
computer programs

1042 http://dx.doi.org/10.1107/S1600576716005926 J. Appl. Cryst. (2016). 49, 1042–1047

Received 18 February 2016

Accepted 9 April 2016

Edited by N. D. Loh, National University of

Singapore

1This article will form part of a virtual special

issue of the journal on free-electron laser

software.

Keywords: X-ray free-electron lasers; XFELs;

flash X-ray imaging; real-time data analysis;

computer programs.

Hummingbird: monitoring and analyzing flash X-ray
imaging experiments in real time1

Benedikt J. Daurer,a Max F. Hantke,a Carl Nettelblada,b and Filipe R. N. C. Maiaa*

aLaboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Sweden, and
bDivision of Scientific Computing, Department of Information Technology, Science for Life Laboratory, Uppsala

University, Sweden. *Correspondence e-mail: filipe@xray.bmc.uu.se

Advances in X-ray detectors and increases in the brightness of X-ray sources

combined with more efficient sample delivery techniques have brought about

tremendous increases in the speed of data collection in diffraction experiments.

Using X-ray free-electron lasers such as the Linac Coherent Light Source

(LCLS), more than 100 diffraction patterns can be collected in a second. These

high data rates are invaluable for flash X-ray imaging (FXI), where aerosolized

samples are exposed to the X-ray beam and the resulting diffraction patterns are

used to reconstruct a three-dimensional image of the sample. Such experiments

require immediate feedback on the quality of the data collected to adjust or

validate experimental parameters, such as aerosol injector settings, beamline

geometry or sample composition. The scarcity of available beamtime at the laser

facilities makes any delay extremely costly. This paper presents Hummingbird,

an open-source scalable Python-based software tool for real-time analysis of

diffraction data with the purpose of giving users immediate feedback during

their experiments. Hummingbird provides a fast, flexible and easy-to-use

framework. It has already proven to be of great value in numerous FXI

experiments at the LCLS.

1. Introduction

More than a decade ago, it was first suggested that the very

short and intense pulses of X-ray free-electron lasers (XFELs)

have the potential to determine the structure of noncrystalline

bioparticles from a large collection of single-shot diffraction

patterns (Neutze et al., 2000). This flash X-ray imaging (FXI)

concept has been used to reconstruct two-dimensional

projections of mimivirus (Seibert et al., 2011), whole cells

(van der Schot et al., 2015), cell organelles (Hantke et al., 2014)

and soot particles (Loh et al., 2012). More recent advances

include the characterization of the three-dimensional struc-

ture of silver particles (Barke et al., 2015) and even a full

three-dimensional reconstruction of mimivirus (Ekeberg et al.,

2015). In a typical FXI experiment, a stream of biological

particles is injected into the focus of a pulsed X-ray source.

Far-field diffraction data are collected downstream of the

interaction region. A more detailed description of the

experimental setup, using an aerosol particle injector, has

been given for example by Hantke et al. (2014).

Currently, a considerable amount of time during FXI

experiments is spent on alignment and optimization of the

X-ray source, background reduction and finding the inter-

section between the particle stream and the X-ray beam.

These tasks get increasingly harder as we move towards

harder X-rays (>2 keV) in a smaller focus (<200 nm), with

ever smaller bioparticles (<100 nm). Yet such changes are

ISSN 1600-5767

http://crossmark.crossref.org/dialog/?doi=10.1107/S1600576716005926&domain=pdf&date_stamp=2016-04-18


necessary steps towards the goal of imaging single molecules

with atomic resolution using a free-electron laser. The avail-

ability of immediate feedback on the quality of the data

collected helps reduce the amount of time required for the

above steps. For this purpose we developed Hummingbird, an

open-source, modular and scalable Python-based software

tool designed for monitoring and analyzing FXI experiments

in real time. Similar projects like Cheetah (a comprehensive

data reduction and analysis tool for diffraction data written in

C/C++; Barty et al., 2014), CASS (a data analysis and visuali-

zation tool developed for XFEL experiments; Foucar et al.,

2012), cctbx.xfel [a Python-based data processing tool for

serial femtosecond crystallography (SFX); Sauter et al., 2013]

and OnDA (a real-time monitoring tool mainly developed for

the needs of SFX; Mariani, 2016) show the need for robust and

fast data analysis tools able to cope with the large stream of

data produced with XFELs.

Hummingbird abstracts away the technical details required

to access data at different light sources in a scalable manner,

presenting the user with a consistent interface for processing

individual shots. It is lightweight and can scale to processing

rates above 100 Hz by distributing the load among multiple

workers on multiple computation nodes. Its Python-based

configuration files make it simple to use, while allowing great

flexibility. We demonstrate the versatility and speed of

Hummingbird using an example that reflects typical data

taken at FXI experiments. Although Hummingbird has been

developed and tested mainly for experiments performed at the

Linac Coherent Light Source (LCLS), its modular archi-

tecture allows it to be easily adapted to any other light source.

2. Architecture

Hummingbird’s architecture (see Fig. 1) is based on a simple

client–server model written mainly in Python. The server can

be split over multiple processes, communicating across MPI

(Forum, 1994) using OpenMPI (Gabriel et al., 2004), to

maximize performance. Each process reads independently

from a common data source, translating raw data into

Hummingbird’s common event structure. For every event,

user-specific data analysis is performed. The server commu-

nicates the results to the client using ZeroMQ’s publish/

subscribe pattern (Hintjens, 2010). The client subscribes to

available data sources and output is visualized in a graphical

user interface (GUI).

Customization of the backend is possible through a Python-

based configuration file, as shown in Fig. 2, which specifies the

data source and defines the analysis and plotting modules to

be used. Upon changes, the configuration can easily be

reloaded by sending a signal to the server, either using the

terminal or remotely using the ‘reload’ button in the GUI.

This makes the common procedure of tuning parameters, such

as hit-finding thresholds, convenient and fast.

This section describes the individual parts of Humming-

bird’s architecture, namely the configuration file, translation

layer, event variable, analysis/plotting modules and GUI. A

complete example based on experimental data followed by a

simple benchmark to test Hummingbird’s speed and scal-

ability is given in x3.

2.1. Configuration file

A typical Hummingbird configuration file (see Fig. 2) is

divided into three sections. In the first section, necessary

modules for analysis and plotting are imported. A complete

list of available modules can be found in the API docu-

mentation (see Usage notes). The second section defines the

data source, using the state variable. In the third section,

inside the function onEvent, user-specific steps of analysis and

plotting are performed, triggered by individual events. Global

parameters can be defined outside the onEvent function, e.g.

using the state variable, which is used to keep track of things

that do not change between consecutive onEvent invocations.

2.2. Translation layer

Hummingbird’s architecture (see Fig. 1) is designed such

that all code parts downstream of the translation layer are

intended to be facility agnostic. Native events are translated

into Hummingbird events, represented by the event variable

computer programs

J. Appl. Cryst. (2016). 49, 1042–1047 Benedikt J. Daurer et al. � Hummingbird 1043

Figure 1
The client–server architecture of Hummingbird. Depending on the
configuration (conf.py), the backend workers (master in red, slaves in
green) read in data, translate native events based on the facility, perform
user-specific data analysis and send plots off to the frontend.

Figure 2
The backbone structure of a Hummingbird configuration file. In the
header, analysis/plotting modules are imported, accompanied by a
definition of the data source. Inside the event function, user-specific data
analysis and plotting is defined. Global parameters can be defined outside
the event function.



evt. In its current implementation Hummingbird provides

translation services for data produced at the LCLS using

Python-based psana (Damiani et al., 2016). This tool supports

reading from the native XTC files at LCLS, as well as from live

shared memory streams provided by the LCLS data acquisi-

tion infrastructure. The shared memory stream gives access to

live LCLS data through a buffer which gets filled by the data

acquisition system (DAQ) during data collection and is

available to applications until it is overwritten by a subsequent

event. The shared memory streams are only available from

dedicated online monitoring nodes. In the future we plan to

add more translation modules for other facilities like SACLA,

and the upcoming European XFEL, which uses Karabo

(Heisen et al., 2013).

2.3. Event variable (evt)

The evt variable provides access to all available data

entries, e.g. pixel detector images, pulse energies, motor

positions. evt is a nested dictionary with two levels, the first

defining a data type and the second defining a data key.

Individual data records, like evt½
0
type0�½

0
key0� have name and

data attributes, the former being an identifier 0type=key0 and

the latter giving access to the data.

2.4. Analysis/plotting modules

On the basis of their experimental needs, a user can

customize individual data processing steps using analysis

modules and define graphs to be presented in the GUI using

plotting modules. An analysis module takes the evt along with

a data type and a data key as positional arguments. Some

modules expect a data record as second argument. The output

is attached to evt as a new data record with the data type
0analysis0 and a new data key based on the combination of

the input data type/key and an additional string labelling the

analysis performed. Additional input parameters can be

passed to the module as a keyword argument.

A plotting module takes at least one data record as a

positional argument and additional parameters as keyword

arguments. The purpose of the plotting module is to send data

together with plotting instructions to the interface. These

plotting instructions include the kind of data to be plotted (e.g.

image, histogram, scalar, vector, . . . ), labels, limits and color-

maps. Furthermore, it is possible to toggle a logarithmic mode,

include horizontal/vertical markers and provide additional

messages which are printed in the footer of the plotting

window. Most of those plotting parameters can also be

modified from the interface using the settings dialog inside the

plotting window.

The current release of Hummingbird includes a collection

of analysis modules for tasks such as detector correction, hit

finding (Barty et al., 2014), size and multiple-hit filtering

(Hantke et al., 2014), and scanning transmission X-ray

microscopy analysis (for scanning experiments). The list of

available plotting modules includes simple image and line

plots as well as one-dimensional histograms and more

advanced correlation plots (scatter plots, two-dimensional

histograms).

The analysis modules are built upon Numpy (Jones et al.,

2001) and Scipy (van der Walt et al., 2011).

2.5. Graphical user interface

After connecting to the backend, the GUI provides a table

of available data sources for plotting as shown in Fig. 3. This

list is auto-populated on the basis of what is configured in the

backend configuration file. Hence, no user modification of

frontend source code is generally needed. Depending on the

type of data source, data can be visualized in a line or image

plot window.

After opening an empty line/image plot window it is

possible to subscribe to available sources. At that point, the

interface starts to subscribe to data from the backend workers,

with plots being updated every other second. By closing the

line/image window, the interface unsubscribes from the data

source, minimizing network load. Multiple frontend processes

on different machines can subscribe to the same backend

without interfering with each other, allowing for specialized

viewports.

For all data sources with active subscriptions, the interface

keeps a buffer which can be dynamically resized at any time.

Using this buffer, it is possible to show trends as well as go

back in history in case an interesting event passed by too

quickly. A more complete list of features is given in the GUI

documentation (see Usage notes).

The GUI is written in Python using Qt (The Qt Company,

2016) through PyQt (Riverbank Computing, 2016) and

PyQtGraph (Campagnola, 2016).

computer programs

1044 Benedikt J. Daurer et al. � Hummingbird J. Appl. Cryst. (2016). 49, 1042–1047

Figure 3
The GUI of the Hummingbird client. Once connected to the backend it
shows a table of available data sources (in the background). On opening a
line/image window (in the front) it is possible to subscribe to the data
source and visualize data in real time as they are produced by the
backend workers.



3. Practical example

We demonstrate the usage and capability of Hummingbird

using data from an FXI experiment on mimivirus collected at

the LCLS (Ekeberg et al., 2016). The dataset is deposited in

the CXIDB (http://www.cxidb.org/; entry 30). A list of used

raw XTC and index files is provided in Table 1.

With all files listed in Table 1 in the same folder and a

working psana setup, it is possible to run Hummingbird with

the configuration described in Fig. 4. This example starts by

calculating the average dark image, which then is subtracted

from the raw pedestal values of diffraction frames. Running

Hummingbird on the ‘dark’ configuration file (Fig. 4a) in a

single process will produce an HDF5 file with an averaged

dark image.

When Hummingbird is run on the ‘diffraction’ configura-

tion file (Fig. 4b) in a single process, or with multiple processes,

each worker grabs a raw frame from the back detector,

subtracts the average dark image, corrects for the common

mode within the pnCCD detector rows (Hantke et al., 2014)

and finally counts the number of lit pixels, i.e. pixels containing

photons. We call this metric hitscore and use it to determine

whether the current diffraction event is a hit or not. The

backend sends three plots to the interface; the histogram of

the current detector event, the current hitscore which is

displayed as a history plot and the full detector image for hits.

After connecting the interface to the main worker of the

backend, and subscribing to the three available data sources,

updates on the histogram, hitscore and hit images are

displayed in the interface as shown in Fig. 5. Watching the

progress of histogram and hitscore history helps the user to

optimize the lit pixel hit finder, namely the threshold for

defining a lit pixel (shown as a vertical red line in the top right

panel) and the hitscore threshold defining a hit (shown as a

horizontal green line in the bottom left panel). When running

from a dynamic data source (e.g. a shared memory stream), it

is possible to change parameters in the backend configuration

file and simply reload the configuration using the ‘Reload’

button in the interface without restarting the backend.

computer programs

J. Appl. Cryst. (2016). 49, 1042–1047 Benedikt J. Daurer et al. � Hummingbird 1045

Figure 4
Example of Hummingbird configuration files reading data from raw XTC
and index files. The configuration in (a) reads dark frames and saves the
average to a file. The configuration in (b) reads diffraction frames, applies
hit-finding analysis and sends detector images of hits along with
additional information to the GUI client.

Table 1
List of raw XTC and index files downloaded from the CXIDB (entry 30):
files containing dark frames (left column) and diffraction frames (right
column) are used for demonstration of Hummingbird.

Run 73 (dark) Run 92 (diffraction)

e41-r0073-s00-c00.xtc e41-r0092-s01-c00.xtc

e41-r0073-s02-c00.xtc e41-r0092-s00-c00.xtc

e41-r0073-s01-c00.xtc e41-r0092-s02-c00.xtc

index/e41-r0073-s00-c00.xtc.idx index/e41-r0092-s01-c00.xtc.idx

index/e41-r0073-s02-c00.xtc.idx index/e41-r0092-s00-c00.xtc.idx

index/e41-r0073-s01-c00.xtc.idx index/e41-r0092-s02-c00.xtc.idx

Table 2
Processing rates of Hummingbird running with MPI on the configuration
file shown in Fig. 4 using different numbers of workers.

No. of workers Processing rate (Hz) No. of workers Processing rate (Hz)

1 3.93 50 141.99
10 37.69 60 155.36
20 57.50 70 178.53
30 89.20 80 189.74
40 110.29 90 198.26



The performance of Hummingbird running the ‘diffraction’

configuration example when reading from XTC files is given in

Table 2, showing processing rates above 100 Hz using up to 90

CPU workers distributed across five computing nodes. Each

node has two Intel Xeon E5-2620 CPUs with six cores each.

With low worker counts, the processing speed scales linearly.

For higher counts, the disk I/O subsystem of our cluster

becomes the limiting factor. When running the same example

live (i.e. from shared memory streams at LCLS), the intent

would be to choose a number of nodes (with the number of

workers per node roughly corresponding to the number of

cores) that would guarantee real-time processing of all data.

During numerous experiments at the LCLS using similar

configurations, Hummingbird has been reading from multi-

plexed shared memory streams approaching the real-time rate

of 120 Hz.

4. Usage notes

Hummingbird is an open-source project, available under the

Simplified BSD license. The current release can be down-

loaded from http://lmb.icm.uu.se/hummingbird. The project is

also available on Github (https://github.com/FXIhub/

hummingbird). Detailed installation instructions and exam-

ples are provided on a documentation page (http://lmb.icm.uu.

se/hummingbird/docs).

5. Future work

In future releases of Hummingbird we are planning to add

more event translators for other XFEL data sources, in

particular for SACLA and the European XFEL. Besides its

main focus on real-time monitoring, we are improving the

capabilities of running Hummingbird as a tool for offline

analysis of X-ray diffraction data. We continue to implement

new data analysis and plotting modules. Furthermore, we are

constantly adding new features to the GUI. This is an open-

source project, so we encourage users to contribute and

extend Hummingbird by adding new modules.

6. Conclusion

We have introduced Hummingbird, a versatile data analysis

and monitoring tool which is able to cope with the current

frame rates at which data are produced in FXI experiments

performed at free-electron lasers. With Hummingbird, users

are able to monitor and thus adjust crucial experimental

parameters in real time. With its simple and modular Python

implementation, users can easily build their own tailored

computer programs

1046 Benedikt J. Daurer et al. � Hummingbird J. Appl. Cryst. (2016). 49, 1042–1047

Figure 5
Snapshot of the Hummingbird interface showing available data sources and plots for the ‘diffraction’ configuration example. It monitors the hitscore
(bottom left), detector histogram (top right) and latest hit image (bottom right). The current parameters of the hit finder (counting lit pixels) are shown
as a vertical red line in the top right panel and as a horizontal green line in the bottom left panel.



analysis pipeline for their experiments and run it in real time

over multiple cores and nodes.

Acknowledgements

This work was supported by the Swedish Research Council,

the Knut and Alice Wallenberg Foundation, the European

Research Council, the Swedish Foundation for Strategic

Research, and the Helge Ax:son Johnsons Stiftelse.

References

Barke, I., Hartmann, H., Rupp, D., Flückiger, L., Sauppe, M., Adolph,
M., Schorb, S., Bostedt, C., Treusch, R., Peltz, C., Bartling, S.,
Fennel, T., Meiwes-Broer, K.-H. & Möller, T. (2015). Nat.

Commun. 6, 6187.
Barty, A., Kirian, R. A., Maia, F. R. N. C., Hantke, M., Yoon, C. H.,
White, T. A. & Chapman, H. (2014). J. Appl. Cryst. 47, 1118–
1131.

Campagnola, L. (2016). PyQtGraph, http://pyqtgraph.org.
Damiani, D., Dubrovin, M., Gaponenko, I., Kroeger, W., Lane, T. J.,
Mitra, A., O’Grady, C. P., Salnikov, A., Sanchez-Gonzalez, A.,
Schneider, D. & Yoon, C. H. (2016). J. Appl. Cryst. 49, 672–679.

Ekeberg, T., Svenda, M., Abergel, C. et al. (2015). Phys. Rev. Lett. 114,
098102.

Ekeberg, T., Svenda, M., Seibert, M. M. et al. (2016). Submitted.
Forum, M. P. (1994). MPI: A Message-Passing Interface Standard.

Technical Report. University of Tennessee, Knoxville, TN, USA.
Foucar, L., Barty, A., Coppola, N., Hartmann, R., Holl, P., Hoppe, U.,
Kassemeyer, S., Kimmel, N., Küpper, J., Scholz, M., Techert, S.,

White, T. A., Strüder, L. & Ullrich, J. (2012). Comput. Phys.

Commun. 183, 2207–2213.
Gabriel, E., Fagg, G. E., Bosilca, G., Angskun, T., Dongarra, J. J.,
Squyres, J. M., Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A.,
Castain, R. H., Daniel, D. J., Graham, R. L. &Woodall, T. S. (2004).
Recent Advances in Parallel Virtual Machine and Message Passing

Interface, 11th European PVM/MPI Users’ Group Meeting,

Budapest, Hungary, September 19–22, 2004, Proceedings, pp. 97–
104. Berlin, Heidelberg: Springer.

Hantke, M. F. et al. (2014). Nat. Photon. 8, 943–949.
Heisen, B., Boukhelef, D., Esenov, S., Hauf, S., Kozlova, I., Maia, L.,
Parenti, A., Szuba, J., Weger, K., Wrona, K. & Youngman, C.
(2013). 14th International Conference on Accelerator and Large
Experimental Physics Control Systems, San Francisco, USA, 6–11
October 2013, FRCOAAB02.

Hintjens, P. (2010). ZeroMQ: The Guide, http://zguide.zeromq.org/
page:all.

Jones, E. et al. (2001). SciPy, http://www.scipy.org/.
Loh, N. D. et al. (2012). Nature, 486, 513–517.
Mariani, V., Morgan, A., Yoon, C. H., Lane, T. J., White, T., O’Grady,
C., Kuhn, M., Aplin, S., Koglin, J. & Chapman, H. N. (2016). J. Appl.
Cryst. 49, 1073–1080.

Neutze, R., Wouts, R., van der Spoel, D., Weckert, E. & Hajdu, J.
(2000). Nature, 406, 752–757.

Riverbank Computing (2016). PyQt, http://www.riverbankcomputing.
com/software/pyqt.

Sauter, N. K., Hattne, J., Grosse-Kunstleve, R. W. & Echols, N. (2013).
Acta Cryst. D69, 1274–1282.

Schot, G. van der et al. (2015). Nat. Commun. 6, 5704.
Seibert, M. M. et al. (2011). Nature, 470, 78–81.
The Qt Company (2016). Qt, http://www.qt.io.
Walt, S. van der, Colbert, S. C. & Varoquaux, G. (2011). Comput. Sci.

Eng. 13, 22–30.

computer programs

J. Appl. Cryst. (2016). 49, 1042–1047 Benedikt J. Daurer et al. � Hummingbird 1047

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5007&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5007&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5007&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5007&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5007&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5007&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5007&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5007&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5007&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5007&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5007&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5007&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5007&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5007&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5007&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5007&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5007&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5007&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5007&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5007&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5007&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5007&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5007&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5007&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5007&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5007&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5007&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5007&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5007&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5007&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5007&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5007&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5007&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5007&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5007&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5007&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5007&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5007&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5007&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5007&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5007&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5007&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5007&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5007&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5007&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5007&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5007&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5007&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5007&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5007&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zd5007&bbid=BB22

