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Abstract

Emerging and re-emerging epidemic diseases pose an on-going threat to global public

health security. Recent examples of epidemics, including the outbreak of Ebola virus

disease, cholera and Middle East respiratory syndrome coronavirus (MERS-CoV), have

caused physical and psychological pain of millions of people. Epidemic outbreaks are

also very common in the aftermath of natural disasters and bioterrorist actions. Ac-

cording to the World Health Organization (WHO)’s Twelfth General Programme of

Work, the improvement of prevention, preparedness, response and recovery activities

is set as one of the WHO’s five strategic imperatives.

In response to a large-scale epidemic, satisfying medical needs is crucial to the

success of humanitarian-oriented operations and management. However, it differs from

the general business logistics problems in many ways. This research underscores the

importance of humanitarian medical allocation, and aims to explore a novel approach

for improving humanitarian allocation of medical reliefs for response to unconventional

large-scale epidemics, and draw managerial insights for health care practice. Several

methods are adopted, including stochastic dynamic programming, linear programming,

epidemic diffusion models and game theory. This inter-disciplinary research would

contribute to the decision analysis of humanitarian medical allocation.

Specifically, three sub-topics are conducted focusing on humanitarian medical allo-

cation in one area, allocation in multiple areas and allocation with cross-sector coop-

eration, respectively.

(1) In the sub-research of humanitarian medical allocation in one area, this research

proposes a model of time-varying allocation of emergency medical relief for response to

large-scale epidemics. Based on the trend of epidemic disease spreading, a stochastic

v
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dynamic programming model is developed to optimize the temporal allocation policy of

emergency medical relief in each time period. This new formulation is closer to the real

logistics practice during epidemic outbreaks than the traditional ones. Additionally,

this research obtains a general form of the optimal medical allocation decision in each

time period and further develops a case study based on real data to demonstrate the

applicability of the proposed model. According to the above analytical and numerical

studies, some properties are provided and their implementations for policy makers are

discussed.

(2) In the sub-research of humanitarian medical allocation in multiple areas, we

present a novel model of emergency medical logistics for quick response to public health

emergencies. The proposed methodology consists of two recursive mechanisms: (i) the

time-varying forecasting of medical relief demand and (ii) relief distribution. The med-

ical demand associated with each epidemic area is forecast according to a modified

susceptible-exposed-infected-recovered (SEIR) model. A linear programming approach

is then applied to facilitate distribution decision-making. Both the physical and psycho-

logical situations of those affected are considered. The modified SEIR model contributes

to forecasting by considering not only physical factors, such as the differences in the in-

fection conditions of survivors and the spatial interaction relationships among epidemic

areas, but also the psychological demand of exposed and undiagnosed individuals. In

the distribution model, psychological fragility is formulated and discussed in detail,

unlike previous studies. The relationship between emergency medical logistics and the

psychological effects on affected people is highlighted as well. Numerical studies are

conducted. Results show that the consideration of survivor psychology significantly

reduces the psychological fragility of affected people, but it barely influences physical

fragility.

(3) Typically, humanitarian logistics engages a large number and variety of sectors,

including central governments, local governments, the military, international organi-

zations and private companies. Modern information technologies provide potential

opportunities to share information among different sectors, and to work together to

pursue effective and efficient relief operations. However, each of these sectors may have

different missions and capacities. In this sub-research of cross-sector cooperation in al-

location, a series of cross-sector decision models are developed to discuss different types
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of cooperation and information sharing between public and private sectors. The basic

model, which consists of a public sector (usually the government) and a private sector,

is formulated to obtain the optimal decisions of the two sectors. Then this research

presents three more cooperation mechanisms: semi-cooperation with a private leader,

semi-cooperation with a government leader, and full cooperation. The optimal solu-

tions of these four models are provided and compared. By solving and comparing their

optimal solutions, this sub-research makes the first step to understand the differences

among these four mechanisms. The results illustrate that full cooperation is not always

the best choice, while semi-cooperation with information sharing would also achieve

potential advantages, even if two sectors made their own decisions separately.
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Chapter 1

Introduction

This chapter is a brief introduction of this research. On the basis of introducing the

research background and defining several key concepts, this chapter firstly presents the

background and objectives in Section 1.1. Then Section 1.2 clarifies the content of this

research and explains the methodology. Finally, the contributions are highlighted in

Section 1.3.

1.1 Background and Objectives

1.1.1 Background

A public health emergency is defined by the U.S. National Disaster Medical System

as the emergency need for healthcare or medical services in response to a disaster, the

significant outbreak of an infectious disease, bioterrorist attack, and other significant

or catastrophic events. Among all kinds of public health emergencies, unconventional

emerging and re-emerging epidemic diseases pose an on-going threat to global public

health security.

Recent examples of unconventional epidemics, including the outbreak of Ebola virus

disease, cholera and Middle East respiratory syndrome coronavirus (MERS-CoV), have

caused harm to millions of people. Globally, there were over 48 million cases of malaria

and they caused an estimated 584 thousand deaths in 2013. The recent outbreak of

Ebola disease has had a total of 28,141 confirmed, probable, and suspected cases re-
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ported, with 11,291 deaths. Epidemic outbreaks are also very common in the aftermath

of natural disasters and bioterrorist actions. In addition to health threats and economic

losses, public health emergencies also result in psychological suffering, such as feelings

of helplessness, sorrow, and panic. Studies conducted on the worldwide effects of the

SARS outbreak in 2003 suggest that the fear of SARS is a more severe pandemic than

the disease itself (Cheng and Tang 2004). According to the World Health Organiza-

tion (WHO)’s Twelfth General Programme of Work, the improvement of prevention,

preparedness, response and recovery activities is set as one of the WHO’s five strategic

imperatives.

In response to a large-scale epidemic, satisfying medical needs is crucial to the

success of humanitarian-oriented emergency operations and management. Although

most public health emergencies cannot be avoided, their influence can be significantly

reduced by efficient humanitarian medical logistics.

Humanitarian logistics is a branch of logistics which specializes in organizing the

delivery and warehousing of supplies during complex emergencies to the affected areas

and people. Types and quantities of the resources, ways of procurement and storage

of the supplies, tools of tracking and means of transportation to the stricken area,

specialization of teams participating in the operations and plans of cooperation between

these teams, are some important issues that are connected directly to humanitarian

logistics. Emergency logistics is one of the most significant contents of humanitarian

logistics, so some literatures use this term instead of humanitarian logistics.

The needs in medical relief include medicines and disposable medical products.

Compared with related business logistics problems and general humanitarian logistics

of other kinds of reliefs (food as an example), the challenge of prompt and effective

allocation of medical supplies arises from its unique characteristics of demand:

(1) Limited demand-related information. The lack of information such as the sever-

ity of injuries and the number of casualties, challenges distribution-related decision

making. In particular, the incubation period results in a time delay in demand (Li

et al. 1999, Zhang and Ma 2003). Additionally, uncertain probability distribution

of medical demand leads to more difficulties. In business and general humanitarian

logistics, although demand is uncertain, the probability distribution of demand is rela-
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tively stable. However, the probability distribution of medical demand also vary with

time because of the disease spreading and the growth of doctors experience and public

knowledge.

(2) Unpredictable epidemic outbreaks in other areas. Demand in business logistics

is limited in several known areas. In general humanitarian logistics, potential demand

in new areas are predictable based on the forecasting of secondary disasters. However,

epidemic may occur or break out in any areas unexpectedly. A disease can spread

quickly from one area to another and can even become a large-scale epidemic. Infection,

recovery, and mortality rates typically vary across areas because of different physical

conditions of individuals, as well as habits, customs and medical services provided by

the hospitals in each area (Brauer and van den Driessche 2001, Capaldi et al. 2012).

(3) Timeliness and imperfect substitutability. Deferred delivery of medical relief

is not allowed. And unlike other forms of relief, the substitutability of medical relief

is imperfect. A specific medicine usually cannot be substituted by another medicine

(Mete and Zabinsky 2010).

Besides the unique characteristics of medical demand, challenges also arise from

special requirements of storage and transport of medicines, which lead to the fact that

medical logistics capacity cannot be expanded in short term.

1.1.2 Objectives

Humanitarian medical allocation that directly responses to public health emergencies

are vital. However, this field faces many challenges that have not been addressed. This

research is conducted to explore a novel analytical approach for improving humanitarian

allocation of medical reliefs for response to unconventional large-scale epidemics, and

draw managerial insights for health care practice. Specifically, this research aims

(1) to develop optimization models to formulate the objectives and constrains of

humanitarian medical allocation, as well as the humanitarian allocation problem con-

sidering cross-sector cooperation and information sharing;

(2) to provide concise and detailed analyses of the proposed optimization models

and obtain optimal strategies and properties of humanitarian medical allocation;
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(3) to conduct several numerical studies with both real-case data and experimental

data and show the availability and potential implications;

(4) to compare different allocation models and optimal strategies, and additionally

discuss their advantages in different situations for practice.

1.2 Contents and Methodology

This research proposes several models and then conducts analytical and numerical anal-

yses to pursue humanitarian medical allocation with the balance between effectiveness,

efficiency and fairness.

Figure 1.1: Technology roadmap
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The technology roadmap of this research is shown as Fig. 1.1.

This research is deployed by the following three issues: the temporal allocation

problem in a single epidemic area, the allocation problem in multiple areas, and the

allocation problem with cross-sector cooperation.

(1) Humanitarian medical allocation in one area. Chapter 2 presents a temporal al-

location model for response to large-scale epidemic outbreaks in one area. The proposed

stochastic dynamic programming approach is developed based on unique characteris-

tics of epidemic diseases. This chapter provides a general closed-form of the optimal

allocation policy in each time period. Several properties of the problem and its optimal

policy are derived. A case study based on a real epidemic outbreak is conducted and

the relations between the optimal policy and each parameter are discussed. The results

highlight some managerial implications for better response to epidemic outbreaks.

(2) Humanitarian medical allocation in multiple areas. Chapter 3 presents a novel

model of this problem. The proposed methodology consists of two recursive mecha-

nisms: the time-varying forecasting of medical relief demand and relief distribution.

The medical demand associated with each epidemic area is forecast according to a

modified susceptible-exposed-infected-recovered (SEIR) model. A linear programming

approach is then applied to facilitate distribution decision-making. The physical and

psychological fragility of affected people are discussed. Numerical studies are con-

ducted. Results show that the consideration of survivor psychology significantly re-

duces the psychological fragility of affected people, but it barely influences physical

fragility.

(3) Humanitarian medical allocation with cross-sector cooperation and information

sharing. Chapter 4 presents a cross-sector decision methodology to achieve efficient

and effective humanitarian medical allocation where multiple parties are involved in.

Based on the theories and methods of public-private partnerships, the basic model,

which contains a public sector (e.g. the government) and a private sector, formulates

the optimal decision of the two sectors, respectively. Then this chapter provides and

compares three cooperation mechanisms: semi-cooperation with a private leader, semi-

cooperation with a government leader and full cooperation. In this chapter, we provide

analytical solution to discuss the difference among four proposed models and conduct
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some further numerical studies. The results highlight some managerial implications for

better understanding of cross-sector cooperation in humanitarian allocation.

To sum up, the related fields and main methods are listed in Table 1.1.

Table 1.1: Related fields and methods

Model Related Fields Main Method

Humanitarian medical Humanitarian logistics Dynamic stochastic

allocation (Emergency logistics) programming

in one area Healthcare Epidemic diffusion model

Humanitarian medical Humanitarian logistics Linear programming

allocation (Emergency logistics) Epidemic diffusion model

in multiple areas Healthcare

Survivor psychology

Humanitarian medical Humanitarian logistics Stochastic programming

allocation with (Emergency logistics) Stackelberg game

cross-sector cooperation Public-private partnership

1.3 Impacts and Contributions

This interdisciplinary study contributes to the decision analysis of humanitarian medi-

cal allocation problem in response to unconventional epidemic outbreaks. Humanitarian

medical allocation differs from general humanitarian allocation problems and related

business logistics problems in that the former problem involve many challenges that

increase the complexity and difficulty of solving the logistical problems. Specifically,

(1) When discussing the humanitarian medical allocation problem in one epidemic

area, Chapter 2 develops stochastic dynamic programming model and further obtains

a general form of the optimal medical allocation decision in each time period.

(2) The models in Chapters 2 and 3 are developed based on the trend of epidemic

disease spreading. This research applies epidemic diffusion models to forecast the de-

mand of urgent medical reliefs. These new formulations are closer to the real logistics

practice during epidemic outbreaks than the traditional ones.
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(3) When forecasting medical demand, Chapter 3 also considers the differences

in the infection conditions of survivors, the spatial interaction relationships among

epidemic areas and the demand of exposed and undiagnosed individuals.

(4) To specify the objective functions, in Chapter 3, psychological fragility is for-

mulated and discussed in detail, unlike in previous studies. The relationship between

humanitarian medical logistics and the psychological effects on affected people is high-

lighted as well.

(5) In Chapter 5, this research proposes and compares four optimization models,

including one allocation model without cross-sector cooperation and three cooperation

models with different cooperation mechanisms. It illustrates the value of cross-sector

cooperation between public and private sectors when making humanitarian allocation

decisions.
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Chapter 2

Humanitarian Medical Allocation

in One Area

This chapter presents a temporal allocation model of medical relief in one area for

response to large-scale epidemic outbreaks. The proposed stochastic dynamic pro-

gramming approach is developed based on unique characteristics of epidemic diseases.

This chapter provides a general closed-form of the optimal allocation policy in each

time period, and several properties of the problem and its optimal policy are derived.

In addition, a case study based on a real epidemic outbreak is conducted and the re-

lations between the optimal policy and each parameter are discussed. These results

highlight some managerial implications for better response to epidemic outbreaks.

2.1 Introduction

As discussed in Chapter 1, humanitarian medical logistics faces more challenges com-

pared with related business logistics and general humanitarian logistics of other kinds

of reliefs. Considering the gap mentioned in Section 2.2, this chapter proposes a model

of time-varying allocation of emergency medical supply for response to large-scale epi-

demics. Based on the trend of epidemic disease spreading, a stochastic dynamic pro-

gramming model is developed to optimize the allocation policy of emergency medical

supply in each time period.

9
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In this chapter, we consider the following situation: a local government collects local

information of demand, supply and the trend of disease spreading, and makes allocated

decision. If there is some redundant relief, central government would allocate them to

other areas then. But the local government have no information about the supply and

demand of other areas.

Specifically, this chapter contributes to the fields of logistics and healthcare in the

following two ways:

(1) The stochastic dynamic programming model proposed in this chapter character-

izes the temporal allocation problem of medical supply based on the trend of epidemic

disease spreading. This new formulation is closer to the real logistics practice during

epidemic outbreaks.

(2) This chapter obtains a general form of the optimal medical allocation decision

in each time period and further develops a case study based on real data to demon-

strate the applicability of the proposed model. According to the above analytical and

numerical studies, some properties are provided and their implementations for policy

makers are discussed.

The remainder of this chapter is organized as follows. Related literatures are re-

viewed in Section 2.2. Then decision models are developed in Section 2.3. Section 2.4

presents the analytical and numerical studies of the local decision problem, which is

a stochastic dynamic programming model. Finally, Section 2.5 concludes this chapter

and provides insights for policy makers. All the proofs are given in Section 3.6.

2.2 Literature Review

Although some studies try to combine medical rescue with emergency logistics (Sheu

and Pan, 2014), only a few studies exist on emergency medical logistics for public

health emergencies despite its importance and particularity. Only bioterror response

logistics, a special case in emergency medical logistics, has been discussed (Kaplan

et al. 2003, Craft et al. 2005, Miller et al. 2006, Zaric et al. 2008, Hu and Zhao

2011, Liu and Zhao 2011). These studies have aided in understanding the problems

of evaluating existing proposals for logistics, distributing antibiotics, and providing
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hospital care after a bioterror attack. Methods such as atmospheric release models,

dose-response models, disease progression models and epidemic diffusion models have

been used. However, a terrorist attack has only two most feared biological agents,

namely, smallpox and anthrax (Craft et al. 2005), but other public health emergencies

may be aroused by other diseases that are less understood and the results of these

studies are usually difficult to apply. Besides, this stream of studies does not discuss

time-varying allocation strategies of medical supplies in detail.

Regarding emergency response to epidemic, most researches on medical resource

allocation study a static problem while only a few take into consideration the time

evolution and dynamic nature of medical demand. Zaric and Brandeau (2001, 2002)

present dynamic models for epidemic resources allocation, develop approximation meth-

ods and present heuristics for solving the models. These studies additionally suggest

that allowing for reallocation of funds may generate more health benefits. In Ekici et

al. (2014), food distribution during epidemic is examined. Wang et al. (2009) build a

multi-objective stochastic programming model to discuss the selection of logistics hubs

and the distribution of medical supplies, and the model is solved by genetic algorithm

based on Monte Carlo simulation. Rachaniotis et al. (2012) propose a deterministic

resource scheduling model in epidemic control. The model is appropriate for large pop-

ulations, where random interactions can be averaged out. He and Liu (2015) develop

and compare three emergency medical logistics models. Their models consist of two

recursive mechanisms: the time-varying forecasting of medical demand and the distri-

bution of medical supplies. Liu and Xiao (2015) present a discrete time-space network

model for a dynamic resource allocation problem following an epidemic outbreak in a

region and a custom genetic algorithm is adopted to solve the proposed model. Several

similar models are also built to discuss this problem (Liu and Liang 2013, Liu et al.

2015).

While these dynamic studies provide insights towards medical allocation and epi-

demic control, they often overlook some of the following critical aspects: (1) Although

several periods are discussed, the models in most previous studies are essentially repe-

titious one-period problem, and decisions are optimized for one time period but not for

the whole time horizon. (2) Demand of medical supplies is of stochastic nature while

some previous works have been directed towards the deterministic case. (3) Analytical
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solutions are important references to understand medical allocation problem. However,

analytical analyses of most stochastic dynamic researches focus on only two time peri-

ods, or the solutions are obtained by heuristic methods. To the best of our knowledge,

in related areas, there has not been a research work providing a general analytical form

of the optimal policy in each time period.

2.3 Model Development

2.3.1 Assumptions

The medical system considered in this chapter is a specific two-layer supply chain that

involves one central warehouse and one epidemic area. One kind of medical supply

needs to be allocated to the epidemic area several times. Only one kind of medical

relief is considered because in practice the prescriptions for different patients with a

specific disease are similar. Those essential medicines and disposable medical products

can be regarded as one package.

The central warehouse gathers all medical relief from producers, charity organization

and other logistics hubs, and distributes supply appropriately to the epidemic area. The

epidemic area can only get medical supply from this specific central warehouse. At the

beginning of each time period, the policy maker collects real-time inventory information,

updates knowledge of the disease, and decides the amounts of medical supply sent to

the area in the current and the optimal policies in the following time periods.

Based on the above description, four basic assumptions are made to facilitate the

model formulation.

(1) In a specific area, the maximal available amounts of medical supply in each time

period are the same.

(2) Allocation periods have been set in advance.

(3) The demand is strongly correlated with the number of quarantined patients.

In practice, infectious patients can always be divided into two groups: quarantined

and un-quarantined patients. Only a part of patients can be diagnosed, hospitalized

and get treatments, and its proportion nearly remain unchanged in the short term.
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Quarantined patients are separated from other residents so they do not infect others.

Un-quarantined patients do not realize they have been infected and are not in the need

of medical relief. (Chowell et al. 2006).

(4) Lead time of supply distribution is less than the length of one time period.

2.3.2 Notations

Notations in this chapter are as follows.

Parameters of the model:

S: Available amount of medical relief in each time period

Qt: Inventory of medical relief in the epidemic area at the beginning of time period t

Dt: A stochastic variable, which refers to demand for medical relief in the epidemic

area in time period t

gt(Dt): The probability distribution function of Dt

Gt(Dt): The cumulative distribution function of Dt

α: Penalty per unit of oversupplied medical relief

β: Penalty per unit of unfulfilled demand for medical relief

Pt: Number of infectious people in the epidemic area in time period t

vt(Pt): The probability distribution function of Pt

Vt(Pt): The cumulative distribution function of Pt

u: Un-quarantined rate of infectious people in the epidemic area

m(uPt): A function to forecast the number of infectious people in time period t + 1,

according to the number of infectious people in time period t

M(Dt): A function to forecast future demands according to the demand in time period

t
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δt: The random variation of the number of infectious people in time period t

σt: The random variation of the demand in time period t

w(σt): The probability distribution function of σt

W (σt): The cumulative distribution function of σt

Decision variables of the model:

Xt: Amount of medical supply allocated to the epidemic area in time period t

2.3.3 Problem Modeling

Based on the description of the logistics system given above, the problem can be divided

into n time periods, with a policy decision required at each time period. Inventory at

the beginning of each time period varies among time periods. The state transition

function is:

Qt+1 = (Qt +Xt −Dt)
+, 0 < t ≤ n− 1 (2.1)

The objective is to find an optimal policy for the overall problem to minimize the

expected sum of total penalty.















fn+1(Qn+1, Xn+1) = 0

ft(Qt, Xt) = min
Xt

EDt{Yt(Xt, Dt) + ft+1(Qt+1, Xt+1)}
(2.2)

(0 ≤ Xt ≤ S, t = 1, 2, . . . , n)

where

Yt(Xt, Dt) = α(Xt +Qt −Dt)
+ + β(Dt −Xt −Qt)

+ (2.3)

Yt(Qt, X
L
t ) is the contribution of time period t to the objective function. (Xt +

Qt −Dt)
+ is the oversupplied amount of medical relief in the epidemic area at the end

of time period t, while (Dt − Xt − Qt)
+ is the amount of unfulfilled demand in time

period t. α and β are penalty coefficients. Local governments always tend to leave
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relief for themselves as much as possible. Thus the central government gives a penalty

of oversupplied distribution to local governments. However, the penalty coefficient of

the oversupply is usually smaller than that of the unfulfilled demand, i.e., α < β.

2.3.4 Probability Distribution Function of Demand

In the proposed optimization model above, Dt is a random variable affected by the char-

acteristics of epidemic disease. This subsection will discuss the probability distribution

of Dt, which is strongly related to the number of quarantined patients.

Note that the number of quarantined patients also vary among time periods:

Pt+1 = m(uPt) + δt+1, 0 < t ≤ n− 1 (2.4)

where m(uPt) is a forecasting model of the number of infectious people. u refers to

un-quarantined rate. m(uPt) ≥ 0 and is increasing in Pt. δt(t = 1, 2, . . . , n) are i.i.d.

random variables following an exponential distribution.

Proposition 2.1.

(1) With any given Pt,

Vt+1(y) =











0 , y < 0

W (y −m(uPt))−W (y −m(uPt))W (−m(uPt)) +W (−m(uPt)) , y ≥ 0

and

vt+1(y) =











0 , y < 0

w (y −m(uPt)) [1−W (−m(uPt))] , y > 0

where W (δt) and w(δt) are the cumulative distribution and probability density functions

of δt, respectively.

(2) With any given y, Vt+1(y) is decreasing in Pt.

The demand in each time period is strongly related to the corresponding number of

quarantined infectious people because only quarantined patients can be diagnosed and

get treatments. Define θ as the demand of the medical relief per patient in each time



16 CHAPTER 2. ALLOCATION IN ONE AREA

period. Thus,

Dt+1 = θ(1− u)Pt+1

= θ(1− u) (m(uPt) + δt+1)

= θ(1− u)

(

m

(

θ

θ(1− u)
Dt

)

+ δt+1

)

The above equation can be simplified as

Dt+1 = M(Dt) + σt+1, 0 < t ≤ n− 1 (2.5)

where M(Dt) = θ(1−u)m
(

θ
θ(1−u)Dt

)

is a forecasting model of demand. This equation

presents the relationship between Dt+1 and Dt. M(Dt) ≥ 0 and is increasing in Dt.

σt+1 = θ(1− u)δt+1 also follows an exponential distribution with mean λ. That is,

w′(σt) =











0 , σt < 0

λe−λσt , σt > 0

(2.6)

and

W ′(σt) =











0 , σt < 0

1− e−λσt , σt ≥ 0

(2.7)

Define gt(Dt) and Gt(Dt) as the probability density function and cumulative dis-

tribution function of Dt, respectively. These two functions describe the natural char-

acteristics of epidemic disease.

Based on Eqs.(2.5), (2.6) and (2.7), the following equations are obtained:

Gt+1(y) =

∫ ∞

0
W ′ (y −M(Dt)) |Dtgt(Dt) dDt (2.8)

gt+1(y) =

∫ ∞

0
w′ (y −M(Dt)) |Dtgt(Dt) dDt (2.9)

where

W ′ (y −M(Dt)) |Dt =











0 , y −M(Dt) < 0

1− e−λ(y−M(Dt)) , y −M(Dt) ≥ 0

w′ (y −M(Dt)) |Dt =











0 , y −M(Dt) < 0

λe−λ(y−M(Dt)) , y −M(Dt) > 0
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To further specify the function M(Dt), previous studies have put efforts on math-

ematical models of disease spreading rules (Larson, 2007; Anderson, 2013; He and

Liu, 2015), among them exponential model and susceptible-exposed-infected-recovered

(SEIR) model draw considerable attention. The former is the most simplified to de-

scribe the essential characteristics of epidemic spreading in early periods while SEIR

model is more complex and realistic. This chapter adopts exponential model and in

the next chapter we will introduce and improve the SEIR model. One can also adopt

other epidemic models proposed in the health-care literature.

The exponential model is:

Pt+1 = kuPt + δt+1(0 < t ≤ n− 1) (2.10)

where, parameter k is decided by the specific characteristics of disease.

Thus,

Dt+1 = θ(1− u)Pt+1

= θ(1− u)(kuPt + δt+1)

= θ(1− u)

(

ku

θ(1− u)
Dt + δt+1

)

Set A = ku and σ = θ(1− u)δ. We have

M(Dt) = ADt (2.11)

and

Dt+1 = ADt + σt+1 (2.12)

Proposition 2.2 gives the probability density and cumulative distribution functions

of Dt based on the above exponential model.

Proposition 2.2.

Gt(y) =











0 , y < AtD0

1− 1
∏t−1

l=1(1−Al)

∑t−1
i=0 B

i(t− 1, A)e
−λ(y−AtD0)

Ai , y ≥ AtD0

gt(y) =











0 , y < AtD0

λ
∏t−1

l=1(1−Al)

∑t−1
i=0 B

i(t− 1, A)e
−λ(y−AtD0)

Ai 1
Ai , y ≥ AtD0

where, Bi(t−1, A) is the coefficient of xi in the expression of (1−Ax)(1−A2x) . . . (1−

At−1x).
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2.4 Analytical Analyses

The decision problem is a stochastic dynamic programming model. This section will

do analytical analyses on it and the next section will do numerical analyses.

2.4.1 General Form of the Optimal Solution

In this part, we solve the above model by first solving the two-period sub-problem

consisting of time period n-1 and time period n, and then find a general form of the

optimal policy in each time period in the n-period stochastic dynamic programming

model.

To facilitate model solving, a function Lt(x) is defined as:

Lt(x) =

∫ ∞

x

(Dt − x)gt(Dt) dDt, x ≥ 0 (2.13)

Lt(x) can be proved to be strictly decreasing and convex in x: dLt(x)
dx

= Gt(x)− 1 ≤ 0.

In Eq. (2.2), EDtYt(Xt, Dt) can be written as

EDtYt(Xt, Dt) =EDt{α(Xt +Qt −Dt)
+β(Dt −Xt −Qt)

+}

=α

∫ Xt+Qt

0
(Xt +Qt −Dt)gt(Dt) dDt

+ β

∫ ∞

Xt+Qt

(Dt −Xt −Qt)gt(Dt) dDt

=α(Xt +Qt − µt) + (α+ β)Lt(Xt +Qt)

(2.14)

where µt refers to the mean of Dt.

Proposition 2.3. The optimal solution of time period n is

X∗
n = min {S,

(

G−1
n (

β

α+ β
)−Qn

)+

}

that is

X∗
n =



























S , Qn ≤ G−1
n ( β

α+β
)− S

G−1
n ( β

α+β
)−Qn , G−1

n ( β
α+β

)− S ≤ Qn ≤ G−1
n ( β

α+β
)

0 , Qn ≥ G−1
n ( β

α+β
)
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Since Qn = (Xn−1 +Qn−1 −Dn−1)
+ (from Eq. (2.1)),

X∗
n =











































0 , Dn−1 ≤ Xn−1 +Qn−1 −G−1
n ( β

α+β
)

G−1
n ( β

α+β
)−Qn , Xn−1 +Qn−1 −G−1

n ( β
α+β

) ≤ Dn−1

≤ Xn−1 +Qn−1 −
(

G−1
n ( β

α+β
)− S

)+

S −
(

S −G−1
n

(

β
α+β

))+
, Dn−1 ≥ Xn−1 +Qn−1 −

(

G−1
n ( β

α+β
)− S

)+

Since Qn = (Xn−1 +Qn−1 −Dn−1)
+ (Eq. (2.1)),

X∗
n =











































0 , Dn−1 ≤ Xn−1 +Qn−1 −G−1
n ( β

α+β
)

G−1
n ( β

α+β
)−Qn , Xn−1 +Qn−1 −G−1

n ( β
α+β

) ≤ Dn−1

≤ Xn−1 +Qn−1 −
(

G−1
n ( β

α+β
)− S

)+

S −
(

S −G−1
n

(

β
α+β

))+
, Dn−1 ≥ Xn−1 +Qn−1 −

(

G−1
n ( β

α+β
)− S

)+
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Thus,

fn−1(Qn−1, Xn−1)

= min
Xn−1

EDn−1{Yn−1(Xn−1, Qn−1) + fn(Qn, Xn)}

= min
Xn−1

{α(Qn−1 +Xn−1 − µn−1) + (α+ β)Ln−1(Qn−1 +Xn−1)

+

∫ Xn−1+Qn−1−G−1
n ( β

α+β
)

0
[α(Xn−1 +Qn−1 −Dn−1 − µn−1)

+(α+ β)Ln−1(Qn−1 +Xn−1 −Dn−1)] gn−1(Dn−1) dDn−1

+

∫ Xn−1+Qn−1−
(

G−1
n ( β

α+β
)−S

)+

Xn−1+Qn−1−G−1
n ( β

α+β
)

[

α

(

G−1
n (

β

α+ β
)− µn−1

)

+(α+ β)Ln−1

(

G−1
n (

β

α+ β
)

)]

gn−1(Dn−1) dDn−1

+

∫ Xn−1+Qn−1

Xn−1+Qn−1−
(

G−1
n ( β

α+β
)−S

)+

[

α

(

S −

(

S −G−1
n (

β

α+ β
)

)+

+Qn−1 +Xn−1 −Dn−1 − µn−1)

+(α+ β)Ln−1

(

S −

(

S −G−1
n (

β

α+ β
)

)+

+Qn−1 +Xn−1 −Dn−1

)]

gn−1(Dn−1) dDn−1

+

∫ ∞

Xn−1+Qn−1

[

α

(

S −

(

S −G−1
n (

β

α+ β
)

)+

− µn−1

)

+(α+ β)Ln−1

(

S −

(

S −G−1
n (

β

α+ β
)

)+
)]

gn−1(Dn−1) dDn−1}

Proposition 2.4. The objective function in the (n-1)th time period, which represents

the expectation of the total penalty in the (n-1)th and n-th time periods) is convex in

Xn−1 for any given S, Qn−1, Gn−1(Dn−1) and Gn(Dn).

Set

It =
dEDt{Yt(Xt, Dt) + ft+1(Qt+1, Xt+1)}

dXt

In−1 has the properties given in Propositions 2.5 and 2.6.

Proposition 2.5. In−1 is an increasing function of (1) Qn−1 and (2) S.

Proposition 2.6. (1) lim
S→∞

In−1 = In−1|
S=G−1

n

(

β
α+β

);

(2) lim
Qn−1→∞

In−1 ≥ α ≥ 0.



2.4. ANALYTICAL ANALYSES 21

Set I0t = It|Xt=0 and ISt = It|Xt=S .

They have the following properties:

Proposition 2.7.

(1) Existence and uniqueness of function h0n−1(S): For any given S, there ex-

ists a unique h0n−1(S) > 0, s.t. I0n−1|Qn−1<h0
n−1(S)

< 0, I0n−1|Qn−1=h0
n−1(S)

= 0 and

I0n−1|Qn−1>h0
n−1(S)

> 0. Additionally, h0n−1(S) is decreasing in S.

(2) Existence and uniqueness of function hSn−1(S): For any given S, there exists a

unique hSn−1(S), s.t. ISn−1|Qn−1<hS
n−1(S)

< 0, ISn−1|Qn−1=hS
n−1(S)

= 0 and

ISn−1|Qn−1>hS
n−1(S)

> 0. Additionally, hSn−1(S) is decreasing in S.

(3) h0n−1(S) = hSn−1(S) + S.

Therefore, the optimal solution can be obtained.

Proposition 2.8. For given S, Qn−1, Gn−1(Dn−1) and Gn(Dn), the optimal solution

of the two-period sub-problem is

X∗
n−1 =



























0 , Qn−1 ≥ h0n−1(S)

h0n−1(S)−Qn−1 ,
(

h0n−1(S)− S
)+

≤ Qn−1 < h0n−1(S)

S , Qn−1 <
(

h0n−1(S)− S
)+

and

X∗
n = min {S,

(

G−1
n (

β

α+ β
)− (Qn−1 +X∗

n−1 −Dn−1)

)+

}

where h0n−1(S) is a function of S defined as I0n−1|Qn−1=h0
n−1(S)

= 0.

Proposition 2.8 gives the optimal solutions of time periods n and n − 1. Similar

to Proposition 2.3, X∗
n−1 is also piecewise. When initial inventory (Qn−1) is small,

medical relief is allocated as much as possible. When initial inventory is enough, no

relief will be allocated. When inventory is moderate, the optimal allocation amount is

a linear function of and decreasing in the inventory Additionally, X∗
n is not only related

with inventory, but also affected by X∗
n−1.

Then we will provide a general form of the optimal solution at each time period.

Similar to the two-period problem, the solution procedures of the n-period problem

also begin from the last time period.
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At the t-th period,

ft(Qt, Xt) = min
Xt

EDt{Yt(Xt, Dt) + ft+1(Qt+1, X
∗
t+1)}

= min
Xt

{α(Qt +Xt − µt) + (α+ β)Lt(Xt +Qt) + EDtft+1(Qt+1, X
∗
t+1)}

s.t. 0 ≤Xt ≤ S

Proposition 2.9. Given an optimal policy of the (t+1)th time period, the objective

function in the t-th time period EDt{Yt(Xt, Dt) + ft+1(Qt+1, X
∗
t+1)}, which represents

the expectation of the total penalty from the t-th time period to the n-th time period, is

convex in Xt for any given S, Qt and Gi(Di) (i = t+ 1, t+ 2, . . . , n).

Propositions 2.10 and 2.11 are provided for discussing the properties of It, whose

value is affected by the decision variable Xt and parameters Qt and S.

Proposition 2.10. It is an increasing function of (1) Qt and (2) S, where It is defined

as It =
dEDt

{Yt(Xt,Dt)+ft+1(Qt+1,X
∗

t+1)}

dXt
(t = 1, 2, . . . , n).

Proposition 2.11.

(1) Existence and uniqueness of function h0t (S): For any given S, there exists a

unique h0t (S) > 0, s.t. I0t |Qt<h0
t (S)

< 0, I0t |Qt=h0
t (S)

= 0 and I0t |Qt>h0
t (S)

> 0. Addition-

ally, h0t (S) is decreasing in S.

(2) Existence and uniqueness of function hSt (S): For any given S, there exists a

unique hSt (S), s.t. ISt |Qt<hS
t (S)

< 0, ISt |Qt=hS
t (S)

= 0 and ISt |Qt>hS
t (S)

> 0. Additionally,

hSt (S) is decreasing in S.

(3) h0t (S) = hSt (S) + S.

Based on the above propositions, we obtain the optimal solution at time period t

given in Proposition 2.12 and Figure 2.1.

Proposition 2.12. With any given S, Qt and Gi(Di), (i = t, t + 1, . . . , n), for any

time period t, a general form of the optimal solution is

x∗t =



























0 , Qt ≥ h0t (S)

h0t (S)−Qt ,
(

h0t (S)− S
)+

≤ Qt < h0t (S)

S , Qt <
(

h0t (S)− S
)+

(2.15)

where h0t (S) is a function of S defined as I0t |Qt=h0
t (S)

= 0 and h0t (S) > 0.
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Figure 2.1: General form of the optimal solution

According to Proposition 2.12 and Figure 2.1, the optimal solution in each time

period is a piecewise function of the allocated amount in the previous periods, maximum

supply, demand in the previous periods and the distribution of demand in the following

periods. Figure 2.1 shows the Qt − S plane. It is segmented into three parts by h0t (S)

and h0t (S) − S. The different combinations of S and Qt determine the different forms

of the optimal solution.

ft(Qt, Xt) =min
Xt

EDt{Yt(Xt, Dt) + ft+1(Qt+1, X
∗
t+1)}

=α(Qt +X∗
t − µt) + (α+ β)Lt(X

∗
t +Qt)

+ EDtft+1

(

(Qt +X∗
t −Dt)

+, X∗
t+1

)

=α(Qt +X∗
t − µt) + (α+ β)Lt(X

∗
t +Qt)

+

∫ Qt+X∗

t −h0
t+1(S)

0
ft+1(Qt +X∗

t −Dt, 0)gt(Dt) dDt

+

∫ Qt+X∗

t −(h0
t+1(S)−S)

+

Qt+X∗

t −h0
t+1(S)

ft+1(Qt +X∗
t −Dt,

h0t+1(S)−Qt −X∗
t +Dt)gt(Dt) dDt

+

∫ Qt+X∗

t

Qt+X∗

t −(h0
t+1(S)−S)

+
ft+1(Qt +X∗

t −Dt, S − (S − h0t (S))
+)gt(Dt) dDt

+

∫ ∞

Qt+X∗

t

ft+1(0, S − (S − h0t (S))
+)gt(Dt) dDt
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2.4.2 Properties of the Optimal Solution

Based on the solution of the proposed stochastic dynamic programming model, several

further properties are discussed.

First, the properties of h0t (S), which is an important function in solving the proposed

problem, are described in Proposition 2.13.

Proposition 2.13.

(1)
∂h0

t (S)
∂S

≤ 0

(2) h0t (S) ≥ G−1
t

(

β
α+β

)

(3)
∂h0

t+1(S)

∂Dt
≥ 0(Dt ̸= Xt +Qt)

Proposition 2.13(1) illustrates that h0t (S) is decreasing in S. The reason is when

supply increases, the probability of demand un-fulfillment in following periods would

decline. Thus, the allocated amount can be reduced. Proposition 2.13(2) shows in any

time periods, the value of h0t (S) is greater than or equal to the G−1
t ( β

α+β
), which is

the optimal solution of the static problem (one-period problem). Proposition 2.13(3)

states that if the demand in a specific time period increases, then in the next period, the

value of h0t (S) also increases, because increased demand indicates patients in following

periods.

According to Proposition 2.12 and Eq.(2.1), Eq.(2.15) is equivalent to

x∗t+1 =











































0 , Dt ≤ Qt +Xt − h0t+1(S)

h0t+1(S)− (Qt +Xt −Dt)
+ , Qt +Xt − h0t+1(S) < Dt

≤ Qt +Xt −
(

h0t+1(S)− S
)+

S − (S − h0t (S))
+ , Dt ≥ Qt +Xt −

(

h0t+1(S)− S
)+

Based on the above equations and Proposition 2.12,
∂X∗

t

∂Qt
,

∂X∗

t+1

∂Qt
,

∂X∗

t+1

∂Xt
, ∂Qt+1

∂Xt
,

∂Qt+1

∂Qt
,
∂X∗

t

∂S
and

∂X∗

t+1

∂Dt
can be calculated out.

Proposition 2.14.
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(1)
∂X∗

t

∂Qt
=



























0 , Qt <
(

h0t (S)− S
)+

−1 ,
(

h0t (S)− S
)+

< Qt < h0t (S)

0 , Qt > h0t (S)

∂2X∗

t

∂Q2
t

= 0 (Qt ̸= h0t (S) and Qt ̸=
(

h0t (S)− S
)+

)

(2) ∂Qt+1

∂Xt
= ∂Qt+1

∂Qt
=











1 , Dt < Qt +Xt

0 , Dt > Qt +Xt

∂2Qt+1

∂X2
t

= ∂2Qt+1

∂Q2
t

= 0 (Dt ̸= Qt +Xt)

(3)
∂X∗

t+1

∂Xt
=

∂X∗

t+1

∂Qt
=











































0 , Dt < Qt +Xt − h0t+1(S)

−1 , Qt +Xt − h0t+1(S) < Dt

< Qt +Xt −
(

h0t+1(S)− S
)+

0 , Dt < Qt +Xt −
(

h0t+1(S)− S
)+

∂2X∗

t+1

∂X2
t

=
∂2X∗

t+1

∂Q2
t

= 0 (Dt ̸= Qt+Xt−h0t+1(S) and Dt ̸= Qt+Xt−
(

h0t+1(S)− S
)+

)

(4)
∂X∗

t

∂S
=



























1 , Qt <
(

h0t (S)− S
)+

dh0
t (S)
dS

≤ 0 ,
(

h0t (S)− S
)+

< Qt < h0t (S)

0 , Qt > h0t (S)

(5)
∂X∗

t+1

∂Dt
=











































1 , Dt < Qt +Xt − h0t+1(S)

dh0
t+1(S)

dDt
+ 1 ≥ 1 , Qt +Xt − h0t+1(S) < Dt

< Qt +Xt −
(

h0t+1(S)− S
)+

0 , Dt < Qt +Xt −
(

h0t+1(S)− S
)+

Proposition 2.14 shows the relationship between the optimal solution and the value

of inventory, demand and supply. Specifically, Proposition 2.14(1) gives the relationship

between the optimal solution and the initial inventory in a time period. When inventory

is large or small enough, the solution is not affected by inventory; but when inventory

is moderate, the solution is linearly decreasing in the inventory.

Proposition 2.14(2) shows how inventory and allocated amount in a specific time

period affects the inventory in the next period. Note that Qt+1 = (Qt + Xt − Dt)
+.
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When demand is relatively small, if inventory and allocated amount increase one unit,

then the inventory in the next period also increases one unit.

Proposition 2.14(3) gives the relationship between the optimal solution in a specific

time period and the inventory and solution in the previous period. This relationship is

similar to (1).

Proposition 2.14(4) gives the relationship between the optimal solution and supply.

When inventory is relatively small, one unit increase in supply will lead to one unit

increase in the solution. With more inventory, the solution will decline as supply

increases but their relation is not linear.

Proposition 2.14(5) shows the relationship between the optimal solution in a specific

time period and the demand in the previous period. Obviously, increased demand

will lead to increase in the optimal solution. In addition, when demand is low (Dt <

Qt+Xt−h0t+1(S)), the optimal solution will increase one unit if demand in the previous

period increases one unit. However, when demand exceeds a critical value (when Qt +

Xt − h0t+1(S) < Dt < Qt + Xt −
(

h0t+1(S)− S
)+

), one unit increase in demand will

lead to more than one unit increase in the optimal solution in the next time period.

When demand is greater then Qt +Xt −
(

h0t+1(S)− S
)+

, it will not affect the optimal

solution in the next period.

The optimization problem in time period n can be regarded as a one-period problem.

Consider the following static stochastic programming model:

min
X

′

t

EDt{Yt(X
′

t , Dt)}

s.t. 0 ≤ X
′

t ≤ S (2.16)

A general form of the optimal solution of this model is:

X
′∗
t =



























0 , Qt ≥ G−1
t ( β

α+β
)

G−1
t

(

β
α+β

)

−Qt ,
(

G−1
t ( β

α+β
)− S

)+
≤ Qt ≤ G−1

t ( β
α+β

)

S −
(

S −G−1
n ( β

α+β
)
)+

, Qt ≤
(

G−1
n ( β

α+β
)− S

)+

(2.17)

Comparing the above equation with Eq.(2.15), we obtain the following proposition:

Proposition 2.15. Let X
′∗
t be the optimal solution of the static problem (Eq. (2.16))

in time period t, and X∗
t be the optimal solution of the dynamic problem developed in
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Section 2.3. In any time period t with any given Qt and S, X
′∗
t ≤ X∗

t . And when

S → ∞, X
′∗
t → X∗

t .

2.5 Numerical Studies

This section develops numerical studies to demonstrate the applicability of the proposed

methodology and to compare the optimal policies in different situations. All compu-

tational processes are conducted with MATLAB on a computer with a 2.69GHz CPU

and 8G RAM. The probability and cumulative distribution functions are calculated

according to Proposition 2.2.

2.5.1 Numerical Study 1

This study is designed as a simplification of the real case of Severe Acute Respiratory

Syndromes (SARS) outbreak in China in the first quarter of 2003. Parameters are set

according to the situation on 9 Feb 2003 in Guangzhou, a city in south China, and

their values are as follows: λ = 0.25, P0 = 226, A = 1.08, u = 0.2, S = 200, n = 3,

α = 0.3 and β = 0.7. Meanwhile, for generality, an experimental situation is tested:

the number of patients is decreasing (0 < A < 1).

Table 2.1 reports the solutions of h0t (S), t = 1, . . . , n, which are compared to the

corresponding G−1
t

(

β
α+β

)

and the expectation of demands. Note that G−1
t

(

β
α+β

)

refers to the optimal policy of the stochastic static programming model (Optimization

Problem (2.16) and Eq. (2.17)).

Table 2.1: Policy comparison between dynamic and static models

Time Period
A=1.08 A=0.9

h0t (S) G−1
t

(

β
α+β

)

E{Dt} h0t (S) G−1
t

(

β
α+β

)

E{Dt}

t=1 247.2 200.1 198.5 167.5 167.5 165.9

t=2 256.4 221.0 217.5 155.7 155.7 152.5

t=3 243.4 243.4 238.1 144.9 144.9 140.5

In Table 2.1, h0t (S) is the optimal policy of the stochastic dynamic programming

model. G−1
t

(

β
α+β

)

is the optimal policy of the static model. E{Dt} is the expectation
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of Dt.

Regardless of which model is adopted, the optimal available amounts of medical

supply in each time period are larger than the expectation of the corresponding de-

mands, because the penalty coefficient of the unfulfilled demand is greater than that

of the oversupply. In addition, when the disease is still spreading (A > 1), the op-

timal available amounts obtained by the dynamic model are larger than that of the

static model. The reason is that to meet increasing demand, more medical supplies

are allocated to earlier time periods in advance. However, when the epidemic has been

controlled and the number of patients is declining (0 < A < 1), the solutions of the two

models are the same.

In the following numerical studies, only the first situation (A = 1.08) is considered.

2.5.2 Numerical Study 2

This study tests how the optimal policy changes when λ, S and β change. Other

parameters are set the same as Study 1.

Figure 2.2: Sensitivity analysis of λ

Fig. 2.2 illustrates that with a given S, as λ increases, both h0t (S) and hSt (S)

(t = 1, , n) decrease and the rates of decrease slow down. A smaller λ leads to larger

expectation and variance of demands. Thus, more medical supply is allocated.

Fig. 2.3 shows how optimal policies are affected by the storage and transportation
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Figure 2.3: Sensitivity analysis of S

capacity of the central warehouse. h0t (S) (t = 1, 2) and hSt (S) (t = 1, 2, 3) decrease as

S increases when S is less than the corresponding boundary points, while they remain

unchanged if the capacity is enough. Additionally, h01(S) and hS1 (S) decrease the fastest.

These results are consistent with the analytical analyses in Section 4 and they are also

valuable references for the long-term decision of capacity investment.

Figure 2.4: Sensitivity analysis of β

Fig. 2.4 presents the sensitivity analysis of penalty coefficients. In this analysis,

α = 1− β. As β increases, h0t (S) and hSt (S) (t = 1, 2, 3) increase. But these increases

are very slow when the value of β is small. In addition, a stepped growth trend is
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found.

2.5.3 Numerical Study 3

This study aims to further discuss the relationship among the optimal policy, warehouse

capacity and penalty coefficients. Fig. 2.5 reports how S and β affect h02(S). h01(S),

hS1 (S) and hS2 (S) are also tested and have similar properties.

Figure 2.5: Optimal policies of different combinations of S and β

When β is small, the impacts of S on h02(S) is almost negligible. Only if β is larger

than about 0.45, S and h02(S) show a similar relation as Fig. 2.3 in Study 2. On the

other hand, when S is large (greater than about 260), h02(S) keeps a slight increase as

β increases. However, h02(S) grows stepwise when S is less than about 260, and the

smaller S, the greater the amount of h02(S).

2.6 Discussion

In this chapter, the relations between the optimal policy and each parameter are dis-

cussed, among which findings point to significant effects of local supply capacity. It

is affected by local production, storage and transportation capacities. Since medicine

usually requires strict conditions of storage and transport, storage and transportation

capacities can hardly be expanded in short term, same as production capacity. When
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the capacity is not enough, the optimal amount of medical supply in each time period

decreases as capacity increases, and the amounts in previous time periods decrease

faster. But these changes are not significant if the penalty of the unfulfilled demand is

relatively small.

Apart from the capacity, demand shows a leverage effect on the optimal policy,

which means one percent change in demand will lead to more than one percent change

in the optimal decision for the following time periods.

Furthermore, in the situation that an epidemic disease keeps spreading and num-

ber of patients is increasing, the optimal amounts solved by the proposed stochastic

dynamic model are always not less than that of the stochastic static model. And their

differences in previous time periods are larger than those in later time periods.

2.7 Summary

In this chapter, a stochastic dynamic programming model is developed to optimize

the allocation of medical relief for response to epidemic outbreaks. The problem is

divided into several finite time periods, with a policy decision required at each time

period. The inventory of medical supply and the probability distribution of demand in

the epidemic area change among time periods, and the demand in each time period is

regarded as a stochastic parameter. To solve the model, this chapter provides a general

analytical closed-form of the optimal allocation policy in each time period to minimize

the expected sum of the overall penalty. Several properties of the optimal policy are

derived and discussed. Additionally, numerical studies show the applicability of the

proposed method. The results support and supplement the analytical analyses.

In addition, the analytical and numerical analyses highlight some managerial impli-

cations into improving decisions on medical allocation for better response to epidemic

outbreaks.

Finally, researchers would extend this chapter to include more participants in emer-

gency medical allocation. Chapter 4 will take local private sectors into consideration

and discuss their cooperation with the government. Furthermore, this chapter only

considers one epidemic area and focuses on the medical relief for treatment. Future
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studies would explore the allocation policies of preventative relief, such as vaccine. It

would be studied in the next chapter.

2.8 Proofs of Propositions and Theorems in this Chapter

Proof of Proposition 2.1.

(1)Vt+1(y) = Pr{Pt+1 ≤ y} = Pr{(m(uPt) + δt+1)
+ ≤ y}.

If y < 0, then Pr{(m(uPt) + δt+1)
+ ≤ y} = 0;

If y ≥ 0, then

Pr{(m(uPt) + δt+1)
+ ≤ y}

=Pr{m(uPt) + δt+1 ≤ y}Pr{m(uPt) + δt+1 ≥ 0}

+ Pr{m(uPt) + δt+1 < 0}

=W (y −m(uPt)) [1−W (−m(uPt))] +W (−m(uPt))

=W (y −m(uPt))−W (−m(uPt))W (−m(uPt)) +W (−m(uPt))

Thus,

Vt+1(y) =



























0 , y < 0

W (y −m(uPt)) +W (−m(uPt))

−W (y −m(uPt))W (−m(uPt)) , y ≥ 0

and

vt+1(y) =











0 , y < 0

w (y −m(uPt)) [1−W (−m(uPt))] , y > 0

(2)

dVt+1(y)

dPt
=



























0 , y < 0

−dm(uPt)
dPt

[w (y −m(uPt))−W (y −m(uPt))w (−m(uPt))

−w (y −m(uPt))W (−m(uPt)) + w (−m(uPt))] , y ≥ 0

≤



























0 , y < 0

−dm(uPt)
dPt

[w (y −m(uPt))− w (−m(uPt))]

[1−W (y −m(uPt))] , y ≥ 0
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Since dm(uPt)
dPt

≥ 0, w (y −m(uPt)) ≥ 0, w (−m(uPt)) ≥ 0, 1−W (y −m(uPt)) ≥ 0,

we can obtain dVt+1(y)
dPt

≤ 0. So Vt+1(y) is decreasing in Pt.

Proof of Proposition 2.2.

According to the definition of Bi(t− 1, A), Bi(t− 1, A) has the following properties:

(1) B0(t− 1, A) = 1;

(2) Bi(t− 1, A)−Bi−1(t− 1, A)At = Bi(t, A);

(3) Bi(t− 1, A) = (−1)tA
t(t+1)

2 .

And we can calculate out

Bi(t− 1, A) = (−1)i
A

i(i+1)
2 (1−At−1)(1−At−2) . . . (1−At−i)

(1−Ai)(1−Ai−1) . . . (1−A)

Therefore,

G1(y) =Pr{AD0 + σ1 ≤ y}

=Pr{σ1 ≤ y −AD0}

=











0 , y < AD0

1− e−λ(y−AD0) , y ≥ AD0

and

g1(y) =
dG1(y)

dy
=











0 , y < AD0

λe−λ(y−AD0) , y > AD0

Assume

Gt(y) =











0 , y < AtD0

1− 1
∏t−1

j=1(1−Aj)

∑t−1
i=0 Bi(t− 1, A)e

−λ(y−AtD0)

Ai , y ≥ AtD0
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Then

Gt+1(y) =

∫ ∞

0
Gt(y)|Dtgt(Dt) dDt

=

∫ y
A

AtD0

1− e−λ(y−ADt) λ
∏t−1

j=1(1−Aj)

t−1
∑

i=0

Bi(t− 1, A)e
−λ(Dt−AtD0)

Ai
1

Ai
dDt

=
λ

∏t−1
j=1 (1−Aj)

∫ y
A

AtD0

[

t−1
∑

i=0

Bi(t− 1, A)e
−λ(Dt−AtD0)

Ai
1

Ai

−
t−1
∑

i=0

Bi(t− 1, A)eλ(
Dt−AtD0

Ai +y−ADt) 1

Ai
dDt

]

=−
λ

∏t−1
j=1 (1−Aj)

[

−
t−1
∑

i=0

Bi(t− 1, A)
Ak+1

1−Ak+1
e

−λ(y−At+1D0)

Ai+1

−
t−1
∑

i=0

Bi(t− 1, A) +

t−1
∑

i=0

Bi(t− 1, A)
1

1−Ak+1
e−λ(y−At+1D0)

]

=1−
1

∏t−1
j=1 (1−Aj)

[

t
∑

i=1

Bi(t, A)

1−At
e

−λ(y−At+1D0)

Ai+1 +
1

1−At
e−λ(y−At+1D0)

]

=1−
1

∏t
j=1 (1−Aj)

t
∑

i=0

Bi(t, A)e
−λ(y−At+1D0)

Ai (y ≥ At+1D0)

And easily get

gt+1(y) =











0 , y < At+1D0

λ
∏t

j=1(1−Aj)

∑t
i=0Bi(t− 1, A)e

−λ(y−At+1D0)

Ai 1
Ai , y ≥ At+1D0

Proof of Theorem 2.3.

fn(Qn, Xn) = min
Xn

{α(Xn +Qn − µn) + (α+ β)Ln(Xn +Qn) + EDnfn+1(Qn+1, Xn+1)}

fn+1(Qn+1, Xn+1) = 0

d[α(Xn +Qn − µn) + (α+ β)Ln(Xn +Qn)]

dXn
= (α+ β)Gn(Xn +Qn)− β

d2[α(Xn +Qn − µn) + (α+ β)Ln(Xn +Qn)]

dX2
n

= (α+ β)gn(Xn +Qn) ≥ 0

The first order condition is Xn = G−1
n

(

β
α+β

)

− Qn. Recall 0 ≤ Xn ≤ S, the optimal

solution is X∗
n = min {S,

(

G−1
n ( β

α+β
)−Qn

)+
}.
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Proof of Proposition 2.4.

dEDn−1{Yn−1(Xn−1, Dn−1) + fn(Qn, Xn)

dXn−1

=αGn−1(Xn−1 +Qn−1)− β − βGn−1

(

Xn−1 +Qn−1 −G−1
n (

β

α+ β
)

)

+ βGn−1

(

Xn−1 +Qn−1 −

(

G−1
n (

β

α+ β
)− S

)+
)

+ (α+ β)

∫ Xn−1+Qn−1−G−1
n ( β

α+β
)

0
Gn(Xn−1 +Qn−1 −Dn−1)gn−1(Dn−1) dDn−1

+ (α+ β)

∫ Xn−1+Qn−1

Xn−1+Qn−1−
(

G−1
n ( β

α+β
)−S

)+
Gn

(

S − (S −G−1
n (

β

α+ β
))+

+Xn−1 +Qn−1 −Dn−1) gn−1(Dn−1) dDn−1

If S < G−1
n ( β

α+β
), then

d2EDn−1{Yn−1(Xn−1, Dn−1) + fn(Qn, Xn)

dX2
n−1

=αgn−1(Xn−1 +Qn−1) + (α+ β)Gn(S)gn−1(Xn−1 +Qn−1)

+ (α+ β)

∫ Xn−1+Qn−1−G−1
n ( β

α+β
)

0
gn(Xn−1 +Qn−1 −Dn−1)gn−1(Dn−1) dDn−1

+ (α+ β)

∫ Xn−1+Qn−1

Xn−1+Qn−1−
(

G−1
n ( β

α+β
)−S

)

gn(S +Xn−1 +Qn−1 −Dn−1)gn−1(Dn−1) dDn−1

≥0

If S ≥ G−1
n ( β

α+β
), then

d2EDn−1{Yn−1(Xn−1, Dn−1) + fn(Qn, Xn)

dX2
n−1

=αgn−1(Xn−1 +Qn−1) + βgn−1(Xn−1 +Qn−1)

+ (α+ β)

∫ Xn−1+Qn−1−G−1
n

(

β
α+β

)

0
gn(Xn−1 +Qn−1 −Dn−1)gn−1(Dn−1) dDn−1

≥0

Thus EDn−1{Yn−1(Xn−1, Dn−1) + fn(Qn, Xn)} is convex in Xn−1 for any given S,

Gn−1(Dn−1) and Gn(Dn).
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Proof of Proposition 2.5.

In−1 =αGn−1(Xn−1 +Qn−1)− β − βGn−1

(

Xn−1 +Qn−1 −G−1
n (

β

α+ β
)

)

+ βGn−1

(

Xn−1 +Qn−1 −

(

G−1
n (

β

α+ β
)− S

)+
)

+ (α+ β)

∫ Xn−1+Qn−1−G−1
n ( β

α+β
)

0
Gn(Xn−1 +Qn−1 −Dn−1)gn−1(Dn−1) dDn−1

+ (α+ β)

∫ Xn−1+Qn−1

Xn−1+Qn−1−
(

G−1
n ( β

α+β
)−S

)+
Gn

(

S − (S −G−1
n (

β

α+ β
))+

+Xn−1 +Qn−1 −Dn−1) gn−1(Dn−1) dDn−1

(1) If S < G−1
n ( β

α+β
), then

∂In−1

∂Qn−1
= αgn−1(Xn−1 +Qn−1) + (α+ β)Gn(S)gn−1(Xn−1 +Qn−1)

+ (α+ β)

∫ Xn−1+Qn−1−G−1
n

(

β
α+β

)

0
gn(Xn−1 +Qn−1 −Dn−1)gn−1(Dn−1) dDn−1

+ (α+ β)

∫ Xn−1+Qn−1

Xn−1+Qn−1−
(

G−1
n

(

β
α+β

)

−S
)

gn(S +Xn−1 +Qn−1 −Dn−1)

gn−1(Dn−1) dDn−1

≥ 0

If S ≥ G−1
n ( β

α+β
), then

∂In−1

∂Qn−1
= αgn−1(Xn−1 +Qn−1) + βgn−1(Xn−1 +Qn−1)

+ (α+ β)

∫ Xn−1+Qn−1−G−1
n

(

β
α+β

)

0
gn(Xn−1 +Qn−1 −Dn−1)gn−1(Dn−1) dDn−1

≥ 0

(2) For S, If S < G−1
n ( β

α+β
), then

∂In−1

∂S
=(α+ β)

∫ Xn−1+Qn−1

Xn−1+Qn−1−
(

G−1
n ( β

α+β
)−S

)

gn(S +Xn−1 +Qn−1 −Dn−1)

gn−1(Dn−1) dDn−1 ≥ 0

If S ≥ G−1
n ( β

α+β
), then

∂In−1

∂S
= 0
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Proof of Proposition 2.6.

(1) S ≥ G−1
n ( β

α+β
), ∂In−1

∂S
= 0. Thus, according to the proof of Proposition 2.5,

lim
S→∞

In−1 = In−1|S=G−1
n ( β

α+β
)
.

(2) We can calculate

lim
Qn−1→∞

In−1

= (α+ β) lim
Qn−1→∞

∫ Xn−1+Qn−1−G−1
n ( β

α+β
)

0
Gn(Xn−1 +Qn−1 −Dn−1)gn−1(Dn−1) dDn−1

+ α− β

= α

Proof of Proposition 2.7.

(1) According to the definition of I0n−1,

I0n−1 =αGn−1(Qn−1)− β − βGn−1

(

Qn−1 −G−1
n (

β

α+ β
)

)

+ βGn−1

(

Qn−1 − (G−1
n (

β

α+ β
)− S)+

)

+ (α+ β)

∫ Qn−1−G−1
n ( β

α+β
)

0
Gn(Qn−1 −Dn−1)gn−1(Dn−1) dDn−1

+ (α+ β)

∫ Qn−1

Qn−1−
(

G−1
n ( β

α+β
)−S

)+
Gn

(

S − (S −G−1
n (

β

α+ β
))+ +Qn−1 −Dn−1

)

gn−1(Dn−1) dDn−1

Obviously, I0n−1|Qn−1=0 = −β < 0. According to Proposition 2.6 lim
Qn−1→∞

In−1 ≥ 0.

And since
∂I0n−1

∂Qn−1
(recall ∂In−1

∂Qn−1
≥ 0 as proved in Proposition 2.5), we can obtain: for

any given S, ∃ unique h0n−1(S) > 0, such that



























I0n−1|Qn−1<h0
n−1(S)

≤ 0

I0n−1|Qn−1=h0
n−1(S)

= 0

I0n−1|Qn−1>h0
n−1(S)

≥ 0

To prove h0n−1(S) is unique for any given S, consider a small ∆, such that

I0n−1|Qn−1=h0
n−1(S)

= I0n−1|Qn−1=h0
n−1(S)+∆ = 0
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. That is,
∂I0n−1

∂Qn−1
|Qn−1=h0

n−1(S)
= 0.

If S ≥ G−1
n ( β

α+β
), then

∂I0n−1

∂Qn−1
=(α+ β)gn−1(Qn−1)

+ (α+ β)

∫ Qn−1−G−1
n ( β

α+β
)

0
gn(Qn−1 −Dn−1)gn−1(Dn−1) dDn−1

⇔(α+ β)gn−1

(

h0n−1(S)
)

+ (α+ β)

∫ h0
n−1(S)−G−1

n ( β
α+β

)

0
gn
(

h0n−1(S)−Dn−1)gn−1(Dn−1

)

dDn−1

= 0

If S < G−1
n ( β

α+β
), then

∂I0n−1

∂Qn−1
=(α+Gn(S)) gn−1(Qn−1)

+ (α+ β)

∫ Qn−1−G−1
n ( β

α+β
)

0
gn(Qn−1 −Dn−1)gn−1(Dn−1) dDn−1

+ (α+ β)

∫ Qn−1

Qn−1−G−1
n ( β

α+β
)+S

gn(S +Qn−1 −Dn−1)gn−1(Dn−1) dDn−1

⇔ (α+Gn(S)) gn−1(h
0
n−1(S))

+ (α+ β)

∫ h0
n−1(S)−G−1

n

(

β
α+β

)

0
gn(h

0
n−1(S)−Dn−1)gn−1(Dn−1) dDn−1

+ (α+ β)

∫ h0
n−1(S)

h0
n−1(S)−G−1

n

(

β
α+β

)

+S

gn(S + h0n−1(S)−Dn−1)gn−1(Dn−1) dDn−1

= 0

Therefore, for any S,

∂I0n−1

∂Qn−1
|Qn−1=h0

n−1(S)
= 0 ⇔











gn−1

(

h0n−1(S)
)

= 0

gn−1

(

h0n−1(S)−G−1
n

(

β
α+β

))

= 0

Thus, h0n−1(S) ≤ M(Dn−2), for any known Dn−2.

However, h0n−1(S) ≤ M(Dn−2) ⇒ I0n−1|Qn−1=h0
n−1(S)

= −β < 0, which is contradic-

tory to the definition of h0n−1(S). Thus, there does not exist a ∆, s.t. I0n−1|Qn−1=h0
n−1(S)

=

I0n−1|Qn−1=h0
n−1(S)+∆ = 0. So h0n−1(S) is unique.
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(2) According to the definition of ISn−1,

ISn−1 =αGn−1(S +Qn−1)− β − βGn−1

(

S +Qn−1 −G−1
n (

β

α+ β
)

)

+ βGn−1

(

S +Qn−1 −

(

G−1
n (

β

α+ β
)− S

)+
)

+ (α+ β)

∫ S+Qn−1−G−1
n ( β

α+β
)

0
Gn(S +Qn−1 −Dn−1)gn−1(Dn−1) dDn−1

+ (α+ β)

∫ S+Qn−1

S+Qn−1−
(

G−1
n ( β

α+β
)−S

)+
Gn

(

2S − (S −G−1
n (

β

α+ β
))+ +Qn−1 −Dn−1

)

gn−1(Dn−1) dDn−1

So

∂ISn−1

∂S
=αgn−1(S +Qn−1)

+ βgn−1

(

S +Qn−1 −

(

G−1
n (

β

α+ β
)− S

)+
)

d

(

S +Qn−1 −
(

G−1
n ( β

α+β
)− S

)+
)

dS

+ (α+ β)

∫ S+Qn−1−G−1
n

(

β
α+β

)

0
gn(S +Qn−1 −Dn−1)gn−1(Dn−1) dDn−1

+ (α+ β)

∫ S+Qn−1

S+Qn−1−
(

G−1
n

(

β
α+β

)

−S
)+

gn(2S − (S −G−1
n (

β

α+ β
))+

+Qn−1 −Dn−1)
d
(

2S − (S −G−1
n ( β

α+β
))+
)

dS
gn−1(Dn−1) dDn−1

+Gn

(

S − (S −G−1
n (

β

α+ β
))+
)

gn−1(S +Qn−1)

−Gn

(

S − (S −G−1
n (

β

α+ β
))+ − (G−1

n (
β

α+ β
)− S)+

)

gn−1

(

S +Qn−1 −

(

G−1
n (

β

α+ β
)− S

)+
)

d

(

S +Qn−1 −
(

G−1
n ( β

α+β
)− S

)+
)

dS

≥0
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We can calculate out ISn−1|Qn−1=h0
n−1(S)

≥ 0, ISn−1|Qn−1=0,S=0 = −β < 0 and

lim
S→∞

ISn−1|Qn−1=0

=α− β

+ (α+ β) lim
S→∞

∫ S+Qn−1−G−1
n

(

β
α+β

)

0
Gn(S +Qn−1 −Dn−1)gn−1(Dn−1) dDn−1

≥α− β

+ (α+ β) lim
S→∞

Gn

(

G−1
n

(

β

α+ β

))

Gn−1

(

S +Qn−1 −G−1
n

(

β

α+ β

))

|Qn−1=0

=α

≥0

Recall that
∂ISn−1

∂S
≥ 0, we can obtain that there exists S

′

n−1 > 0, such that



























ISn−1|Qn−1=0,S<S
′

n−1
≥ 0

ISn−1|Qn−1=0,S=S
′

n−1
= 0

ISn−1|Qn−1=0,S>S
′

n−1
≤ 0

Thus, if S < S
′

n−1, then there exists hSn−1(S), such that



























ISn−1|Qn−1<hS
n−1(S)

≤ 0

ISn−1|Qn−1=hS
n−1(S)

= 0

ISn−1|Qn−1>hS
n−1(S)

≥ 0

If S = S
′

n−1, then hSn−1(S
′

n−1) = 0; if S > S
′

n−1, then hSn−1(S) < 0 and ISn−1 ≥ 0.

Similar to (1), one can prove that hSn−1(S) is unique for given S. And according to

Proposition 2.5, hSn−1(S) is a decreasing function of S.
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(3) According to the definition of In−1

In−1 =αGn−1(Xn−1 +Qn−1)− β − βGn−1

(

Xn−1 +Qn−1 −G−1
n (

β

α+ β
)

)

+ βGn−1

(

Xn−1 +Qn−1 −

(

G−1
n (

β

α+ β
)− S

)+
)

+ (α+ β)

∫ Xn−1+Qn−1−G−1
n

(

β
α+β

)

0
Gn(Xn−1 +Qn−1 −Dn−1)gn−1(Dn−1) dDn−1

+ (α+ β)

∫ Xn−1+Qn−1

Xn−1+Qn−1−
(

G−1
n

(

β
α+β

)

−S
)+

Gn

(

S − (S −G−1
n (

β

α+ β
))+

+Xn−1 +Qn−1 −Dn−1) gn−1(Dn−1) dDn−1

Thus, if X
′

n−1 +Q
′

n−1 = X
′′

n−1 +Q
′′

n−1 (X
′

n−1, X
′′

n−1, Q
′

n−1 and Q
′′

n−1 ≥ 0), then

In−1|Xn−1=X
′

n−1,Qn−1=Q
′

n−1
= In−1|Xn−1=X

′′

n−1,Qn−1=Q
′′

n−1

ISn−1|Qn−1=hS
n−1(S)

= In−1|Xn−1=S,Qn−1=hS
n−1(S)

= In−1|Xn−1=0,Qn−1=hS
n−1(S)+S = 0

Recall that

I0n−1|Qn−1=h0
n−1(S)

= In−1|Xn−1=0,Qn−1=h0
n−1(S)

and note the uniqueness of h0n−1(S), we can obtain h0n−1(S) = hSn−1(S) + S.

Proof of Proposition 2.8.

Based on Proposition 2.7, for given S, Qn−1, Gn−1(y) and Gn(y),

(1) If Qn−1 ≥ h0n−1(S), then I0n−1|Xn−1=0 ≥ 0 and I0n−1|Xn−1=S ≥ 0;

(2) If
(

hSn−1(S)
)+

≤ Qn−1 < h0n−1(S), then I0n−1|Xn−1=0 < 0 and I0n−1|Xn−1=S ≥ 0;

(3) If Qn−1 <
(

hSn−1(S)
)+

, then I0n−1|Xn−1=0 < 0 and I0n−1|Xn−1=S < 0.

And since EDn−1{Yn−1(Xn−1, Dn−1 + fn(Qn, Xn)} is convex in Xn−1 (Proposition

2.4), the optimal solution is

X∗
n−1 =



























0 , Qn−1 ≥ h0n−1(S)

X̄n−1 ,
(

hSn−1(S)
)+

≤ Qn−1 < h0n−1(S)

S , Qn−1 <
(

hSn−1(S)
)+

where, X̄n−1 is defined as In−1|Xn−1=X̄n−1
= 0. Recall that if X

′

n−1 +Q
′

n−1 = X
′′

n−1 +

Q
′′

n−1 (X
′

n−1, X
′′

n−1, Q
′

n−1 and Q
′′

n−1 ≥ 0), then

In−1|Xn−1=X
′

n−1,Qn−1=Q
′

n−1
= In−1|Xn−1=X

′′

n−1,Qn−1=Q
′′

n−1
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We can get X̄n−1 = h0n−1(S)−Qn−1. Therefore,

X∗
n−1 =



























0 , Qn−1 ≥ h0n−1(S)

h0n−1(S)−Qn−1 ,
(

h0n−1(S)− S
)+

≤ Qn−1 < h0n−1(S)

S , Qn−1 <
(

h0n−1(S)− S
)+

Proof of Propositions 2.9, 2.10 and 2.11, and Theorem 2.12

We use induction to prove these propositions and the theorem.

First, assume these propositions and lemmas hold for time period t+1(t = 1, 2, . . . , n−

1), that is:

(1) Given an optimal policy of the (i+2 )th time period, the objective function in

the (t+1 )th time period EDt+1{Yt+1(Xt+1, Dt+1)+ft+2(Qt+2, X
∗
t+2)}, which represents

the expectation of the total penalty from the (t+1 )th to the n-th time period) is convex

in Xt+1 for any given S, Qt and Gi(Di) (i = t+ 2, t+ 3, . . . , n);

(2) The optimal solution at time period t+1 is

X∗
t+1 =



























0 , Qt+1 ≥ h0t+1(S)

h0t+1(S)−Qt+1 ,
(

h0t+1(S)− S
)+

≤ Qt+1 < h0t+1(S)

S , Qt+1 <
(

h0t+1(S)− S
)+

where h0t+1(S) is a function of S and defined as I0t+1|Qt+1=h0
t+1(S)

= 0.

We have proved these propositions and the theorem hold for time periods n-1 and

n. Then we will prove they hold for time period t (t = 1, 2, . . . , n− 2) as follows:

Proof of Proposition 2.9.
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X∗
t+1 =



























0 , Qt+1 ≥ h0t+1(S)

h0t+1(S)−Qt+1 ,
(

h0t+1(S)− S
)+

≤ Qt+1 < h0t+1(S)

S , Qt+1 <
(

h0t+1(S)− S
)+

∵ Qt+1 = (Qt +Xt −Dt)
+

∴ X∗
t+1 =











































0 , Dt ≤ Qt +Xt − h0t+1(S)

h0t+1(S)−Qt+1 , Qt +Xt − h0t+1(S) < Dt

< Qt +Xt −
(

h0t+1(S)− S
)+

S − (S − h0t+1(S))
+ , Dt > Qt +Xt −

(

h0t+1(S)− S
)+

and since ∂Qt+1

∂Xt
=











1 , Dt < Qt +Xt

0 , Dt > Qt +Xt

, we get

∂X∗
t+1

∂Xt
=



























0 , Dt < Qt +Xt − h0t+1(S)

−1 , Qt +Xt − h0t+1(S) < Dt < Qt +Xt −
(

h0t+1(S)− S
)+

0 , Dt > Qt +Xt −
(

h0t+1(S)− S
)+

Thus, when Dt ̸= Xt + Qt and Dt ̸= Xt + Qt − h0t+1(S) and Dt ̸= Xt + Qt −
(

h0t+1(S)− S
)+

, ∂2Qt+1

∂X2
t

=
∂2X∗

t+1

∂X2
t

= 0. We can calculate out:

d2ft+1(Qt+1, X
∗
t+1)

dX2
t

|Dt=Qt+Xt =
d2ft+1(0, S)

dX2
t

= 0

d2ft+1(Qt+1, X
∗
t+1)

dX2
t

|Dt=Qt+Xt−h0
t+1(S)

=
d2ft+1

(

h0t+1(S), 0
)

dX2
t

= 0

d2ft+1(Qt+1, X
∗
t+1)

dX2
t

|
Dt=Qt+Xt−(h0

t+1(S)−S)
+ =

d2ft+1

(

(

h0t+1(S)− S
)+

, S
)

dX2
t

= 0

If Dt ̸= Xt +Qt and Dt ̸= Xt +Qt − h0t+1(S) and Dt ̸= Xt +Qt −
(

h0t+1(S)− S
)+

,

d2ft+1(Qt+1, X
∗
t+1)

dX2
t

=
d2

d
(

Qt+1 +X∗
t+1

)2EDt+1{Yt+1(Xt+1, Dt+1) + ft+2(Qt+2, X
∗
t+2)}

[

d(Qt+1 +X∗
t+1)

dXt

]2

=
∂2

∂X∗2
t+1

EDt+1{Yt+1(Xt+1, Dt+1) + ft+2(Qt+2, X
∗
t+2)}

[

d(Qt+1 +X∗
t+1)

dXt

]2
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Since EDt+1{Yt+1(Xt+1, Dt+1) + ft+2(Qt+2, X
∗
t+2)} is convex in (Xt+1 (assumption

of induction),
d2EDt+1

{Yt+1(Xt+1,Dt+1)+ft+2(Qt+2,X
∗

t+2)}

dX2
t+1

≥ 0. Thus,
d2ft+1(Qt+1,X

∗

t+1)

dX2
t

≥ 0.

Therefore, ∀Dt ≥ 0,
d2ft+1(Qt+1,X

∗

t+1)

dX2
t

≥ 0.

d2EDt{Yt(Xt, Dt) + ft+1(Qt+1, X
∗
t+1)}

dX2
t

=
d2

dX2
t

[α(Qt +Xt − µt) + (α+ β)Lt(Xt +Qt) + EDtft+1(Qt+1, Xt+1)]

=(α+ β)gt(Xt +Qt) +

∫ ∞

0

d2ft+1(Qt+1, X
∗
t+1)

dX2
t

gt(Dt) dDt

≥0

And since
d2EDn−1

{Yn−1(Xn−1,Dn−1)+fn(Qn,X
∗

n)}

dX2
n−1

≥ 0 (Proposition 2.4), we can obtain

that for any i = 1, 2, . . . , n− 1,
d2EDt

{Yt(Xt,Dt)+ft+1(Qt+1,X
∗

t+1)}

dX2
t

≥ 0.

That is EDt{Yt(Xt, Dt) + ft+1(Qt+1, X
∗
t+1)} is convex in Xt.

Proof of Proposition 2.10.

ft(Qt, Xt) =min
Xt

EDt{Yt(Xt, Dt) + ft+1(Qt+1, X
∗
t+1)}

=min
Xt

{α(Qt +Xt − µt) + (α+ β)Lt(Xt +Qt)

+

∫ Qt+Xt−h0
t+1(S)

0
ft+1(Qt +Xt −Dt, 0)gt(Dt) dDt

+

∫ Qt+Xt−(h0
t+1(S)−S)

+

Qt+Xt−h0
t+1(S)

ft+1(Qt +Xt −Dt, h
0
t+1(S)−Qt −Xt +Dt)gt(Dt) dDt

+

∫ Qt+Xt

Qt+Xt−(h0
t+1(S)−S)

+
ft+1(Qt +Xt −Dt, S − (S − h0t+1(S))

+)gt(Dt) dDt

+

∫ ∞

Qt+Xt

ft+1(0, S − (S − h0t+1(S))
+)gt(Dt) dDt}

According to the definition of It,

It =
dEDt{Yt(Xt, Dt) + ft+1(Qt+1, X

∗
t+1)}

dXt

=(α+ β)Gt(Xt +Qt)− β +

∫ Qt+Xt−h0
t+1(S)

0

dft+1(Qt+1, 0)

dXt
gt(Dt) dDt

+

∫ Qt+Xt

Qt+Xt−(h0
t+1(S)−S)

+

dft+1(Qt+1, S − (S − h0t+1(S))
+)

dXt
gt(Dt) dDt
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Thus,

∂It
∂Qt

=
∂It
∂Xt

=
d2EDt{Yt(Xt, Dt) + ft+1(Qt+1, X

∗
t+1)}

dX2
t

≥ 0

∂It
∂S

=
∂

∂S

∫ Qt+Xt−h0
t+1(S)

0

∂ft+1(Qt+1, 0)

∂Xt
gt(Dt) dDt

+
∂

∂S

∫ Qt+Xt

Qt+Xt−(h0
t+1(S)−S)

+

∂ft+1(Qt+1, S − (S − h0t+1(S))
+)

∂Xt
gt(Dt) dDt

=
∂

∂S

∫ Qt+Xt−h0
t+1(S)

0

∂ft+1(Qt+1, 0)

∂Qt+1

∂Qt+1

∂Xt
gt(Dt) dDt

+
∂

∂S

∫ Qt+Xt

Qt+Xt−(h0
t+1(S)−S)

+

∂ft+1(Qt+1, S − (S − h0t+1(S))
+)

∂Qt+1

∂Qt+1

∂Xt
gt(Dt) dDt

=
∂

∂S

∫ Qt+Xt−h0
t+1(S)

0

∂ft+1(Qt+1, 0)

∂Qt+1
gt(Dt) dDt

+
∂

∂S

∫ Qt+Xt

Qt+Xt−(h0
t+1(S)−S)

+

∂ft+1(Qt+1, S − (S − h0t+1(S))
+)

∂Qt+1
gt(Dt) dDt

=

∫ Qt+Xt−h0
t+1(S)

0

∂2ft+1(Qt+1, 0)

∂S∂Qt+1
gt(Dt) dDt

+
∂ft+1(Qt+1, 0)

∂Qt+1
|Dt=Qt+Xt−h0

t+1(S)
gt
(

Qt +Xt − h0t+1(S)
) d
(

Qt +Xt − h0t+1(S)
)

dS

+

∫ Qt+Xt

Qt+Xt−(h0
t+1(S)−S)

+

∂2ft+1(Qt+1, S − (S − h0t+1(S))
+)

∂S∂Qt+1
gt(Dt) dDt

−
∂ft+1(Qt+1, S − (S − h0t+1(S))

+)

∂Qt+1
|
Dt=Qt+Xt−(h0

t+1(S)−S)
+

gt

(

Qt +Xt −
(

h0t+1(S)− S
)+
) d
(

Qt +Xt −
(

h0t+1(S)− S
)+
)

dS
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And

∵

∂2ft+1(Qt+1, 0)

∂S∂Qt+1
= 0

∂ft+1(Qt+1, 0)

∂Qt+1
|Dt=Qt+Xt−h0

t+1(S)
=

∂ft+1(Qt+1, 0)

∂Qt+1
|Qt+1=h0

t+1(S)
= 0

∂ft+1(Qt+1, S − (S − h0t+1(S))
+)

∂Qt+1
|
Dt=Qt+Xt−(h0

t+1(S)−S)
+

=











∂ft+1(Qt+1,S)
∂Qt+1

|Qt+1=hS
t+1(S)

= 0 , S ≤ h0t+1(S)

∂ft+1(Qt+1,h
0
t+1(S))

∂Qt+1
|Qt+1=0 = 0 , S > h0t+1(S)

∴

∂It
∂S

=

∫ Qt+Xt

Qt+Xt−(h0
t+1(S)−S)

+

∂2ft+1(Qt+1, S − (S − h0t+1(S))
+)

∂S∂Qt+1
gt(Dt) dDt

Assume
∂2ft+2(Qt+2,X

∗

t+2)

∂S∂Qt+2
≥ 0, except finite number of points,

∵ ft+1(Qt+1, X
∗
t+1)

= α(Qt+1 +X∗
t+1 − µt+1) + (α+ β)Lt+1(Qt+1 +X∗

t+1)

+

∫ ∞

0
ft+2(Qt+2, X

∗
t+2)gt+1(Dt+1) dDt+1

∴

∂ft+1(Qt+1, X
∗
t+1)

∂Qt+1

= (α+ β)Gt+1(Qt+1 +X∗
t+1)− β +

∫ ∞

0

∂ft+2(Qt+2, X
∗
t+2)

∂Qt+2

∂Qt+2

∂Qt+1
gt+1(Dt+1) dDt+1

= (α+ β)Gt+1(Qt+1 +X∗
t+1)− β +

∫ Qt+1+X∗

t+1

0

∂ft+2(Qt+2, X
∗
t+2)

∂Qt+2
gt+1(Dt+1) dDt+1

∴

∂2ft+1(Qt+1, X
∗
t+1)

∂S∂Qt+1

=

∫ Qt+1+X∗

t+1

0

∂2ft+2(Qt+2, X
∗
t+2)

∂S∂Qt+2
gt+1(Dt+1) dDt+1 ≥ 0

And since ∂2fn(Qn,X
∗

n)
∂S∂Qn

=











0 , Qn > G−1
n ( β

α+β
)

(α+ β)gn(S +Qn) , Qn < G−1
n ( β

α+β
)

≥ 0, ∀Qt+1

(t=1, 2, . . . , n− 1),
∂2ft+1(Qt+1,X

∗

t+1)

∂S∂Qt+1
≥ 0 (except finite number of points).

Therefore, ∂It
∂S

=
∫ Qt+Xt

Qt+Xt−(h0
t+1(S)−S)

+

∂2ft+1(Qt+1,S−(S−h0
t+1(S))

+)

∂S∂Qt+1
gt(Dt) dDt ≥ 0. It

is an increasing function of Qt and S.

Proof of Proposition 2.11.
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(1) According to the definition of I0t

I0t =(α+ β)Gt(Qt)− β +

∫ Qt−h0
t+1(S)

0

dft+1(Qt +Xt −Dt, 0)

dXt
|Xt=0gt(Dt) dDt

+

∫ Qt

Qt−(h0
t+1(S)−S)

+

dft+1(Qt +Xt −Dt, S − (S − h0t+1(S))
+)

dXt Xt=0
gt(Dt) dDt

Thus,

I0t |Qt=0 = −β < 0

and

lim
Qt→∞

I0t = (α+ β)− β + lim
Qt→∞

∫ Qt−h0
t+1(S)

0

dft+1(Qt +Xt −Dt, 0)

dXt
|Xt=0gt(Dt) dDt

≥ α+ lim
Qt→∞

dft+1(h
0
t+1(S) +Xt, 0)

dXt
Gt

(

Qt +Xt − h0t+1(S)
)

|Xt=0

= α ≥ 0

Recall that ∂It
∂Qt

≥ 0, we can obtain: For any given S, there exists h0t (S) > 0, such

that


























I0t |Qt<h0
t (S)

≤ 0

I0t |Qt=h0
t (S)

= 0

I0t |Qt>h0
t (S)

≥ 0

To prove h0t (S) is unique for any given S, consider a small ∆, such that I0t |Qt=h0
t (S)

=

I0t |Qt=h0
t (S)+∆ = 0, that is,

∂I0t
∂Qt

|Qt=h0
t (S)

= 0.

If S ≥ h0−1
t+1 (S), then

∂I0t
∂Qt

=(α+ β)gt(Qt) +

∫ Qt−h0
t+1(S)

0

dft+1(Qt +Xt −Dt, 0)

dXt
|Xt=0gt(Dt) dDt

+
dft+1(h

0
t+1(S) +Xt, 0)

dXt
|Xt=0Gt

(

Qt − h0t+1(S)
)

=(α+ β)gt(Qt) +

∫ Qt−h0
t+1(S)

0

dft+1(Qt −Dt, 0)

dXt
|Xt=0gt(Dt) dDt

⇔(α+ β)gt
(

h0t (S)
)

+

∫ h0
t (S)−h0

t+1(S)

0

dft+1(h
0
t (S)−Dt, 0)

dXt
|Xt=0gt(Dt) dDt
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If S < h0−1
t+1 (S), then

∂I0t
∂Qt

=(α+ β)gt(Qt) +

∫ Qt−h0
t+1(S)

0

dft+1(Qt +Xt −Dt, 0)

dXt
|Xt=0gt(Dt) dDt

+
dft+1(h

0
t+1(S) +Xt, 0)

dXt
|Xt=0Gt

(

Qt − h0t+1(S)
)

+

∫ Qt

Qt−h0
t+1(S)+S

dft+1(Qt +Xt −Dt, S)

dXt
|Xt=0gt(Dt) dDt

+
dft+1(Xt, S)

dXt
|Xt=0Gt(Qt)

−
dft+1(h

0
t+1(S)− S +Xt, S)

dXt
|Xt=0Gt(Qt − h0t+1(S) + S)

=(α+ β)gt(Qt) +

∫ Qt−h0
t+1(S)

0

dft+1(Qt +Xt −Dt, 0)

dXt
|Xt=0gt(Dt) dDt

+

∫ Qt

Qt−h0
t+1(S)+S

dft+1(Qt +Xt −Dt, S)

dXt
|Xt=0gt(Dt) dDt

+
dft+1(Xt, S)

dXt
|Xt=0Gt(Qt)

⇔(α+ β)gt
(

h0t (S)
)

+

∫ h0
t (S)−h0

t+1(S)

0

dft+1(h
0
t (S) +Xt −Dt, 0)

dXt
|Xt=0gt(Dt) dDt

+

∫ h0
t (S)

h0
t (S)−h0

t+1(S)+S

dft+1(h
0
t (S) +Xt −Dt, S)

dXt
|Xt=0gt(Dt) dDt

+
dft+1(Xt, S)

dXt
|Xt=0Gt

(

h0t (S)
)

= 0

Since

(α+ β)gt
(

h0t (S)
)

≥ 0 ,

∫ h0
t (S)−h0

t+1(S)

0

dft+1(h
0
t (S) +Xt −Dt, 0)

dXt
|Xt=0gt(Dt) dDt ≥ 0

and
∫ h0

t (S)

h0
t (S)−h0

t+1(S)+S

dft+1(h
0
t (S) +Xt −Dt, S − (S − h0t+1(S))

+)

dXt
|Xt=0gt(Dt) dDt

+
dft+1(Xt, S)

dXt
|Xt=0Gt

(

h0t (S)
)

≥0

for any S,

∂I0t
∂Qt

|Qt=h0
t (S)

= 0 ⇔











gt
(

h0t (S)
)

= 0

gt
(

h0t (S)− h0t+1(S)
)

= 0
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Thus, h0t (S) ≤ M(Dt−1), for any known Dt−1.

However, h0t (S) ≤ M(Dt−1) ⇒ I0t |Qt=h0
t (S)

= −β < 0, which is contradictory

to the definition of h0t (S). So there does not exist a ∆, such that I0t |Qt=h0
t (S)

=

I0t |Qt=h0
t (S)+∆ = 0. So h0n−1(S) is unique.

Therefore, for any given S, there exists a unique h0t (S) > 0, such that I0t |Qt<h0
t (S)

<

0, I0t |Qt=h0
t (S)

= 0 and I0t |Qt>h0
t (S)

> 0.

And according to Proposition 2.10, h0t (S) is decreasing in S.

(2) According to the definition of ISt ,

ISt =(α+ β)Gt(S +Qt)− β

+

∫ Qt+S−h0
t+1(S)

0

dft+1(Qt +Xt −Dt, 0)

dXt
|Xt=Sgt(Dt) dDt

+

∫ Qt+S

Qt+S−(h0
t+1(S)−S)

+

dft+1(Qt +Xt −Dt, S − (S − h0t+1(S))
+)

dXt Xt=S

gt(Dt) dDt

We can calculate

ISt |Qt=h0
t (S)

≥ 0

ISt |Qt=0,S=0 = −β < 0

lim
S→∞

ISt |Qt=0 = (α+ β)− β +

∫ S−h0
t+1(S)

0
|Xt=Sgt(Dt) dDt ≥ α ≥ 0

Recall that ∂It
∂S

≥ 0. There exists S
′

t > 0, such that



























ISt |Qt=0,S<S
′

t
≥ 0

ISt |Qt=0,S=S
′

t
= 0

ISt |Qt=0,S>S
′

t
≤ 0

Thus if S < S
′

t, then there exists hSt (S), such that



























ISt |Qt<hS
t (S)

≤ 0

ISt |Qt=hS
t (S)

= 0

ISt |Qt>hS
t (S)

≥ 0

If S = S
′

t, then hSt (S
′

t) = 0; if S > S
′

t, then hSt < 0 and ISt ≥ 0.
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Similar to (1), one can prove hSt (S) is unique for given S.

And according to Proposition 2.10, hSt (S) is decreasing in S.

(3) We can get that if X
′

t + Q
′

t = X
′′

t + Q
′′

t (t = 1, 2, . . . , n), It|Xt=X
′

t ,Qt=Q
′

t
=

It|Xt=X
′′

t ,Qt=Q
′′

t
. So

ISt |Qt=hS
t (S)

= It|Xt=S,Qt=hS
t (S)

= It|Xt=0,Qt=hS
t (S)+S = 0

Recall that I0t |Qt=h0
t (S)

= It|Xt=0,Qt=h0
t (S)

= 0 and the uniqueness of h0t (S). We can

obtain h0t (S) = hSt (S) + S.

Proof of Theorem 2.12.

Based on Proposition 2.11, for any given S, Qt and Gi(x),i = t, t+ 1, . . . , n,

(1) If Qt ≥ h0t (S), then It|Xt=0 ≥ 0 and It|Xt=S > 0;

(2) If hSt (S)
+ ≤ Qt < h0t (S), then It|Xt=0 < 0 and It|Xt=S ≥ 0;

(3) If Qt < hSt (S)
+, then It|Xt=0 < 0 and It|Xt=s < 0.

And since EDt{Yt(Xt, Dt) + ft+1(Qt+1, X
∗
t+1)} is convex in Xt (Proposition 2.9),

the optimal solution is

x∗t =



























0 , Qt ≥ h0t (S)

X̄t , hSt (S)
+ ≤ Qt < h0t (S)

S , Qt < hSt (S)
+

where X̄t is defined as It|Xt=X̄t
= 0 and X̄t = h0t (S)−Qt.

When t = n, h0n(S) = G−1
n ( β

α+β
) and hSn(S) = G−1

n ( β
α+β

)− S.

Therefore, for any t

x∗t =



























0 , Qt ≥ h0t (S)

h0t (S)−Qt ,
(

h0t (S)− S
)+

≤ Qt < h0t (S)

S , Qt <
(

h0t (S)− S
)+
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Proof of Proposition 2.13.

(1) According to the proof of Proposition 2.11,
∂h0

t (S)
∂S

≤ 0.

(2) Since dft+1(Qt+Xt−Dt,0)
dX∗

t+1
≥ 0,

dft+1(Qt+Xt−Dt,S−(S−h0
t+1(S))

+)

dX∗

t+1
≤ 0 and Theorem

2.12, we can get dft+1(Qt+Xt−Dt,0)
dXt

≥ 0 and
dft+1(Qt+Xt−Dt,S−(S−h0

t+1(S))
+)

dXt
≤ 0.

Thus,

I0t =(α+ β)Gt(Qt)− β +

∫ Qt−h0
t+1(S)

0

dft+1(Qt +Xt −Dt, 0)

dXt
|Xt=0gt(Dt)dDt

+

∫ Qt

Qt−(h0
t+1(S)−S)+

dft+1(Qt +Xt −Dt, S − (S − h0t+1(S))
+)

dXt
|Xt=0gt(Dt)dDt

≥(α+ β)Gt(Qt)− β +
dft+1(Xt + h0t+1(S), 0)

dXt
|Xt=0Gt

(

Qt − h0t+1(S)
)

+
dft+1

(

Xt − (h0t+1(S)− S)+, S − (S − h0t+1(S))
+
)

dXt
|Xt=0Gt

(

Qt − (h0t+1(S)− S)+
)

=(α+ β)Gt(Qt)− β

∴ I0t |Qt=G−1
t ( β

α+β
)
≥ (α+ β)G−1

t ( β
α+β

) = 0

∴ h0t (S) ≥ G−1
t ( β

α+β
)

(3) ∂Qt+1

∂Dt
=











−1 , Dt < Xt +Qt

0 , Dt > Xt +Qt

and
∂I0t+1

∂Q0
t+1

≥ 0

∴
∂I0t+1

∂Dt
≥ 0 (Dt ̸= Xt +Qt)

Note that h0t+1(S) is defined as I0t+1|Qt+1=h0
t+1(S)

= 0, we can obtain
∂h0

t+1(S)

∂Dt
≥ 0

(Dt ̸= Xt +Qt).
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Chapter 3

Humanitarian Medical Allocation

in Mutiple Areas

This chapter presents a novel model of emergency medical allocation for quick response

to public health emergencies. The proposed methodology consists of two recursive

mechanisms: (1) the time-varying forecasting of medical relief demand and (2) re-

lief distribution. The medical demand associated with each epidemic area is forecast

according to a modified susceptible-exposed-infected-recovered model. A linear pro-

gramming approach is then applied to facilitate distribution decision-making. The

physical and psychological fragility of affected people are discussed. Numerical studies

are conducted. Results show that the consideration of survivor psychology significantly

reduces the psychological fragility of affected people, but it barely influences physical

fragility.

3.1 Introduction

In addition to health threats and economic losses, public health emergencies also result

in psychological suffering, such as feelings of helplessness, sorrow, and panic. Studies

conducted on the worldwide effects of the SARS outbreak in 2003 suggest that the fear

of SARS is a more severe pandemic than the disease itself (Cheng and Tang 2004).

Most emergencies cannot be avoided, but their influence can be significantly re-
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duced by an efficient framework of emergency medical logistics. Medical logistics that

direct responses to public health emergencies are vital. However, this field of emer-

gency logistics faces many challenges that have not been addressed effectively, and the

available literature inadequately addresses emergency medical logistics.

The current chapter proposes a model of emergency logistics for rapid response

to public health emergencies. In particular, a modified epidemic susceptible-exposed-

infected-recovered (SEIR) model is developed to forecast time-varying demand as well

as a linear programming model that optimizes decisions regarding the distribution of

emergency medical reliefs.

Specifically, this chapter contributes to the decision analysis of logistical responses

to public health emergencies in the following ways:

(1) This interdisciplinary study contributes to the fields of public health and emer-

gency logistics. Emergency medical logistics differs from general emergency logistics in

that the former involves many challenges that increase the complexity and difficulty of

solving logistical problems.

(2) This chapter applies a novel methodology to forecast the demand of multiple

urgent medi-cal reliefs and to distribute these reliefs to multiple epidemic areas. The

physical and psycho-logical situations of those affected are considered. The modified

SEIR model contributes to forecasting by considering not only physical factors, such

as the differences in the infection conditions of survivors and the spatial interaction

relationships among epidemic areas, but also the psychological demand of exposed and

undiagnosed individuals. In the distribution model, psychological fragility is formulated

and discussed in detail, unlike in previous studies. The relationship between emergency

medical logistics and the psychological effects on affected people is highlighted as well.

(3) This chapter conducts a case study using real data and a continuation study

with experi-mental data to demonstrate the applicability of the three proposed models.

These models are then compared. Observations are provided and their implements are

discussed on this basis.

The remainder of this chapter is organized as follows. Section 2.2 reviews related

studies. Section 2.3 presents the proposed basic methodology, including time-varying

demand forecasting according to the epidemic diffusion rule and the distribution of
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medical reliefs. Then this section introduces two extended models. Section 2.4 presents

a numerical study and discusses the analytical results. Section 2.5 provides managerial

insights. Section 2.6 concludes and discusses the directions for future work. Finally,

Section 2.7 gives the proof and supplement information for this chapter.

3.2 Literature Review

Only bioterror response logistics, a special case in humanitarian medical logistics, has

been discussed. A terrorist attack usually focuses on only one or several cities, whereas

other public health emergencies may occur in large areas at the same time. Except for

the distinctiveness of bioterrorism, these studies ignored the differences in the infection

conditions and survivor psychology. In practice, vulnerable groups, such as children

and the elderly, face different infection, recovery, and mortality rates. Moreover, the

psychological suffering of affected people in a bioterror attack is usually more serious

than physical pain.

As reviewed in Chapter 2, although some studies try to combine medical service

with emergency logistics, most of them focus on emergency logistics after large-scale

natural disasters and regard medical supplies as one common type of relief items like

food or tents. These studies make remarkable advances in decision optimization of the

locations of medical facilities and the distribution of medical supplies, but ignore the

unique characteristics of epidemic diseases (Jia et al. 2007, Berman and Gavious 2007,

Mete and Zabinsky 2010, Sheu and Pan 2014).

In addition, this work reviews the related literature by first focusing on demand

forecasting and then discussing the approaches to logistics distribution for an emergency

and their objective functions.

Typically, demand forecasting is studied based on general supply chain manage-

ment in business logistics but limited to emergency logistics. The approaches adopted

in business logistics forecast are based on historical values, which can be collected

easily during business pro-cesses. By contrast, emergency medical logistics lacks his-

torical data. Gaur et al. (2007) dis-cussed demand uncertainty in business logistics,

but demand history was unavailable. Based on the characteristics of the predictions of
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emergency resource demand, Sheu (2010) presented a dynamic model of relief-demand

management for emergency logistics operations under imperfect information conditions

in large natural disasters. Mete and Zabinsky (2010) proposed fore-casting and opti-

mization approaches to problems on medical storage and distribution for a wide variety

of disaster types and magnitudes. Hasan and Ukkusuri (2011) developed a novel model

to understand the cascade of the warning information flow in social networks during the

hurricane evacuations. Fajardo and Gardner (2013) used a bilinear integer program to

model diseases spreading through direct human interaction on a social-contact network.

Ekici et al. (2014) created an interesting approach to demand forecasting based on the

characteristics of disease epidemics. They also developed a SEIR model with a spa-

tial component among communities, age-based structure, heterogeneous mixing, and

night/day differentiation to plan food distribution. Few studies have forecast demand

in this way (Wang and Wang 2008, Liu and Zhao 2011), even though scholars have con-

ducted much research on preventing and controlling epidemics, as well as identifying

their characteristics and models.

The mathematical models of epidemic diffusion rules can be used to facilitate de-

mand forecasting for public health emergencies (such as Hamer 1906, Gani 1978, Het-

hcote and Tudor1980, Hethcote 1999, Rahman and Smith 2000, Wu and Feng 2000,

Brauer and van den Driessche 2001, Eames and Keeling 2002, Gomes et al. 2002, Lu

et al. 2002, Wang et al. 2003, Zhou et al. 2004, Eubank et al. 2004, Keeling and

Eames 2005, Zhang et al. 2005, Zhen et al. 2006, Xiao and Ruan 2007, Tripathi 2007,

Mukhopadhyay and Bhattacharyya 2008, El-Gohary and Alwasel 2009, Elmojtaba et

al. 2010, Yuan and Wang 2010, Yang et al. 2010, Rawls and Turnquist 2010, Sun 2010,

Capaldi et al 2012).

Most models, including the susceptible-infectious, susceptible-infectious-removed,

susceptible-infectious-susceptible, susceptible-infectious-removed-susceptible, susceptible-

exposed-infectious, and SEIR model, are suitable for studying the general laws of all

epidemics. In particular, SEIR model, which considers incubation period, has drawn

considerable attention. In the real world, there is some duration between the time

that a person is infected and the time that he/she starts infecting others. SEIR model

divided the people in epidemic areas into four classes: susceptible, exposed, infectious

and recovered. The model describes the transition among these classes with differential
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equations. Basic reproduction number is an important concept in epidemic model. It

determines the global dynamics and the outcome of disease. If it is less than or equal to

1, the disease-free equilibrium is globally stable and the disease always dies out; other-

wise, there exists a unique positive endemic equilibrium and the disease persists at an

endemic equilibrium state if it initially exists. (Hethcote and Tudor 1980, Greenhalgh

1992, Li and Muldowney 1995, Li et al. 1999, Zhang and Ma 2003).

Based on these standard models, some studies try to build multi-class models (La-

jmanovich and Yorke 1976, Hethcote 1978, Aronsson and Mellander 1980, Diekmann

et al. 1990, Guo and Li 2006, Guo et al. 2008). Since these problems are usually

complex to solve, most of them are discussed with strict assumptions. Two main types

of exploration are noteworthy, but neither is perfectly appropriate for general medi-

cal emergency logistics in this work. The first type of exploration covers studies that

consider an ecosystem where two disease-affected populations thrive and epidemics can

spread among these populations (Han et al. 2001, Jang 2007, Gonzlez-Parra et al2009,

Chaudhuri et al. 2012). In these studies, the two populations compete for survival

resource or have a predator-prey relation. The second type involves age-structured

models (Cha et al. 1998, Zhang and Peng 2007, Li and Song 2011) that are unable to

describe the vulnerable people because they can be distinguished not only by age but

also by other characteristics, such as gender. Therefore, demand forecasting based on

these models, including standard models and previous multi-class models, may forecast

demand that differs markedly from the real demand of emergency logistics.

Additionally, considerable effort has been made to optimize logistics under emer-

gencies (Carter 1992, Thomas 2002, Viswanath and Peeta 2003, Jotshi et al. 2009,

Wang and He 2009, Zhang et al. 2012). Özdamar et al. (2004) constructed a dis-

tribution optimization model for a situation in which the supply is limited, current

demand is known, future demand can be predicted, and commands on vehicle allo-

cation are composed of a series of breakpoints. Advar and Mert (2010) proposed an

international relief-planning model that can handle uncertain information while maxi-

mizing the credibility of international agencies in the most cost-efficient way. Ben-Tal

et al. (2011) applied robust optimization for dynamic evacuation traffic-flow problems

with time-dependent uncer-tainty on demand. Liu and Ye (2014) proposed a sequential

approach for humanitarian logistics in natural disasters based on the Bayesian group
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information updates. Allahviranloo et al. (2014) proposed three new formulations to

account for different optimization strategies under uncertain demand or utility level:

reliable, robust, and fuzzy selective vehicle routing problems. And they developed three

parallel genetic algorithms and a classic genetic algorithm. Stochastic programming is

also an appropriate tool for making emergency logistics decisions and has been applied

to different cases of emergency management (Barbarosolu and Arda 2004, Beraldi et

al. 2004, Chang et al. 2007, Zhan et al. 2014). Han et al. (2013) present a novel

approach to consider a vehicle routing problem with uncertain travel times in which a

penalty is incurred for each vehicle that exceeds a given time limit.

Existing models can be divided based on their objective characterization. They

can be cate-gorized into models that (1) minimize the distribution time or shipping

distance (Zografos et al. 2002, Yan and Shih 2009, Zhan et al. 2014), (2) minimize cost

of logistics (Haghani and Oh 1996, Ben-Tal et al. 2011), (3) minimize the number of

wounded and dead people (Fiedrichet al. 2000, Yi and Kumar 2007), and (4) maximize

level of satisfaction of the relief demand (Özdamar et al. 2004, Sheu 2007). Some

studies developed multi-objective models. Tzeng et al. (2007) constructed a relief-

distribution model by multi-objective programming to design relief delivery systems

for a real case. As a part of the entire disaster salvaging system, sufficiently accurate

information is needed before model application. Vitoriano et al. (2009) presented

a Humanitari-an Aid Distribution System focusing on the transportation problem to

distribute humanitarian aid to affected people after a disaster in a developing country.

Vitoriano et al. (2011) proposed a new approach to solve humanitarian aid distribution

problems, by constructing a goal program-ming model based upon cost, time, equity,

priority, reliability and security. Ortuo et al. (2011) presented a novel lexicographical

goal programming model with a first level of priority with the goal of delivering the

planned goods in the operation verifying all the hard constraints or to deliver the largest

possible quantity of commodity. Then the model concerned other targets in a second

level of priority.

Despite remarkable advances in emergency logistics modeling, the relationship be-

tween relief distribution and psychological utility or psychological cost for those af-

fected has barely been assessed or formulated, although characterizing this relationship

may improve the rationality of models. Disasters have negative psychological effects
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on affected people and can even manifest as a major depressive episode, acute stress

disorder or post-traumatic stress disorder. Hu and Sheu (2013) developed a multi-

objective linear programming model to minimize total reverse logistical costs, corre-

sponding environmental and operational risks, and psychological trauma experienced

by local residents while they waited for medical treatment and removal of debris. In

Hu et al. (2014), a mixed-integer linear program is constructed for multi-step evacu-

ation and temporary resettlement under minimization of panic-induced psychological

penalty cost, psychological intervention cost, and costs associated with transportation

and building shelters. Negative psychological effects of widespread disease epidemics

are usually more significant. For the public, the psychological effect of an epidemic may

be greater than the danger to physical health (Cheng and Tang 2004). Maunder et al.

(2003) examined the psychological and the occupational effects of SARS in a large hos-

pital in Canada in 2003. Their study showed that patients with SARS reported fear,

loneliness, boredom and anger and worried about the adverse effects of quarantine and

their contagiousness on family members and friends. The patients experienced anxiety

about fever and the effects of insomnia. Healthy people were also adversely affected by

the fear of contagion and infecting their family, friends, and colleagues. Other stud-

ies on SARS have reported similar findings (Wang and Luo 2003, Cheng and Cheung

2005, Leung et al. 2005). These studies have identified approaches that can alleviate

psychological suffering, such as symmetric information, on-time treatment, effective

prophylactic methods, and social support. Most approaches have been considered part

of medical logistics.

3.3 Model Development

This section presents the proposed methodology. A modified SEIR model is developed

based on a specification of an emergency medical relief system, including the sequence

of operational procedures and basic assumptions, to forecast time-varying demand. The

final part of this section presents the model for medical relief distribution.
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3.3.1 Assumptions

The hypothetical network of emergency medical logistics is a specific two-layer supply

chain that involves (1) local Emergency Medical Reserve Centers (EMRCs) that serve

as emergency medical logistics hubs, and (2) medical demand areas, namely epidemic

areas. EMRCs gather medical reliefs and distribute them appropriately to epidemic

areas.

The government decides whether or not to issue an emergency medical response

shortly after an infectious disease has established itself. EMRCs then initiate a mech-

anism to forecast time-varying medical relief demand by collecting and estimating epi-

demic characteristics. The mechanism of medical relief distribution is then triggered

based on updated information. Fig. 3.1 lists the sequence of the operation.

Figure 3.1: Sequence of operational procedures in emergency medical allocation

This figure presents the recurrent calculation time step in emergency medical logis-

tics. Supply and epidemic information (e.g., mortality, recovery, exposure, and infection

rates) is updated at the beginning of each step.

Five basic assumptions are made to facilitate model formulation:
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(1) The number of and geographic information on epidemic areas are available, and

the location of EMRCs is known because they have been established before emergencies.

(2) The corresponding socioeconomic statistics (e.g., population size, population

composition, and natural mortality and birth rates) are determined for each epidemic

area. Such data can generally be obtained from government databases.

(3) Emergency medical suppliers are known. The number and the type of available

medical suppliers are identified at the beginning of each time step.

(4) Different medical reliefs can be loaded on a vehicle that serves affected areas.

Correspondingly, a vehicle is allowed to load multiple medical reliefs for any distribution

mission.

(5) Recovered individuals acquire permanent immunity.

3.3.2 Notations

On the basis of these assumptions, the next sections will present a demand forecasting

model and a spacial allocation model of emergency medical relief. Notations used in

this chapter are as follows:

Parameters:

A: A set of epidemic areas, A = {a1, a2, . . . , aJ}

B: A set of local EMRCs, B = {b1, b2, . . . , bI}

M : A set of medical reliefs, M = Mp+Mt. Mp and Mt are sets of prophylactic and

treatment reliefs, respectively. Mp = {m1,m2, . . . ,ml},Mt = {ml+1,ml+2, . . . ,ml+k}

Qp
it: Available amount of relief p in EMRC i in time period t

Wit: Available transportation capacity in EMRC i in time period t

Ct: The budget limit for humanitarian medical allocation in time period t

cpijt: Unit distribution cost of relief p from EMRC i to area j in time period t

θp: Demand of medical relief p needed per unit time per demander
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αp: Mortality increase caused by unit dissatisfaction of medical relief p, p ∈ Mt

βp: Infection rate increase caused by unit dissatisfaction of medical relief p, p ∈ Mt

αM : The highest mortality rate that can be withstood

βM : The highest infection rate that can be withstood

Sc
j (t): Numbers of common susceptible people in area j at moment t

Sv
j (t): Numbers of vulnerable susceptible people in area j at moment t

Ec
j (t): Numbers of common exposed people in area j at moment t

Ev
j (t): Numbers of vulnerable exposed people in area j at moment t

Icj (t): Numbers of common infectious people in area j at moment t

Ivj (t): Numbers of vulnerable infectious people in area j at moment t

Rc
j (t): Numbers of common recovered people in area j at moment t

Rv
j (t): Numbers of vulnerable recovered people in area j at moment t

Sc
jt: The approximate average numbers of common susceptible people in area j in time

period t

Sv
jt: The approximate average numbers of vulnerable susceptible people in area j in

time period t

Ec
jt: The approximate average numbers of common exposed people in area j in time

period t

Ev
jt: The approximate average numbers of vulnerable exposed people in area j in time

period t

Icjt: The approximate average numbers of common infectious people in area j in time

period t

Ivjt: The approximate average numbers of vulnerable infectious people in area j in time

period t

Ac
j: Constant net input of common people to area j
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Av
j : Constant net input of vulnerable people to area j

αc
j: Disease mortality rate of common people in area j

αv
j : Disease mortality rate of vulnerable people in area j

βc
j : Common infection rate in area j

βv
j : Vulnerable infection rate in area j

δj: Contact coefficient in area j

ε: Exposure rate (the rate at which exposed individuals become infectious)

γcj : Recovered rate of common patient in area j

γvj : Recovered rate of vulnerable patient in area j

µj: Diagnosis rate in area j

dcj: Natural mortality rate of common people in area j

dvj : Natural mortality rate of vulnerable people in area j

Dp
jt: Demand for medical relief p in area j in time period t

Invpjt: The inventory of relief p in area j at the beginning of time period t

Decision variable:

xpijt: The amount of medical relief p sent from EMRC i to area j in time period t

3.3.3 Medical Demand Forecasting Model

This mechanism forecasts the time-varying emergency medical demand of each affected

area based on epidemic diffusion rules. On the basis of previous models, this study con-

structs a modified SEIR epidemic diffusion model that accommodates the differences

between vulnerable and non-vulnerable or common groups to enhance forecast accuracy

given that vulnerable groups usually report different infection, recovery, and mortal-

ity rates. The SEIR model is considered because it reflects the practical phenomena

observed in incubation periods.
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Figure 3.2: Modified SEIR model

Fig. 3.2 shows the relationship and transition among different groups in a specific

area. S, E, I, and R denote the number of susceptible, exposed, infectious, and

recovered people in an area, respectively. Superscripts c and v are the common and

the vulnerable groups, respectively. Sc and Sv represent those who are susceptible

to infection. Ec and Ev correspond to those who are subject to incubation periods

(or latent periods). The incubation period is the time interval between exposure to a

disease and the manifestation of initial signs or symptoms. An individual in this period

has been infected but is not yet infectious himself/herself. Ic and Iv represent those who

are infectious. Rc and Rv denote those who are cured and have permanent immunity.

Generally, µ > 0, δ > 0, ε > 0, Ac ≥ 0, Av ≥ 0 and dv > dc > 0, βv > βc > 0,

αv > αc > 0, γc > γv > 0. These coefficients may vary with the increase in knowledge

regarding an epidemic disease. For instance, diagnosis rate may increase and mortality

rate may decrease as doctors amass knowledge.

The modified SEIR model in this study is formulated as follows:
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j − dcjS
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j (t)− βc
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c
j (t)
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)

dSv
j (t)
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v
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)

dEc
j (t)
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c
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(
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− dvjE
c
j (t)− εEc

j (t)

dEv
j (t)
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j δjS
v
j (t)
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)

− dvjE
v
j (t)− εEv

j (t)

dIcj (t)

dt
= εEc
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(

αc
j + dcj

)

Icj (t)− γcjµjI
c
j (t)

dIvj (t)

dt
= εEv

j (t)−
(

αv
j + dvj

)

Ivj (t)− γvj µjI
v
j (t)

dRc
j(t)

dt
= γcjµjI

c
j (t)− dcjR

c
j(t)

dRv
j (t)

dt
= γvj µjI

v
j (t)− dvjR

v
j (t)

(3.1)

The first two equations in Eq. (3.1) describe how the number of susceptible people
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varies in epidemic area j. This number increases because of net input (such as suscep-

tible input from non-epidemic areas and newborns) and decreases as susceptible people

die naturally or are exposed. The third and fourth equations indicate the transition

from susceptible to exposed groups and from exposed to infectious groups. The fifth

and sixth equations describe the transition from exposed to infectious groups and from

infectious to recovered groups. The last two equations indicate how the number of

recovered people varies.

In this study, two types of emergency medical reliefs are considered: prophylactic

reliefs for susceptible people to reduce the infection rate (denoted asMp) and treatment

reliefs for infectious people to lower the mortality rate (denoted as Mt).

The modified SEIR model operates under continuous time forecasting, and distri-

bution decisions are made in discrete time periods (as explained in Section 3.1 and

depicted in Fig. 3.1). Therefore, this study uses aggregation to approximate medical

demand further. t represents the t-th time period, and the length of each time period

depends on specific emergencies. Time periods usually range from 4h to 6h for an

anthrax attack and one to several days for an influenza outbreak.

Notably, this work forecasts demand based on both the physical and psychological

effects of reliefs. Demand for prophylactic reliefs is strongly correlated with the num-

bers of susceptible, exposed, and undiagnosed people. Prophylactic medicines do not

affect exposed and undiagnosed people physically, but demand remains because suscep-

tible, exposed, and infectious but undiagnosed individuals are impossible to distinguish.

Demand for treatment reliefs is strongly correlated with the number of infectious and

diagnosed individuals. Medical reliefs are consumed continuously; therefore, demand

for both types is related to the length of each time period. Thus, the following demand

forecasting model is established:

Dp
jt =











θp
∫ t0+L

t0
[Sj(t) + Ej(t) + (1− µj)Ij(t)] dt− Invpjt , p ∈ Mp

θp
∫ t0+L

t0
µjIj(t) dt− Invpjt , p ∈ Mt

(3.2)

where Sj(t) = Sc
j (t) + Sv

j (t); Ej(t) = Ec
j (t) + Ev

j (t); Ij(t) = Icj (t) + Ivj (t); t0 is the

beginning moment of period t ; L is the length of a time period.
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3.3.4 Distribution Decision Model

In this section, a linear programming model is formulated and applied to distribute

urgent medical reliefs from multiple EMRCs to multiple epidemic areas.

The objective function of the distribution model considers the physical fragility of

affected individuals. This function is represented by mortality and infection rates. The

objective function is:

min Fphy =
J
∑

j=1

(

σ1β̄
c
jtS

c
jt + σ2β̄

v
jtS

v
jt + σ3ᾱ

c
jtI

c
jt + σ4ᾱ

v
jtI

v
jt

)

(3.3)

where,

ᾱv
jt = αv

j +
l+k
∑

p=l+1

αp
Dp

jt −
∑I

i=1 x
p
ijt

Dp
jt

, ∀j, t (3.4)

ᾱc
jt = αc

j +
l+k
∑

p=l+1

αp
Dp

jt −
∑I

i=1 x
p
ijt

Dp
jt

, ∀j, t (3.5)

β̄v
jt = βv

j +
l
∑

p=1

βp
Dp

jt −
∑I

i=1 x
p
ijt

Dp
jt

, ∀j, t (3.6)

β̄c
jt = βc

j +

l
∑

p=1

βp
Dp

jt −
∑I

i=1 x
p
ijt

Dp
jt

, ∀j, t (3.7)

The proposed objective function minimizes the aforementioned physical fragility

(Fphy), which is given by a function of variable xpijt.

The weights (σ1,σ2, σ3 and σ4) in Eq.(3.3) reflect the priorities of different groups.

These weights are set by the decision maker (usually the government or experts) based

on the trend and the characteristic of the spreading disease, as drawn from the modified

SEIR model (Eq.(3.1)). For example, the priority of prophylactic medicines should be

not lower than that of treatment medicines (σ1 ≥ σ3 and σ2 ≥ σ4) at the beginning

because in this situation, the major object of emergency medical logistics is to avoid

a large-scale epidemic. Furthermore, the priority of vulnerable groups should be not

lower than that of common groups (σ2 ≥ σ1 and σ4 ≥ σ3) for humanitarian reasons.

Recovered people are not included in Eq. (3.3) because they are healthy. Exposed

people are not included because they are no longer at risk of infection and do not suffer

illness until they become infectious.

In Eqs. (3.4) to (3.7), the demand for medical reliefs and the number of people
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in each group are forecasted using Eqs. (3.1) and (3.2). ᾱv
jt and ᾱc

jt are adopted to

measure physical fragility. These variables refer to the expected epidemic mortality

rates of vulnerable and common infectious individuals, respectively, after distribution

in area j during time period t. Both variables are related to the amount of treatment

reliefs sent to epidemic area j in a specific time period. Similarly, β̄v
jt and β̄c

jt indicate the

expected epidemic infection rates of vulnerable and common susceptible people after

distribution, respectively. These variables are related to the amount of prophylactic

medical reliefs sent to epidemic area j in time period t.

The following constraints are proposed:

J
∑

j=1

xpijt ≤ Qp
it , ∀i, p, t (3.8)

I
∑

i=1

xpijt ≤ Dp
it , ∀j, p, t (3.9)

I
∑

i=1

l+k
∑

p=1

xpijt ≤ Wit , ∀i, t (3.10)

I
∑

i=1

J
∑

j=1

l+k
∑

p=1

cpijtx
p
ijt ≤ Ct , ∀t (3.11)

ᾱv
jt, ᾱ

c
jt ≤ αM , ∀j, t (3.12)

β̄v
jt, β̄

c
jt ≤ βM , ∀j, t (3.13)

xpijt ≥ 0 , ∀i, j, p, t (3.14)

Among the constraints discussed above, Eq. (3.8) ensures that the aggregate amount of

medical relief p sent from EMRC i does not exceed the corresponding amount available

in this EMRC in the given time period t. Eq. (3.9) guarantees that the aggregate

amount of medical relief p sent to a given area j does not exceed the corresponding

demand in the given time period t. Eq. (3.10) ensures that the aggregate amount of

medical reliefs distributed from any given EMRC i does not exceed the corresponding

transportation capacity. Eq. (3.11) guarantees that the aggregate distribution cost

does not exceed the budget in time period t. Eqs. (3.12) and (3.13) consider fairness

and ensure that the mortality and infection rates in all epidemic areas do not exceed

the limit. These two equations balance these rates among different areas to avoid the

situation in which some areas receive enough reliefs, whereas other areas report high

rates because of a lack of medicines. Eq. (3.14) characterizes a feasible numerical
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domain associated with xpijt.

3.3.5 Model Extension

In this section, the model is extended to improve its representation of real problems.

The mechanism for demand forecasting is improved in the first part, and the distribu-

tion mechanism is enhanced in the subsequent part.

Extended Model 1 The basic model assumes that epidemic areas are independent

and that all of the people moving into these areas are susceptible. In reality, an epidemic

area is affected by another in a public health emergency given the infectiousness of an

epidemic. Therefore, an extension that considers the spatial interaction relationships

among epidemic areas is developed in this section.

A migration matrix H is adopted:

H =

























h11 · · · h1j · · · h1J
...

. . .
...

hj1 hjj hjJ
...

. . .

hJ1 · · · hJj · · · hJJ

























(3.15)

where hj1j2 ≥ 0 is the rate at which the population in j1 moves to j2. Moreover,

h11 = h22 = · · · = hJJ = 0 and
∑J

m=1 hjm ≤ 1, ∀j. The corresponding epidemic model

is formulated as follows:
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





































































































dSc
j (t)

dt
=
∑J

m=1 hmjS
c
m(t)−

∑J
m=1 hjmSc

j (t)− dcjS
c
j (t)− βc

jδjS
c
j (t)Ij(t)

dSv
j (t)

dt
=
∑J

m=1 hmjS
v
m(t)−

∑J
m=1 hjmSv

j (t)− dvjS
v
j (t)− βv

j δjS
v
j (t)I

(
j t)

dEc
j (t)

dt
=
∑J

m=1 hmjE
c
m(t)−

∑J
m=1 hjmEc

j (t) + βc
jδjS

c
j (t)Ij(t)− dvjE

c
j (t)− εEc

j (t)

dEv
j (t)

dt
=
∑J

m=1 hmjE
v
m(t)−

∑J
m=1 hjmEv

j (t) + βv
j δjS

v
j (t)Ij(t)− dvjE

v
j (t)− εEv

j (t)

dIcj (t)

dt
=
∑J

m=1 hmjI
c
m(t)−

∑J
m=1 hjmIcj (t) + εEc

j (t)− (αc
j + dcj)I

c
j (t)− γcjµjI

c
j (t)

dIvj (t)

dt
=
∑J

m=1 hmjI
v
m(t)−

∑J
m=1 hjmIvj (t) + εEv

j (t)− (αv
j + dvj )I

v
j (t)− γvj µjI

v
j (t)

dRc
j(t)

dt
=
∑J

m=1 hmjR
c
m(t)−

∑J
m=1 hjmRc

j(t) + γcjµjI
c
j (t)− dcjR

c
j(t)

dRv
j (t)

dt
=
∑J

m=1 hmjR
v
m(t)−

∑J
m=1 hjmRv

j (t) + γvj µjI
v
j (t)− dvjR

v
j (t)

(3.16)

As with Eq. (3.1), Eq. (3.16) describe how the numbers of susceptible individuals

vary in epidemic area j.
∑J

m=1 hmjS
c
m(t) and

∑J
m=1 hmjS

v
m(t) indicate the numbers of

common and vulnerable susceptible people moving to area j from other epidemic areas,

respectively, whereas
∑J

m=1 hjmSc
j (t) and

∑J
m=1 hjmSv

j (t) are the numbers of common

and vulnerable susceptible people that move from area j to other areas, respectively.

Similar migration is also formulated the other equations in Eq. (3.16).

The demand forecasting model is:

Dp
jt =











θp
∫ t0+L

t0
[Sj(t) + Ej(t) + (1− µj)Ij(t)] dt− Invpjt , p ∈ Mp

θp
∫ t0+L

t0
µjIj(t) dt− Invpjt , p ∈ Mt

(3.17)

The definitions of other notations are similar to those provided for the basic model.

Extended Model 2 The follows extends the model by integrating survivor psychol-

ogy with medical relief logistics.

As mentioned in Chapters 1 and 2, previous studies presented strong evidence

for the adverse psychological effects of public health emergencies on affected people.

These studies also suggest that providing on-time treatment and applying an effective

prophylactic method help alleviate psychological suffering. These approaches are closely

related to on-time allocation and a sufficient amount of medical relief.
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A distribution time threshold is set on the basis of the results of previous studies;

that is, emergency medical distribution is completely effective only when it is delivered

within the time limit. Affected people suffer extra psychological distress, such as anxi-

ety, anger, panic, and fear if distribution time exceeds its limit. Therefore, a suffering

coefficient is adopted to represent additional psychological suffering as a result of dis-

tribution delay. Similarly, an insufficient amount of medical reliefs can also increase

psychological suffering. The mental states of different groups vary. Three additional

suffering coefficients are then adopted to denote suffering due to the insufficient amount

of relief. The new notations are as follows:

ϕ1: Suffering coefficient for diagnosed people caused by unsatisfactory amounts of treat-

ment reliefs

ϕ2: Suffering coefficient for susceptible, exposed, and infectious but undiagnosed people

caused by unfulfilled amounts of treatment reliefs

ϕ3: Suffering coefficient for susceptible, exposed, and infectious but undiagnosed people

caused by unfulfilled amounts of prophylactic reliefs

ϕ4: Suffering coefficient caused by delay

TM : Transportation time threshold

Tijt: Transportation time from EMRC i to epidemic area j in time period t

The objective of the extended model is formulated as follows:

min F = Fphy + (1− ω)Fpsy (3.18)

where Fphy is given as in Eq. (3.3) and Fpsy is the psychological fragility of affected
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people.

Fpsy =ϕ1

J
∑

j=1

l+k
∑

p=l+1

(

αp
Dp

jt −
∑I

i=1 x
p
ijt

Dp
jt

)

µjIjt

+ ϕ2

J
∑

j=1

l+k
∑

p=l+1

(

αp
Dp

jt −
∑I

i=1 x
p
ijt

Dp
jt

)

(Sjt + Ejt + (1− µj)Ijt)

+ ϕ3

J
∑

j=1

l
∑

p=1

(

βp
Dp

jt −
∑I

i=1 x
p
ijt

Dp
jt

)

(Sjt + Ejt + (1− µj)Ijt)

+ ϕ4

J
∑

j=1

I
∑

i=1



(Tijt − TM )+
l+k
∑

p=1

xpijt(Sjt + Ejt + Ijt)





(3.19)

The first two terms in Eq. (3.19) reflect the additional psychological suffering caused

by unsatisfactory amounts of treatment reliefs. Disease-caused mortality increases as

unsatisfied demand increases. Thus, the fear of disease-caused death increases. That

is, psychological fragility increases as unsatisfied demand for treatment relief increases.

The third term in Eq. (3.19) reflects the additional psychological fragility of indi-

viduals who are susceptible, exposed, and infectious but undiagnosed as a result of

the unsatisfactory amounts of prophylactic reliefs. Exposed people have already been

infected, and prophylactic reliefs do not have physical effects on them. However, psy-

chological effects remain because these individuals are impossible to distinguish from

the susceptible group. The psychological suffering of infectious people who have not

been diagnosed is also affected by prophylactic reliefs because they do not realize that

they have been infected. The fourth term corresponds to the additional pain caused by

delayed distribution. A long transportation time increases the psychological fragility

of all affected individuals.

The other denotations and constraints are similar to those presented in the basic

model.

3.4 Analytical Analyses

In this section, two theorems are proposed for further discussion. Theorem 3.1 helps

analyze the trend of epidemic diffusion after relief distribution. Theorem 3.2 shows the

condition in which the effectiveness and fairness of emergency medical logistics can be

balanced.
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Disease-free and endemic equilibrium are discussed, and the first theorem is pro-

posed to explore the effects on the epidemic diffusion of emergency logistics.

An equilibrium is defined as a state where (dXi

dt
= 0 for all compartments Xi ⊆

{Sc
j (t), E

c
j (t), I

c
j (t), R

c
j(t), S

v
j (t), E

v
j (t), I

v
j (t), R

v
j (t)} in a specific epidemic area j ). In

the system of Eq. (3.1), set

N c
j (t) = Sc

j (t) + Ec
j (t) + Icj (t) +Rc

j(t)

Nv
j (t) = Sv

j (t) + Ev
j (t) + Ivj (t) +Rv

j (t)

Γ = {
(

Ec
j (t), I

c
j (t), R

c
j(t), N

c
j (t), E

v
j (t), I

v
j (t), R

v
j (t), N

v
j (t)

)

⊆ R8
+}

In each area j, a disease free equilibrium can be found at E1 = (0, 0, 0, 0, 0, 0, 0, 0)

and E2 = (0, 0, 0, N c
je, 0, 0, 0, N

v
je) and they exist for all nonnegative values of their

parameters.

Theorem 3.1. In the system of Eq. (3.1),

1. if Λc
j − δjβ

c
jN

c
je > 0 and Λv

j − δjβ
v
jN

v
je > 0,

(a) and if R0
j > 1, there is one and only one positive equilibrium E3 = (Ec

je, I
c
je,

Rc
je, N

c
je, E

v
je, I

v
je, R

v
je, N

v
je).

(b) and if R0
j ≤ 1, there is no positive equilibrium.

2. if Λc
j − δjβ

c
jN

c
je < 0 and Λv

j − δjβ
v
jN

v
je < 0, there is one and only one positive

equilibrium E3.

3. if (Λc
j−δjβ

c
jN

c
je)(Λ

v
j−δjβ

v
jN

v
je) ≤ 0, there is one and only one positive equilibrium

E3.

where Λk
j = 1

ε
(γkj µj + αk

j + dkj )(d
k
j + ε), k ∈ {c, v} and R0

j =
δ2jβ

c
jβ

v
j N

c
jeN

v
je

(Λc
j−δjβ

c
jN

c
je)(Λ

v
j−δjβ

v
j N

v
je)

.
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Proof of Theorem 3.1. (1) For an equilibrium in system of Eqs. (3.1), we can obtain

Ivj (t) =
i

δjβc
j

(

(dcj + ε)Ec
j (t)

N c
je − Ec

j (t)− Icj (t)−Rc
j(t)

− δjβ
c
jI

c
j (t)

)

Ev
j (t) =

1

ε

(

γvj µj + αv
j + dvj

)

Ivj (t)

Rv
j (t) =

γvj µj

dvj
Ivj (t)

Icj (t) =
i

δjβv
j

(

(dvj + ε)Ev
j (t)

Nv
je − Ev

j (t)− Ivj (t)−Rv
j (t)

− δjβ
v
j I

v
j (t)

)

Ec
j (t) =

1

ε

(

γcjµj + αc
j + dcj

)

Icj (t)

Rc
j(t) =

γcjµj

dcj
Icj (t)

Let Υc
j = 1 + 1

ε

(

γcjµj + αc
j + dcj

)

+
γc
jµj

dcj
and Υv

j = 1 + 1
ε

(

γvj µj + αv
j + dvj

)

+
γv
j µj

dvj
. We

can deduce














IcJ(t) =
(Λv

j−δjβ
v
j N

v
je)Ivj (t)+Υv

j δjβ
v
j I

v
j (t)

2

δjβ
v
j (Nv

je−Υv
j I

v
j (t))

, Ivj (t) ∈ [0,
Nv

je

Υv
j
)

IvJ(t) =
(Λc

j−δjβ
c
jN

c
je)Icj (t)+Υc

jδjβ
c
j I

c
j (t)

2

δjβ
c
j(Nc

je−Υc
jI

c
j (t))

, Icj (t) ∈ [0,
Nc

je

Υc
j
)

An equilibrium exists ⇔ curve Icj (t) intersect with curve Ivj (t) in the first quadrant

of the plane whose dimensions are Icj (t) and Ivj (t).

With Eq. (3.1) we can obtain

dIcj (t)

dIvj (t)
=

(

Λv
j − δjβ

v
jN

v
je

)

Nv
je +Υv

j δjβ
v
j I

v
j (t)

(

2Nv
je −Υv

j I
v
j (t)

)

δjβv
j

(

Nv
je −Υv

j I
v
j (t)

)2

d2Icj (t)

dIvj (t)
2
=

2Υv
jΛ

v
jN

v
je

δjβv
j

(

Nv
je −Υv

j I
c
j (t)

)3

dIvj (t)

dIcj (t)
=

(

Λc
j − δjβ

c
jN

c
je

)

N c
je +Υc

jδjβ
c
jI

c
j (t)

(

2N c
je −Υc

jI
c
j (t)

)

δjβc
j

(

N c
je −Υc

jI
c
j (t)

)2

d2Ivj (t)

dIcj (t)
2
=

2Υc
jΛ

c
jN

c
je

δjβc
j

(

N c
je −Υc

jI
c
j (t)

)3

Since
dIcj (t)

dIvj (t)
> 0 and

d2Icj (t)

dIvj (t)
2 > 0, Icj (t) is a monotonically increasing convex function

when (1)Ivj (t) ∈ [0,
Nje

v

Υv
j
), and (2) when Ivj (t) →

Nje
v

Υv
j
, Ivj (t) → ∞. Similarly, Ivj (t)

is a monotonically increasing convex function if (1)Icj (t) ∈ [0,
Nje

c

Υc
j
), and (2) when

Icj (t) →
Nje

c

Υc
j
, Icj (t) → ∞.
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And since if Ivj (t) = 0,
dIcj (t)

dIvj (t)
=

Λv
j

δjβ
v
j N

v
je
−1; if Icj (t) = 0,

dIvj (t)

dIcj (t)
=

Λc
j

δjβ
c
jN

c
je
−1, R0

j > 1,

curve Icj (t) intersects with curve Ivj (t) only once in the first quadrant. That is, there

exists only one positive equilibrium E3 in the system of Eq. (3.1). With R0
j ≤ 1, no

equilibrium exists.

(2) From (1) we get E3 exists ⇔ curve Icj (t) intersect with curve Ivj (t) in the first

quadrant when Icj (t) ∈ (0,
δjβ

c
jN

c
je−Λc

j

Υc
jδjβ

c
j

),Ivj (t) < 0.

Ivj (t) is a monotonically increasing convex function if Icj (t) ∈ [
δjβ

c
jN

c
je−Λc

j

Υc
jδjβ

c
j

,
Nc

je

Υc
j
). And

when Icj (t) →
Nc

je

Υc
j
, Ivj (t) → ∞.

Similarly, when Ivj (t) ∈ (0,
δjβ

v
j N

v
je−Λv

j

Υv
j δjβ

v
j

),Icj (t) < 0.

Icj (t) is a monotonically increasing convex function if Ivj (t) ∈ [
δjβ

v
j N

v
je−Λv

j

Υv
j δjβ

v
j

,
Nv

je

Υv
j
) and

when Ivj (t) →
Nv

je

Υv
j
, Icj (t) → ∞.

Thus, curve Icj (t) and Ivj (t) have one and only one intersection point (Ije
c, Ije

v) in

the first quadrant. That is, there is one and only one positive equilibrium E3.

(3) In the similar way of (2), we can prove there is one and only one positive

equilibrium E3 if (Λc
j − δjβ

c
jN

c
je)(Λ

v
j − δjβ

v
jN

v
je) ≤ 0.

The three cases described in Theorem 3.1 are mutually exclusive and collectively

exhaustive. R0
j is the basic reproduction number of the epidemic in epidemic area j

and represents the number of cases that one case generates on average over the course

of its infectious period. This metric is useful because it helps determine whether an

epidemic can spread through a population.

Instead αc
j , α

v
j , β

c
j and βv

j in Theorem 3.1 by ᾱc
j , ᾱ

v
j , β̄

c
j and β̄v

j respectively, we can

deduce there is no positive equilibrium under the Conditions 1(b), that is,

Λ̄c
j − δj β̄

c
jN

c
je > 0

Λ̄v
j − δj β̄

v
jN

v
je > 0

R̄0
j =

δ2j β̄
c
j β̄

v
jN

c
jeN

v
je

(Λ̄c
j − δj β̄c

jN
c
je)(Λ̄

v
j − δj β̄v

jN
v
je)

< 1

where Λ̄ = 1
ε
(γkj µj + ᾱk

j + dkj )(d
k
j + ε), k ∈ {c, v}.

Epidemic diseases die out in the long run if no positive equilibrium exists, and

diseases can continue to spread in a population under other situations. Theorem 3.1 can
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facilitate emergency medical allocation by (1) setting no positive equilibrium as another

constraint in the distribution model or by (2) checking Condition 1(b) after distribution

decisions have been made by the models regardless of equilibrium. This work applies

the theorem in the second manner. Equilibrium is disregarded in the distribution model

(Eqs. (3.3) to (3.14)). The existence of a positive equilibrium is then determined. If

equilibrium exists in some areas, then the government should adjust relevant policies

(not logistics policies) to prevent diseases from spreading in the long run. An example

of such adjustments involves investments in exogenous parameters, such as diagnosis

rate and contact coefficient. Equilibrium is not set as a constraint because this behavior

is less important than the transient behavior for a particular application to a sudden

emergency related to a new strain of epidemic disease. Therefore, this work regards

equilibrium condition as a consequence and not a constraint of emergency allocation.

Theorem 3.2. Under the constraint of the given model, if αM < αU or βM < βU then

the problem has no feasible solution, in which

αU = αv
jt +

l+k
∑

p=l+1

(

αpmax {0, 1−

∑I
i=1Q

p
it

Dp
jt

}

)

, ∀j, t

βU = βv
jt +

l
∑

p=1

(

βpmax {0, 1−

∑I
i=1Q

p
it

Dp
jt

}

)

, ∀j, t

Proof of Theorem 3.2.

Since 0 ≤ xpijt ≤
∑J

j=1 x
p
ijt ≤ Qp

it, ∀i, j, p, t and 0 ≤
∑I

i=1 x
p
ijt ≤

∑I
i=1Q

p
it, ∀j, p, t, we

can obtain

αpmax {0, 1−

∑I
i=1Q

p
it

Dp
jt

} ≤ αp
Dp

jt −
∑I

i=1 x
p
ijt

Dp
jt

, ∀j, p, t

and

αv
jt+

l+k
∑

p=l+1

(

αpmax {0, 1−

∑I
i=1Q

p
it

Dp
jt

}

)

≤ αv
jt+

l+k
∑

p=l+1

(

αp
Dp

jt −
∑I

i=1 x
p
ijt

Dp
jt

)

= ᾱv
jt, ∀j, t

Therefore, if αM < αv
jt+

∑l+k
p=l+1

(

αpmax {0, 1−
∑I

i=1 Q
p
it

D
p
jt

}

)

, then the problem has

no feasible solution as constrain ᾱv
jt ≤ αM is insatiable.

In a similar manner, one can prove that if

αM < αc
jt +

l+k
∑

p=l+1

(

αpmax {0, 1−

∑I
i=1Q

p
it

Dp
jt

}

)

, ∀j, t
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or

βM < βv
jt +

l
∑

p=1

(

βpmax {0, 1−

∑I
i=1Q

p
it

Dp
jt

}

)

, ∀j, t

or

βM < βc
jt +

l
∑

p=1

(

βpmax {0, 1−

∑I
i=1Q

p
it

Dp
jt

}

)

, ∀j, t

then the problem has no feasible solution. And since αv
jt > αc

jt and βv
jt > βc

jt, Theorem

3.2 can be obtained.

αv
j refers to the disease mortality rate of vulnerable people in area j and αp refers

to the mortality increase caused by unit dissatisfaction of medical relief p (p ∈ Mt).

So ᾱv
jt = αv

j +
∑l+k

p=l+1 α
p D

p
jt−

∑I
i=1 x

p
ijt

D
p
jt

is the morality rate of vulnerable people in area

j after medical delivery in time period t. Similarly, β̄v
jt = βv

j +
∑l

p=1 β
p D

p
jt−

∑I
i=1 x

p
ijt

D
p
jt

is

the infection rate of vulnerable people in area j after medical delivery in time period t.

Note that the models have constraints ᾱv
jt, ᾱ

c
jt ≤ αM and β̄v

jt, β̄
c
jt ≤ βM (∀j, t).

Theorem 3.2 gives the upper-bounds of αM and βM , that is, αU and βU . If αM < αU

or βM < βU , then the model has no feasible solution.

The objective function of the model involves effectiveness. Eqs. (3.12) and (3.13) are

concerned with fairness, which is achieved by ensuring that the mortality and infection

rates do not exceed αM and βM in all areas. A feasible solution cannot be obtained

when extreme fairness (αM < αU or βM < βU ) is required. Therefore, we can balance

effectiveness and fairness only to some extent.

3.5 Numerical Study

This section conducts a case study using real data and a continuation study with

experimental data to demonstrate the applicability of the proposed methodology. The

case study involves the SARS outbreak in China during the first quarter of 2003. All

computational processes are conducted with MATLAB on a personal computer with a

2.53Hz CPU and 2G RAM. Following an introduction of the case background, the main

procedures executed in this numerical study are the validation of forecasting model,

testing with real data, and experimental testing.
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3.5.1 Case Background

The SARS outbreak originated in Guangdong Province, China, in November 2002.

The epidemic spread across almost the entire country. When the severity of this public

health emergency was determined, the Chinese central government responded. The

government reported 305 cases and 5 deaths to the World Health Organization on 10th

February 2003.

The numerical study focuses on Guangdong. It is also known as Canton or Kwang-

tung Province and is located on the South China Sea coast. Guangdong is among the

most populous provinces in China and registers 79.1 million permanent residents, as

well as 31 million migrants who lived in the province for at least six months of the

year. These numbers account for 7.79% of Mainland China’s population. Given the

epidemic-related information and the basic state of the distribution network, the pro-

posed methodology is used to forecast the trend of the spread of SARS and to make

medical logistics decisions for Guangdong. The unit interval is one day.

Cases of SARS infection were reported in the following prefectures in Guangdong:

Guangzhou, Foshan, Jiangmen, Heyuan, Zhongshan, and Shenzhen. The province has

four EMRCs. Fig. 3.3 shows the simplified geographical relationships among these

affected areas and among the EMRCs. Three types of treatment and two types of

prophylactic reliefs were provided as urgently needed. The four EMRCs concentrated

their supplies of reliefs and distributed them to the six epidemic areas. The case

background indicates that a simplified 546 medical logistics network is formed (5 types

of medical reliefs, 4 EMRCs, and 6 epidemic areas). People older than 45 are regarded

as the vulnerable ones in this case.

To elucidate the methodology, this work explains the decisions made on 10th Febru-

ary 2003 in detail as an example.

3.5.2 Testing of the Forecasting Model

Demand is forecasted using Eqs. (3.2) and (3.17). These two forecasting models are

compared with moving average method and standard SEIR model, which are presented

in Appendix A.
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a1 : Guangzhou a2 : Foshan a3 : Jiangmen a4 : Heyuan

a5 : Zhongshan a6 : Shenzhen b1, b2, b3, b4 : EMRCs

Figure 3.3: Study areas

This study uses Eqs. (3.1) and (3.16) to compare the numbers of corresponding

demanders instead of comparing demands because demands for both types of prophy-

lactic reliefs are positively correlated with the numbers of susceptible, exposed, and

undiagnosed people. Moreover, demands for all three types of treatment reliefs are

correlated with the number of infectious and diagnosed individuals.

The parameters are presented in Section2.7, and they are set as follows: (1) the pa-

rameters for population are set according to the National Bureau of Statistics of P. R.

China (2004). (2) The parameters for disease (recovery rate, diagnosed rate, mortality,

and incubation period) are set. Doctors and medical experts can generally estimate the

expected values of these parameters shortly after a new disease is recognized in a region.

In this study, they are obtained from several medical reports and statistics (National

Health and Family Planning Commission of P. R. China 2004; Chinese Center for Dis-

ease Control and Prevention; Kamps and Hoffmann 2003). (3) Infection rates are set

with two methods. First, these rates can be obtained by fitting the forecasting curve

with observations given epidemic areas with adequate infectious cases. In this study,

the infection rates in Guangzhou and Zhongshan are set in this manner. The objective

of fitting is to minimize
√

∑N
k=1(obsk − estk)2/

(

√

∑N
k=1(obsk)

2 +
√

∑N
k=1(estk)

2

)

,

where obsk refers to the kth observed value and estk refers to the kth estimated value.
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Given epidemic areas with a few infectious cases, these rates can also be set by com-

paring specific areas with the areas listed above in terms of previous cases of similar

epidemic outbreak. In this study, infection rates in the other four areas (j=2, 3, 4, 6)

are set in this manner. For example, the infection rates of influenza and pneumonia in

Guangzhou (j=1) is 0.05 lower than those in Foshan (j=2). Thus βc
2 = βc

1 + 0.05 and

βv
2 = βv

1 + 0.05.

The following table compares demand forecasting in Guangzhou (j=1) as an ex-

ample. Although more accurate parameters can be obtained at present, this study

attempts to recreate a specific situation in which a new, little-know epidemic outbreak

is reported. The original point of forecasting is 10th February.

Table 3.1: Comparison of forecasting methods for prophylactic demanders

Forecasting Methods
Average Forecasting Error

in one week in two weeks in one month

Basic Model 0.01% 0.03% 0.06%

Extended Model 1 0.01% 0.03% 0.06%

Standard SEIR model 0.02% 0.03% 0.05%

Moving average method 0.02% 0.03% 0.05%

Table 3.2: Comparison of forecasting methods for treatment demanders

Forecasting Methods
Average Forecasting Error

in one week in two weeks in one month

Basic Model 3.55% 3.99% 45.84%

Extended Model 1 3.54% 3.96% 44.80%

Standard SEIR model 12.02% 13.75% 43.07%

Moving average method 11.61% 8.17% 13.10%

Tables 3.1 shows that all four models are valid in terms of forecasting prophylactic

demanders. In combination with Fig. 3.4,Table 3.2 illustrates that the performances

of these models differ with respect to forecasting the numbers of treatment deman-

ders. The methods proposed in this chapter perform better than standard SEIR model

and moving average method in the initial two weeks, but then the error rate increases

rapidly. The main reason for this trend is the development of preventive and ther-

apeutic methods as doctors amass additional knowledge about SARS. Nonetheless,
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Figure 3.4: Forecasting of treatment demanders

accurate forecasting for two weeks is enough to facilitate distribution decision-making.

In addition, the models proposed in this chapter can forecast every group in the pop-

ulation, unlike the moving average method. This advantage is useful in distributional

decision-making.

3.5.3 Testing with Real Data

In this section, the three models proposed in Sections 3.2 are solved and their results

compared. This study summarizes and compares the numerical analysis results for

these three models. The parameters and statistics are reported in Section 2.7.

Table 3.3 shows the main indices of the three models. Extended forecasting method

(proposed in Section 3.2.3) is adopted in Extended Model 2. The psychological fragility

determined with the basic model and with Extended Model 1 are also calculated for

comparison. The computation times for solving these three models are 1.94, 2.48 and

2.53 seconds, respectively.

The horizontal axis in Fig. 3.5 shows four EMRCs, whereas the vertical axis indicate

epidemic areas. Circles with different colors correspond to the five types of reliefs, and

the colored areas refer to the corresponding distributed amounts (specific numbers are

reported in the supplement).

The following observations are made based on the results presented above.



3.5. NUMERICAL STUDY 81

Table 3.3: Numerical results of testing with real data

Basic Extended Extended

Model Model 1 Model 2

average mortality rate* 0.497 0.497 0.091

average infection rate* 0.573 0.572 0.571

total amount of prophylactic reliefs 436994 436980 436405

total amount of treatment reliefs 181 195 770

cost 443342 520878 461523

physical fragility 3869667 3862785 3881985

psychological fragility 2269299 2291386 1172696

*Average mortality rate is the average of mortality rates of all areas after distribution,

that is, the average of ᾱk
j (j=1, 2, ..., 6; k=c, v); and average infection rate is the

average of infection rates of all areas after distribution, that is, the average of β̄k
j (j=1,

2, ..., 6; k=c, v).

Figure 3.5: Comparison of three models
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(1) The amounts of prophylactic reliefs distributed to specific epidemic areas differ

when the spatial interaction relationships among epidemic areas are considered. As a

result, the average infection rate decrease slightly although the total distributed amount

does not increase.

(2) The total amount of treatment reliefs distributed increases when survivor psy-

chology is considered. In the process, psychological fragility declines significantly.

(3) The amount of reliefs distributed increase for epidemic areas with a large input

population that originates from severely infected areas when the spatial interaction

relationships among epidemic areas are considered. In this case, additional prophylactic

reliefs are sent to Shenzhen (j=6) to avoid the spread of SARS. The reason for this

outcome is that this area has a large input population coming from Guangzhou (j=1)

and Zhongshan (j=5). These areas are the most severely. Moreover, the number of

residents in Shenzhen (j=6) is small. Thus Guangzhou (j=1) is less affected although

the input from Zhongshan (j=5) to this area (j=1) is larger given that Guangzhou

(j=1) has much more residents.

(4) The amount of prophylactic reliefs distributed increases for epidemic areas with

low diagnosis rates when survivor psychology is considered. In this case, the diagnosis

rate of Heyuan (j=4) is the lowest and many infectious people have not realized that

they are infected. Infec-tious but undiagnosed individuals share a physical state with

those who have been diagnosed, but their psychological characteristics differ. Therefore,

more prophylactic relief is sent to Heyuan (j=4) in Extended Model 2 than in Extended

Model 1.

(5) The number of distribution paths that report long transportation times decreases

when survivor psychology is considered. A long distribution time increases psychologi-

cal fragility. In this case, the distribution paths from EMRC 4 to Guangzhou (j=1) and

to Jiangmen (j=3) are avoided in Extended Model 2, unlike in the other two models.

In a case of emergency medical logistics following a large-scale disaster, the effect of

survivor psychology on path selection is strengthened because destroyed infrastructure

may increase transportation time.
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3.5.4 Experimental Testing

Five observations are made based on the analysis presented with actual SARS data.

An analysis using experimental data is conducted to test these observations in different

epidemic situations.

We test four typical types of situations as follows:

Situation 1: not easily spread and not especially lethal (small α and small β);

Situation 2: easily spread but not especially lethal (small α and large β);

Situation 3: not easily spread but especially lethal (large α and small β);

Situation 4: easily spread and especially lethal (large α and large β).

The effects of α and β alone are reported and discussed in this section to induce

brief observations given the similar effects of δ and β, as well as the inverse effects of α

and γ.

The other parameters are similar to those in the last section. We make distribution

decisions in the four situations as in the analysis with real data. The main indices and

specific decisions are summarized in Appendix A.

The following four observations are made based on the results of experimental test-

ing:

(1) All four situations exhibit results similar to those in the first and second ob-

servations made by analyzing real data. That is, the amounts of prophylactic reliefs

distributed to specific epidemic areas differ when the spatial interaction relationships

among epidemic areas are considered, although the total amount does not increase.

Moreover, the total amount of treatment reliefs distributed increases when survivor

psychology is considered, thus reducing psychological fragility considerably.

(2) All four situations show the results similar to those in the third observation made

by analyzing real data. That is, more prophylactic reliefs are distributed to epidemic

areas with large input populations that originate from severely infected areas when the

spatial interaction relationships among such areas are considered.

(3) Situations 2 and 4 display results similar to those in the fourth observation made

by analyzing real data. More prophylactic reliefs are sent to areas with low diagnosis

rates when survivor psychology is considered. However, Situations 1 and 3 fail to
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provide strong evidence for these changes. The effect of the variation in prophylactic

relief on physical and psychological fragility is insignificant in these situations given the

low infection rate.

(4) In all four experimental situations, distribution paths that report long trans-

portation times are avoided when survivor psychology is considered, as in the analysis

with real data.

3.6 Discussion

Academic literature and popular press both indicate that the decision-makers for public

health emergencies have long been advised to control physical factors, such as mortality

and infection rates, and economic factors, such as transportation cost. This study

underscores the importance of survivor psychology in such emergencies and provides

suggestions on efficient, effective, and fair medical rescue.

This work highlights the necessity and feasibility of reducing the psychological

fragility of affected people during emergency medical logistics. Aside from inducing

health threats and economic losses, public health emergencies also have negative psy-

chological effects on both patients and healthy people. Affected people may feel help-

lessness, sorrow, panic, anxiety, and fear. Such individuals may even develop mental

illnesses. Widespread serious psychological problems may also threaten economic or-

der and public security. Numerical results show that the consideration of survivor

psychology significantly reduces the psychological fragility of affected people and that

it hardly affects the physical fragility. Aside from highlighting survivor psychology,

this work also indicates the benefits of considering the spatial interaction relationships

among epidemic areas, especially in response to public health emergencies with high

infection rates in areas with high population density.

In addition, the specific effects of incubation period and diagnosis rate are empha-

sized in the discussion of the relationship between logistics and survivor psychology.

Additional treatment reliefs generally help improve psychological states. Conversely,

prophylactic reliefs are significant to epidemics with long latent periods. Such reliefs

do not exert physical effects on exposed people, and such individuals cannot infect
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others. However, psychological effects remain. Similarly, the psychological suffering of

infectious but undiagnosed people is affected by prophylactic rather than treatment re-

liefs. Therefore, additional prophylactic but not treatment reliefs are sent to areas with

low diagnosis rates. The increase in diagnosis rate lowers the demand for prophylactic

reliefs and the corresponding logistics capacity.

Overall, this work provides managerial insights to improve decisions made on med-

ical distribution as per demand forecasting for quick response to public health emer-

gencies. These insights also enhance the physical and psychological status of affected

individuals.

3.7 Summary

This chapter presents a novel model of humanitarian medical allocation for rapid re-

sponse to public health emergencies. The proposed model consists of two mechanisms:

(1) medical demand forecasting and (2) relief distribution. The medical demand asso-

ciated with each epidemic area is forecast using a modified SEIR model. This process

is followed by a linear programming approach to making distribution decisions. On

the basis of a basic model that applies the proposed method, two extended models are

generated by assessing (1) the spatial interaction relationships among epidemic areas

and (2) survivor psychology.

A numerical study conducted on a real SARS outbreak in China demonstrates

the applicability of the proposed method. The numerical results of the three models

are compared to identify the advantages of each model. The psychological status of

affected people improves significantly when survivor psychology is considered. Four

experimental situations are tested to support and supplement the analysis with real

data. Managerial insights are also provided.

The performance of emergency medical logistics may be improved significantly. The

first mechanism of the proposed model is used in demand forecasting and supports

the distribution mechanism in which the government is the only real decision-maker.

Nevertheless, the forecast demand information can be shared with non-governmental

organizations and local charities for medical logistics coordination. This issue is worthy
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of further research. Chapter 4 provides a preliminary discussion of cooperation and

information sharing between the government decision-maker and private sectors.

3.8 Supplement for this Chapter

3.8.1 Parameters in the Numerical Study

See Tables 3.4 to 3.10.

Table 3.4: Parameters for epidemic and population

j=1 j=2 j=3 j=4 j=5 j=6

Ac
j 504 229 114 80 92 556

Av
j 80 16 -8 -1 6 84

βc
j 0.4 0.45 0.46 0.5 0.48 0.4

βv
j 0.5 0.55 0.56 0.6 0.58 0.55

δj 1.02× 10−8 1.14× 10−8 0.33× 10−8 0.13× 10−8 1.05× 10−8 3.11× 10−8

ε 0.23 0.23 0.23 0.23 0.23 0.23

γcj 0.1 0.13 0.1 0.08 0.1 0.1

γvj 0.05 0.08 0.05 0.03 0.05 0.05

αc
j 0.003 0.003 0.006 0.01 0.008 0.005

αv
j 0.005 0.005 0.008 0.015 0.01 0.007

µc
j 0.8 0.7 0.6 0.5 0.7 0.6

dcj 1.00× 10−5 0.996× 10−5 1.03× 10−5 1.01× 10−5 0.991× 10−5 1.00× 10−5

dvj 3.00× 10−5 2.99× 10−5 3.00× 10−5 2.98× 10−5 2.99× 10−5 3.01× 10−5

Sc
j (0) 6875080 4174889 2738309 1657264 1739502 5898274

Sv
j (0) 2971785 1391632 1288616 823680 643378 1567896

Ec
j (0) 316 41 22 29 50 10

Ev
j (0) 136 20 10 15 15 3

Icj (0) 198 12 17 15 29 8

Ivj (0) 85 7 8 7 11 2
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Table 3.5: Parameters for medical reliefs

j=1 j=2 j=3 j=4 j=5 j=6

c11jt 0.04 0.24 0.94 2.07 0.91 1.63

c12jt 0.23 0.11 0.78 2.23 0.74 1.91

c11jt 0.10 0.28 1.03 2.05 1.04 1.73

c11jt 1.63 1.91 2.63 1.70 2.54 0.06

c21jt 0.08 0.48 1.88 4.14 1.82 3.26

c22jt 0.46 0.22 1.56 4.46 1.48 3.82

c23jt 0.20 0.56 2.06 4.10 2.08 3.46

c24jt 3.26 3.82 5.26 3.40 5.08 0.12

c31jt 0.04 0.24 0.94 2.07 0.91 1.63

c32jt 0.23 0.11 0.78 2.23 0.74 1.91

c33jt 0.10 0.28 1.03 2.05 1.04 1.73

c34jt 1.63 1.91 2.63 1.70 2.54 0.06

c41jt 0.12 0.72 2.82 6.21 2.73 4.89

c42jt 0.69 0.33 2.34 6.69 2.22 5.73

c43jt 0.30 0.84 3.09 6.15 3.12 5.19

c44jt 4.89 5.73 7.89 5.10 7.62 0.18

c51jt 0.04 0.24 0.94 2.07 0.91 1.63

c52jt 0.23 0.11 0.78 2.23 0.74 1.91

c53jt 0.10 0.28 1.03 2.05 1.04 1.73

c54jt 1.63 1.91 2.63 1.70 2.54 0.06

Table 3.6: Parameters for medical inventory

j=1 j=2 j=3 j=4 j=5 j=6

Inv1t 24000 12000 6000 5000 1500 3000

Inv2t 131000 41000 57000 10000 200 85000

Inv3t 21 5 0 0 0 2

Inv4t 20 0 0 0 0 0

Inv5t 300 8 0 0 6 2
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Table 3.7: Parameters for medical reliefs

p=1 p=2 p=3 p=4 p=5

θp 0.01 0.02 1 1 5

αp 0.1 0.3 0.2

βp 0.3 0.1

Table 3.8: Parameters for EMRCs

Q1
it Q2

it Q3
it Q4

it Q5
it Wit

i=1 25000 0 50 0 100 25000

i=2 0 100000 0 75 0 110000

i=3 130000 175000 150 25 270 300000

i=4 60000 2000 40 0 60 100000

Table 3.9: Migration matrix for Extended Model 1

j2 = 1 j2 = 2 j2 = 3 j2 = 4 j2 = 5 j2 = 6

j1 = 1 0 4.57 9.04 5.27 2.88 13.75

j1 = 2 6.00 0 2.94 1.71 0.93 4.46

j1 = 3 44.82 11.14 0 12.84 7.01 33.51

j1 = 4 49.57 12.32 2.44 0 7.76 37.06

j1 = 5 14.92 3.71 7.34 4.28 0 11.16

j1 = 6 0.93 0.23 0.46 0.27 0.15 0

*The unit is 1× 10−7.

Table 3.10: Additional parameters for Extended Model 2

Tijt j=1 j=2 j=3 j=4 j=5 j=6

i=1 0.25 0.40 1.57 2.78 1.52 2.05

i=2 0.88 0.52 1.30 3.38 1.23 3.18

i=3 0.67 0.47 1.72 3.42 4.13 2.08

i=4 2.72 2.35 4.38 2.83 4.23 0.43

TM = 2
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3.8.2 Two Previous Forecasting Methods

Standard SEIR model










































dSj(t)
dt

= Aj − djSj(t)− βjδjSj(t)Ij(t)

dEj(t)
dt

= βjδjSj(t)Ij(t)− djEj(t)− εEj(t)

dIj(t)
dt

= εEj(t)− djIj(t)− αjIj(t)− γjIj(t)

dRj(t)
dt

= γjIj(t)− djRj(t)

The number of prophylactic demanders in time period t is
∫ t0+L

t0
[Sj(t) + Ej(t)] dt

and the number of treatment demanders in time period t is
∫ t0+L

t0
Ij(t) dt, where t0

refers to the beginning moment of period t and L is the length of a time period.

Parameters are set as follows (j=1): A1 = 584, d1 = 0.00002, α1 = 0.0045, β1 = 0.4,

δ1 = 1.02 × 10−8, ε = 0.23, γ1 = 0.08, S1(0) = 9847978, E1(0) = 452, I1(0) = 283,

R1(0) = 0.

Moving Average Model

Njt = 0.7Njt−1 + 0.2Njt−2 + 0.1Njt−3

where Njt refers to the number of demanders in area j in time period t.

3.8.3 Results of the Numerical Study

See the following tables. The unit of the solutions is 1× 10−7.
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Table 3.11: Optimal solutions of the basic model with real data

j=1 j=2 j=3 j=4 j=5 j=6

i=1 m1:25000

i=2 m2:10285 m2:66175 m2:23540 m4:4.983 m4:5.867 m4:2.567

m4:54.72 m4:0.5867 m4:6.403

i=3 m1:75475 m1:34270 m1:20225 m2:64329

m2:55665 m4:6.259

i=4 m3:23.00 m1:18666 m1:19810 m1:2075 m1:19449

m5:60.00 m2:2000

m3:17.00

Table 3.12: Optimal solutions of Extended Model 1 with real data

j=1 j=2 j=3 j=4 j=5 j=6

i=1 m1:25000

i=2 m4:66.20 m2:35586 m4:5.871 m2:64414

m4:2.933

i=3 m1:74480 m1:1486 m1:34244 m1:19790 m4:7.569

m2:65960 m2:32533 m2:21487 m4:5.750

m4:0.6667 m4:6.403

i=4 m3:20.00 m1:17185 m2:2000 m1:22328 m1:20487

m5:60.00 m3:20.00
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Table 3.13: Optimal solutions of Extended Model 2 with real data

j=1 j=2 j=3 j=4 j=5 j=6

i=1 m1:2522 m3:14.00 m1:22328

m3:36.00

m5:100

i=2 m2:67694 m2:23487 m2:8819 m4:35.00

m4:8.000 m4:17.00 m4:15.00

i=3 m1:71958 m1:23798 m1:34244 m5:1.000 m2:62414

m2:57141 m3:3.000 m3:3.000 m4:8.000

m3:144.0 m4:17.00 m5:52.00 m5:7.000

m5:144.0 m5:66.00

i=4 m1:19873 m1:19790 m1:20337

m3:17.00 m3:15.00 m2:2000

m5:45.00 m3:8.000

m5:15.00

Table 3.14: Optimal solutions of the basic model in Situation 1

j=1 j=2 j=3 j=4 j=5 j=6

i=1 m1:25000

i=2 m2:31821 m2:68179 m4:4.524 m4:4.767 m4:11.41 m4:2.450

m4:51.63

i=3 m1:32254 m1:43666 m1:34270 m1:19810 m2:62329

m2:34129 m2:23540

m4:1.596

i=4 m1:18221 m3:17.00 m1:22330 m1:19449

m3:23.00 m2:2000

m5:60.00
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Table 3.15: Optimal solutions of Extended Model 1 in Situation 1

j=1 j=2 j=3 j=4 j=5 j=6

i=1 m1:25000

i=2 m2:35586 m4:9.511 m2:64414

m4:62.69 m4:2.800

i=3 m1:33154 m2:68114 m1:34245 m1:19790 m1:22328 m1:20483

m2:30381 m2:21489 m4:5.500 m4:3.329

m4:6.480

i=4 m1:16329 m1:43671 m2:2000

m3:20.00 m3:20.00

m5:60.00

Table 3.16: Optimal solutions of Extended Model 2 in Situation 1

j=1 j=2 j=3 j=4 j=5 j=6

i=1 m1:2522 m3:3.000 m1:22328

m3:11.00 m3:36.00

m5:100.0

i=2 m2:65967 m2:34033 m4:18.00 m4:15.00 m4:34.00

m4:8.000

i=3 m1:71961 m1:23794 m1:34245 m5:1.000 m2:62414

m3:132.0 m2:33652 m2:23489 m4:8.000

m5:142.0 m4:17.00 m3:18.00 m5:7.000

m5:66.00 m5:54.00

i=4 m1:19877 m1:19790 m1:20333

m3:17.00 m3:15.00 m2:2000

m5:45.00 m3:8.000

m5:15.00
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Table 3.17: Optimal solutions of the basic model in Situation 2

j=1 j=2 j=3 j=4 j=5 j=6

i=1 m1:5190 m1:19810

i=2 m2:12131 m2:23540 m4:4.767 m4:11.41 m2:64329

m4:52.92 m4:4.229 m4:2.450

i=3 m1:74475 m1:33195 m4:1.891 m1:22330

m2:51820 m2:68178

i=4 m2:2000 m1:5282 m1:34270 m1:20448

m3:23.00 m3:17.00

m5:60.00

Table 3.18: Optimal solutions of Extended Model 1 in Situation 2

j=1 j=2 j=3 j=4 j=5 j=6

i=1 m1:25000

i=2 m2:35586 m4:6.480 m4:5.500 m4:12.84 m2:64414

m4:47.13 m4:2.800

i=3 m1:32294 m1:43671 m1:34245 m1:19790

m2:28374 m2:68121 m2:23489

m4:15.93

i=4 m1:17186 m3:20.00 m1:22328 m1:20486

m2:2000

m3:20.00

m5:60.00
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Table 3.19: Optimal solutions of Extended Model 2 in Situation 2

j=1 j=2 j=3 j=4 j=5 j=6

i=1 m1:2522 m3:3.000 m1:22328

m3:11.00 m3:36.00

m5:100.0

i=2 m2:30417 m2:67692 m4:18.00 m2:1891 m4:34.00

m4:8.000 m4:15.00

i=3 m1:71958 m1:23797 m1:34245 m5:1.000 m2:62414

m2:33652 m4:17.00 m2:23489 m4:8.000

m3:132.0 m5:66.00 m3:18.00 m5:7.000

m5:142.0 m5:54.00

i=4 m1:19874 m1:19790 m1:20336

m3:17.00 m3:15.00 m2:2000

m5:45.00 m3:8.000

m5:15.00

Table 3.20: Optimal solutions of the basic model in Situation 3

j=1 j=2 j=3 j=4 j=5 j=6

i=1 m1:25000

i=2 m2:35671 m4:11.20 m4:27.20 m2:64329

m4:31.55 m4:5.050

i=3 m1:74475 m1:15266 m2:21540 m1:19810 m1:20449

m2:30280 m2:67781 m4:13.65 m4:11.00

m3:103.6

m5:270.0

i=4 m3:25.00 m1:3400 m1:34270 m1:22330

m5:60.00 m3:15.00 m2:2000



3.8. SUPPLEMENT 95

Table 3.21: Optimal solutions of Extended Model 1 in Situation 3

j=1 j=2 j=3 j=4 j=5 j=6

i=1 m1:25000

i=2 m2:12097 m4:1.320 m2:23489 m4:11.92 m4:27.20 m2:64414

m4:29.16 m4:5.400

i=3 m1:49480 m1:3461 m1:34245 m1:22328 m1:20486

m2:53863 m3:16.00 m4:14.56

m3:177.0 m4:10.44

m5:270.0

i=4 m3:40.00 m1:40210 m1:19790

m5:60.00 m2:2000

Table 3.22: Optimal solutions of Extended Model 2 in Situation 3

j=1 j=2 j=3 j=4 j=5 j=6

i=1 m1:2522 m5:24.28 m1:22328

m3:50.00

m5:75.72

i=2 m2:32308 m2:67692 m4:13.00 m4:27.20

m4:16.80 m4:18.00

i=3 m1:71958 m1:23797 m1:34245 m2:62414

m2:33652 m4:3.000 m2:23489 m4:6.000

m3:134.0 m5:11.00 m3:16.00

m5:259.0 m4:16.00

i=4 m3:5.000 m1:19874 m1:19790 m1:20336

m3:16.00 m3:13.00 m2:2000

m5:44.00 m3:6.000

m5:16.00
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Table 3.23: Optimal solutions of the basic model in Situation 4

j=1 j=2 j=3 j=4 j=5 j=6

i=1 m1:25000

i=2 m2:65951 m2:10509 m2:23540 m4:27.20 m4:5.05

m4:31.55 m4:11.20

i=3 m1:29734 m1:43667 m1:34269 m4:11.00 m1:22330 m2:64329

m3:89.59 m2:55272 m4:13.65

m5:270.0 m3:15.00

i=4 m1:19741 m2:2000 m1:19810 m1:20449

m3:40.00

m5:60.00

Table 3.24: Optimal solutions of Extended Model 1 in Situation 4

j=1 j=2 j=3 j=4 j=5 j=6

i=1 m1:25000

i=2 m2:65960 m4:1.320 m4:11.92 m4:27.20 m2:34040

m4:29.16 m4:5.400

i=3 m1:74480 m1:18671 m1:34245 m1:2604 m2:28374

m3:136.7 m2:67706 m2:23489

m5:270.0 m4:10.44 m4:14.56

i=4 m3:24.00 m3:16.00 m1:19790 m1:19724 m1:20486

m5:60.00 m2:2000
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Table 3.25: Optimal solutions of Extended Model 2 in Situation 4

j=1 j=2 j=3 j=4 j=5 j=6

i=1 m1:2522 m5:11.00 m3:16.00 m1:23328

m3:34.00 m5:21.67

m5:67.33

i=2 m2:65153 m2:10551 m2:23489 m2:1807 m4:27.20

m4:16.80 m4:18.00 m4:13.00

i=3 m1:71958 m1:23797 m1:34245 m2:62414

m3:150.0 m2:57141 m4:16.00 m4:6.000

m5:270.0 m4:3.000

i=4 m3:5.000 m1:19874 m1:19790 m1:20336

m3:16.00 m3:13.00 m2:2000

m5:44.00 m3:6.000

m5:16.00

Table 3.26: Numerical results of experimental testing in Situation 1

Basic Extended Extended

Model Model 1 Model 2

average mortality rate 0.498 0.498 0.089

average infection rate 0.373 0.372 0.372

total amount of prophylactic reliefs 436998 436984 436455

total amount of treatment reliefs 177 191 770

cost 481090 610594 464306

physical fragility 2425069 2418231 2420013

psychological fragility 2297467 2323959 1149958
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Table 3.27: Numerical results of experimental testing in Situation 2

Basic Extended Extended

Model Model 1 Model 2

average mortality rate 0.498 0.498 0.089

average infection rate 0.772 0.772 0.772

total amount of prophylactic reliefs 436998 436984 436405

total amount of treatment reliefs 177 191 770

cost 527057 539718 451672

physical fragility 5307370 5307397 5312915

psychological fragility 2171765 2314800 1156000

Table 3.28: Numerical results of experimental testing in Situation 3

Basic Extended Extended

Model Model 1 Model 2

average mortality rate 0.472 0.472 0.303

average infection rate 0.372 0.372 0.372

total amount of prophylactic reliefs 436601 436572 436405

total amount of treatment reliefs 574 603 770

cost 767627 555226 443918

physical fragility 2418860 2418920 2419981

psychological fragility 1942086 1776862 1151773

Table 3.29: Numerical results of experimental testing in Situation 4

Basic Extended Extended

Model Model 1 Model 2

average mortality rate 0.472 0.472 0.304

average infection rate 0.772 0.772 0.772

total amount of prophylactic reliefs 436601 436569 436405

total amount of treatment reliefs 574 606 770

cost 472774 487172 467576

physical fragility 5308059 5308123 5312750

psychological fragility 1759643 1742787 1161607
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Figure 3.6: Sensitive analysis of suffering coefficients with real data
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Chapter 4

Cross-sector Cooperation and

Information Sharing in

Humanitarian Medical Allocation

This chapter presents a cross-sector decision methodology to achieve efficient and ef-

fective humanitarian logistics of emergency reliefs, where a public sector (e.g., the

government) and a private sector are involved. Optimization models of four mech-

anisms are developed: non-cooperation, semi-cooperation with a government leader,

semi-cooperation with a private leader and full cooperation. Optimal solutions are

provided to discuss the differences among these four models and numerical studies are

conducted. The results illustrate that full cooperation is not always the best choice,

while semi-cooperation with information sharing would also achieve potential advan-

tages, even if two sectors made their own decisions separately.

4.1 Introduction

Humanitarian medical logistics is a branch of logistics problems which specializes in or-

ganizing the allocation and delivery of relief during natural disasters or complex emer-

gencies to affected areas and people. Typically, humanitarian medical logistics engages

a large number and variety of sectors, including central governments, local govern-

ments, the military, international organizations and private companies. In Chapter 3,

101
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the decision system with both central and local governments has been discussed. This

chapter will focus on the relation between local governments and private sectors.

Modern information technologies provide potential opportunities to share informa-

tion among different sectors, and to work together to pursue effective and efficient relief

operations. However, each of these sectors may have different missions and capacity,

which contributes to cooperation difficulties. Some of the sectors “often fail to make

the effort, or simply find it too difficult to collaborate” (Fenton, 2003). As such, there

have been few success stories of cooperation and information sharing between public

and private sectors in humanitarian logistics.

Despite the importance and uniqueness of cross-sector cooperation and informa-

tion sharing in relief operations, the literature inadequately addresses this problem.

Considering the gap mentioned in Section 2, a series of cross-sector decision models

are developed in this chapter to discuss different types of cooperation and informa-

tion sharing between public and private sectors. Since logistics accounts for 80% of

relief operations (Van Wassenhove 2006), this chapter focuses on the decision model of

humanitarian logistics. The basic model, which contains a public sector (usually the

government) and a private sector, formulates the optimal decisions of the two sectors,

respectively. Then this chapter presents three more cooperation mechanisms: semi-

cooperation with a private leader, semi-cooperation with a government leader and full

cooperation. The optimal solutions of these four models are provided and compared.

By solving and comparing their optimal solutions, this chapter makes the first step to

understand the differences among these four mechanisms.

The remainder of this chapter is organized as follows. Section 4.2 reviews more

related previous studies based on Chapters 2 and 3. Section 4.3 identifies the problem to

be solved and then develops four optimization models. Optimal solutions and analytical

analyses are provided in Section 4.4. Finally, Section 4.5 concludes the results and

discusses their insights for humanitarian medical logistics.



4.2. LITERATURE REVIEW 103

4.2 Literature Review

Considerable effort has been made to optimize humanitarian logistics in the aftermath

of large-scale disasters (Tofighi et al. 2016, Özdamar and Ertem 2015, Sheu 2014, Liu

and Ye 2014, Galindo and Batta 2013, Zhan et al. 2014, Ben-Tal et al. 2011, Ortuo et

al. 2011, Advar and Mert 2010, Sheu 2007, Altay and Green 2006, Özdamar et al. 2004,

Beraldi et al. 2004). These studies used different methods to minimize distribution time

or shipping distance, cost, the number of wounded and dead people, or to maximize

level of satisfaction of the relief demand. Despite remarkable advances made by them,

government was regarded as the only real decision maker. Nevertheless, the information

and relief resource could be shared with non-governmental organizations and local

private sectors for coordination.

In practice, many other participants, including international and local charity orga-

nizations, private companies and affected people, take part in humanitarian logistics of

emergency relief. The complex situation of humanitarian logistics requires all parties

to share information and work together (Balcik et al. 2010). Stewart et al. (2009)

illustrated that the cooperation level between a government and a private sector after a

disaster affected the resilience of local social and economic system. Maon et al. (2009)

stated that cooperation between government and business could be conducted at three

aspects: financial resources, capacity and entanglement. These studies analyzed the

feasibility and potential advantages of the cooperation of government and private sec-

tors to improve relief operations from the qualitative point of view, but there was a

lack of further appropriate quantitative research.

Focusing on the relationship between public and private sectors, some research on

public private partnership (referred as PPP) facilitates to understanding cross-sector

cooperation in humanitarian logistics. PPP generally refers to various cooperative

or contractual relationship established by public and private sectors so as to provide

public products or services. The skills, information and resources of each sector are

shared in delivering a service or facility for the use of the general public (Bovaird

2004). Since 80s in the 20th century, many countries have actively tried to apply PPP

to the infrastructure and researchers discussed more use of this approach. Bhatak and

Besley (2001) studied ownership structure between a public sector and a private sector
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with an incomplete contract when providing public goods. They studied the applica-

tion of public-private cooperation in providing public goods or services, and further

demonstrated that ownership structure and control configuration influenced coopera-

tion efficiency. By investigating China’s medical and health fields, Zhang et al. (2009)

made a theoretical and empirical study of the cooperation efficiency in PPP. Kivleniece

and Quelin (2012) identified the value creation through a theoretical framework of two

conceptual public-private structural alternatives. Iossa and Martimort (2015) analyzed

several main incentive issues in PPP and the shape of optimal contracts in each context

by a basic model of procurement in a multi-task environment, in which a risk-averse

firm chose non-contractible efforts in cost reduction and quality improvement. Some

other research also studied PPP in the view of contract, risk management and man-

agement mechanism (Savas 2000, Hart 2003, Martimort and Pouyet 2008, Marin 2009,

Grimsey and Lewis 2009, Garvin 2009, Shugart and Alexander 2009, Zhang 2011, Cruz

and Marques 2013, Gurgun and Touran 2013, Hwang et al. 2013). However, as far as

we know, there have not been any studies that combine government and private sectors

together in humanitarian logistics in response to large-scale emergencies.

4.3 Model Development

4.3.1 Assumptions

This chapter considers a two-layer supply chain that involves (1) a logistics hub, and

(2) an affected area in the emergency demand of a specific kind of relief. The emergency

relief need to be delivered from the hub to the affected area. A public sector and a

private sector take part in humanitarian logistics at the same time. The government

usually plays the role of public sector and the private sector could be a private firm

or a non-government organization. These two decision makers gather relief in logistics

hub, and then distributes appropriately to the affected area, respectively.

Based on the above description, three basic assumptions are made to facilitate the

model formulation.

(1) The affected area can only get relief from these two specific sectors from the

logistics hub.
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(2) The maximal available amounts of supply and the inventory in the affected area

are known at the beginning of a decision period.

(3) The geographic information of both affected area and logistics hub is known

because they have been established before emergencies.

On the basis of these assumptions, the following subsection presents four optimiza-

tion models for the decision-making in humanitarian logistics. The differences among

these models are summarized in Table 4.1.

Table 4.1: Description of the four proposed models

Cross-sector Relationship Decision-making Mode

Model 1 Non-cooperation Independent decision

Model 2 Semi-cooperation Independent decision

with a private leader with information sharing

Model 3 Semi-cooperation Independent decision

with a government leader with information sharing

Model 4 Cooperation The government makes decision

4.3.2 Notations

Notations used in this chapter are as follows:

Parameters:

D: A random variable referring to demand for relief in the affected area, D ≥ 0

g(D): The probability distribution function of D

G(D): The cumulative distribution function of D

I: Inventory of relief in the affected area, I ≥ 0

QG: Available amount of relief in the logistics hub owned by the government, QG ≥ 0

QP : Available amount of relief in the logistics hub owned by the private sector, QP ≥ 0

c: Unit supply cost from the logistics hub to the affected area, c > 0
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R0: Fixed rewards to the private sector for participating in humanitarian logistics,

R0 > 0

r: Rewards coefficient to the private sector for delivering per unit relief, r > 0

s: Extra subsidy given to the private sector for per unit relief delivered to the affected

area, s > 0

α: Penalty per unit of oversupply, α > 0

β: Penalty per unit of unfulfilled demand , β > 0

Decision variables:

xG: Amount of relief, which are owned by the government and sent to the affected area

xP : Amount of relief, which are owned by the private sector and sent to the affected

area

4.3.3 Model 1: Non-cooperation

The government aims to maximize social welfare when making the humanitarian logis-

tics decision. The optimization model for the government is

min UG
1

(

xG
)

= E{α
(

xG + I −D
)+

+ β
(

D − xG − I
)+

+ cxG} (4.1)

s.t.

0 ≤ xG ≤ QG (4.2)

where E refers to the expected value. α
(

xG + I −D
)+

and β
(

D − xG − I
)+

refer

to the penalties of oversupply and unfulfilled demand, respectively. (xG + I − D)+

is the amount of oversupplied relief in the affected area, while (D − xG − I)+ is the

amount of unfulfilled demand. α and β are the penalty coefficients. cxG is the supply

cost, including purchasing cost and delivery cost. The objective is to minimize the

expectation of penalty and cost. Eq.(4.2) ensures that the amount of emergency relief

sent by the government does not exceed the available amount.

Meanwhile for the private sector, the primary objective is to gain its reputation,

which is related to the amount of helpful relief delivered by the private sector. The
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optimization model for the private sector is

max UP
1

(

xP
)

= E{R0 + rmin{xP , (D − I)+} − cxP } (4.3)

s.t.

0 ≤ xP ≤ QP (4.4)

In Eq.(4.3), min{xP , (D − I)+} refers to the amount of emergency relief that would be

used in the affected area. R0 is fixed rewards to the private sector for participating

in humanitarian logistics and r is the rewards coefficient for delivering per unit useful

relief. Similar to the government, cxP is supply cost and Eq.(4.4) ensures that the

amount of allocated relief does not exceed the available amount of private sector.

On the basis of Model 1, we formulate three more decision models with cross-sector

cooperation and information sharing.

4.3.4 Model 2: Semi-cooperation with a private leader

With the semi-cooperation strategy, the two sectors share information about the ob-

jective and constrains but make their own logistics decisions, respectively. In Model 2,

the private sector is regarded as the leader and government follows its decision, while

Model 3 in the next sub-section regards the government as the leader.

First stage (private sector)

max UP
2

(

xP
)

= E{R0 + rmin{xP , (D − I)+} − cxP } (4.5)

s.t.

0 ≤ xP ≤ QP (4.6)

Second stage (government)

min UG
2

(

xG
)

= E{α
(

xG + xP∗ + I −D
)+

+ β
(

D − xG − xP∗ − I
)+

+ cxG} (4.7)

s.t.

0 ≤ xG ≤ QG (4.8)

where xP∗ is the optimal solution of the first stage.
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4.3.5 Model 3: Semi-cooperation with a government leader

Similar to Model 2, The optimization mode in this situation is formulated as follows.

First stage (government):

min UG
3

(

xG
)

= E{α
(

xG + xP + I −D
)+

+ β
(

D − xG − xP − I
)+

+ cxG} (4.9)

s.t.

0 ≤ xG ≤ QG (4.10)

Second stage (private sector)

max UP
3

(

xP
)

= E{R0 + rmin{xP ,
(

D − I − xG∗
)+

} − cxP } (4.11)

s.t.

0 ≤ xP ≤ QP (4.12)

where xG∗ is the optimal solution of the first stage.

4.3.6 Model 4: Full cooperation

With full cooperation strategy, the two sectors share related information about each

other and the government makes the logistics decision of both sectors to pursue better

social welfare. The private sector gets subsidy from government for its contribution.

The optimization model is

min UG
4

(

xG, xP
)

= E{α
(

xG + xP + I −D
)+

+ β
(

D − xG − xP − I
)+

+ cxG + sxP }

(4.13)

s.t.

E{R0 + rmin{xP , (D − I)+}+ sxP − cxP } ≥ UP∗
1 (4.14)

0 ≤ xG ≤ QG (4.15)

0 ≤ xP ≤ QP (4.16)

where UP∗
1 is the optimal value of UP

1 in Model 1.

In Eq.(4.13), sxP refers to subsidy paid to the private sector and the other terms are

similar to other models. Eq.(4.14) ensures that the private sector gains expected ben-

efits not lower than in non-cooperation situation; otherwise, the private sector would
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refuse to cooperate with the government. Eqs.(4.15) and (4.16) ensure that the aggre-

gate amounts of relief delivered by the government and the private sector do not exceed

corresponding available amounts, respectively.

4.4 Analytical Analyses

This section firstly finds the optimal solutions of the four models respectively and then

discusses their differences.

4.4.1 Analytical Solution of Model 1

For Model 1, Eq.(4.1) (the objective function of government) can be written as

UG
1

(

xG
)

= α

∫ xG+I

0

(

xG + I −D
)

g(D) dD + β

∫ ∞

xG+I

(

D − xG − I
)

g(D) dD + cxG

In Eq.(4.3) (the objective function of the private sector),

min{xP , (D − I)+} =



























0 , D ≤ I

xP , D > I and xP < D − I

D − I , D > I and xP ≥ D − I

That is,

min{xP , (D − I)+} =



























0 , D ≤ I

D − I , I < D ≤ xP + I

xP , D > xP + I

Thus Eq.(4.3) can be written as

UP
1

(

xP
)

= R0 + r

∫ xP+I

I

(D − I) g (D) dD + r

∫ ∞

xP+I

xP g (D) dD − cxP

Proposition 4.1 can be obtained.

Proposition 4.1.

(1) UG
1 is convex in xG and xG∗ = min{QG,

(

G−1( β−c
α+β

)− I
)+

};

(2) UP
1 is concave in xP and xP∗ = min{QP ,

(

G−1( r−c
r
)− I

)+
};

where xG∗ and xP∗ refer to the optimal solutions of decision variables xG and xP ,

respectively.
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Proposition 4.1 presents the optimal solutions of government and the private sector,

respectively. This proposition and Fig. 4.1(1-1) show that both xG and xP are decreas-

ing in inventory I. However, due to their non-cooperation, relief may be oversupplied

and it would lead to a threat to rescue operations, such as traffic jams, unordered

storage yards and secondary disasters.

It is worth noting that in some special situations, government may take no account

of its cost for humanitarian reasons. That is, in the objection function UG
1 (xG), c is set

as 0. On this condition, xG∗ = min{QG,
(

G−1( β
α+β

)− I
)+

} to reach maximum social

welfare.
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Figure 4.1: Optimal solutions of Model 1 and Model 2
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4.4.2 Analytical Solution of Model 2

For Model 2, similar to Model 1, the objective functions can be written as:

UP
2

(

xP
)

= R0 + r

∫ xP+I

I

(D − I) g (D) dD + r

∫ ∞

xP+I

xP g (D) dD − cxP

and

UG
2 (xG) =α

∫ xG+xP∗+I

0
(xG + xP∗ + I −D)g(D) dD

+ β

∫ ∞

xG+xP∗+I

(D − xG − xP∗ − I)g(D) dD + cxG

where xP∗ refers to the optimal solution of the first stage.

Proposition 4.2 can be obtained.

Proposition 4.2.

(1) UG
2 is convex in xG and UP

2 is concave in xP .

(2) The optimal solution of Model 2 is

xP∗ = min{QP ,

(

G−1(
r − c

r
)− I

)+

}

xG∗ = min{QG,

(

G−1(
β − c

α+ β
)− I − xP∗

)+

}

= min{QG,

(

G−1(
β − c

α+ β
)− I −min{QP ,

(

G−1(
r − c

r
)− I

)+

}

)+

}

Proposition 4.2 and Fig. 4.1(2-1)(2-2)(2-3) present the optimal solution of Model 2.

Since xP∗ is decided in the first stage and the objective of the private sector is to gain

its own reputation, the decision of the private sector is not affected by the government.

Thus, the optimal solution of the private sector using Model 2 is the same as Model

1. In the second stage, the government knows the objective function and solution of

the private sector. So its optimal solution is related with the private decision and is

decreasing in both I and xP∗.
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4.4.3 Analytical Solution of Model 3

Model 3 can be solved in a similar way. We defined vectors z1, z2, z3, z4 and z5 as:

z1 = (min{QG,

(

G−1(
β − c

α+ β
)−QP − I

)+

}, QP )

z2 = (min{G−1(
r − c

r
)−QP − I,

(

G−1(
β − c

α+ β
)−QP − I

)+

}, QP )

z3 = (0, G−1(
r − c

r
)− I)

z4 = (median{QG, G−1(
r − c

r
)− I,G−1(

β − c

α+ β
)− I}, 0)

z5 = (min{QG,

(

G−1(
β − c

α+ β
)− I

)+

}, 0)

Proposition 4.3 gives the optimal solution of Model 3.

Proposition 4.3.

(1) UG
3 is convex in xG and UP

3 is concave in xP .

(2) The optimal solution of Model 3 is

(xG∗, xP∗)

=







































































z1 , I ≤ G−1( r−c
r
)−QP −QG

z2 , G−1( r−c
r
)−QP −QG < I ≤ G−1( r−c

r
)−max{QP , QG}

z3 , G−1( r−c
r
)−max{QP , QG} < I ≤ G−1( r−c

r
)−min{QP , QG} and QP > QG

z4 , G−1( r−c
r
)−max{QP , QG} < I ≤ G−1( r−c

r
)−min{QP , QG} and QP ≤ QG

or G−1( r−c
r
)−min{QP , QG} < I ≤ G−1( r−c

r
)

z5 , I > G−1( r−c
r
)

Proposition 4.3 presents the optimal solution of Model 3. In the first stage, the

government has to take the private sector into consideration according to its knowledge

about the private objective. Then in the second stage, the optimal solution of the

private sector is related with the government’s decision. Therefore, both the two sectors

make their decisions different from Model 1 and Model 2. It can be seen from the

proposition and Fig. 4.2 that the optimal solutions are not only affected by inventory

I, but also by the relationship between QG and QP . xP∗ is still decreasing in I, while

xG∗ is discontinues and piecewise decreasing in I. The discontinues point is related

with QG and QP .
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Figure 4.2: Optimal solution of Model 3



114 CHAPTER 4. CROSS-SECTOR COOPERATION IN ALLOCATION

4.4.4 Analytical Solution of Model 4

For Model 4,

∂UG
4

(

xG, xP
)

∂xG
= (α+ β)G

(

xG + xP + I
)

− β + c

∂2UG
4

(

xG, xP
)

∂(xG)2
= (α+ β) g

(

xG + xP + I
)

≥ 0

∂UG
4

(

xG, xP
)

∂xP
= (α+ β)G

(

xG + xP + I
)

− β + s

∂2UG
4

(

xG, xP
)

∂(xP )2
= (α+ β) g

(

xG + xP + I
)

≥ 0

Thus, UG
4 is convex in xG and xP , respectively.

Set L(xP ) = E{R0 + rmin{xP , (D − I)+} + sxP − cxP } and UP∗
1 = UP

1 (y∗) Ob-

viously, L(xP ) is concave in xP and maxL(y) ≥ L(y∗) ≥ UP
1 (y∗) = UP∗

1 (note that

s > 0). We can obtain the following three properties of function L(xP ):

L(0) = R0

and

lim
xP→+∞

L(xP ) = E{R0 + r (D − I)+ + lim
xP→+∞

(s− c)xP }

=



























−∞ , s < c

R0 + E{r (D − I)+} , s = c

+∞ , s > c

and

lim
xP→−∞

L(xP ) = R0 + lim
xP→−∞

(r + s− c)xP =



























+∞ , r + s < c

R0 , r + s = c

−∞ , r + s > c

To facilitate solving of Model 4, the following paragraphs define three more nota-

tions: y0, y1 and y2, and proof their existence. Then the first constraint of Model 4

can be simplified.

If s > c, then dL(xP )
dxP = −rG(xP + I) + r + s − c ≥ s − c > 0, so L(xP ) is strictly

increasing in xP . And since L(0) = R0 and lim
xP→+∞

L(xP ) ≥ UP∗
1 , there exists a unique
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y0 ≥ 0, such that L(y0) = UP∗
1 . The first constraint of Model 4 is equivalent to xP ≥ y0.

Note L(y∗) ≥ UP
1 (y∗) = UP∗

1 = L(y0), we can obtain y∗ ≥ y0. Since 0 ≤ y∗ ≤ QP ,

y0 ≤ QP . That is, 0 ≤ y0 ≤ QP .

If s = c, then dL(xP )
dxP = −rG(xP + I) + r + s− c ≥ 0, so L(xP ) is increasing in xP .

Similar to s > c, there exists a y0, such that 0 ≤ y0 ≤ QP and L(y0) = UP∗
1 . The first

constraint of Model 4 is equivalent to xP ≥ y0.

If c − r < s < c, then lim
xP→+∞

L(xP ) = −∞, lim
xP→−∞

L(xP ) = −∞ and maxL(y) ≥

UP∗
1 . Thus, there exists a y1 and a y2, such that y1 < y2 and L(y1) = L(y2) = UP∗

1 .

The first constraint of Model 1 is equivalent to y1 ≤ xP ≤ y2. Since L(y∗) ≥ UP
1 (y∗) =

UP∗
1 = L(y1) = L(y2) and L(xP ) is concave in xP , y1 ≤ y∗ ≤ y2. Recall 0 ≤ y∗ ≤ QP ,

so y2 > 0 and y1 < QP .

If s ≤ c − r, then dL(xP )
dxP = −rG(xP + I) + r + s − c ≤ 0, so L(xP ) is decreasing

in xP . According to Model 1, when c − r ≥ s > 0, UP∗
1 = UP

1 (0) = R0. So the first

constraint of Model 4 is equivalent to xP = 0.

Thus, Proposition 4.4 provides the optimal solution of Model 4.

Proposition 4.4.

(1) When s > c, the optimal solution of Model 4 is

(xG∗, xP∗)

=























































(QG, QP ) , I ≤ G−1( β−s
α+β

)−QG −QP

(QG, G−1( β−s
α+β

)− I −QG) , G−1( β−s
α+β

)−QG −QP < I ≤ G−1( β−s
α+β

)−QG − y0

(QG, y0) , G−1( β−s
α+β

)−QG − y0 < I ≤ G−1( β−c
α+β

)−QG − y0

(G−1( β−c
α+β

)− I − y0, y0) , G−1( β−c
α+β

)−QG − y0 < I ≤ G−1( β−c
α+β

)− y0

(0, y0) , I > G−1( β−c
α+β

)− y0

(2) When s = c, define a set R2 as {(xG, xP ) : xG ∈ [0, QG], xP ∈ [y0, Q
P ], xG +

xP = G−1( β−s
α+β

)− I}. The optimal solution of Model 4 is

(xG∗, xP∗) =



























(QG, QP ) , I < G−1( β−s
α+β

)−QG −QP

Any point in R2 , G−1( β−s
α+β

)−QG −QP < I ≤ G−1( β−s
α+β

)− y0

(0, y0) , I > G−1( β−s
α+β

)− y0
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(3) When c− r < s < c, the optimal solution of Model 4 is

(xG∗, xP∗)

=







































































































(QG,min{y2, Q
P }) , I ≤ G−1( β−c

α+β
)−min{y2, Q

P } −QG

(G−1( β−c
α+β

)− I −min{y2, Q
P },min{y2, Q

P }) , G−1( β−c
α+β

)−min{y2, Q
P } −QG

< I ≤ G−1( β−c
α+β

)−min{y2, Q
P }

(0,min{y2, Q
P }) , G−1( β−c

α+β
)−min{y2, Q

P }

< I ≤ G−1( β−s
α+β

)−min{y2, Q
P }

(0, G−1( β−s
α+β

)− I) , G−1( β−s
α+β

)−min{y2, Q
P }

< I ≤ G−1( β−s
α+β

)− y+1

(0, y+1 ) , I > G−1( β−s
α+β

)− y+1

(4) When s ≤ c− r, the optimal solution of Model 4 is

xG∗ = min{
(

G−1( β−c
α+β

)− I
)+

, QG} and xP∗ = 0.

Proposition 4.4 gives the optimal solution of Model 4. Recall s refers to extra

subsidy given to the private sector. The solution is affected by the value of subsidy and

cost, because they affect benefits of the private sector and payments of the government.

When s ̸= c, xG∗, xP∗ and xG∗ + xP∗ are all decreasing in inventory I. When s = c

and G−1( β−s
α+β

)−QG −QP < I ≤ G−1( β−s
α+β

)− y0, the model has infinite solutions but

xG∗ + xP∗ is also decreasing in inventory I.

4.4.5 Analytical Comparison of Four Models

Set xP∗
i and xG∗

i as the optimal solution of Model i. Theorem 4.5 compares the optimal

solutions of the four models.

Theorem 4.5.

(1) If I ≤ G−1( β−c
α+β

)−QG −QP , then xG∗
i = QG and xP∗

i = QP (i = 1, 2, 3, 4);

(2) If I ≥ max{G−1( β−c
α+β

), G−1( r−c
r
)}, then xG∗

i = xP∗
i = 0 (i = 1, 2, 3, 4);

(3) If G−1( β−c
α+β

) −QG −QP < I < max{G−1( β−c
α+β

), G−1( r−c
r
)}, then xP∗

4 + xG∗
4 ≤

xP∗
i + xG∗

i (i = 1, 2, 3).
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The theorem indicates that when inventory is very low (I ≤ G−1( β−c
α+β

)−QG−QP )

or high (I ≥ max{G−1( β−c
α+β

), G−1( r−c
r
)}), the four models would get the same solutions.

When inventory is moderate (G−1( β−c
α+β

)−QG−QP < I < max{G−1( β−c
α+β

), G−1( r−c
r
)}),

the results are different. It is generally believed that full cooperation is the best strat-

egy to peruse better social welfare, because government is the only decision maker in

this situation. However, this theorem shows different ideas, since the solution of full

cooperation depends on the value of subsidy. Although the government tries to improve

social welfare, he has to pay subsidy and ensures that the private sector would gain

more or equal benefits to maintain their cooperation. As a result, the affected area

may get less relief than other three models.

In addition, Theorem 4.6 makes a further comparison between Models 1, 2 and 3.

Theorem 4.6.

When G−1( β−c
α+β

)−QG−QP < I < max{G−1( β−c
α+β

), G−1( r−c
r
)}, the optimal solution

of Models 1, 2 and 3 have the following relation:

(1) If G−1( r−c
r
) ≤ G−1( β−c

α+β
)−QG, then

xP∗
1 = xP∗

2











≤ xP∗
3 , QP > QG

≥ xP∗
3 , QP ≤ QG

xG∗
1 = xG∗

2 ≥ xG∗
3

xP∗
1 + xG∗

1 = xP∗
2 + xG∗

2 ≥ xP∗
3 + xG∗

3

(2) If G−1( β−c
α+β

)−QG < G−1( r−c
r
) ≤ G−1( β−c

α+β
), then

xP∗
1 = xP∗

2 ≥ xP∗
3

xG∗
1 ≥ xG∗

2 ≥











xG∗
3 , QP > QG

0 , QP ≤ QG

xP∗
1 + xG∗

1 ≥ xP∗
2 + xG∗

2 ≥ xP∗
3 + xG∗

3

(3) If G−1( r−c
r
) > G−1( β−c

α+β
), then

xP∗
1 = xP∗

2 = xP∗
3

xG∗
1 ≥ xG∗

2 = xG∗
3

xP∗
1 + xG∗

1 ≥ xP∗
2 + xG∗

2 = xP∗
3 + xG∗

3



118 CHAPTER 4. CROSS-SECTOR COOPERATION IN ALLOCATION

Theorem 4.6 presents the differences of two semi-cooperation models and shows

their potential advantages. The differences among Models 1, 2 and 3 depend on the

relationship between r−c
r

and β−c
α+β

. With a smaller r−c
r
, the private sector tends to

deliver less relief, while it tends to deliver more relief with a greater r−c
r
. This preference

affects the government’s decision. But regardless of the relationship between r−c
r

and

β−c
α+β

, the total amounts delivered to the affected area by semi-cooperation models are

less than or equal to Model 1 (non-cooperation model), and the amount decided by

Model 3 (government leader) is always less than or equal to that by Model 2 (private

leader).

4.5 Numerical Studies

This section develops numerical studies to further understand and compare the four

proposed models. All computational processes are conducted with MATLAB on a

computer with a 2.69GHz CPU and 8G RAM.

4.5.1 Study 1

This study is designed to analyze how optimal solution would change with different

value of inventory (I) and unit subsidy (s). Parameters are set as follows: α = 0.3,

β = 0.7, c = 0.4, r = 0.6, QG = 15, QP = 25 and R0 = 10. D follows a normal

distribution, of which the mean is 55 and variance is 5. s is set as s = 0.5 when doing

sensitivity analysis of I, while I = 20 when analyze s.
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Figure 4.3: Optimal solution of Model 4 regarding I
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Fig. 4.3 illustrates that as I increases, both xP∗ and xG∗ decrease and the total

amount of delivered relief also decrease. But the rates of decrease are less than other

three models if I is greater than 28 and less than 52. When inventory is enough

(I > 52), xP∗ = xG∗ = 0.
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Figure 4.4: Optimal solution of Model 4 regarding s

Fig. 4.4 reports the effects of s. Recall c = 0.4. When unit subsidy is less than unit

cost, the government tends to deliver more relief by the private sector and less relief

by itself. When unit subsidy is greater than unit cost, the government delivers relief

by itself as much as possible (xG∗ = QG) and the private sector delivers less. However,

the relation between s and xP∗ is not linear. As a result, the total amount of relief

(xP∗ + xQ∗) also decreases as s increases when subsidy is greater than cost.

4.5.2 Study 2

This study makes a comparison of the four proposed models. Table 4.2 and Table 4.3

report the optimal solutions of the four models. I is set as 20 and 45, respective. Other

parameters are the same as Study 1.

Table 4.2: Comparison of four models (I = 20)

Model 1 Model 2 Model 3 Model 4

xG∗ 15.00 7.38 7.38 15.00

xP∗ 25.00 25.00 25.00 15.79

xG∗ + xP∗ 40.00 32.38 32.38 30.79

G−1( β
α+β

)− I − xG∗ − xP∗ -7.62 0.00 0.00 1.59
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Table 4.3: Comparison of four models (I = 45)

Model 1 Model 2 Model 3 Model 4

xG∗ 7.38 0.00 7.85 5.23

xP∗ 7.85 7.85 0.00 2.15

xG∗ + xP∗ 15.22 7.85 7.85 7.38

G−1( β
α+β

)− I − xG∗ − xP∗ -7.84 -0.46 -0.46 0.01

Note that G−1
(

β
α+β

)

is the optimal value of social welfare. G−1( β
α+β

)− I − xG∗ −

xP∗ < 0 refers to oversupplied amount and G−1( β
α+β

)− I −xG∗−xP∗ > 0 refers to the

amount of unfulfilled demand. The results are in accordance with analytical analysis.

The total amounts delivered to the affected area by two semi-cooperation models are

less than Model 1 and greater than Model 4. Full cooperation may result in insufficient

delivery of relief.

4.5.3 Study 3

This study tests how the optimal solutions change when α and r change. Other pa-

rameters are set the same as Study 1.
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Figure 4.5: Sensitivity analysis of α

It can be seen in Fig. 4.5 that xG∗ decreases as α increases and xP∗ remains

unchanged in Models 2 and 3, since α is not considered in the objective of the private
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Figure 4.6: Sensitivity analysis of r

sector. But xG∗ in Model 1 also remains unchanged because the maximum available

amounts of a single sector are not enough. Additionally, in model 4, xP∗ decreases

as α increases, which is different from the other three models. The reason is in full

cooperation, government is the decision maker.

Fig. 4.6 shows how the value of r affects optimal solutions. In Models 1, 2 and 3,

xP∗ = 0 when r = c (c = 0.4), while xP∗ is greater than 0 and remains unchanged

when r > c. xG∗ in Model 1 is not affected by r. In semi-cooperation (Models 2 and

3), the government’s decision takes xP∗ into account so xG∗ is reduced when r > c.

However, xG∗ increases as r increases in the interval 0.4 < r < 0.6. The result of Model

4 illustrates that both xG∗ and xP∗ are not affected by r. It would be a potential

advantage of full cooperation model in practice if r is difficult to estimate.

4.6 Discussion

The results in this chapter demonstrate several managerial insights. First, the results

illustrate significant impacts of subsidy in full cooperation mechanism. The government

has to pay extra subsidy to the private sector to ensure their cooperation relationship.

With low subsidy and corresponding benefits, the private sector may refuse to cooperate

with the government. That is why in practice policy makers find it challenging to

cooperate effectively with private sectors. However, in some situations, more subsidy
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results in insufficient delivery of relief.

Second, regarding the operations in semi-cooperation mechanism, the government

and the private sector share related information with each other, but make their

decisions independently. Semi-cooperation models show the same solutions as non-

cooperation model when inventory is very low or high. When inventory is moderate,

the optimal solutions of the private sector are still the same while solutions of the gov-

ernment are different. The total amount of relief delivered to the affected area by the

two semi-cooperation models is always less than or equal to that by the non-cooperation

model, and the allocated amount in semi-cooperation with a government leader is al-

ways less than or equal to that with a private leader. Our study also finds that the

difference among these three models is affected by rewards coefficient, supply cost and

penalty coefficients.

In addition, the results provide the private sector with important strategic advice on

full cooperation with the government, because full cooperation always leads to benefits

no less than non-cooperation mechanism. Meanwhile, the choice of the government is

much more complex. In general, when inventory is adequately low or high, the non-

cooperation model is suggested; while when inventory is moderate, semi-cooperation

models based on information sharing become the best choice. Particularly, full cooper-

ation would have advantages if the reward coefficient is difficult to estimate. However,

in the long term, note the optimal solution of full cooperation model is affected by the

subsidy paying to the private sector. Thus, if the two sectors could sign an agreement

about corresponding subsidy before the emergency occurs, then the full cooperation

model would have opportunities to achieve better social welfare.

4.7 Summary

This chapter focuses on cross-sector cooperation and information sharing in humanitar-

ian logistics of emergency relief in the aftermath of emergencies. The goals of govern-

ment and private sectors conflict in some situations since the former aims to maximize

social welfare, while private sectors pursue their own reputation rewards. In terms of

the relationship between government and a private sector, four optimization models are

developed: non-cooperation, semi-cooperation with a private leader, semi-cooperation
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with a government leader and full cooperation models. This chapter provides the opti-

mal solutions of these four models and compares them by both analytical and numerical

studies.

4.8 Proofs of Propositions and Theorems in this Chapter

Proof of Proposition 4.1.

For the government:

dUG
1

(

xG
)

dxG
= α

∫ xG+I

0
g(D) dD − β

∫ ∞

xG+I

g(D) dD + c = (α+ β)G
(

xG + I
)

− β + c

d2UG
1

(

xG
)

d(xG)2
= (α+ β) g

(

xG + I
)

≥ 0

Thus, UG
1 is convex in xG,

(α+ β)G
(

xG + I
)

− β + c = 0

⇔ xG = G−1

(

β − c

α+ β

)

− I

⇒ xG∗ = min{QG,

(

G−1

(

β − c

α+ β

)

− I

)+

}

For the private sector:

dUP
1

(

xP
)

dxP
= r

∫ ∞

xP+I

g(D) dD − c = −rG(xp + I) + r − c

d2UP
1

(

xP
)

d(xP )2
= −rg(xp + I) ≤ 0

Thus, UP
1 is concave in xP , and

− rG(xp + I) + r − c = 0

⇔ xP = G−1(
r − c

r
)− I

⇒ xP∗ = min{QP ,

(

G−1(
r − c

r
)− I

)+

}

Proof of Proposition 4.2.

We firstly solve the second stage and then find optimal solution of the first stage.
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The second stage (decision of government):

dUG
2 (xG)

dxG
= (α+ β)G(xG + xP∗ + I)− β + c

d2UG
2

(

xG
)

d(xG)2
= (α+ β)g(xG + xP∗ + I) ≥ 0

Thus, UG
2 is convex in xG, and the optimal solution of the second stage is

xG∗ = min{QG,

(

G−1(
β − c

α+ β
)− I − xP∗

)+

}

First stage (decision of the private sector):

According to the formulation of UP
2 (xP ), the decision of the private sector is not

affected by the government. Thus, the solution of this stage is the same as that of

Model 1. That is, xP∗ = min{QP ,
(

G−1( r−c
r
)− I

)+
}

Therefore, the optimal solution of Model 2 is

xP∗ = min{QP ,

(

G−1(
r − c

r
)− I

)+

}

and

xG∗ = min{QG,

(

G−1(
β − c

α+ β
)− I − xP∗

)+

}

= min{QG,

(

G−1(
β − c

α+ β
)− I −min{QP ,

(

G−1(
r − c

r
)− I

)+
)+

}

Proof of Proposition 4.3.

Second stage (decision of the private sector):

Similar to Model 1, we can obtain with any given xG

xP∗ = min{QP ,

(

G−1(
r − c

r
)− I − xG

)+

}

where xG∗ refers to the optimal solution of the first stage.

First stage (decision of the government):
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(a) If xG ≥ G−1( r−c
r
)− I, then xP∗ = 0 and

xG ∈



























∅ , I < G−1( r−c
r
)−QG

[G−1( r−c
r
)− I,QG] , G−1( r−c

r
)−QG ≤ I ≤ G−1( r−c

r
)

[0, QG] , I > G−1( r−c
r
)

UG
3 (xG) = E{α

(

xG + I −D
)+

+ β
(

D − xG − I
)+

+ cxG}

= α

∫ xG+I

0

(

xG + I −D
)

g(D) dD + β

∫ ∞

xG+I

(

D − xG − I
)

g(D) dD + cxG

Thus,

dUG
3

(

xG
)

dxG
= (α+ β)G(xG + I)− β + c

d2UG
3

(

xG
)

d(xG)2
= (α+ β)g(xG + I) ≥ 0

UG
3 (xG) is convex in xG and the first order condition is xG = G−1( β−c

α+β
)− I. So in this

situation, the optimal solution is

xG∗ =











































no feasible solution , I < G−1( r−c
r
)−QG

median{QG, G−1( β−c
α+β

)− I,G−1( r−c
r
)− I} , G−1( r−c

r
)−QG ≤ I

≤ G−1( r−c
r
)

min{QG,
(

G−1( β−c
α+β

)− I
)+

} , I > G−1( r−c
r
)

(b) If G−1( r−c
r
)− I −QP < xG < G−1( r−c

r
)− I, then xP∗ = G−1( r−c

r
)− I − xG.

UG
3 (xG) =E{α

(

xG +G−1(
r − c

r
)− I − xG + I −D

)+

+ β

(

D − xG −G−1(
r − c

r
) + I − xG − I

)+

+ cxG}

=E{α

(

G−1(
r − c

r
)−D

)+

+ β

(

D −G−1(
r − c

r
)

)+

+ cxG}

Since in this situation,
dUG

3 (xG)
dxG = c is a constant,

(xG∗, xP∗) =























































no feasible solution , I ≤ G−1( r−c
r
)−QP −QG

(G−1( r−c
r
)−QP − I,QP ) , G−1( r−c

r
)−QP −QG < I

≤ G−1( r−c
r
)−QP

(0, G−1( r−c
r
)− I) , G−1( r−c

r
)−QP < I ≤ G−1( r−c

r
)

no feasible solution , I > G−1( r−c
r
)
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.

(c) If xG ≤ G−1( r−c
r
)− I −QP , then xP∗ = QP and

xG ∈



























[0, QG] , I ≤ G−1( r−c
r
)−QP −QG

[0, G−1( r−c
r
)− I −QP ] , G−1( r−c

r
)−QP −QG < I ≤ G−1( r−c

r
)−QP

∅ , I > G−1( r−c
r
)−QP

UG
3 (xG) = E{α

(

xG +QP + I −D
)+

+ β
(

D − xG −QP − I
)+

+ cxG}

dUG
3

(

xG
)

dxG
= (α+ β)G

(

xG +QP + I
)

− β + c

d2UG
1

(

xG
)

d(xG)2
= (α+ β) g

(

xG +QP + I
)

≥ 0

Therefore, UG
3 (xG) is convex in xG and the first order condition is xG = G−1

(

β−c
α+β

)

−

QP − I. In this situation, the optimal solution is

xG∗ =







































































min{QG,
(

G−1
(

β−c
α+β

)

−QP − I
)+

} ,

if I ≤ G−1( r−c
r
)−QP −QG

min{G−1( r−c
r
)−QP − I,

(

G−1
(

β−c
α+β

)

−QP − I
)+

} ,

if G−1( r−c
r
)−QP −QG < I ≤ G−1( r−c

r
)−QP

no feasible solution ,

if I > G−1( r−c
r
)−QP

Therefore, when QP > QG the optimal solution of Model 3 is

(xG∗, xP∗) =























































z1 , I ≤ G−1( r−c
r
)−QP −QG

z2 , G−1( r−c
r
)−QP −QG < I ≤ G−1( r−c

r
)−QP

z3 , G−1( r−c
r
)−QP < I ≤ G−1( r−c

r
)−QG

z4 , G−1( r−c
r
)−QG < I ≤ G−1( r−c

r
)

z5 , I > G−1( r−c
r
)
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When QP ≤ QG the optimal solution of Model 3 is

(xG∗, xP∗) =























































z1 , I ≤ G−1( r−c
r
)−QP −QG

z2 , G−1( r−c
r
)−QP −QG < I ≤ G−1( r−c

r
)−QG

z4 , G−1( r−c
r
)−QG < I ≤ G−1( r−c

r
)−QP

z4 , G−1( r−c
r
)−QP < I ≤ G−1( r−c

r
)

z5 , I > G−1( r−c
r
)

Combine the situations of QP > QG and QP ≤ QG together, we can get this proposi-

tion.

Proof of Proposition 4.4(1).

In this situation, the optimal solution (xG∗, xP∗) is subjected to xG∗ = QG or

xP∗ = y0. We can calculate that given xG = QG, xP∗ = min{max{y0, G
−1( β−s

α+β
)− I −

QG}, QP }, and given xP = y0, x
G∗ = min{

(

G−1( β−c
α+β

)− I − y0

)+
, QG}.

Thus, (xG∗, xP∗) ∈ {z6, z7}, where

z6 =



























(QG, y0) , G−1( β−s
α+β

)− I −QG < y0

(QG, G−1( β−s
α+β

)− I −QG) , y0 ≤ G−1( β−s
α+β

)− I −QG < QP

(QG, QP ) , G−1( β−s
α+β

)− I −QG ≥ QP

and

z7 =



























(0, y0) , G−1( β−c
α+β

)− I − y0 < 0

(G−1( β−c
α+β

)− I − y0, y0) , 0 ≤ G−1( β−c
α+β

)− I − y0 < QG

(QG, y0) , G−1( β−c
α+β

)− I − y0 ≥ QG

That is

z6 =











































(QG, QP ) , I ≤ G−1( β−s
α+β

)−QG −QP

(QG, G−1( β−s
α+β

)− I −QG) , G−1( β−s
α+β

)−QG −QP < I

≤ G−1( β−s
α+β

)−QG − y0

(QG, y0) , I > G−1( β−s
α+β

)−QG − y0
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and

z7 =



























(QG, y0) , I ≤ G−1( β−c
α+β

)−QG − y0

(G−1( β−c
α+β

)− I − y0, y0) , G−1( β−c
α+β

)−QG − y0 < I ≤ G−1( β−c
α+β

)− y0

(0, y0) , I > G−1( β−c
α+β

)− y0

Since s > c and y0 ≤ QP , G−1( β−s
α+β

) − QG − QP ≤ G−1( β−s
α+β

) − QG − y0 <

G−1( β−c
α+β

)−QG − y0 ≤ G−1( β−c
α+β

)−QG.

(1) If I ≤ G−1( β−s
α+β

) − QG − QP , then z6 = (QG, QP ) and z7 = (QG, y0). Note

that with given xG = QG, ∀xP ∈ [y0, Q
P ], U4(z6) ≤ U4(Q

G, xP ). So U4(z6) ≤ U4(z7).

Thus the optimal solution in this situation is (xG∗, xP∗) = (QG, QP ).

(2) If G−1( β−s
α+β

)−QG−QP < I ≤ G−1( β−s
α+β

)−QG−y0, then z6 = (QG, G−1( β−s
α+β

)−

I −QG) and z7 = (QG, y0). Similar to (1), we can obtain the optimal solution in this

situation is (xG∗, xP∗) = (QG, G−1( β−s
α+β

)− I −QG).

(3) If G−1( β−s
α+β

) −QG − y0 < I ≤ G−1( β−c
α+β

) −QG − y0, then z6 = z7 = (QG, y0).

The optimal solution in this situation is (xG∗, xP∗) = (QG, y0).

(4) If G−1( β−c
α+β

) − QG − y0 < I ≤ G−1( β−c
α+β

) − y0, then z6 = (QG, y0) and z7 =

(G−1( β−c
α+β

) − I − y0, y0). Similar to (1), we can obtain the optimal solution in this

situation is (xG∗, xP∗) = (G−1( β−c
α+β

)− I − y0, y0).

(5) If y > G−1( β−c
α+β

)−y0, then z6 = (QG, y0) and z7 = (0, y0). The optimal solution

in this situation is (xG∗, xP∗) = (0, y0).

Therefore, when s > c the optimal solution of Model 4 is

(xG∗, xP∗)

=























































(QG, QP ) , I ≤ G−1( β−s
α+β

)−QG −QP

(QG, G−1( β−s
α+β

)− I −QG) , G−1( β−s
α+β

)−QG −QP < I ≤ G−1( β−s
α+β

)−QG − y0

(QG, y0) , G−1( β−s
α+β

)−QG − y0 < I ≤ G−1( β−c
α+β

)−QG − y0

(G−1( β−c
α+β

)− I − y0, y0) , G−1( β−c
α+β

)−QG − y0 < I ≤ G−1( β−c
α+β

)− y0

(0, y0) , I > G−1( β−c
α+β

)− y0
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Proof of Proposition 4.4(2).

∂UG
4

(

xG, xP
)

∂xG
=

∂UG
4

(

xG, xP
)

∂xP

∂2UG
4

(

xG, xP
)

∂(xG)2
=

∂2UG
4

(

xG, xP
)

∂(xP )2

The first order condition is xG∗ + xP∗ = G−1( β−s
α+β

) − I = G−1( β−c
α+β

) − I. Recall

that xG∗ ∈ [0, QG] and xP∗ ∈ [y0, Q
P ], we can get the solution.

Proof of Proposition 4.4(3).

In this situation, the optimal solution (xG∗, xP∗) is subjected to xG∗ = 0 or xP∗ =

min{y2, Q
P }, and xP ∈ [y+1 ,min{y2, Q

P }]. Thus, (xG∗, xP∗) ∈ {z8, z9}, where

z8 = (0,median{

(

G−1(
β − s

α+ β
)− I

)+

, y+1 ,min{y2, Q
P }})

z9 = (min{

(

G−1(
β − c

α+ β
)− I −min{y2, Q

P }

)+

, QG},min{y2, Q
P })

They can be written as

z8 =



























(0, y+1 ) , G−1( β−s
α+β

)− I < y+1

(0, G−1( β−s
α+β

)− I) , y+1 ≤ G−1( β−s
α+β

)− I < min{y2, Q
P }

(0,min{y2, Q
P }) , G−1( β−s

α+β
)− I ≥ min{y2, Q

P }

and

z9 =







































































(0,min{y2, Q
P })

if G−1( β−c
α+β

)− I −min{y2, Q
P } < 0

(G−1( β−c
α+β

)− I −min{y2, Q
P },min{y2, Q

P })

if 0 ≤ G−1( β−c
α+β

)− I −min{y2, Q
P } < QG

(QG,min{y2, Q
P })

if G−1( β−c
α+β

)− I −min{y2, Q
P } ≥ QG

That is

z8 =



























(0,min{y2, Q
P }) , I ≤ G−1( β−s

α+β
)−min{y2, Q

P }

(0, G−1( β−s
α+β

)− I) , G−1( β−s
α+β

)−min{y2, Q
P } < I ≤ G−1( β−s

α+β
)− y+1

(0, y+1 ) , I > G−1( β−s
α+β

)− y+1
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and

z9 =







































































(QG,min{y2, Q
P })

if I ≤ G−1( β−c
α+β

)−min{y2, Q
P } −QG

(G−1( β−c
α+β

)− I −min{y2, Q
P },min{y2, Q

P })

if G−1( β−c
α+β

)−min{y2, Q
P } −QG < I ≤ G−1( β−c

α+β
)−min{y2, Q

P }

(0,min{y2, Q
P })

if I > G−1( β−c
α+β

)−min{y2, Q
P }

Since c− r < s < c, y1 ≤ QP , y1 < y2 and y2 ≥ 0, G−1( β−c
α+β

)−min{y2, Q
P }−QG ≤

G−1( β−c
α+β

)−min{y2, Q
P } < G−1( β−s

α+β
)−min{y2, Q

P } ≤ G−1( β−s
α+β

)− y+1 .

(1) If I ≤ G−1( β−c
α+β

) − min{y2, Q
P } − QG, then z8 = (0,min{y2, Q

P }) and z9 =

(QG,min{y2, Q
P }). Note that with given xP = min{y2, Q

P }, ∀xG ∈ [0, QG], U4(z9) ≤

U4(x
G,min{y2, Q

P }). So U4(z9) ≤ U4(z8). Thus the optimal solution in this situation

is (xG∗, xP∗) = (QG,min{y2, Q
P }).

(2) If G−1( β−c
α+β

) −min{y2, Q
P } − QG < I ≤ G−1( β−c

α+β
) −min{y2, Q

P }, then z8 =

(0,min{y2, Q
P }) and z9 = (G−1( β−c

α+β
)−I−min{y2, Q

P },min{y2, Q
P }). Similar to (1),

we can obtain the optimal solution in this situation is (xG∗, xP∗) = (G−1( β−c
α+β

) − I −

min{y2, Q
P },min{y2, Q

P }).

(3) If G−1( β−c
α+β

) − min{y2, Q
P } < I ≤ G−1( β−s

α+β
) − min{y2, Q

P }, then z8 = z9 =

(0,min{y2, Q
P }). The optimal solution in this situation is (xG∗, xP∗) = (0,min{y2, Q

P }).

(4) If G−1( β−s
α+β

)−min{y2, Q
P } < I ≤ G−1( β−s

α+β
)−y+1 , then z8 = (0, G−1( β−s

α+β
)− I)

and z9 = (0,min{y2, Q
P }). Similar to (1), we can obtain the optimal solution in this

situation is (xG∗, xP∗) = (0, G−1( β−s
α+β

)− I).

(5) If I > G−1( β−s
α+β

) − y+1 , then z8 = (0, y+1 ) and z9 = (0,min{y2, Q
P }). The

optimal solution in this situation is (xG∗, xP∗) = (0, y+1 ).
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Therefore, when s¿c the optimal solution of Model 4 is

(xG∗, xP∗) =



































































































































(QG,min{y2, Q
P })

if I ≤ G−1( β−c
α+β

)−min{y2, Q
P } −QG

(G−1( β−c
α+β

)− I −min{y2, Q
P },min{y2, Q

P })

ifG−1( β−c
α+β

)−min{y2, Q
P } −QG < I ≤ G−1( β−c

α+β
)−min{y2, Q

P }

(0,min{y2, Q
P })

if G−1( β−c
α+β

)−min{y2, Q
P } < I ≤ G−1( β−s

α+β
)−min{y2, Q

P }

(0, G−1( β−s
α+β

)− I)

if G−1( β−s
α+β

)−min{y2, Q
P } < I ≤ G−1( β−s

α+β
)− y+1

(0, y+1 )

if I > G−1( β−s
α+β

)− y+1

Proof of Proposition 4.4(4).

Given xP∗ = 0, The first order condition is xG = G−1( β−c
α+β

) − I. Recall that

xG ∈ [0, QG], we can get the solution.

Proof of Theorem 4.5.

Based on Propositions 4.1, 4.2, 4.3 and 4.4, one can get the optimal solutions of the

proposed models in each situation and then compare them to obtain this proposition.

Proof of Theorem 4.6.

Based on Propositions 4.1, 4.2, 4.3 and 4.4, one can get the optimal solutions of

Models 1, 2 and 3 in each situation and then compare them to obtain this proposition.
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Chapter 5

Conclusions

5.1 Conclusions

This research underscores the importance of humanitarian medical allocation for pub-

lic health emergencies, proposes analytical models and optimal strategies from three

different perspectives, and provides suggestions on efficient, effective, and fair medical

rescue.

In Chapter 2, a stochastic dynamic programming model is developed to optimize the

temporal allocation problem in one epidemic area. This problem is divided into several

finite time periods, with a policy decision required at each time period. The inventory

of medical relief and the probability distribution of demand in the epidemic area change

among time periods, and the demand in each time period is regarded as a stochastic

parameter. To solve the model, this chapter provides a general analytical closed-form

of the optimal allocation policy in each time period to minimize the expected sum

of the overall penalty. In addition, a case study based on a real epidemic outbreak

is conducted and the relations between the optimal policy and each parameter are

discussed. These results highlight some managerial implications for better response to

epidemic outbreaks.

Chapter 3 presents a novel allocation model of humanitarian medical allocation

in multiple areas. The proposed model consists of two mechanisms: medical demand

forecasting and relief distribution. The medical demand associated with each epidemic

133
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area is forecast using a modified SEIR model. This process is followed by a linear

programming approach to make distribution decisions. On the basis of a basic model

that applies the proposed method, two extended models are generated by assessing (1)

the spatial interaction relationships among epidemic areas and (2) survivor psychol-

ogy. A numerical study conducted on a real SARS outbreak in China demonstrates

the applicability of the proposed method. The numerical results of the three models

are compared to identify the advantages of each model. The psychological status of

affected people improves significantly when survivor psychology is considered. Four

experimental situations are tested to support and supplement the analysis with real

data. This work highlights the necessity and feasibility of reducing the psychological

fragility of affected people during emergency medical logistics, and indicates the bene-

fits of considering the spatial interaction relationships among epidemic areas, especially

in response to public health emergencies with high infection rates in areas with high

population density. Additionally, the specific effects of incubation period and diagnosis

rate are emphasized in the discussion of the relationship between logistics and survivor

psychology.

These two chapters regard the government as the only decision-maker, while Chap-

ter 4 focuses on the situation when both the government and a private sector take

part in humanitarian allocation. In terms of the cross-sector relationship and decision-

making mode, four optimization models are formulated: (1) non-cooperation, (2) semi-

cooperation with a private leader, (3) semi-cooperation with a government leader and

(4) full cooperation owned by the government. The objective of government is to max-

imize social welfare while the private sector aims to increase its reputation with lower

cost. This chapter provides the optimal solutions of these four models and compares

them by both analytical and numerical studies. The results provide the private sec-

tor with advice on full cooperation with the government and discuss the choice of the

government in different situations.

Finally, the proposed model and analyses in this research on emergency medical

allocation not only provide the optimal allocation policies, but also set a milestone in

the fields of humanitarian logistics and public health to highlight the importance of

studying and improving epidemic response operations.
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5.2 Future Studies

Future studies may improve the current analyses in this chapter.

First of all, the stochastic models are developed with an assumption of stochastic

demand, deterministic supply and deterministic transportation infrastructure. Never-

theless, in some public health emergencies, supply capacity and transportation infras-

tructure may also be uncertain. This issue should be further discussed.

Furthermore, survivor psychology is discussed on the basis of providing the public

with transparent information. However, emergency logistics may influence affected

people in different ways as a result of imperfect information. Therefore, additional

research must be conducted to explain this issue.

In addition, only one private sector is taken into consideration in Chapter 4. Nev-

ertheless, in practice more private sectors may take part in humanitarian logistics in

public health emergencies and lead to a more complex situation. This issue is worthy

of future work.
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