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For many decades, human infectious diseases have been studied in immortalized cell

lines, isolated primary cells from blood and a range of animal hosts. This research

has been of fundamental importance in advancing our understanding of host and

pathogen responses but remains limited by the absence of multicellular context and

inherent differences in animal immune systems that result in altered immune responses.

Recent developments in stem cell biology have led to the in vitro growth of organoids

that faithfully recapitulate a variety of human tissues including lung, intestine and brain

amongst many others. Organoids are derived from human stem cells and retain the

genomic background, cellular organization and functionality of their tissue of origin. Thus

they have been widely used to characterize stem cell development, numerous cancers

and genetic diseases. We believe organoid technology can be harnessed to study host–

pathogen interactions resulting in a more physiologically relevant model that yields more

predictive data of human infectious diseases than current systems. Here, we highlight

recent work and discuss the potential of human stem cell-derived organoids in studying

infectious diseases and immunity.
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INTRODUCTION

Lower respiratory infections, cancers (including those caused by infectious agents), diarrheal
diseases and tuberculosis remain among the top 10 causes of death worldwide (WHO,
2017). Of crucial importance in sustaining organismal homeostasis, coordinating defenses
against pathogenic attack and orchestrating the innate and adaptive immune responses is the
mononuclear phagocyte system (MPS)- a key network of macrophages, dendritic cells and
monocytes. The tissue resident macrophages function to clear cell debris, resolve inflammation
and modulate immune responses (Davies et al., 2013); antigen-presenting dendritic cells initiate
the adaptive immune response and prime the immune system to future attack (Mildner
and Jung, 2014); and lastly, circulating monocytes migrate around the body where they
can remain as monocytes, differentiate into macrophages in response to stimulatory signals
or acquire antigen presenting abilities (Chow et al., 2011). The human MPS is part of
the first line of immune defense, however, modeling this complex system in relation to
infection, disease and development is difficult and is predominantly performed using three
strategies:
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(1) Purification of peripheral blood mononuclear cells
(PBMC’s) from human blood for short term in vitro culture
(with the possibility to differentiate the monocytes to
macrophages or dendritic cells); similarly, but in lower
numbers, dendritic cells can be purified straight from blood
or tissue resident macrophages from certain tissues, e.g.,
alveolar macrophages from lungs,

(2) ImmortalizedMPS-like single cell lines of human or animal
origin, e.g., the human monocyte-like THP-1 cell line, the
murine macrophage-like J774 cell line,

(3) Using animal organisms to study aspects of the system, e.g.,
non-human primates, zebrafish, mice, humanized mice,
cell lineage depleted animals and extrapolating results to
humans.

It is key to note that single cell culture and animal
models are widely used and have been instrumental in
many scientific advancements in fundamental research, drug
and vaccine development, infectious, autoimmune and genetic
diseases to name a few. Whilst their scientific importance
cannot be underestimated, critical questions typically arise
relating to the validity of these systems. This is a result of
the inherent differences in cellular context (or the lack of
it when using primary cells or cell lines), physiology and
genetics of different species which influences disease outcome,
progression and accurate prediction of human response. The
severe effects of such matters become apparent in the fact
that pre-clinical animal tests are still failing to predict human
pharmacodynamics and toxicity as exemplified by the recent
failure of the 2016 phase 1 clinical trial of BIA 10-2474
for neuropathic pain which resulted in the hospitalization of
five participants and the death of one (Chaikin, 2017). With
an estimated 90% of drugs that pass pre-clinical tests failing
in human clinical trials (Mullard, 2016), it is not surprising
that the scientific community is increasingly encouraging the
development and exploitation of alternative approaches that
may offer a more valid way of modeling diseases, disorders
and drug interactions (Korch et al., 2011). In addition to the
questionable validity of these non-human systems, the guiding
principles of the ‘3 R’s of animal research’ have been increasingly
implemented in new legislation where animals are being used
for research (United States, Canada, United Kingdom, and
Europe). The 3 R principles, a set of ethical guidelines first
published in Russell and Burch (1959) aim to Replace the
use of animals for scientific research, Reduce the number of
animals used and Refine techniques to minimize the pain,
suffering and distress caused to animals during scientific
research. Consequently the need for human in vitro based
systems is at a record high. We believe that the future
of applied and fundamental research lies in the quickly
expanding field of in vitro grown organoids that recapitulate
human organs to varying degrees. Organoids bridge the gap
between single cell culture and in vivo work, offering ethically
obtained functional, multicellular tissue of human origin that
provides a more similar in vitro system in which to study
multiple components of host–pathogen interactions and drug
response.

THE ORGANOID REVOLUTION

Recent advances in stem cell biology have allowed researchers
to grow human tissues that resemble organs in vitro. These
organoids are stem cell derived, self –organizing, multi-
cellular aggregates that closely recapitulate the function, cellular
components and architecture of human tissues. Organoids are
cultured in 3D (in extracellular matrix) and reflect the cellular
heterogeneity and cellular behavior of tissues in vitro. Unlike
cell lines, organoids remain genetically stable for long periods
(years) and do not show significant increases in the expression of
stress-related genes during extended culture (Sato et al., 2009). In
addition to their close resemblance to human tissues, organoids
are amenable to the same analytical techniques as primary
cells/cell lines including fluorescence labeling, live cell imaging,
electron microscopy, mass spectrometry (Cristobal et al., 2017)
and genetic manipulation including by CRISPR/Cas9 (Matano
et al., 2015) making them particularly suitable for scientific
research. Typically, organoids are derived from either embryonic
or induced pluripotent stem cells (PSC’s) or adult stem cells
(ASC’s) resected or biopsied from organs. Both cell types have the
unique capacity to self-renew and differentiate- a defining feature
of stem cells, and the absence of which in primary cells causes
their quick death in vitro (Melton, 2014). Organoids derived
from ASC’s are grown from cell suspensions obtained from
primary tissue biopsies or resected material that are immediately
embedded in an extracellular matrix and grown in the presence
of specific growth factors to direct cell differentiation (Figure 1).
Organoids that can be cultured from human ASC’s include colon
(Sato et al., 2011), intestine (Sato et al., 2009), liver (Huch et al.,
2013b), prostate (Karthaus et al., 2014), pancreas (Huch et al.,
2013a), fallopian tube (Kessler et al., 2015), stomach (Barker
et al., 2010), tongue (Hisha et al., 2013) and endometrium (Turco
et al., 2017). Those derived from PSC’s are generally grown
from 2D cultures of stem cells that are matured into spheroids,
committed to endoderm using Activin A (Takebe et al., 2013)
and then cultured in 3D with specific differentiation signals that
are dependent on the type of tissue that is ultimately required
(Figure 1). Intestinal (Spence et al., 2011), liver (Takebe et al.,
2013), lung (Dye et al., 2015), kidney (Takasato et al., 2015),
pancreas (Huang et al., 2015), stomach (McCracken et al., 2014),
and retinal (Völkner et al., 2016) organoids can all be cultured
from PSC’s. PSC-derived organoids that are not derived from
endoderm can also be cultured with modifications to the above
protocol as exemplified by cerebral (Lancaster et al., 2014), optic-
cup (Eiraku et al., 2011) and kidney (Takasato et al., 2015)
organoids.

The similarity of some organoids to their tissue of origin is
exemplified in elegant research by the Clevers laboratory who
first identified the Lgr5+ intestinal stem cell (Barker et al.,
2007) and then characterized the signals (epidermal growth
factor, Wnt-3, R-spondin and Noggin) required for maintaining
these cells in culture and promoting their proliferation and
cellular differentiation into intestinal epithelium (Sato and
Clevers, 2013). This research established the first ASC-derived
organoids, and has formed the basis for the growth cocktails
used to culture a variety of different mouse and human tissues
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FIGURE 1 | ASC- and PSC-derived organoid culture protocols. ASC-derived organoids are grown from healthy or tumourous tissue biopsies. Tissues are processed

into a single cell suspension which is directly embedded in an extracellular matrix. Media containing numerous growth factors, which vary dependent on the tissue

being grown, is added and regularly changed until organoids have expanded. PSC-derived organoids originate with 2D cultures of PSC’s that are grown into

aggregates/spheroids. At this point, they may be embedded in an extracellular matrix and expanded to maturity using a a growth factor rich media that is again,

specific to the tissue of interest. The composition and organization of cells within organoids is dictated by the identity of the tissue being grown which in turn affects

the overall size and shape of the organoid.

including GFP expressing colonic mouse organoids. When
GFP+ colon organoids are transplanted into mice treated
with colitis-inducing dextran sulfate sodium, intestinal lesions
show signs of recovery within 16 days of transplantation.
Transplanted organoids were histologically indistinguishable
from the surrounding epithelium, fully functional, contained all
terminally differentiated cell types and recovered the body weight
of diseased mice (Yui et al., 2012).

This pioneering method of tissue culture has thus unlocked
an entirely new tool that can be harnessed in scientific research-
one that provides a consistent, genetically stable source of
multicellular human or animal tissue for experimental use.
Additionally, whilst PSC-derived organoids typically recapitulate
early stages of cellular proliferation that can be used to
study development and foetal infections for example, ASC
derived organoids can provide complimentary, adult epithelium
to explore mature tissue responses to pathogenic attack or

drugs. Thus developmental biologists have already begun to
use organoids to study organogenesis (Shyer et al., 2015),
lineage specification (Yin et al., 2014), stem cell niche and
tissue homeostasis (Barker, 2013). Organoids can also be grown
from healthy and tumorous human tissues (Van De Wetering
et al., 2015)- in both cases, retaining some, if not most, of
the features of the original tissue. Thus cancer biologists are
extensively modeling in vitro patient heterogeneity (Weeber
et al., 2015), metastatic potential (Nadauld et al., 2014) and drug
screening. Due to their genetic and morphological similarities
to the organ from which they are derived from, ASC organoids
provide a novel approach to study stem cell and tissue
transplantation. This feature is a key factor in making organoid-
based personalized medicine a reality and which is exemplified by
Beekman and colleagues who have applied intestinal organoids
grown from cystic fibrosis (CF) patients to screen for drugs.
Specifically for those that restore the function of mutant
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CFTR (an anion channel called CF transmembrane conductance
regulator that, when mutated, is responsible for causing CF
in approximately 67% of cases worldwide) proteins (Dekkers
et al., 2012). Considering the difficulties in predicting patient
responses to drugs, and the expense of providing drugs that
are ultimately inefficient, the development of this assay is an
important step toward facilitating diagnosis, drug development
and personalized treatment regimens. This discovery has been
successfully translated to the clinical setting (Saini, 2016). It is
clear that organoid systems have already begun to be widely
and successfully used in a range of clinical and basic research
environments and naturally, the infectious diseases community
has also taken notice.

ORGANOIDS IN INFECTIOUS DISEASES

Zika virus infection (ZIKV) of humans was first identified in
Dick et al. (1952); it is spread by mosquitoes and typically
illness is mild with fever-like symptoms for 2–7 days. In
2016, ZIKV was declared a public health emergency by WHO
based on epidemiological evidence that there was an association
between babies born with neurological complications including
microcephaly and ZIKV. At this point, no suitable model
existed for studying this pathogen but microcephaly had been
successfully modeled in induced PSC-derived cerebral organoids
that develop discrete brain regions (Lancaster et al., 2014).
ZIKV was modeled in such a system to great success; infection
was found to cause neuronal cell death in the early stages of
brain development (Garcez et al., 2016), to induce premature
differentiation of preferentially infected neural progenitor cells
resulting in mitotic defects (Gabriel et al., 2017), and to
upregulate the innate immune receptor TLR3 (toll-like receptor
3) which resulted in dysregulation of neurogenesis and cell death
(Dang et al., 2016). The organoid model of ZIKV has also been
adapted to a large scale platform that can be used for modeling
brain development, neurological diseases and drug screening by
growing brain region specific organoids in miniaturized spinning
bioreactors (Qian et al., 2016) further highlighting the power and
success of using organoids for studying development, disease and
treatment. Organoids have also proved themselves to be a robust,
accurate and reproducible model to study Norovirus (Ettayebi
et al., 2016), and clinical strains of Rotavirus (Finkbeiner et al.,
2012; Zhu et al., 2017)- two viruses that were difficult to cultivate
and study in vitro until organoids became available as a tool.

Bacterial pathogens are also being increasingly studied in
organoids. Organoid based studies into Salmonella enterica
serovar Typhi virulence provided the first evidence that infection
with this bacteria is a causative agent of gallbladder carcinoma
(Scanu et al., 2015). S. Typhimurium was found to alter the
organoid transcriptome to activate the Akt and MapK kinase
pathways which are often found to be elevated in human cancers
(Manning and Cantley, 2007; Cseh et al., 2014). Similar features
were presented in mouse gallbladder carcinomas and infected
gallbladder organoids including loss of cellular polarity and
enlarged nuclei. Interestingly, cells dissociated from organoids
with previous S. Typhimurium infection were able to expand into

FIGURE 2 | In vitro grown ASC-derived lung organoid. (A) Mature lung

organoid in extracellular matrix on day 25 of culture. Scale bar is 10 µm.

(B) Electron microscope image of a mature lung organoid following high

pressure freezing, freeze substitution, epon embedding and sectioning. Note

self-organization of multiple differentiated cells. Both courtesy of Norman

Sachs.

new organoids in growth factor-diminished media, unlike those
which had not been previously exposed to infection indicating
a sustained alteration of host signaling pathways. PSC-derived
intestinal organoids are being used to study shigatoxigenic
serotypes of Escherichia coli for which no suitable animal models
exist (Karve et al., 2017), whilst gastric organoids from ASC’s
are being developed as a model in which to study Helicobacter
pylori infection (Bartfeld et al., 2015; Schlaermann et al., 2016) –
with potential to extend the model to encompass the study of
H. pylori associated gastric cancer. Our own laboratory is focused
on modeling tuberculosis infection within ASC-derived lung
organoids (Figure 2) to continue our research on unraveling
the mechanisms behind ESX-1 dependent translocation and its
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function during infection (van derWel et al., 2007; Houben et al.,
2012).

Studying interactions between human hosts and their
protozoan parasites has been difficult due to a lack of appropriate
animal models or due to the difficulty in culturing parasites with
obligate human-host specificity. Currently, organoids have been
limited to a supportive role to assay the role of tuft cells during
infection with the helminth parasite Nippostrongylus brasiliensis
(Gerbe et al., 2016). However, this field recognizes the ability of
organoid technology in overcoming the experimental bottlenecks
described above to model parasitic pathogens such as Cyclospora
sp., Cryptosporidium sp. and Giardia sp. (Klotz et al., 2012).

INCREASING THE COMPLEXITY OF
ORGANOID SYSTEMS

It is clear that organoids can represent tissue structure and
function exceptionally well. Organoid technology is a significant
and brilliant advancement in the tools available for scientific
research across a wide range of different topics but they
remain inherently incomplete- they lack the microenvironment
of stroma, vasculature, immune cells and other organ systems
that tissues interact with in the body during development and
disease. It is also likely that not all developmental stages are
currently being represented in a single organoid culture which is
particularly relevant if fetal or adult infections are being modeled.
Furthermore, certain cell types are not being maintained in
organoid cultures due to incorrect signaling resulting in the
growth of ‘incomplete’ tissues that compromise the validity of
these systems in research.

Organoid culture techniques are thus in a constant state of
evolution; culture conditions are constantly being improved to
better support multiple cell types and drive proliferation. Current
efforts are also guiding the development of designer matrices
such as polyethylene glycol hydrogels that are mechanically more
stable and whose composition is defined, unlike the inherently
variable, animal sourced and traditionally used extracellular
matrix (Gjorevski et al., 2016). Better defined culture conditions
are more conducive to controlled modifications and will render
organoids more accessible in clinical and basic research where
reproducibility is important. Efforts are also being made to
address the lack of vascularization in organoid cultures to
improve nutrient availability, signaling and removal of toxins
as would occur naturally in the body thus bringing organoids
one step closer toward functional, in vitro grown organs.
This is currently being accomplished by transplanting induced
PSC-derived organoids grown with stromal populations and
connecting the endothelial network to a mouse host (Takebe
et al., 2013; Raikwar et al., 2015), however, it remains labor
intensive and does not yet translate easily to standard tissue
culture facilities.

Most important for studying the MPS in organoids, are
advancements relating to co-culturing organoids with cell types
that are absent in epithelial structures such as macrophages and
dendritic cells. Though currently in its infancy, it is already
possible to mix intestinal organoids cultured as normal, with

purified cultures of intraepithelial lymphocytes in an extracellular
matrix to study their migration against the basal side of the
organoids via fluorescent imaging (Nozaki et al., 2016). It is
also possible to microinject cells of interest into the lumen of
organoids to ensure contact with the apical side if exogenously
added cells are unable to migrate through organoid tissue. Such
co-cultures are likely to be short term due to the current short
life-span of primary purified immune cells but they lead the way
toward creating organoid cultures with increased complexity that
allow us to study human physiology in vitro at an unprecedented
level and in a experimentally controllable environment. Immune
cells are often the first point of contact during infection, and their
response dictates disease outcome. It is thus important to use
organoid systems to their full capacity. Therefore, to accurately
model both the MPS and infectious disease, we must be sure to
include missing but key cell types, even if they are not naturally
present using current methods of organoid culture.

CONCLUDING REMARKS

The beauty of organoids in recapitulating human tissue and
function in vitro has been described, and their use in stem
cell development, cancer, infectious diseases, drug screening and
transplantation demonstrated. As we get better insight into the
culture conditions needed to maintain the multiple cell types and
microenvironment associated with human tissues, we gain from
being able to recapitulatemore of human physiology in vitro. This
in turn provides an increasingly suitable and better definedmodel
system for modeling the role of MPS and other cells involved
in infection, immunity and inflammation. Organoid systems
are also exquisitely suitable for adaptation into diagnostic and
screening platforms as they offer an excellent source of readily
available human tissue that accurately reflects human responses.
Whilst organoids are not without their caveats, we believe
they will continue to significantly advance scientific attitudes,
fundamental, therapeutic and clinical research for decades more.
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