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Abstract

Oculomotor control in a humanoid robot faces sim-
ilar problems as biological oculomotor systems, i.e.,
the stabilization of gaze in face of unknown pertur-
bations of the body, selective attention, the complex-
ity of stereo vision and dealing with large information
processing delays. In this paper, we suggest control
circuits to realize three of the most basic oculomotor
behaviors - the vestibulo-ocular and optokinetic reflex
(VOR-OKR) for gaze stabilization, smooth pursuit for
tracking moving objects, and saccades for overt visual
attention. Each of these behaviors was derived from
inspirations from computational neuroscience, which
proves to be a viable strategy to explore novel control
mechanisms for humanoid robotics. Our implementa-
tions on a humanoid robot demonstrate good perfor-
mance of the oculomotor behaviors that appears natu-
ral and human-like.

1 Introduction

1.1 Research Objectives

The goal of our research is to understand the prin-
ciples of information processing of the human brain,
with a focus on basic sensorimotor control and the
hope to expand this scope increasingly more towards
more cognitive topics. As a research strategy, we chose
an approach that emphasizes the interplay between
computational neuroscience and humanoid robotics.
In this approach, research topics are initially inves-
tigated from the present stage of knowledge of neu-
robiology and, subsequently, abstract computational
models are created that can be implemented on a
humanoid robot to accomplish interesting behavioral
goals. Control theory and learning theory are em-

ployed to examine the validity of the models and the
success of the models in actual behavior is investi-
gated. Theoretical and experimental insights are then
used to re-evaluate biological data and the present
stage of modeling, which usually leads to suggestions
for improvement in both neuroscientific research and
computational modeling. For the purpose of this re-
search strategy, we developed a humanoid robot sys-
tem with 30 degree-of-freedoms (DOFs), each of which
is hydraulically operated and mimics the compliance
of humans by means of impedance control in each
joint. Kinematics and dynamics of the robot are as
close as possible to the human counterpart.
In this paper, we present results of our research

in the field of oculomotor control, i.e., learning the
vestibulo-ocular and optokinetic reflex (VOR-OKR),
smooth pursuit, and saccades for overt visual atten-
tion. Oculomotor control is one of the best inves-
tigated areas in computational neuroscience due to
the relative simplicity of the primate oculomotor sys-
tems and rich set of oculomotor behaviors, including
reflexes and adaptation. For example, the monkey’s
oculomotor system can be approximated by a second
order linear system. It has only 3 DOFs per eye, and
usually only 1 DOF is used in neurobiological exper-
iments. Furthermore, in the case of reflex behaviors,
experimenters can eliminate the effects of attention,
and easily elicit the reflex behavior by simple stimuli
such as rotation of the head, spot lights, random dot
displays, etc. Such simple experimental paradigms are
ideally suited to draw comparisons between biological
knowledge, computational models, and empirical eval-
uations in robotic experiments.

1.2 Robotic Head Setup

In the next sections, we will present computational
models for the three oculomotor behaviors we exam-
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Figure 1: Humanoid vision head

ined and the corresponding experimental results. In
all experiments, the same platform - the vision head
(see Fig. 1) of our Humanoid Robot[1] - was used.

The robot head has 7 DOFs in total, a neck with
3 DOFs and two camera eyes, each equipped with 2
independent DOFs, arranged as pan and tilt. In order
to provide high-resolution vision simultaneously with
large-field peripheral vision, the robot employs two
cameras per eye, a foveal camera (24 deg view-angle
horizontally) and a wide-angle camera(100 deg view-
angle horizontally). This setup mimics the foveated
retinal structure of primates, and it is also essential
for an artificial vision system in order to obtain high
resolution vision of objects of interest while still being
able to perceive events in the peripheral environment.

The learning controller is implemented with the
real-time operating system VxWorks using several
parallel Motorola PowerPC processors in a VME rack.
Visual processing is performed out of specialized hard-
ware, a Fujitsu tracking vision board and QuickMag
(Japan) color vision tracking system. The Fujitsu
tracking vision board calculates retinal error (position
error) and retinal slip (velocity error) information of
each eye at 30Hz. The QuickMag system returns the
centroid of blobs of pixels of pre-specified colors in the
environment. Up to six different colors can be tracked
simultaneously at 60Hz sampling rate.

The oculomotor control loop runs at 420 Hz, while
the vision control loop runs at 60 Hz due to the Quick-
Mag video processing rate. The oculomotor control
loop implements a strong spring and damping term
such that the nonlinearities of the oculomotor system
due to hydraulics and attached cables become negligi-
ble.

2 Vestibulo-Ocular-Reflex (VOR)

This section outlines the computational model of
VOR-OKR we developed [1], shown schematically in
Fig. 2. The VOR reflex serves to keep the eyes fixed
on a target in case that there is a mechanical pertur-
bation of the head, e.g., as caused by locomotion. The
OKR has a similar functionality, just that it is trig-
gered by a movement of the entire visual field, which
it tries to compensate for - a typical movement that
would be elicited in a movie theater when the entire
scene on the screen moves. The inputs to the VOR-
OKR system are i) the visual target in camera coor-
dinates and ii) an angular velocity signal generated
from a gyroscopic sensor due to perturbations of the
robot’s body; since the sensor is attached to the head,
the signal is referred to as “head angular velocity”.
From the target position and eye position, retinal er-
ror and retinal slip can be computed. In the simplest
case, the ideal compensatory desired movement of the
eyes would be the negative of the retinal slip, but, in
general, a nonlinear transformation from retinal slip
error velocity to eye movement is needed due to off-
axis effect, i.e. the fact that head axis and eye axis are
not collinear. The retinal error signals are also used as
input to a PD controller in the bottom part of Fig. 2.
The gains of this PD controller have to be kept rather
small due to the delays incurred in visual information
processing. The output of the PD controller serves
primarily as a teaching signal to the feedback error
learning system. However, it is also needed to stabilize
the crude feedforward controller in the shaded block
of Figure 2. Without the feedback input, the feedfor-
ward controller would only be marginally stable due to
the floating integrator. As described in a later section,
eligibility traces, realized by a second order filter, are
also used as inputs to the learning system.
The entire control systems is quite similar to what

has been discovered in the primate oculomotor sys-
tem. The a priori existing feedforward controller pro-
vides some crude functionality of the VOR while the
existing feedback controller provides acceptable OKR
performance for slowly changing visual targets and
acts as a compensatory negative feedback for the VOR
module. These systems form what is called the “di-
rect pathway” of oculomotor control in biology. By
adding a learning controller trained with the feedback-
error-learning [2] strategy in the indirect pathway (see
Fig. 2), excellent VOR performance can be accom-
plished even if the feedback pathway has large delays
(see Section 2.1). Furthermore, the OKR performance
is improved to some extent. This learning network,
known to be located in the primate cerebellum, ac-
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Figure 2: Our VOR-OKR model

quires an inverse dynamics model of the oculomotor
plant during the course of learning that compensates
for the missing performance of the crude feedforward
controller in the shaded box (c.f. Fig. 2). The coor-
dination of a direct and indirect pathway is analogous
to how the cerebellar pathway acts in parallel to the
brainstem pathways [3]. As discussed in [1], this con-
trol system is equally suitable for both biological and
robotic oculomotor control. However, for the robotic
control, we augment the biologically plausible model
with a fast nonlinear learning scheme based on non-
parametric regression networks [4].

2.1 Learning with the delayed-error sig-
nal

For successful feedback-error-learning, the time-
alignment between input signals and the feedback-
error signal is theoretically crucial, and, thus, addi-
tional techniques are required in the case of delayed
sensory feedback. For instance, if a perturbation of the
head or body has frequency components that are much
faster than the delay in the feedback pathway during
VOR learning, the phase delay in the feedback path-
way gets large such that learning speed decreases, or
learning can even become unstable in the worst case.
To solve this “temporal credit assignment prob-

lem”, the concept of eligibility traces has been sug-
gested in both biological modeling and machine learn-
ing [5]. For neurons in the brain, it is assumed that a
second messenger would tag a synapse as eligible for
modification. This “tag” would decay with an appro-
priate time constant, thus forming a temporal eligibil-
ity window. Schweighofer et al. proposed a biologi-
cally plausible learning model for saccadic eye move-
ment, and modeled the second messenger as a second
order linear filter of the input signals to the learning
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Figure 3: Time course of the rectified mean retinal
error: While the dashed line represents data obtained
without eligibility trace, the solid line shows data ac-
quired with eligibility trace.

system[6]. For this purpose, note that second order
filter is better than first order filter. The impulse re-
sponse of second order filter has a unimodal peak at a
delay time determined by the time constant of the fil-
ter. For successful learning, the delay time only has to
roughly coincide with the actual delay of the sensory
feedback. In related work, Fagg proposed a cerebel-
lar learning model where eligibility traces modeled by
such a second order filter are employed[7]. Applying
this technique to feedback-error learning, we complete
our final learning control system (see Fig. 2) where the
impulse response of a second order linear filter is put
just before the “learning” box.

2.2 Experimental result

In our system, the visual processing introduces a
delay of more than 60 ms in the retinal signals. In
this experiment, we test how the eligibility traces can
improve the efficiency of VOR learning. For this pur-
pose, head movement was generated by three super-
imposed sinusoidal signals with frequencies of 0.6, 2.0,
and 3.0 Hz and amplitude of 0.1 rad, respectively. A
frequency of 3.0 Hz is high enough to obtain sustained
blurred visual images. Fig. 3 shows the time course
of the rectified retinal error during learning obtained
from a moving average using a one second time win-
dow. While the dashed line represents data obtained
from learning without eligibility traces, the solid line
shows data acquired with eligibility traces. This figure
shows that eligibility traces are necessary for success-



ful learning as the the retinal error does not decrease
without using the traces. It should also be noted that
learning proceeds quite rapidly such that in less than a
half a minute, the initial errors are reduced by a factor
of two. Longer learning results in a further reduction
of the error [1].

3 Smooth Pursuit

Smooth pursuit refers to the oculomotor behavior
of tracking a moving target on the fovea - a task which
requires high accuracy; for instance such behaviors are
needed to visually inspect moving object. Strong evi-
dences (e.g.,[8]) support the idea that smooth pursuit
employs some predictive control mechanism. From the
control theoretical view, this observation is not sur-
prising since smooth pursuit cannot be achieved by a
simple visual negative feedback controller due to the
long delays inherent in visual information processing
(e.g. around 70 ms in our humanoid vision system,
and around 100 ms in the human brain).
In the field of robot vision, many projects inves-

tigated visual servoing, but, to our knowledge, with-
out ever examining a smooth pursuit controller that
has similar features and performance as that in pri-
mates. One of the most related pieces of research is in
Bradshaw et al. [9], which employed a Kalman filter
for prediction. However, these authors assumed prior
knowledge of the target dynamics and, thus, avoided
to address how unknown target motion can be tracked
accurately. In contrast, in this paper, we present a
biologically motivated smooth pursuit controller that
learns to predict the visual target velocity in head co-
ordinates based on fast on-line statistical learning of
the target dynamics. In the following sections, we will
first explain the setup of our smooth pursuit model,
explain the learning component, and, in Section 3.2,
describe how to accelerate learning speed. The sug-
gested control system is evaluated in simulations and
experiments with our humanoid robot.

3.1 Cascade of predictor and controller

Fig. 4 presents our smooth pursuit model. It con-
sists of two subsystems: one is a target velocity pre-
dictor, and the other is an inverse model controller of
the oculomotor system. In this control diagram, s and
1/s are Laplace transform operators denoting differ-
entiation and integration, respectively. ∆ stands for
a constant delay element. e, ė, E, and Ė are the reti-
nal error and the retinal slip, the eye angular position,
and the eye angular velocity, respectively.

The predictor outputs an estimate of the current

target velocity ˆ̇T(t) out of a history of past estimated
target angular positions T(t−∆) and velocities Ṫ(t−
∆). In linear systems, the state predictor of a n-th
order linear system can be defined as:

xt+1 = Axt (1)

where x is the n × 1 state vector and A is the n × n
state transition matrix. As we are only interested in
velocity prediction in this paper, we reduce equation 1
to focus only on the the states that are identified with
target velocities, not positions:

ˆ̇Tt+1 = A2xt (2)

where A2 is the the appropriate submatrix of A cor-
responding to the target velocity component.
Since, similar to the primates’ eye plant, many ar-

tificial oculomotor systems can be approximated by
a second order linear dynamical system, a linear in-
verse dynamics model suffices for feedforward control
of the eye system. It receives as input the desired
eye angular position, velocity, and acceleration. The
feedforward controller is stabilized by a PD feedback
pathway whose gains need to be rather low due to its
operating out of strongly delayed signals.

�

�

�

Figure 4: Our smooth pursuit model

3.2 Learning the discrete predictor from
the delayed signals

The learning scheme in Fig. 4 may appear difficult
to implement as it has to learn the target dynamics
out of the history of past estimated target states and
the delayed retinal error. As will become apparent in
the next paragraphs, however, a straightforward de-
velopment allows us to solve this learning problem.
At time t, the predictor can only see the delayed

estimated target state xt−∆. The corresponding dis-
crete target velocity prediction is represented as

ˆ̇Tt = f(xt−∆,wt) (3)



where w is a parameter vector. Let ξ̇, the velocity

prediction error, equal Ṫ− ˆ̇T, and let the loss function
J be the simple squared error:

J =
1

2
ξ̇2t (4)

Thus, a gradient descent learning rule for w can be
written as:

(
dwi

dt
)t = −ǫ(

∂J

∂wi
)t = ǫ(

∂f

∂wi
)t−∆ξ̇t (5)

with ǫ denoting the learning rate. If we can make the

assumption that the predicted target velocity ˆ̇T will
be tracked accurately by the robot without delay, we
can regard the retinal slip as the prediction error given

by ξ̇ = Ṫ− ˆ̇T ≃ Ṫ− Ė = ė. The learning rule can thus
be rewritten as:

(
dwi

dt
)t = ǫ(

∂f

∂wi
)t−∆ėt (6)

Note that the time alignment of the predictor output f
and the error ξ̇ (≃ ė) needs to be correct for successful
minimization of the loss function J . Since the predic-
tor has no access to ėt at time t, a modified learning
rule is required by introducing a delayed form of Eq. 6:

(
dwi

dt
)t = ǫ(

∂f

∂wi
)t−2∆ėt−∆ (7)

Thus, the predictor is required to keep the information
∂f/∂wi in memory for the duration of ∆.
In summary, it is important to use the most recent

information for prediction, but to use one delayed by
∆ for learning in order to achieve successful learning
and control.

3.3 Experimental result

We implemented online learning of the smooth pur-
suit behaviour on our humanoid robot using the cir-
cuit decribed above. Our model does not rely on any
specific or particular learning method. For tracking
an target having a simple linear dynamics such as a
swinging pendulum, we employed an adapted version
of recursive least squares (RLS), and obtained excel-
lent results. For more complex target motion with
nonlinear dynamics, we replaced RLS in our smooth
pursuit controller with nonparametric regression net-
works we developed. This system was used to learn
a periodic motion generated by van der Pol equations
implemented on a separate industrial robot in our lab-
oratory. Fig. 5 shows the excellent learning results of
this experiment.
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Figure 5: Smooth pursuit of a target following a tra-
jectory that is generated by Van der Pole equation.
The upper figure shows the time course of the angu-
lar position of the visual target (dotted) and the eye
(solid). The lower figure presents the time course of
the rectified mean retinal error (smoothed with mov-
ing average of time window 1 s)

4 Saccade for Overt Visual Attention

Visual attention involves directing a “spotlight” of
attention [10] to interesting areas, extracted from a
multitude of sensory inputs. Most commonly, atten-
tion will require to move the body, head, eyes, or a
combination of these in order to acquire the target
of interest with high-resolution foveal vision, referred
to as ‘overt’ attention, as opposed to covert attention
which does not involve movement.

There has been extensive work in modeling atten-
tion and understanding the neurobiological mecha-
nisms of generating the visual “spotlight” of atten-
tion [11], both from a top-down[12] and a bottom-up
perspective [13, 14] - albeit mainly for static images.
From the perspective of overt shift of foci, there has
been some work on saccadic eye motion generation
using spatial filters [15], saccadic motor planning by
integrating visual information [16], social robotics [17],
and humanoid robotics [18]. In contrast to this previ-
ous work, our research focus lies on creating a biologi-
cally inspired approach to visual attention and oculo-
motor control by employing theoretically sound com-
putational elements that were derived from models of
cortical neural networks, and that can serve for com-
parisons with biological behavior. We also emphasize
real-time performance and the integration of the at-
tention system on a full-body humanoid robot that is



not stationary in world coordinates. As will be shown
below, these features require additional computational
consideration such as the remapping of a saliency
map for attention after body movement. In the fol-
lowing sections, we will first give an overview of the
attentional system’s modules, then explain the com-
putational principles of each module, before we pro-
vide some experimental evaluations on our humanoid
robot.
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Figure 6: A schematic block diagram of the various
modules involved in the system for implementing overt
visual attention

4.1 Sensor pre-processing and integration

The key element of our Sensory Pre-Processing
block (Fig. 6) is a competitive dynamical neural net-
work, derived in Amari and Arbib’s [19] neural fields
approach for modeling cortical information process-
ing. The goal of this network is to take as input spa-
tially localized stimuli, have them compete to become
the next saccade target, and finally output the win-
ning target. For this purpose, the sensory input pre-
processing stage takes the raw visual flow VF (x, t) as
inputs to the stimulus dynamics, a first order dynam-
ical system. Using x to denote the position of a stim-
ulus in camera coordinates, the stimulus dynamics is:

Ṡ(x) = −αS(x) + V isInp(x, t) (8)

where

V isInp(x, t) =

∫
R

G(x, t) ∗ exp(−x2/2σ2)dx (9)

G(x, t) = VF (x, t) + γ ∗ ⌊V̇F (x, t)⌋+(10)
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Figure 7: A snap shot of the stimulus and activation
dynamics just (a) before and (b) after the saccade

Eq.(10) enhances the raw visual flow vector when it is
increasing to emphasize new stimuli in the scene, while
Eq.(9) implements a Gaussian spatial smoother of the
stimuli to reduce the effects of noise. The variable α
was set to a value of 100 in our experiments. The
top of Fig. 7a shows an example of a typical stimulus
pattern in the two dimensional neural network due to
a moving object at the top-left of the camera image. In
general, we could have multimodal sensory inputs, e.g.
from color detectors, edge detectors, audio input, etc.,
feeding into Eq.(10) as a sensory signal. As suggested
by Niebur, Itti and Koch [13, 14], it would be useful to
weight these inputs according to their importance in
the scene, usually based on some top-down feedback
or task-specific biasing (e.g., if we know that color is
more important than motion).
This stimulus dynamics feeds into a saliency map

[10], essentially a winner-take-all (WTA) network
which decides on a winning stimulus from many si-
multaneous stimuli in the camera field. The winning
stimulus will become the next saccade target or fo-
cus of overt attention. The WTA network is realized
based on the theory of neural fields, a spatial neural
network inspired by the dynamics of short range ex-
citatory and long range inhibitory interactions in the



neo-cortex [19, 20]. The activation dynamics u(x, t)
of the saliency map is expressed as:

τu̇(x) = −u(x) + S(x) + h

+
∑
x′

w(x,x′)σ(u(x′)) (11)

Here, h is the base line activation level within the field,
S(x, t) is the external stimulus input (Eq.8), w(x,x′)
describes the coupling strength between all the units
of the network, and σ(u) controls the local threshold
of activation. Depending on the choice of parameter
h and the form of σ and w, the activation dynamics
of Eq.(11) can have various stable equilibrium points
[19]. We are interested in a solution which has uniform
activation at base line level in the absence of external
stimuli, and which forms a unimodal activation pat-
tern at the most significant stimulus in the presence
of stimuli that are possibly dispersed throughout the
spatial network. This is achieved by choosing a trans-
fer function:

σ(u) = 1/(e(−cu) + 1) (12)

with constant c >> 1 and an interaction kernel with
short range excitation and long-range inhibition term
H0:

w(x,x′) = ke−(x−x
′)2/σ2

w − H0 (13)

The constants were fixed at τ = 0.01, h = −0.5,
H0 = 0.75, k = 4, σ2

w = 1.4, and c = 5000, the
values of which were decided based the magnitude of
the stimulus dynamics S(x, t), as outlined in [19].
In addition to the stimulus driven dynamics, we

also suppress the activation of the most recently at-
tended location by adding a large negative activation
in Eq.(10) at the location of the last saccade target.
This strategy implements an inhibition of return [14]
and ensures that the robot does not keep attending
to the same location in the continuous presence of
an interesting stimuli. The plots at the bottom of
Fig. 7(a)(b) illustrate the behavior of the activation
dynamics just before and after an attention shift, in-
cluding the effect of the negative activation after the
saccade.

4.2 Planning and generation of motor
commands

Given a new saccade target, extracted from the
saliency map, the direction of gaze needs to be shifted
to the center of this target. Since fifth order splines are

a good approximation of biological movement trajec-
tories [21, 22], we use this model to compute a desired
trajectory from the current position x0 to the target
xf , all expressed in camera coordinates.
The camera-space trajectory is converted to joint

space by inverse kinematics computations based on
Resolved Motion Rate Control (RMRC) [23]. We as-
sume that only head and eye motion is needed to shift
the gaze to the visual target, an assumption that is
justified given that the target was already visible in
the peripheral field of view. For the time being, the
inverse kinematics computation is performed for the
right eye only, while the left eye performs exactly the
same motion as the right eye. Thus, we need to map
from a 2D camera space of the right eye to a 5D joint
space, comprised of pan and tilt of the camera, and 3
DOFs of the robot’s neck. To obtain a unique inverse,
we employ Liegeois [23] pseudo-inverse with optimiza-
tion:

θ̇ = J#ẋ+ (I − JJ#)knull (14)

where J# = JT(JJT)−1

knull is the gradient of an optimization criterion w.r.t.
the joint angles θ. The second term of the Eq.(14) is
the part that controls the movement in the null space
of the head-eye system. Any contribution to θ̇ from
this term will not change the direction of gaze but will
only change how much we use the head or eye DOFs to
realize that gaze. As optimization criterion we chose:

L =
1

2

∑
i

wi(θi − θdef,i)
2 (15)

resulting in

knull,i =
∂L

∂θi
= wi(θi − θdef,i) (16)

(17)

This criterion keeps the redundant DOFs as close as
possible to a default posture θdef . Adding the weights
wi allows giving more or less importance to enforcing
the optimization criterion for certain DOF–this fea-
ture is useful to create natural looking head-eye coor-
dination.
Once the desired trajectory is converted to joint

space, it is tracked by an inverse dynamics controller
using a learned inverse dynamics model [24].

4.3 Experimental result

We implemented the visual attention system on our
humanoid robot. The stimulus dynamics and saliency
map had 44x44 nodes, i.e., twice the length and width



Figure 8: Snap shots of the robot’s peripheral view
before, during, and after an attentional head-eye sac-
cade, taken at 30 Hz sampling rate. Superimposed on
the images is the visual flow field.

of the 22x22 nodes of the visual flow grid of the pe-
ripheral vision. This extended size assured that after a
saccade, the remapping of the saliency map and stim-
ulus dynamics could maintain stimuli outside of the
peripheral vision for some time. The Jacobian needed
for the inverse kinematics computation was estimated
with linear regression from data collected from mov-
ing the head-eye system on randomized periodic tra-
jectories for a few minutes. Due to the limited range
of motion of the eye and head DOFs, the Jacobian
could be assumed to be constant throughout the en-
tire range of motion of head-eye system, which was
confirmed by the excellent coefficient of determination
of the regression of the Jacobian. The saliency map
was able to determine winning targets at about 10Hz,
which is comparable to the capabilities of the human
attentional system.

An illustration of the working of the attentional sys-
tem is provided in Fig. 8. The top image shows the
robot’s right eye peripheral view of the lab, focusing
on the person in the middle of the image. At the bot-
tom left part of the image, another person was waving
a racket to attract the robot’s attention. This mo-
tion elicited a saccade, recognizable from the middle
image of Fig. 8 which shows the visual blur that the
robot experienced during the movement. The bottom
image of Fig. 8 demonstrates that after the saccade,
the robot was correctly focusing on the new target.
Note that the three images were sampled at 30Hz,
indicating that the robot performed a very fast head-
eye saccade of about 60ms duration, which is again
comparable to human performance. Our future work
will augment the attentional system with more sen-
sory modalities, including the learning of weighting of
sensory modalities for different tasks.

5 Conclusion

In this paper, we presented our research on hu-
manoid oculomotor control, focusing on models of
the VOR-OKR reflex system, smooth pursuit, and
saccades based on concepts of computational neuro-
science. We demonstrated the performance of these
oculomotor behaviors on the vision head that is an
integral part of our humanoid robot - a specialized
robotic platform developed with a strong emphasis
on brain science research. In all given examples, the
robot control mechanisms were derived from principles
of computational neuroscience that was proved to be
able to generate viable solutions for robotic control
with good performance. Our efforts not only present
novel control design of the humanoid robot, but also
aim to contribute to brain science by proposing new
biological control models and circuits and posing in-
teresting problems towards exploratory neuroscience.

Currently, our work is dedicated to the integration
of the VOR-OKR, smooth pursuit and saccadic sys-
tems to give our humanoid the basis of the visual per-
ception. In preliminary studies, we have been success-
ful in implementing the VOR-OKR and smooth pur-
suit behaviour by accesing only the retinal velocity
information and integrating it to compute the reti-
nal positions. This is more robust than trying to
compute with retinal error information and any po-
sitional errors that acculmulate are periodically cor-
rected through the saccade behavior. We will work on
these issue more elaborately in general cases, and hope
to move on to more cognitive topics in the future.
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