We

present data obtained using a hardware system that is able

to capture synchronized video and ground-truth 3D motion.

The resulting HUMANEVA datasets contain multiple sub-

jects performing a set of predefined actions with a number

of repetitions. On the order of 40,000 frames of synchro-

nized motion capture and multi-view video (resulting in over

one quarter million image frames in total) were collected at

60 Hz with an additional 37,000 time instants of pure mo-

tion capture data. A standard set of error measures is defined
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for evaluating both 2D and 3D pose estimation and tracking

algorithms. We also describe a baseline algorithm for 3D

articulated tracking that uses a relatively standard Bayesian

framework with optimization in the form of Sequential Im-

portance Resampling and Annealed Particle Filtering. In

the context of this baseline algorithm we explore a vari-

ety of likelihood functions, prior models of human motion

and the effects of algorithm parameters. Our experiments

suggest that image observation models and motion priors

play important roles in performance, and that in a multi-

view laboratory environment, where initialization is avail-

able, Bayesian filtering tends to perform well. The datasets

and the software are made available to the research com-

munity. This infrastructure will support the development of

new articulated motion and pose estimation algorithms, will

provide a baseline for the evaluation and comparison of new

methods, and will help establish the current state of the art

in human pose estimation and tracking.

Keywords Articulated pose estimation · Articulated

tracking · Motion capture · Human tracking · Datasets and

evaluation

1 Introduction

The recovery of articulated human motion and pose from

video has been studied extensively in the past 20 years with

the earliest work dating to the early 1980’s (Hogg 1983;

O’Rourke and Badler 1980). A variety of statistical (Agar-

wal and Triggs 2004a, 2004b; Balan et al. 2005; Deutscher

and Reid 2005; Hua et al. 2005; Sigal et al. 2004; Si-

gal and Black 2006; Sminchisescu et al. 2005) as well

as deterministic methods (Mori et al. 2004; Taylor 2000;

mailto:ls@cs.toronto.edu
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Shakhnarovich et al. 2003) have been developed for track-

ing people from single (Agarwal and Triggs 2004a, 2004b;

Felzenszwalb and Huttenlocher 2005; Hua et al. 2005; Lan

and Huttenlocher 2005; Mori 2005, Mori et al. 2004; Ra-

manan et al. 2005; Ramanan and Forsyth 2003; Ren et

al. 2005; Ronfard et al. 2002; Sigal and Black 2006) or

multiple (Balan et al. 2005; Deutscher and Reid 2005;

Grauman et al. 2003; Sigal et al. 2004) views. All these

methods make different choices regarding the state space

representation of the human body and the image observa-

tions required to infer this state from the image data. Despite

clear advances in the field, evaluation of these methods re-

mains mostly heuristic and qualitative. As a result, it is diffi-

cult to evaluate the current state of the art with any certainty

or even to compare different methods with any rigor.

Quantitative evaluation of human pose estimation and

tracking is currently limited due to the lack of common

datasets containing “ground truth” with which to test and

compare algorithms. Instead qualitative tests are still widely

used and evaluation often relies on visual inspection of re-

sults. This is usually achieved by projecting the estimated

3D body pose into the image (or set of images) and visually

assessing how the estimates explain the image (Deutscher

and Reid 2005; Felzenszwalb and Huttenlocher 2005; Ren et

al. 2005). Another form of inspection involves applying the

estimated motion to a virtual character to see if the move-

ments appear natural (Sminchisescu et al. 2005). The lack

of the quantitative experimentation at least in part can be at-

tributed to the difficulty of obtaining 3D ground-truth data

that specify the true pose of the body observed in video se-

quences.

To obtain some form of ground truth, previous ap-

proaches have resorted to custom action-specific schemes;

e.g. motion of the arm along a circular path of known diam-

eter (Kakadiaris and Metaxas 1996). Alternatively, synthetic

data have been extensively used (Agarwal and Triggs 2004a,

2004b; Grauman et al. 2003; Shakhnarovich et al. 2003;

Sminchisescu et al. 2005) for quantitative evaluation. With

packages such as POSER (e frontier, Scotts Valley, CA) or

MAYA (Autodesk, San Rafael, CA), semi-realistic images

of humans can be rendered and used for evaluation. Such

images, however, typically lack realistic camera noise, of-

ten contain very simple backgrounds and provide simplified

types of clothing. While synthetic data allow quantitative

evaluation, current datasets are still too simplistic to capture

the complexities of natural images of people and scenes.

In the last few years, there have been a few successful

attempts (Gall et al. 2006; Knossow et al. 2008; Muender-

mann et al. 2007; Rosenhahn et al. 2006) to simultaneously

capture video and ground truth 3D motion data (in the form

of marker-based tracking); some groups were also able to

capture 2D motion ground truth data in a similar fashion

(Wang and Rehg 2006). Typically hardware systems sim-

ilar to the one proposed here have been employed (Knos-

sow et al. 2008) where the video and motion capture data

were captured either independently (and synchronized in

software off-line) or with hardware synchronization. While

this allowed some quantitative analysis of results (Gall et

al. 2006; Knossow et al. 2008; Muendermann et al. 2007;

Rosenhahn et al. 2006; Wang and Rehg 2006), to our knowl-

edge none of the synchronized data captured by these groups

(with the exception of (Wang and Rehg 2006), discussed in

Sect. 2) has been made available to the community at large,

making it hard for competing approaches to compare per-

formance directly. For 2D human pose/motion estimation,

quantitative evaluation is more common and typically uses

hand-labeled data (Hua et al. 2005; Ramanan et al. 2005;

Ramanan and Forsyth 2003). Furthermore, for both 2D and

3D methods, no standard error measures exist and results

are reported in a variety of ways which prevent direct com-

parison; e.g. average root-mean-squared (RMS) angular er-

ror (Agarwal and Triggs 2004a, 2004b, Sminchisescu et

al. 2005), normalized error in joint angles (Shakhnarovich

et al. 2003), silhouette overlap (Ramanan et al. 2005; Ra-

manan and Forsyth 2003), joint center distance (Balan et

al. 2005; Grauman et al. 2003; Lan and Huttenlocher 2005;

Lee and Nevatia 2006; Li et al. 2006; Sigal et al. 2004;

Sigal and Black 2006), etc.

Here we describe two datasets containing human activity

with associated ground truth that can be used for quantitative

evaluation and comparison of both 2D and 3D methods. We

hope that the creation of these datasets, which we call HU-

MANEVA, will advance the state of the art in human motion

and pose estimation by providing a structured, comprehen-

sive, development dataset with support code and quantitative

evaluation measures. The motivation behind the design of

the HUMANEVA datasets is that, as a research community,

we need to answer the following questions:

– What is the state-of-the art in human pose estimation?

– What is the state-of-the art in human motion tracking?

– What algorithm design decisions affect human pose esti-

mation and tracking performance and to what extent?

– What are the strengths and weaknesses of different pose

estimation and tracking algorithms?

– What are the main unsolved problems in human pose es-

timation and tracking?

In answering these questions, comparisons must be made

across a variety of different methods and models to find

which choices are most important for a practical and robust

solution. To support this analysis, the HUMANEVA datasets

contain a number of subjects performing repetitions (trials)

of a varied set of predefined actions. The datasets are bro-

ken into training, validation, and test sub-sets. For the testing

subset, the ground truth data are withheld and a web-based
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evaluation system is provided. A set of error measures is de-

fined and made available as part of the dataset. These error

measures are general enough to be applicable to most cur-

rent pose estimation and tracking algorithms and body mod-

els. Support software for manipulating the data and evaluat-

ing results is also made available as part of the HUMANEVA

datasets. This support code shows how the data and error

measures can be used and provides an easy-to-use Matlab

(The Mathworks, Natick, MA) interface to the data. This al-

lows different methods to be fairly compared using the same

data and the same error measures.

In addition we provide a baseline algorithm for 3D ar-

ticulated tracking in the form of simple Bayesian filtering.

We analyze the performance of the baseline algorithm un-

der a variety of parameter choices and show how these pa-

rameters affect the performance. The reported results on

the HUMANEVA-II dataset are intended to be the base-

line against which future algorithms that use the dataset

can be compared. In addition, this Bayesian filtering soft-

ware is freely available, and can serve as a foundation for

new algorithm development and experimentation with im-

age likelihood models and new prior models of human mo-

tion.

In systematically addressing the problems of articu-

lated human pose estimation and tracking using the HU-

MANEVA datasets, other related research areas may bene-

fit as well, such as foreground/background segmentation,

appearance modeling and voxel carving. It is worth not-

ing that similar efforts have been made in related areas

including the development of datasets for face detection

(Phillips et al. 2000, 2002), human gait identification (Gross

and Shi 2001; Sarkar et al. 2005), dense stereo vision

(Scharstein and Szeliski 2002) and optical flow (Baker et al.

2007). These efforts have helped advance the state-of-the-

art in their respective fields. Our hope is that the HUMAN-

EVA datasets will lead to similar advances in articulated hu-

man pose and motion estimation. In the short time that the

dataset has been made available to the research community,

it has already helped with the development and evaluation

of new approaches for articulated motion estimation (Bis-

sacco et al. 2007; Bo et al. 2008; Lee and Elgammal 2007;

Li et al. 2006, 2007; Ning et al. 2008; Rogez et al. 2008;

Urtasun and Darrell 2008; Vondrak et al. 2008; Xu and Li

2007). The dataset has also served as a basis for a series of

workshops on Evaluation of Human Motion and Pose Esti-

mation (EHuM)1 set forth by the authors.

1While the workshops did not have any printed proceedings, sub-

missions can be viewed on-line: http://www.cs.brown.edu/people/

ls/ehum/, http://www.cs.brown.edu/people/ls/ehum2/.

2 Related Work

2.1 Articulated Pose and Motion Estimation

Classically the solutions to articulated human motion esti-

mation fall into two categories: pose estimation and track-

ing. Pose estimation is usually formulated as the infer-

ence of the articulated human pose from a single image

(or in a multi-view setting, from multiple images cap-

tured at the same time). Tracking, on the other hand, is

formulated as inference of the human pose over a set of

consecutive image frames throughout an image sequence.

Tracking approaches often assume knowledge of the ini-

tial pose of the body in the first frame and focus on the

evolution of this pose over time. These approaches can be

combined (Sigal et al. 2004; Sminchisescu et al. 2005),

such that tracking benefits from automatic initialization

and failure recovery in the form of static pose estimation

and pose estimation benefits from temporal coherence con-

straints.

It is important to note that both tracking and pose estima-

tion can be performed in 2D, 2.5D, or 3D, corresponding to

different ways of modeling the human body. In each case,

the body is typically represented by an articulated set of

parts corresponding naturally to body parts (limbs, head,

hands, feet, etc.). Here 2D refers to models of the body

that are defined directly in the image plane while 2.5D ap-

proaches also allow the model to have relative depth infor-

mation. Finally 3D approaches typically model the human

body using simplified 3-dimensional parts such as cylinders

or superquadrics. A short summary of different approaches

with evaluation and error measures employed (when ap-

propriate) can be seen in Table 1; for a more complete

taxonomy, particularly of older work, we refer readers to

(Gavrila 1999) and (Moeslund and Granum 2001).

2.2 Common Datasets

While HUMANEVA is the most extensive dataset for evalua-

tion of human pose and motion estimation, there have been

several related efforts. A similar approach was employed by

Wang and Rehg (2006) where synchronized motion capture

and monocular video was collected. The dataset, used by

the authors to analyze performance of 2D articulated track-

ing algorithms, is available to the public.2 The dataset, how-

ever, only contains 4 sequences (2 of which come from

old movie footage and required manual labeling); only 2D

ground truth marker positions are provided. The INRIA Per-

ception Group also employed a similar approach for collec-

tion of ground truth data (Knossow et al. 2008), however,

2http://www.cc.gt.atl.ga.us/grads/w/Ping.Wang/Project/

FigureTracking.html.

http://www.cs.brown.edu/people/ls/ehum/
http://www.cs.brown.edu/people/ls/ehum/
http://www.cs.brown.edu/people/ls/ehum2/
http://www.cc.gt.atl.ga.us/grads/w/Ping.Wang/Project/FigureTracking.html
http://www.cc.gt.atl.ga.us/grads/w/Ping.Wang/Project/FigureTracking.html
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Table 1 Short survey of the human motion and tracking algorithms. Methods are listed in the chronological order by the first author. Type refers

to the type of the approach, where (P) corresponds to the pose-estimation and (T) to tracking. Approaches that employ (⋆) and (⋆⋆) evaluation

measures are consistent with the evaluation measures proposed in this paper

Year Reference Model type Parts Dim Type Evaluation Measure

1983 Hogg (1983) Cylinders 14 2.5 T Qualitative

1996 Gavrila and Davis (1996) Superquadric Ellip. 12 3 T Quantitative

1996 Ju et al. (1996) Patches 2 2 T Qualitative

1996 Kakadiaris and Metaxas (1996) D Silhouettes 2 3 T Quantitative

1998 Bregler and Malik (1998) Ellipsoids 10 3 T Qualitative*

2000 Rosales and Sclaroff (2000) Stick-Figure 10 3 P Synthetic ⋆1

2000 Sidenbladh et al. (2000) Cylinders 2/10 3 T Qualitative

2002 Ronfard et al. (2002) Patches 15 2 P Hand Labeled

2002 Sidenbladh et al. (2002) Cylinders 2/10 3 T Qualitative

2003 Grauman et al. (2003) Mesh N/A 3 P Synthetic/POSER
⋆

2003 Ramanan and Forsyth (2003) Rectangles 10 2 T,P Hand Labeled ⋄⋄

2003 Shakhnarovich et al. (2003) Mesh N/A 3 P Synthetic/POSER
‡

2003 Sminchisescu and Triggs (2003a, 2003b) Superquadric Ellip. 15 3 T Qualitative2

2004 Agarwal and Triggs (2004a, 2004b) Mesh N/A 3 P Synthetic/POSER
†

2004 Deutscher and Reid (2005) R-Elliptical Cones 15 3 T Qualitative

2004 Lan and Huttenlocher (2004) Rectangles 10 2 T,P Qualitative

2004 Mori et al. (2004) Stick-Figure 9 3 P Qualitative

2004 Roberts et al. (2004) Prob. Template 10 2 P Qualitative

2004 Sigal et al. (2004) R-Elliptical Cones 10 3 T,P Motion Capture ⋆⋆

2005 Balan et al. (2005) R-Elliptical Cones 10 3 T Motion Capture ⋆⋆

2005 Felzenszwalb and Huttenlocher (2005) Rectangles 10 2 P Qualitative

2005 Hua et al. (2005) Quadrangular 10 2 P Hand Labeled ♮

2005 Lan and Huttenlocher (2005) Rectangles 10 2 P Motion Capture ⋆

2005 Ramanan et al. (2005) Rectangles 10 2 T,P Hand Labeled ⋄⋄

2005 Ren et al. (2005) Stick-Figure 9 2 P Qualitative

2005 Sminchisescu et al. (2005) Mesh N/A 3 T,P Synthetic/POSER †

2006 Gall et al. (2006) Mesh N/A 3 T Motion Capture †

2006 Lee and Nevatia (2006) R-Elliptical Cones 5/10 3 T,P Hand Labeled ⋆⋆3

2006 Li et al. (2006) R-Elliptical Cones 10 3 T HUMANEVA
⋆⋆

2006 Rosenhahn et al. (2006) Free-form surface patches N/A 3 T Motion Capture †

2006 Sigal and Black (2006) Quadrangular 10 2 P Motion Capture ⋆

2006 Urtasun et al. (2006) Stick-figure 15 3 T Qualitative

2006 Wang and Rehg (2006) SPM + templates 10 2 T Motion Capture ⋆ and ⋄

only the multi-view video data is currently made available

to the public.

The CMU Graphics Lab Motion Capture Database (CMU)

is by far the most extensive dataset of publicly available

motion capture data. It has been used by many researchers

within the community to build prior models of human mo-

tion. The dataset, however, is not well suited for evalu-

ating video-based tracking performance. While, for many

of the motion capture sequences, low-resolution monocu-

lar videos are available, the calibration information required

to project the 3D models into the images is not. Neverthe-

less, the video data has proved useful for the analysis of dis-

criminative methods that do not estimate 3D body location

e.g. (Navaratnam et al. 2007). In addition, the subjects are

dressed in tight fitting motion capture suits and hence lack

the realistic clothing variations exhibited in less controlled

environments.

The CMU Motion of Body (MoBo) Database (Gross and

Shi 2001), initially developed for gait analysis, has also

proved useful in analyzing the performance of articulated

tracking algorithms (Fathi et al. 2007; Zhang et al. 2006).

While the initial dataset, which contains an extensive collec-

tion of walking motions, did not contain joint-level ground
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Table 1 (Continued)

Year Reference Model type Parts Dim Type Evaluation Measure

2007 Balan et al. (2007) SCAPE 15 3 P Qualitative

2007 Lee and Elgammal (2007) Joint centers N/A 3 T HUMANEVA
⋆⋆

2007 Muendermann et al. (2007) SCAPE 15 3 T Motion Capture ⋆⋆ and ⋄

2007 Navaratnam et al. (2007) Mesh N/A 3 P Motion Capture †

2007 Srinivasan and Shi (2007) Exemplars 6 2 P Hand Labeled ⋆ and ⋄

2007 Xu and Li (2007) Cylinders 10 3 T HUMANEVA
⋆⋆

2008 Bo et al. (2008) Joint centers N/A 3 P HUMANEVA ⋆⋆

2008 Ning et al. (2008) Stick-figure 10 3 P HUMANEVA
†

2008 Rogez et al. (2008) Joint centers 10 2/3 P HUMANEVA ⋆

2008 Urtasun and Darrell (2008) Joint centers N/A 3 P HUMANEVA
⋆⋆

2008 Vondrak et al. (2008) Ellipsoids + prisms 13 3 T HUMANEVA ⋆⋆

⋆Mean squared distance in 2D between the set of M = 15 (or fewer) virtual markers corresponding to the joint centers and limb ends. Measured

in pixels (pix). D(x, x̂) = 1
M

∑

M

i=1 ‖ mi(x) − mi(x̂) ‖, where mi(x) ∈ R
2 is the location of 2D marker i with respect to pose x

⋆⋆Mean squared distance in 3D between the set of M = 15 virtual markers corresponding to the joint centers and limb ends. Measured in millime-

ters (mm). D(x, x̂) = 1
M

∑

M

i=1 ‖ mi(x) − mi(x̂) ‖, where mi(x) ∈ R
3 is the location of 3D marker i with respect to pose x

†Root mean square (RMS) error in joint angle. Measured in degrees (deg). D(θ, θ̂) = 1
N

∑N
i=1 |(θi − θ̂i) mod ± 180◦|, where θ ∈ R

N is the pose

in terms of joint angles

‡Normalized error in joint angle. Measured as a fraction from 0 to 1. D(θ, θ̂) =
∑N

i=1 1 − cos(θi − θ̂i), where θ ∈ R
N is the pose in terms of joint

angles

⋄Pixel overlap

⋄⋄Pixel overlap based threshold resulting in binary 0/1 detection measure

♮Mean distance from 4 endpoints of quadrangular shape representing the limb

1Error units were in fractions of the subject’s height

2While only qualitative analysis of the overall tracking performance was presented, a quantitative analysis of the number of local minima in the

posterior was performed

3Additional per-limb weighting was applied to downweight the error proportionally with the size of the limb

truth information, manually labeled data has been made

available3 by Zhang et al.

A more direct comparison of HUMANEVA to other

datasets that are available to the community is given in Ta-

ble 2.

3 HUMANEVA Datasets

To simultaneously capture video and motion information,

our subjects wore natural clothing (as opposed to tight-

fitting motion capture suits typically used for pure motion

capture sessions) on which reflective markers were attached

using invisible adhesive tape.4 Our motivation was to obtain

3http://www.cs.cmu.edu/~zhangjy/.

4Participation in the collection process was voluntary and each sub-

ject was required to read, understand, and sign an Institutional Review

Board (IRB) approved consent form for collection and distribution of

data. A copy of the consent form for the “Video and Motion Capture

Project” is available by writing to the authors. Subjects were informed

“natural” looking image data that contained all the complex-

ity posed by moving clothing. One negative outcome of this

is that the markers tend to move more than they would with

a tight-fitting motion capture suit. As a result, our ground

truth motion capture data may not always be as accurate as

that obtained by more traditional methods; we felt that the

trade-off of accuracy for realism here was acceptable. We

have applied minimal post-processing to the motion capture

data, steering away from the use of complex software pack-

ages (e.g. Motion Builder) that may introduce biases or alter

the motion data in the process. As a result, motion capture

data for some frames in some sequences are missing markers

or are inaccurate. We made an effort to detect such cases and

exclude them from the quantitative comparison. Note that

the presence of markers on the body may also alter the nat-

ural appearance of the body. Given that the marker locations

are known, it would be possible to provide a pixel mask in

that the data, including video images, would be made available to the

research community and could appear in scientific publications.

http://www.cs.cmu.edu/~zhangjy/
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Table 2 Comparison of HUMANEVA to other datasets available and employed by the community

HUMANEVA Wang and Rehg (2006) INRIA perception CMU MoCap CMU MoBo

datasets Knossow et al. (2008) dataset (CMU) dataset Gross and Shi (2001)

multi-cam dataset

# of subjects 4 3 Unknown > 100 25

# of frames ≈ 80,000 ≈ 450 Unknown Unknown ≈ 200,000

# of sequences 56 4 13 2605 100

Video data

# of cameras 4/7 1 8/34 1 6

Calib. available Yes No Yes No Yes

Dataset content

Motion Walk Walk Dance Many Walk

Jog Dance Exercise

Throw/catch Jumping jacks

Gesture

Box

Combo

Appearance Natural Natural/ Natural/ MoCap suit Natural

MoCap suit MoCap suit

Ground truth

Content 3D 2D None 3D 2D

Source MoCap MoCap/ None MoCap Manual label

Manual label Zhang et al. (2006)

each image covering the marker locations; these pixels could

then be excluded from further analysis. We felt this was un-

necessary since the markers are often barely noticeable at

video resolution and hence will likely have an insignificant

impact on the performance of image-based tracking algo-

rithms.

We have developed two datasets that we call HUMAN-

EVA-I and HUMANEVA-II. HUMANEVA-I was captured

earlier and is the larger of the two sets. HUMANEVA-II was

captured using a more sophisticated hardware system that al-

lowed better quality motion capture data and hardware syn-

chronization. The differences between these two datasets are

outlined in Fig. 1.

Since all the data was captured in a laboratory setting,

the sequences do not contain any external occlusions or sig-

nificant clutter, but do exhibit the challenges imposed by

strong illumination (e.g. strong shadows that tend to con-

fuse background subtraction); grayscale cameras used in the

HUMANEVA-I dataset present additional challenges when it

comes to background subtraction and image features. Even

at 60 Hz the images still exhibit a fair amount of motion blur.

The split of the training and test data was specifically de-

signed to emphasize the ability of the pose and motion es-

timation approaches to generalize to novel subjects and un-

observed motions. To this end, one subject and one motion

for all subjects were withheld from the training and valida-

tion dataset for which ground truth is given out. We believe

the proposed datasets exhibit a moderately complex and var-

ied set of motions under realistic indoor imaging conditions

that are applicable to most pose and motion estimation tech-

niques proposed to date.

3.1 HUMANEVA-I

HUMANEVA-I contains data from 4 subjects performing a

set of 6 predefined actions in three repetitions (twice with

video and motion capture, and once with motion capture

alone). A short description of the actions is provided in

Fig. 1. Example images of a subject walking are shown in

Fig. 2 where data from 7 synchronized video cameras is il-

lustrated with an overlay of ground truth body pose.

3.1.1 Hardware

Ground truth motion of the body was captured using a com-

mercial motion capture (MoCap) system from ViconPeak.5

The system uses reflective markers and six 1M-pixel cam-

eras to recover the 3D position of the markers and thereby

estimate the 3D articulated pose of the body.

5http://www.vicon.com/.

http://www.vicon.com/
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HUMANEVA-I HUMANEVA-II

M
o

C
ap

Hardware system

Manufacturer ViconPeak ViconPeak

Number of cameras 6 12

Camera resolution 1M-pixel MX13 1.3M-pixel

Frame rate 120 Hz 120 Hz

V
id

eo
C

ap
tu

re
S

y
st

em

Color cameras

Number of cameras 3 4

Frame grabber IO Industries ViconPeak

Camera model UniQ UC685CL Basler A602fc

Sensor Progressive Scan Progressive Scan

Camera resolution 659 × 494 pixels 656 × 490 pixels

Frame rate 60 Hz 60 Hz

Grayscale cameras

Number of cameras 4

Frame grabber Spica Tech

Camera model Pulnix TM6710

Sensor Progressive Scan

Camera resolution 644 × 448 pixels

Frame rate 60 Hz

Synchronization Software Hardware

D
at

a

Actions (1) Walking, (2) Jogging, (3) Gesturing Combo

(4) Throwing and Catching a ball,

(5) Boxing, (6) Combo

Number of subjects 4 2

Number of frames

Training (synchronized) 6800 frames

Training (MoCap only) 37,000 frames

Validation 6800 frames

Testing 24,000 frames 2460 frames

C
ap

tu
re

S
p
ac

e
L

ay
o
u
t

Fig. 1 HUMANEVA Datasets. The table illustrates the hardware system and configuration used to capture the two datasets, HUMANEVA-I

and HUMANEVA-II. The main difference between the hardware systems lies in hardware synchronization employed in HUMANEVA-II. The

contents of the two datasets in terms subjects, motion and amount of data are also noted. The bird’s eye view sketch of the capture configuration

is also shown with rough dimensions of the capture space and placement of video and motion capture cameras. The color video cameras (C) are

designated by RGB stripped pattern, grayscale video cameras (BW) by the empty camera icon and motion capture cameras are denoted by gray

circles
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Fig. 2 Example data from the HUMANEVA-I database. Example im-

ages of walking subject (S1) from 7 synchronized video cameras (three

colored and four grayscale) are shown with overlaid synchronized mo-

tion capture data

Video data was captured using two commercial video

capture systems, one from Spica Technology Corpora-

tion6 and one from IO Industries.7 The Spica system cap-

tured video using four Pulnix8 TM6710 grayscale cam-

eras (grayscale, progressive scan, 644 × 488 resolution,

frame rate of up to 120 Hz). The IO Industries sys-

tem used three UniQ9 UC685CL 10-bit color cameras

with 659 × 494 resolution and a frame rate of up to

110 Hz. The raw frames were re-scaled from 659 × 494

to 640 × 480 by IO Industries software. To achieve bet-

ter image quality under natural indoor lighting conditions

both video systems were set up to capture at 60 Hz. The

rough relative placement of cameras is illustrated in Fig. 1

(left).

The motion capture system and video capture systems

were not synchronized in hardware, and hence a software

synchronization was employed. The synchronization and

calibration procedures are described in Sects. 3.3 and 3.4

respectively.

6http://www.spicatek.com/.

7http://www.ioindustries.com/.

8http://www.pulnix.com/.

9http://www.uniqvision.com/.

Fig. 3 Example data from the HUMANEVA-II database. Example im-

ages of subject (S4) from 4 synchronized color video cameras perform-

ing a combo motion (that includes jogging as shown)

3.2 HUMANEVA-II

HUMANEVA-II contains only 2 subjects (both also appear

in the HUMANEVA-I dataset) performing an extended se-

quence of actions that we call Combo. In this sequence (see

Fig. 3) a subject starts by walking along an elliptical path,

then continues on to jog in the same direction and concludes

with the subject alternatively balancing on each of the two

feet roughly in the center of the viewing volume. Unlike

HUMANEVA-I, this later dataset contains a relatively small

test set of synchronized frames (≈ 2500). The HUMANEVA-

I training and validation data is intended to be shared across

the two datasets with test results primarily being reported on

HUMANEVA-II.

3.2.1 Hardware

As with HUMANEVA-I, the ground truth motion capture

data was acquired using a system from ViconPeak. However,

here we used a more recent Vicon MX system with twelve

1.3M-pixel cameras. This newer system produced more ac-

curate motion capture data.

Video data was captured using a 4-camera reference

system provided by ViconPeak which allowed for frame-

accurate synchronization (using the Vicon MX Control

module) of the video and motion capture data. Video was

captured using four Basler10 A602fc progressive scan cam-

eras with 656×490 resolution operated at 60 Hz. The rough

relative placement of cameras is illustrated in Fig. 1 (right).

A calibration procedure to align the Vicon and Basler coor-

dinate systems is discussed in the next section.

10http://www.baslerweb.com/.

http://www.spicatek.com/
http://www.ioindustries.com/
http://www.pulnix.com/
http://www.uniqvision.com/
http://www.baslerweb.com/
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3.3 Calibration

The motion capture system was calibrated using Vicon’s

proprietary software and protocol. Calibration of the intrin-

sic parameters for the video capture systems was done us-

ing a standard checker-board calibration grid and the Cam-

era Calibration Toolbox for Matlab (Bouguet). Focal length

(Fc ∈ R
2), principle point (Cc ∈ R

2) and radial distortion

coefficients (Kc ∈ R
5) were estimated for each camera c ∈

C . We assume square pixels and let the skew αc = 0 for all

cameras c ∈ C .

The extrinsic parameters corresponding to the rotation,

Rc ∈ SO(3), and translation, Tc ∈ R
3, of the camera with

respect to the global (shared) coordinate frame were solved

for using a semi-automated procedure to align the global

coordinate axis of each video camera with the global co-

ordinate axis of the Vicon motion capture system. A single

moving marker was captured by the video cameras and the

motion capture system for a number of synchronized frames

(> 1000). The resulting 3D tracked position of the marker

Ŵ
(3D)
t , t ∈ {1 . . . T (3D)} was recovered using the Vicon soft-

ware. The 2D position of the marker in the video, Ŵ
(2D)
t ,

t ∈ {1 . . . T (2D)}, was recovered using a Hough circle trans-

form (Hough 1962) that was manually initialized in the first

frame and subsequently tracked. The projection of the 3D

marker position f (Ŵ
(3D)
t ;Rc, Tc) onto the image was then

optimized directly for each camera by minimizing

min
Rc,Tc,Ac,Bc

T (2D)
∑

t=1

δ(t;Ac,Bc)
∥

∥Ŵ
(2D)
t − f

(

Ŵ
(3D)
tAc+Bc

;Rc, Tc

)∥

∥

2

(1)

for the rotation, Rc, and translation, Tc. Note that the video

cameras were calibrated with respect to the calibration para-

meters of the Vicon system, as opposed to from the images

directly.

In the HUMANEVA-I dataset, the video and motion cap-

ture systems were not temporally synchronized in hardware,

hence we also solved for the relative temporal scaling, Ac ∈

R, between the video and Vicon cameras, and the tempo-

ral offset Bc ∈ R. In doing so we assumed that the temporal

scaling was constant over the length of a capture sequence11

(i.e. no temporal drift). The 3D position f (Ŵ
(3D)
tAc+Bc

;Rc, Tc)

was linearly interpolated to cope with non-integer indices

tAc + Bc . Finally, in (1), δ(t;Ac,Bc) is defined as:

δ(t;Ac,Bc) =

⎧

⎪

⎨

⎪

⎩

0 if tAc + Bc > T (3D),

0 if tAc + Bc < 1,

1 otherwise.

(2)

11In practice Ac ≈ 2 since the frame rate of motion capture system was

roughly 120 Hz and video system is 60 Hz.

The calibration accuracy of the video cameras appears most

accurate in the center of the viewing volume (close to the

world origin).

For the HUMANEVA-II data, frame-accurate synchro-

nization was achieved in hardware and we used fixed values

Ac = 2 and Bc = 0 for the temporal scaling and offset.

3.4 Synchronization

While the extrinsic calibration parameters and temporal

scaling, Ac, can be estimated once per camera (the Vi-

con system was only re-calibrated when cameras moved12),

without hardware synchronization, the temporal offset Bc

was different for every sequence captured. To temporally

synchronize the motion capture and the video in software,

for HUMANEVA-I we manually labeled visible markers on

the body for a small sub-set of images (6 images were used

with several marker positions labeled per frame). These la-

beled frames were subsequently used in the optimization

procedure above but with fixed values for Rc, Tc, and Ac

to recover a least squares estimate of the temporal offset Bc

for every sequence captured.

4 Evaluation Measures

Various evaluation measures have been proposed for human

motion tracking and pose estimation. For example, a num-

ber of papers have suggested using joint-angle difference as

the error measure (see Table 1). This measure, however, as-

sumes a particular parameterization of the human body and

cannot be used to compare methods where the body models

have different degrees of freedom or have different parame-

terizations of the joint angles. For this dataset we introduce a

more widely applicable error measure based on a sparse set

of virtual markers that correspond to the locations of joints

and limb endpoints. This error measure was first introduced

for 3D pose estimation and tracking in (Sigal et al. 2004)

and later extended in (Balan et al. 2005). It has since been

also used for 3D tracking in (Li et al. 2006) and for 2D

pose estimation evaluation in (Lan and Huttenlocher 2005;

Sigal and Black 2006).

Let x represent the pose of the body. We define M = 15

virtual markers as {mi(x)}, i = 1 . . . M, where mi(x) ∈ R
3

(or mi(x) ∈ R
2 if a 2D body model is used) is a function of

the body pose that returns the position of the ith marker in

the world (or image respectively). Notice that defining func-

tions mi(x) for any standard representation of the body pose

x is trivial. The error between the estimated pose x̂ and the

12Calibration of the Vicon motion capture system changes the global

coordinate frame and hence requires re-calibration of extrinsic para-

meters of the video cameras as well.
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ground truth pose x is expressed as the average Euclidean

distance between individual virtual markers:

D(x, x̂) =
1

M

M
∑

i=1

‖mi(x) − mi(x̂)‖. (3)

To ensure that we can compare algorithms that use dif-

ferent numbers of parts, we add a binary selection variable

per-marker �̂ = {δ̂1, δ̂2, . . . , δ̂M} and obtain the final error

function

D(x, x̂, �̂) =
1

∑M
j=1 δ̂j

M
∑

i=1

δ̂i‖mi(x) − mi(x̂)‖, (4)

where δ̂i = 1 if the algorithm is able to recover marker i, and

0 otherwise.

For the sequence of T frames we compute the average

performance using the following:

μseq =
1

T

T
∑

t=1

D(xt , x̂t , �̂t ). (5)

Since many tracking algorithms are stochastic in nature, an

average error and the standard deviation computed over a

number of runs is most useful. As a convention from previ-

ous methods (Balan et al. 2005; Lan and Huttenlocher 2005;

Sigal et al. 2004; Sigal and Black 2006) that have already

used this error measure, we compute the 3D error in mil-

limeters (mm) and the 2D error directly in the image in pix-

els (pix).

The error measures formulated above are appropriate

for measuring the performance of approaches that are able

to recover the full 3D articulated pose of the person in

space or the 2D articulated pose of the person in an im-

age. Some approaches, however, are inherently developed

to recover the pose but not the global position of the body

(most discriminative approaches fall into this category,

e.g. Agarwal and Triggs 2004b; Navaratnam et al. 2007;

Sminchisescu et al. 2005). To make the above error mea-

sures appropriate for this class of approaches we employ a

relative variant

D̃(x, x̂) =
1

M

M
∑

i=1

‖m̃i(x) − m̃i(x̂)‖, (6)

with m̃i(x) = mi(x) − m0(x), where mi(x) is defined as be-

fore and m0(x) is the position of the marker corresponding

to the origin of the root segment. The rest of the equations

can also be modified accordingly. It is worth noting that this

measure assumes that the orientation of the body relative to

the camera is recovered; this is typical of most discrimina-

tive methods.

Note that the error measures assume that an algorithm re-

turns a unique body pose estimate rather than a distribution

over poses. For algorithms that model the posterior distribu-

tion over poses as uni-modal, the mean pose is likely to give

a good estimate of x. Most recent methods, however, model

multi-modal posterior distributions implicitly or explicitly.

Here the maximum-a posteriori estimate may be a more ap-

propriate choice for x. This is discussed in greater detail in

(Balan et al. 2005). Alternative error measures that compute

lower-bounds for sample- or kernel-based representations of

the posterior are discussed in (Balan et al. 2005).

5 Baseline Algorithm

In addition to the datasets and quantitative evaluation mea-

sures, we provide a baseline algorithm13 against which fu-

ture advances can be measured. While no “standard” al-

gorithm exists in the community, we implemented a fairly

common Bayesian filtering method based on the methods

of Deutscher and Reid (2005) and Sidenbladh et al. (2002).

Several variations on the base algorithm are explored with

the goal of giving some insight into the important design

choices for human trackers. Quantitative results are pre-

sented in the following section.

5.1 Bayesian Filtering Formulation

We pose the tracking problem in a standard way as one of

estimating the posterior probability distribution p(xt |y1:t )

for the state xt of the human body at time t given a sequence

of image observations y1:t ≡ (y1, . . . ,yt ). Assuming a first-

order Markov process

p(xt |x1:t−1) = p(xt |xt−1),

with a sensor Markov assumption

p(yt |x1:t ,y1:t−1) = p(yt |xt ),

a recursive formula for the posterior can be derived (Aru-

lampalam et al. 2002; Doucet et al. 2000):

p(xt |y1:t ) ∝ p(yt |xt )

∫

p(xt |xt−1)p(xt−1|y1:t−1) dxt−1,

(7)

where the integral in (7) computes the prediction using

the previous posterior and the temporal diffusion model

p(xt |xt−1). The prediction is weighted by the likelihood

p(yt |xt ) of the new image observation conditioned on the

pose estimate.

13The implementation is available for download from http://vision.

cs.brown.edu/humaneva/baseline.html.

http://vision.cs.brown.edu/humaneva/baseline.html
http://vision.cs.brown.edu/humaneva/baseline.html
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5.1.1 Optimization

Non-parametric approximate methods represent posterior

distributions by a set of N random samples or particles with

associated normalized weights that are propagated over time

using the temporal model and assigned new weights accord-

ing to the likelihood function. This is the basis of the Se-

quential Importance Resampling (SIR) algorithm, or Con-

densation (Arulampalam et al. 2002; Isard and Blake 1998).

A variation of SIR is the Annealed Particle Filter (APF) in-

troduced for human tracking by Deutscher and Reid (2005).

An APF iterates these steps multiple times at each time in-

stant in order to better localize the modes of the posterior

distribution, and relies on simulated annealing to avoid local

optima.

We briefly summarize our implementation of the An-

nealed Particle Filter algorithm used here since this forms

the core of our baseline algorithm in the experiments that

follow. The Sequential Importance Resampling algorithm is

also tested in the following section but is not described in

detail as it is similar to APF.

At each time instant the APF algorithm proceeds in a

set of “layers”, from layer M down to layer 1, that up-

date the probability density over the state parameters. The

state density at layer m + 1 is represented using a set of

N particles with associated normalized weights St,m+1 ≡

{x
(i)
t,m+1,π

(i)
t,m+1}

N
i=1. For the prediction step at layer m,

a Gaussian diffusion model is implemented (Sect. 5.1.4).

Specifically, hypotheses are drawn with replacement using

Monte Carlo sampling from the state probability density at

the previous layer m + 1 using

{

x
(i)
t,m

}N

i=1
∼

N
∑

j=1

π
(j)

t,m+1 N
(

x
(j)

t,m+1, α
M−m


)

. (8)

The sampling covariance matrix 
 controls the breadth of

the search at each layer with a large 
 spreading sampled

particles more widely. From layer to layer we scale 
 by

a parameter α. This parameter is used to gradually reduce

the diffusion covariance matrix 
 at lower layers in order to

drive the particles towards the modes of the posterior distri-

bution. Typically α is set to 0.5.

Sampled poses that exceed the joint angle limits of

the trained action model or result in inter-penetration of

limbs are rejected and not re-sampled within a layer. The

remaining particles are assigned new normalized weights

based on an “annealed” version of the likelihood function

(Sect. 5.1.3)

π
(i)
t,m =

p(yt |x
(i)
t,m)β

m

∑N
j=1 p(yt |x

(j)
t,m)β

m
, i ∈ {1, . . . ,N}, (9)

where βm is a temperature parameter optimized so that

approximately half the particles get selected for propaga-

tion/diffusion to the next layer by the Monte-Carlo sam-

pler (8). The resulting particle set St,m ≡ {x
(i)
t,m,π

(i)
t,m}Ni=1

is then used to compute layer m − 1 by re-applying (8),

(9). In tracking, the top layer is initialized with the par-

ticle set of the bottom layer at the previous time instant:

St,M+1 = St−1,1.

The expected as well as the maximum a posteriori poses

at frame t can be computed from the particle set St,1 at the

bottom layer using:

x̂t =

N
∑

i=1

π
(i)
t,1x

(i)
t,1, (10)

x̂MAP
t = x

(j)

t,1 , π
(j)

t,1 = max
i

(

π
(i)
t,1

)

. (11)

SIR is a special case of APF which has only one anneal-

ing layer (M = 1) and for which the effect of the annealing

temperature parameter is removed (βm = 1).

5.1.2 Parametrization of the Skeleton

As is common in the literature, the skeleton of the body is

modeled as a 3D kinematic tree with the limbs represented

by truncated cones (Fig. 4(b)). We consider 15 body parts:

pelvis area, torso, head, upper and lower arms and legs,

hands and feet. There are two types of parameters that de-

scribe the pose and shape of the body. The shape is given by

the length and width of the limbs, which in our case are as-

sumed known and fixed. Our objective is to recover the pose

of the body, which is parametrized by a reduced set of 34

parameters comprising the global position and orientation

of the pelvis and the relative joint angles between neigh-

boring limbs. The hips, shoulders and thorax are modeled

as ball and socket joints (3 DoF), the clavicles are allowed

2 DoFs, while the knees, ankles, elbows, wrists and head are

assumed to be hinge joints with 1 DoF.

The subjects in the dataset were all manually measured

using a standard Vicon protocol to obtain their height,

weight, limb width and shoulder joint offsets. Motion cap-

ture training data was then used to estimate limb lengths for

each subject as well as to learn static and dynamic priors for

different motion styles. The raw data provided by the Vicon

motion capture system consists of the location and orienta-

tion of local coordinate systems at each joint, with consec-

utive joints along the skeleton not constrained to be a fixed

distance from each other. Limb lengths are computed as the

median distance between pairs of corresponding joint loca-

tions over a large set of training motions and are kept fixed

during testing. We also derive joint angle limits and inter-

frame joint angle variations from the statistics of the relative

joint angles between neighboring body parts.
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Fig. 4 (a) Input image. (b) Body model. The body is represented as a kinematic tree with 15 body parts. The red spheres represent the joint

locations where virtual markers are placed for computing 3D error: pelvis joint, hips, knees and ankles, shoulders, elbows and wrists, neck and

the top of the head. (c) Smoothed gradient edge map Me
t , with values ranging from 0 (pure black) to 1 (pure white). Sparse points shown in red

{ξ e
xt

(j)} along the edges of the body model are matched against the edges in the image. (d) Foreground silhouette map M
f
t , with the background

being 0 and foreground 1. Sparse points shown in blue {ξ
f
xt

(j)} selected in a grid inside the body model are matched against the foreground

silhouette

5.1.3 Likelihoods

For each particle in the posterior representation, its likeli-

hood represents how well the projection of a given body

pose fits the observed image(s). Many image features could

be used, including appearance models and optical flow con-

straints, however, most common approaches rely on silhou-

ettes and edges (Deutscher and Reid 2005).

5.1.3.1 Edge-based Likelihood Functions We detect edges

using image gradients that have been thresholded to obtain

binary maps (Deutscher and Reid 2005). An edge distance

map Me is then constructed for each image to determine

the proximity of a pixel to an edge. This can be achieved

by convolving the binary edge map with a Gaussian kernel,

and then re-mapping it between 0 and 1. This can be thought

of as representing the edge probability (Deutscher and Reid

2005) at a given pixel.

The negative log-likelihood is then estimated by project-

ing into the edge map sparse points (for computational effi-

ciency) along the apparent boundaries of all model parts and

computing the mean square error (MSE) of the edge map re-

sponses:

− logpe(yt |xt ) ∝
1

|{ξ e
xt

}|

∑

j

(

1 − Me
t

(

ξ e
xt

(j)
))2

, (12)

where {ξ e
xt

} is the set of pixel locations corresponding to all

projected points (indexed by j ) along all body part edges in-

duced by pose xt , and Me
t is the edge distance map at time t

(Fig. 4(c)). The reader is referred to (Deutscher and Reid

2005) for a more detailed discussion.

5.1.3.2 Silhouette-based Likelihood Function Binary fore-

ground silhouette maps M
f
t are generated using a learned

Gaussian model for each pixel; the model is learned from 10

static background images and silhouettes subsequently ob-

tained by comparing the background pixel probability to that

of a uniform foreground model. We model the constraint that

the silhouette of the body model should project inside the

image silhouette. As before, for computational efficiency,

we only check for a sparse number of points within the limbs

(Fig. 4(d)). The negative log-likelihood of the observations

given pose xt is then estimated by taking a number of visible

points inside all limbs and projecting them into the image

{ξ
f
xt

}. The MSE between the predicted and observed silhou-

ette values for these points is computed (Deutscher and Reid

2005):

− logpf (yt |xt ) ∝
1

|{ξ
f
xt

}|

∑

j

(

1 − M
f
t

(

ξ
f
xt

(j)
))2

. (13)

5.1.3.3 Bi-directional Silhouette-based Likelihood Func-

tion The advantage of the previous silhouette likelihood

formulation is computational efficiency and similarity to the

edge-based likelihood formulation. However, this comes at

the expense of being asymmetric: the body is constrained

to lie inside the image silhouette, but not vice versa. This

becomes a problem when the model predicts occluded parts

and consequently does not fully cover the image silhouette.

In Fig. 5(b) both legs track the same physical leg, but the

penalty is minimal using pf (yt |xt ).

We can correct this by defining a symmetric silhou-

ette likelihood (Sminchisescu and Telea 2002; Sminchisescu
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Fig. 5 Silhouette-based likelihood. (b)–(d): Traditional silhouette likelihood. (e)–(g): Bi-directional likelihood. (a) Foreground silhouette map

M
f
t . The red pixels have value 1, and the background 0. (b) Tracking failure example using standard likelihood; two legs explain the same

silhouette pixels. (c) Body model silhouette map Mb
t , obtained by rendering the cylinders to the image plane. The Blue pixels have value 1, and

the background 0. (d) Silhouette overlap (Yellow). The standard silhouette likelihood does not penalize for the fact that the Red regions are not

explained by the model. (e) Tracking result with bi-direction silhouette term; both legs now correct. (f) Body model silhouette projected into the

image. (g) Silhouette overlap for bi-direction term; more image pixels are explained (Yellow pixels)

2002) that penalizes non-overlapping regions for both sil-

houettes. For this it is convenient to use a pixel-dense sil-

houette representation. Let Mb
t represent the binary silhou-

ette map for the cylindrical body model and M
f
t the im-

age foreground. Figure 5(d) shows the overlap between the

two silhouettes. We seek to minimize the non-overlapping

regions, Red and Blue, therefore maximizing the Yellow re-

gion. The size of each region can be computed by summing

over all image pixels p using

Rt =
∑

p

(

M
f
t (p)

(

1 − Mb
t (p)

))

, (14)

Bt =
∑

p

(

Mb
t (p)

(

1 − M
f
t (p)

))

, (15)

Yt =
∑

p

(

M
f
t (p)Mb

t (p)
)

. (16)

The negative log-likelihood of a pose is then defined as

a linear combination of the fractions of each silhouette not

explained by the other:

− logpd(yt |xt ) ∝ (1 − a)
Bt

Bt + Yt

+ a
Rt

Rt + Yt

. (17)

We make the likelihood symmetric by setting a = 0.5. When

a is 0, we effectively get the behavior of the previous 1-sided

silhouette likelihood pf (yt |xt ).

5.1.3.4 Combining Likelihood Functions We combine im-

age measurements from multiple cameras or multiple likeli-

hood formulations as follows:

− logp(yt |xt ) =
1

K

1

|L|

K
∑

k=1

∑

l∈L

− logpl
(

y
(k)
t |xt

)

, (18)

where K is the number of cameras, y
(k)
t is the image ob-

servation in the k-th camera and L ⊂ {e, f, d} is a set of

likelihood functions such as the ones in (12), (13), (17).

5.1.4 Action Models: Temporal Diffusion and Pose Priors

Predictions from the posterior are made using temporal

models. The simplest model applicable to generic motions

assumes no change in state from one time to the next:

x̄t = xt−1 (Deutscher and Reid 2005). The predictions are

diffused using normally distributed random noise to account

for errors in the assumption. The noise is drawn from a

multi-variate Gaussian with diagonal covariance 
 where

the sampling standard deviation of each body angle is set to

equal the maximum absolute inter-frame angular difference

for a particular motion style (Deutscher and Reid 2005).

We also implement a hard prior on individual poses to

reduce the search space. Specifically, we reject (without re-

sampling) any particle corresponding to an implausible body

pose. We check for angles exceeding joint angle bounds and

producing inter-penetrating limbs (Sminchisescu and Triggs

2003b). In our implementation we explicitly test for inter-

sections between the torso and the lower arms and between

the left and the right calves.

We use the term action model (AM) to denote the sam-

pling covariance 
 used for particle filtering and the valid

range of the joint angles. Action models can be learned

specifically for a certain actor or for a particular motion

style, or they can be generic. We only learned subject-

generic action models by combining the data from all three

available subjects in the training dataset.

Different motion styles influence the sampling covari-

ance and joint angle limits used. The training data in the
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HUMANEVA-I dataset contains walking, jogging, hand ges-

tures, throwing and catching a ball, and boxing action styles

from three different subjects. Subsets of these were used to

learn style-specific action models. For example, the sam-

pling covariance and the valid range of joint angles are typ-

ically smaller for walking than for jogging models, mak-

ing the problem simpler for walking test sequences. For se-

quences containing both walking and jogging, it is typical

for the flexion-extension movement of the elbow to cover

disjoint angle intervals for the two styles. A combined ac-

tion model for walking and jogging can be learned instead.

To represent a generic (style-independent) action model,

we use the entire HUMANEVA-I training data to learn the

sampling covariance 
G. For the joint limits, our training

data is not diverse enough to be suitable for discovering the

full anatomical range of every joint angle, particularly for

the leg joints. Instead we rely on standard anatomical joint

limits (AJL).

6 Experiments

We performed a series of experiments with the two differ-

ent algorithms (APF and SIR), several likelihoods and vari-

ous action models (“priors”); details of each variant are de-

scribed along with the corresponding experiment. Most of

these are variations of a base configuration (BC) that uses

annealed filtering with 200 particles per layer, 5 layers of

annealing, a likelihood based on bi-directional silhouette

matching (BiS), and an action model appropriate for generic

motions which enforces anatomical joint limits (G-AJL).

We also reject samples where the limbs penetrate each other

as described above. The experiments were conducted on the

two sequences in the HUMANEVA-II dataset. In each case,

ground truth was available in the first frame to initialize the

tracker.

The error of an individual pose was computed using (4)

which averages the Euclidean distance between virtual

markers placed as shown in Fig. 4(b). Given the samples

(particles) at each frame, we computed the error of the ex-

pected pose using (10). This is appropriate for the APF since

we expect the posterior representation to be uni-modal at the

bottom layer of annealing. Alternatively we could have es-

timated the error of the most likely pose in the posterior

distribution. In our experiments we found this measure to

be consistently worse than the error of the expected pose by

an average of 2 mm with noisier reconstructed joint angle

trajectories. We attribute this to the fact that particle filtering

methods represent the posterior probability as a function of

both the likelihood weights and the density of particles. The

MAP estimate may miss a region that has a high posterior

probability due to high particle density but small individual

weights.

Our optimization strategy is stochastic in nature and pro-

duces different results when running experiments with the

same configuration parameters. To get a measure of per-

formance consistency and repeatability, we ran each exper-

iment five times for each of the sequences, unless explicitly

noted otherwise. We plot the mean of our error measure (3D

or 2D depending on the experiment) for each time instant

over all the runs, while for the BC we also highlight the stan-

dard deviation as a gray overlay in Figs. 6, 9, 10, 11, 12, 13,

and in the corresponding rows in the error tables.

The errors at each frame are combined to compute the

average error μseq (5) for each of the three activity phases

(walking, jogging and leg balancing), as well as the over-

all error over the two sequences. We report the mean and

standard deviation of the average error μseq over multiple

runs.14

6.1 Computation Time

The computation time is directly proportional to the num-

ber of particles, number of camera views and number of

layers used, and vastly depends on the choice of likelihood

function. Performing full inference using the one-sided sil-

houette likelihood pf (yt |xt ) jointly with the edge likelihood

pe(yt |xt ) with 1000 particles per frame for 4 camera views

takes about 40 seconds on a standard PC with software writ-

ten in Matlab, as opposed to 250 seconds when using the bi-

directional silhouette likelihood pd(yt |xt ). Likelihood eval-

uations dominate the overall computation time; particle dif-

fusion and checking for limb inter-penetration are relatively

insignificant by comparison.

6.2 Performance of the Base Configuration BC

Sample tracking results overlaid on the images using the BC

are shown in Figs. 14 and 15, and illustrate visually what

different amounts of error correspond to. The 5 runs of BC

suggest that the tracking performance is fairly stable across

runs. This is illustrated in Fig. 6 for 3D errors. Performance

results using other error measures are included in Fig. 7 to

allow easy comparison with other methods.

The occasional spikes in the error correspond to the

tracker losing track of the arms or the legs swapping places

(e.g. frame 656 in Fig. 14). Since walking and jogging are

periodic motions, the arms and legs are usually found again

during the next cycle. This is also illustrated when inves-

tigating the error for individual joints. Figure 8 shows that

limb extremities are the hardest to track. Large errors for the

wrists are obtained when the elbow becomes fully flexed and

14When computing the results, we ignore 38 frames (298–335) for se-

quence 2 where accurate ground truth was not available. The apparent

gap in the error plots during the walking phase is a result of this.
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Sequence 1 Sequence 2 Overall

Walk Jog Balance Walk Jog Balance

Run 1 76 mm 84 mm 79 mm 57 mm 82 mm 66 mm 74 mm

Run 2 82 mm 81 mm 105 mm 61 mm 87 mm 71 mm 81 mm

Run 3 72 mm 89 mm 89 mm 58 mm 85 mm 114 mm 85 mm

Run 4 80 mm 82 mm 80 mm 58 mm 85 mm 66 mm 75 mm

Run 5 70 mm 88 mm 78 mm 64 mm 128 mm 86 mm 86 mm

Average 76 ± 5 mm 85 ± 4 mm 86 ± 11 mm 60 ± 3 mm 93 ± 19 mm 80 ± 20 mm 80 ± 5 mm

Fig. 6 Stability of the baseline algorithm. The BC was run 5 times to establish the stability of the method. Errors for each run in the two sequences

are plotted along with the standard deviation of the error in gray as a gray band in the plots. The table shows the error for each run along with the

average and standard deviation

Sequence 1 Sequence 2 Overall

Walk Jog Balance Walk Jog Balance

Absolute 3D error 76±5 mm 85±4 mm 86±11 mm 60±3 mm 93±19 mm 80±20 mm 80±5 mm

Relative 3D error 77±6 mm 82±3 mm 89±11 mm 60±2 mm 95±21 mm 79±20 mm 81±5 mm

Average 2D error 10.1±0.9 pix 11.3±0.7 pix 11.3±2.3 pix 7.9±0.6 pix 12.4±2.3 pix 10.9±2.8 pix 10.7±1.0 pix

Fig. 7 Performance for various error measures. The performance for BC is shown for the various error measures. Top plots: absolute and

relative 3D error. Middle plots: 2D pixel error for each camera and averaged over all cameras. The absolute error is given by the average

distance between predefined locations on the body (4), while the relative error is computed after first globally aligning the ground truth model

and the estimated model at the pelvic joint. We found the two measures to be comparable as the pelvis location is fairly well estimated by the tracker
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Sequence 1 Sequence 2 Overall

Walk Jog Balance Walk Jog Balance

Hip 85±3 mm 81±3 mm 57±3 mm 65±3 mm 66±3 mm 58±5 mm 69±1 mm

Knee 59±13 mm 70±6 mm 37±0 mm 54±9 mm 92±54 mm 48±4 mm 60±10 mm

Ankle 101±28 mm 101±11 mm 44±1 mm 70±12 mm 136±63 mm 56±4 mm 85±11 mm

Shoulder 61±4 mm 69±7 mm 113±5 mm 51±2 mm 75±9 mm 86±13 mm 76±3 mm

Elbow 57±4 mm 77±8 mm 81±12 mm 48±2 mm 83±4 mm 66±14 mm 69±3 mm

Wrist 85±1 mm 116±9 mm 186±77 mm 45±2 mm 130±15 mm 165±110 mm 121±26 mm

Fig. 8 Error for selected individual joint locations. Errors for individual joint locations averaged over the left and right side illustrate that the

arms are harder to track than the legs due to occlusions by the torso. Limb extremities such as wrists and ankles are less constrained and tend to

get lost more often than the shoulders and hips. The spikes in error for the ankles correspond to the two legs swapping places. The results come

from tracking using the BC configuration

gets stuck in this position (e.g. frame 1030 in Fig. 15). From

trial to trial, these events may or may not happen due to the

stochastic nature of the optimization, making the error vari-

ance in these cases higher (identified in the plots in Fig. 6 as

spikes in the gray overlay).

The results also highlight the relative degree of difficulty

of the two sequences. They are relatively similar, except for

the jogging phase where the second sequence is significantly

more difficult to track than the first and presents a larger

variance in performance. This is consistent with the fact that

the second subject is jogging faster.

6.3 Comparing Temporal Diffusion Models

Recall that our APF implementation uses a Gaussian dif-

fusion model to sample new poses. This is a very weak

form of temporal prior which does not try to predict the

pose at the next time instant from the current one; rather it

adds Gaussian noise to the current pose to expand the search

range at the next time instant. This diffusion model depends

on the choice of the “sampling covariance” 
.

The two test sequences contain walking and jogging

styles, followed by balancing on both legs in turn. Training

data, however, only covered walking and jogging. We have

therefore considered the following subject-independent ac-

tion models:

– Walking-style Action Model (W)—all walking training

data were used to learn the sampling covariance and the

joint angle limits.

– Walking and Jogging-style Action Model (WJ)—all

walking and jogging training data were used to learn the

sampling covariance and the joint angle limits.

– Generic Action Model with Anatomic Joint Limits (G-

AJL)—all training data were used to learn the sampling

covariance; joint limits were not derived from training

data, but instead were set to bio-mechanical anatomical

limits. Note that this is the model used in the BC.

– Generic Action Model without Joint Limits (G-0JL)—all

training data were used to learn the sampling covariance;

joint angle limits were not enforced.

All other tracking parameters were the same as the BC.

Tracking results using the different models are shown in

Fig. 9.

All of these remain very weak models in that they do

not explicitly describe how the body moves. Rather they are

heuristics that control how widely to search the state space

around a given pose. We found that the most accurate results

were obtained when the activity matched the style-specific

action model used. The walking model W worked well for

walking but not for other activities. Walking performance

was good in part because the constrained joint limits pre-

vented the legs from swapping places. Adding jogging to

the training (WJ) increased the sampling covariance and ex-

tended the joint limits, and consequently improved perfor-

mance slightly on balancing without significantly affecting

performance on walking. As one might expect, however, the

WJ model performed significantly better on jogging. Both
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Sequence 1 Sequence 2 Overall

Walk Jog Balance Walk Jog Balance

W 65±7 mm 88±4 mm 140±16 mm 55±4 mm 138±43 mm 97±7 mm 97±9 mm

WJ 66±11 mm 71±4 mm 122±14 mm 58±1 mm 79±3 mm 102±3 mm 83±3 mm

G-AJL 76±5 mm 85±4 mm 86±11 mm 60±3 mm 93±19 mm 80±20 mm 80±5 mm

G-0JL 115 mm 182 mm 245 mm 76 mm 143 mm 135 mm 149 mm

Fig. 9 Comparison of priors. Experimental results for BC using different action models are shown: walking (W), walking and jogging (WJ) and

generic (G). For the generic action model, the joint angle limits were not derived from training data as in the case of walking or jogging, but rather

were set to standard anatomical joint limits (AJL). We use 0JL to denote when joint limits were not enforced. In this case performance degraded

considerably and we only show results for one run. For W, WJ and G-AJL results were averaged over 5 different runs to more effectively

compare different action models

W and WJ failed to generalize to the balancing style be-

cause the joint angle limits were too narrow at the hips and

shoulders.

The G-AJL extends the joint limits to anatomical values

and performed very well on the balancing portion. This is

expected since balancing is a very simple motion and is in-

tuitively easier to track than jogging for example. Clearly

the learned anatomical joint limits for W and WJ prevented

these models from generalizing to new poses. In addition,

G-AJL was able to generalize well to each of the 3 differ-

ent styles, remaining relatively competitive with the style-

specific actions models. Finally, the performance of G-0JL

illustrates the importance of enforcing joint angle limits. In

this model the lack of such limits led to tracking failure even

during the walking motions.

The experiments suggest that a generic action model with

anatomic joint limits is the optimal choice for sequences

with free-style motion.

6.4 Comparing Likelihood Functions

The bi-directional silhouette likelihood BiS provides sym-

metric constraints between the image and model silhou-

ettes, but it is computationally expensive. The standard

asymmetric silhouette likelihood S is computationally more

efficient, but provides weaker constraints. Previous work

(Balan et al. 2005; Deutscher and Reid 2005) has shown S

performs well when combined with the edge likelihood E

using (18), which we denote by E+S. We compare BiS with

E + S, as well as with E and S separately, all in the context

of the BC which uses a weak prior on motion (G-AJL).

The results in Fig. 10 illustrate that the BiS likelihood

was the only one capable of tracking the subject over the full

length of both sequences, with no other likelihood being able

to cope with the fast jogging motion. For the first sequence

even the walking motion turned out to be too hard to track.

We therefore concentrate our analysis of the likelihoods on

sequence 2 during the walking phase only.

We found that relying solely on edges caused the model

to drift off the subject and onto the background, with little

chance of recovering from tracking failures. Edges do help

improve the performance of the standard silhouette likeli-

hood during walking, which otherwise performs poorly as

well.

We attribute the fact that the E + S likelihood eventually

loses track to the combination of a simple likelihood formu-

lation with a weak generic prior G-AJL that together allow

for improbable poses that explain only part of the image ob-

servations. To test this, we combined the same likelihood

with a more specific prior (WJ), and found it performed

much better on walking and jogging data even with half the

number of particles (cf. Fig. 10). This is consistent with the

results reported in (Balan et al. 2005). At the same time, the

stronger BiS can cope with the weaker prior.

Therefore, for methods that rely on strong priors, simple

image observations may be enough, but in the absence of

appropriate priors, richer image observation measurements

are necessary. Clearly better edge detection methods could

be employed and integration of edge information along the

entire boundary (instead of sampling) might improve results.
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Sequence 1 Sequence 2 Overall

Walk Jog Balance Walk Jog Balance

Ea 315 mm 1367 mm 1298 mm 116 mm 530 mm 344 mm 662 mm

S 184±20 mm 229±32 mm 253±90 mm 105±22 mm 229±10 mm 233±77 mm 205±8 mm

E+S 118±32 mm 216±43 mm 265±133 mm 75±7 mm 199±24 mm 356±116 mm 205±22 mm

BiS 76±5 mm 85±4 mm 86±11 mm 60±3 mm 93±19 mm 80±20 mm 80±5 mm

E+Sb 90 mm 95 mm 161 mm 68 mm 100 mm 132 mm 111 mm

aPerformance with the edge likelihood alone was so poor that we only show results for a single run

bThis experiment was run once and differs from BC in that it uses the WJ action model with only 100 particles instead of the G-AJL action model

with 200 particles. Its plot is not shown in the graph above

Fig. 10 Comparison of likelihoods. Edge, standard silhouette and bi-directional silhouette likelihoods are compared. The bi-directional model is

more computationally expensive, but it is the only one able to completely track the subject using a generic prior. The E+S model is shown to be

competitive when combined with a stronger prior that matches the test motion

Sequence 1 Sequence 2 Overall

Walk Jog Balance Walk Jog Balance

SIR 101±6 mm 178±36 mm 251±204 mm 75±4 mm 201±35 mm 188±148 mm 166±50 mm

SIR (MAP) 101±6 mm 176±36 mm 254±203 mm 76±5 mm 198±35 mm 190±147 mm 166±49 mm

APF 76±5 mm 85±4 mm 86±11 mm 60±3 mm 93±19 mm 80±20 mm 80±5 mm

Fig. 11 Algorithm comparison. Performance of the Annealed Particle Filter (APF) and Sequential Importance Resampling (SIR) methods is

shown. SIR performed significantly worse than APF and started diverging during jogging, which affected the performance during the balancing

phase

6.5 Algorithmic Choices

6.5.1 Comparing Regular and Annealed Particle Filtering

The main computational cost in both the APF and SIR is the

evaluation of the likelihood for each particle. To fairly com-

pare the methods we keep the number of likelihood evalua-

tions constant across methods. Hence, the number of parti-

cles used for SIR (i.e. 1000) is the product of the number of

layers (5) and the number of particles per layer (200) in the

annealing method. A comparison of the methods is shown

in Fig. 11.

In contrast to the APF, the SIR could maintain multi-

modal posterior distributions in which case computing the

error of the expected pose might not be appropriate. There-
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Sequence 1 Sequence 2 Overall

Walk Jog Balance Walk Jog Balance

50 particles 88±18 mm 133±45 mm 144±73 mm 70±5 mm 180±41 mm 313±173 mm 155±42 mm

100 particles 83±10 mm 109±14 mm 121±49 mm 63±3 mm 123±65 mm 154±156 mm 109±45 mm

200 particles 76±5 mm 85±4 mm 86±11 mm 60±3 mm 93±19 mm 80±20 mm 80±5 mm

Fig. 12 Number of particles. The effect of the number of particles on accuracy is plotted for the baseline (200) as well as 50 and 100 particles.

The number of particles needed depended on the type of motion being tracked, with more particles being needed for fast motions than for slow

motions

Sequence 1 Sequence 2 Overall

Walk Jog Balance Walk Jog Balance

1 camera 515±59 mm 845±336 mm 485±98 mm 526±241 mm 818±456 mm 735±482 mm 654±253 mm

2 cameras 139±47 mm 173±38 mm 348±128 mm 132±78 mm 212±22 mm 231±148 mm 206±35 mm

3 cameras 76±4 mm 111±42 mm 174±179 mm 63±5 mm 134±68 mm 258±206 mm 136±75 mm

4 cameras 76±5 mm 85±4 mm 86±11 mm 60±3 mm 93±19 mm 80±20 mm 80±5 mm

Fig. 13 Number of cameras. At least 3 camera views are needed to track walking motions and at least 4 are needed for more complex motions

such as jogging

fore we also report the error of the most likely parti-

cle (MAP). We found, however, that the difference in er-

ror between the expected pose and the most likely pose

was insignificant, and the error curves overlapped. Either

way, relative to APF, SIR was significantly worse and

more prone to losing track of the subject during fast mo-

tions.

6.5.2 Varying the Number of Particles

We also varied the number of particles used in the baseline

configuration. Using more particles helps prevent the tracker

from losing track and improves performance. The tracker is

much more stable when run using 200 particles. Using 100

particles or fewer makes the tracker unstable as illustrated by

the significant increase in error variance in Fig. 12. Based

on these results we conclude that the number of particles

needed depends on the type of motion being tracked, with

more particles being needed for fast motions than for slow

motions.

6.5.3 Varying the Number of Camera Views

The HUMANEVA-II dataset used 4 cameras placed on the

corners of a rectangular area as shown in Fig. 1. Assess-

ing performance for different number of cameras depends
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Fig. 14 Tracking results. Typical results obtained on sequence 1 using the baseline tracking configuration (BC) are shown for a few frames. The

estimated body model is shown projected into the images, with the corresponding 3D error shown underneath. These provide some intuition for

different levels of error (in mm). To help discriminate between the left and right sides, we draw the left side in blue and the right side in yellow.

For example, frame 656 receives a high error for having mistaken one leg for the other

on the choice of cameras. We ran experiments with BC

for all subsets of cameras, once for each camera con-

figuration, combining the errors for configurations with

the same number of cameras. Mean errors and standard

deviations are reported in Fig. 13 over 4 configurations

for the one camera case, 6 pairs and 4 triples, respec-

tively.

The results clearly show that monocular tracking is be-

yond the abilities of the present algorithm. Adding a second

camera view significantly improved the results but still the

tracker could not cope with simple walking motions. At least

3 camera views were needed to track walking motions and 4

were needed for more complex motions such as jogging. For

walking motions there was no statistical difference between

using 3 or 4 camera views.

7 Analysis of Performance and Failures

7.1 Model

Our model of the body is an approximation to the true hu-

man body shape (though it is fairly typical of the state of the

art). We make two key assumptions that (1) the body is made

of rigid cylindrical or conical segments and (2) joints only

model the most significant degrees of freedom. We make no

attempts to fit the shape of the limbs to the image measure-

ments (Balan et al. 2007). More accurate body models may

lead to more accurate tracking results but this hypothesis

needs to be verified experimentally. Also, a more anatom-

ically correct modeling of the DoF of the joints may be re-

quired for applications in bio-mechanics (Muendermann et

al. 2007).

7.2 Image Likelihoods

One of the main observations of our experiments with the

baseline algorithm is that results of the approach heavily

rely on the quality of the likelihood model. It is our belief

that one of the key problems in human motion tracking is

the formulation of reliable image likelihood models that are

general, do not require background subtraction, and can be

applied over a variety of imaging and lighting conditions.

We have implemented relatively standard likelihood mea-

sures, however, other likelihoods have been proposed and

should be evaluated.

For example, more principled edge likelihoods have

been formulated using measurable model edge segments

(Wachter and Nagel 1999), phase information (Poon and

Fleet 2002) and the learned statistics of filter responses
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Fig. 15 Tracking results. Typical results obtained on sequence 2 using the baseline tracking configuration are shown

(Roth et al. 2004; Sidenbladh and Black 2003). Non-edge-

based likelihood measures include optical flow (Bregler and

Malik 1998; Sidenbladh et al. 2000), flow occlusion/dis-

oc clusion boundaries (Sminchisescu and Triggs 2003b),

segmented silhouettes based on level sets (Rosenhahn et

al. 2006), image templates (Wang and Rehg 2006), spatio-

temporal templates (Dimitrijevic et al. 2006), principal

component-based models of appearance (Sidenbladh et al.

2000), and robust on-line local (Balan and Black 2006;

Jepson et al. 2003; Urtasun et al. 2006) and global appear-

ance models (Balan and Black 2006).

7.3 Motion Priors

While the action models used for diffusion within our frame-

work work relatively well in a multi-view setting, it is

likely that monocular tracking can benefit from stronger

prior models of human motion. The use of strong15 prior

motion models are common with early work concentrating

on switching dynamical models (Pavolvic et al. 1999) and

eigen-models of cyclic motions (Ormoneit et al. 2000, 2001;

Sidenbladh et al. 2000). More recently, motion priors that

utilize latent spaces as a means of modeling classes of mo-

tions that are inherently low-dimensional in nature have be-

15By strong prior motion models here we mean models that bias infer-

ence towards a particular pre-defined class of motions.

come popular. Low-dimensional non-linear latent variable

priors were first (to our knowledge) introduced in (Smin-

chisescu and Jepson 2004) and later extended in (Lu et al.

2007); Gaussian Processes Latent Variable Models (Urtasun

et al. 2005), Gaussian Processes Dynamical Models (Ur-

tasun et al. 2006) and Factor Analyzers (Li et al. 2006)

are popular and effective choices particularly for instances

where little training data is available. Weaker implicit priors

that utilize motion capture data directly (Sidenbladh et al.

2002) have also been effective. Lastly, priors based on ab-

stracted (Brubaker et al. 2007) or full-body (Vondrak et al.

2008) physical simulations recently have been proposed for

specific classes of motions (e.g. walking).

7.4 Inference

While we explored two inference algorithms, SIR and APF,

other promising methods do exist and may lead to more

robust or faster performance. For example, hybrid Monte

Carlo sampling (Poon and Fleet 2002), partitioned sampling

(MacCormick and Isard 2000), or covariance-scaled sam-

pling (Sminchisescu and Triggs 2003b) are all promising al-

ternatives. Kalman filtering (Wachter and Nagel 1999) is an-

other alternative that may be appropriate for the applications

where one can ensure that the likelihood and the dynamics

are uni-modal.
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7.5 Failures

We have observed that it is generally harder to track the up-

per body, due to frequent occlusions between the arms and

the torso. We attribute these difficulties to the poor likeli-

hood functions that are not able to effectively model inter-

nal structure within the silhouette region. The upper body

also tends to exhibit more stylistic variation across people;

the lower body must provide support and hence is more con-

strained by the dynamics of the motion itself.

The infrequent failures of the baseline algorithm can be

classified into two categories: (1) minor tracking failures

for individual body parts and (2) 180-degree rotation in the

overall body pose; the latter is much harder to recover from

in practice. We suspect these failures at least to some ex-

tent can be attributed to the nature of annealing which may

not represent multi-modal distributions in the posterior ef-

fectively.

8 Conclusions and Discussions

We have introduced a dataset for evaluation of human pose

estimation and tracking algorithms. This is a comprehensive

dataset that contains synchronized video from multiple cam-

era views, associated 3D ground truth, quantitative evalu-

ation measures, and a baseline human tracking algorithm.

All the data and associated software is made freely available

to the research community.16 We hope that this dataset will

lead to further advances in articulated human motion esti-

mation as well as provide the means of establishing the state

of the art performance of current algorithms.

While not new, the baseline algorithm, in addition to pro-

viding performance against which future advances on this

data can be measured, is designed to serve as a test-bed for

future experiments with likelihood functions, prior models

and inference methods within the context of Bayesian filter-

ing. We found that the annealed particle filter with 5 layers

and 200 particles per layer worked reliably in practice (bet-

ter than SIR) and that four camera views were necessary for

stable tracking. Furthermore we found that the bi-directional

silhouette likelihood performed significantly better than the

edges and/or standard silhouettes. A fairly weak (generic)

“prior” (embodied here as the sampling covariance) that

enforced anatomic joint limits and non-interpenetration of

parts worked well across activities; stronger models should

be explored.

While we treat the marker-based motion capture data

as the “ground truth”, it is worth noting that the true hu-

man motion is somewhat elusive. Even with perfect marker-

based motion capture data, deriving the location of joints in

16Data and code available at http://vision.cs.brown.edu/humaneva/.

the human body is not a trivial task. For example, hip joints

are not well defined and can only be measured to about 2–

10 (mm) accuracy given the marker protocol employed by

the Vicon system (Camomilla et al. 2006). The true gold

standard in localizing the position of hip joints is still de-

bated in the bio-mechanics literature (Corazza et al. 2007).

The placement of markers over regular clothes and limits

on the calibration accuracy of the video cameras with re-

spect to the Vicon calibration may lead to additional errors

that are hard to quantify. While currently unavailable, it is

clear that other methods of simultaneously capturing video

and motion capture data are necessary if not to allow bet-

ter ground truth, then to at least lift the need of performing

the motion in a laboratory environment. Current research

in non-marker-based methods for capturing human motion

(Vlasic et al. 2008) may prove to be viable alternatives in a

few years.
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