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Abstract.

This paper analyzes the volatility structure of commodity derivatives

markets. The model encompasses stochastic volatility that may be un-

spanned by futures contracts. A generalized hump-shaped volatility

specification is assumed that entails a finite-dimensional affine model

for the commodity futures curve and quasi-analytical prices for options

on commodity futures. An empirical study of the crude oil futures

volatility structure is carried out using an extensive database of futures

prices as well as futures option prices spanning 21 years. The study

supports a hump-shaped, partially spanned stochastic volatility speci-

fication. Factor hedging, which takes into account shocks to both the

volatility processes and the futures curve, depicts the presence of un-

spanned components in the volatility of commodity futures and the out-

performance of the hump-shaped volatility in comparison to the more

popular exponential decaying volatility. This hump shaped feature is

more pronounced when the market is volatile.
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1 Introduction

Commodity derivatives serve the very important role of helping to manage the volatility of

commodity prices. Apart from hedgers, the volatility of commodity prices are also of keen

interest to speculators, who have become more dominant in these markets in recent years,

see Barone-Adesi, Geman, and Theal (2010). However, these derivatives have their own

volatility, of which the understanding and management is of paramount importance. In this

paper, we will provide a tractable model for this volatility, and carry out empirical analysis

for the most liquid commodity derivative market, namely the crude oil market.

The model used in this paper focuses directly on the volatility of derivatives. It is set up un-

der the Heath, Jarrow, and Morton (1992) framework that treats the entire term structure of

futures prices as the primary modelling element. Due to the standard feature that commod-

ity futures prices are martingales under the risk-neutral measure, the model is completely

identified by the volatility of futures prices and the initial forward curve. We model this

volatility as a multifactor stochastic volatility, which may be partially unspanned by the fu-

tures contracts. Spot commodity prices are uniquely determined without the need to specify

the dynamics of the convenience yield. Option prices can be obtained quasi-analytically and

complex derivative prices can be determined via simulation.

Commodity derivatives have been previously studied under the Heath, Jarrow, and Mor-

ton (1992) framework. However, previous works such as those of Miltersen and Schwartz

(1998), Clewlow and Strickland (2000) and Miltersen (2003) were restricted to deterministic

volatility. Trolle and Schwartz (2009b) extended the literature significantly by considering

unspanned stochastic volatility. However, there are two differences between this paper and

the Trolle and Schwartz (2009b) paper. First, Trolle and Schwartz (2009b) start by modelling

the spot commodity and convenience yield. Convenience yield is unobservable and there-

fore modelling it adds complexity to model assumptions and estimation. Moreover, sensi-

tivity analysis has to rely on applying shocks to this unobserved convenience yield, which

makes it less intuitive. Second, the volatility function in the Trolle and Schwartz (2009b)

paper has an exponential decaying form, predicting that long term contracts will always be

less volatile than short term contracts. Our model, on the other hand, uses a hump-shaped

volatility (which can be reduced to an exponential decaying one), and therefore allows for

increasing volatility at the short end of the curve.

The model in this paper falls under the generic framework provided by Andersen (2010) for

the construction of Markovian models for commodity derivatives. As an extension to his

work, we provide full results for models that allow for hump-shaped, unspanned stochastic
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volatility. A hump is an important factor in other markets, such as interest rate markets,

see for example Litterman, Scheinkman, and Weiss (1991), Dai and Singleton (2000) and

Bekaert, Hodrick, and Marshall (2001). On the other hand, limited evidence exists in the

crude oil market. As far as we are aware, this feature has only been studied in the working

paper version of Trolle and Schwartz (2009b). It is reported that a hump shaped volatility

function had been tried, but resulted in very similar estimates and almost indistinguishable

price performance compared to the exponential volatility function. We will re-examine the

volatility structure of the crude oil derivatives market. We use a larger panel dataset of crude

oil futures and options traded on the NYMEX, spanning 21-years from 1 January 1990 to

31 December 2010. We find that a three-factor stochastic volatility model works well. Two

of the volatility functions have a hump shape that cannot be captured by the exponential

decaying specification. We also find that the hump shaped volatility matters a lot more when

the market is volatile than when the market is relatively stable. The extent to which the

volatility can be spanned by futures contracts varies over time, with the lowest spanning

being in the recent period of 2006-2010.

The fact that volatility in the market cannot be spanned by futures contracts highlights the

importance of options for hedging purposes. We analyze the hedging of straddle contracts,

the pricing of which is highly sensitive to volatility. Given the multifactor nature of the

model, factor hedging is employed. Factor hedging has been used successfully for deter-

ministic and local volatility2, such as in Clewlow and Strickland (2000) or Fan, Gupta, and

Ritchken (2003). We expand the method to hedge the random shocks coming from stochastic

volatility. We show that the hedging performance increases dramatically when options con-

tracts are added to the hedging instrument set. The hedging performance is measured under

various different factor hedging schemes, from delta-neutral to delta-vega and delta-gamma

neutral.

An alternative approach to the HJM framework is modelling the spot commodity prices di-

rectly. A representative list of relevant literature would include Gibson and Schwartz (1990),

Litzenberger and Rabinowitz (1995), Schwartz (1997), Hilliard and Reis (1998) and Casas-

sus and Collin-Dufresne (2005). These models have been successful in depicting essential

and critical features of distinct commodity market prices, for instance, the mean-reversion of

the agricultural commodity market, the seasonality of the natural gas market, the spikes and

regime switching of the electricity market and the inverse leverage in the oil market. The

disadvantage of the spot commodity models is the requirement to specify and estimate the

2Local volatility refers to model where there is a dependence between volatility and the level of the state

variables.
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unobservable convenience yield. The futures prices are then determined endogenously. In

addition, HJM models can naturally embed unspanned stochastic volatility, a feature some

spot commodity models cannot accommodate.3

The paper is organized as follows. Section 2 presents a generalised unspanned stochastic

volatility model for pricing commodity derivatives within the HJM framework. Section 3

describes and analyzes the data for crude oil derivatives and explains the estimation algo-

rithm. Section 4 presents the results. Section 5 examines the hedging performance. Section 6

concludes. Technical details are presented in the Appendix.

2 The HJM framework for commodity futures prices

We consider a filtered probability space (Ω,AT ,A, P ), T ∈ (0,∞) with A = (At)t∈[0,T ],

satisfying the usual conditions.4 We introduce V = {Vt, t ∈ [0, T ], } a generic stocha-

stic volatility process modelling the uncertainty in the commodity market. We denote as

F (t, T,Vt), the futures price of the commodity at time t ≥ 0, for delivery at time T , (for

all maturities T ≥ t). Consequently, the spot price at time t of the underlying commodity,

denoted as S(t,Vt) satisfies S(t,Vt) = F (t, t,Vt), t ∈ [0, T ]. The futures price process is

equal to the expected future commodity spot price under an equivalent risk-neutral probabil-

ity measure Q, see Duffie (2001), namely

F (t, T,Vt) = E
Q[S(T,VT)∣At].

This leads to the well-known result that the futures price of a commodity is a martingale

under the risk-neutral measure, thus the commodity futures price process follows a driftless

stochastic differential equation. Let W (t) = {W1(t), . . . ,Wn(t)} be an n−dimensional

Wiener process driving the commodity futures prices and W V (t) = {W V
1 (t), . . . ,W V

n (t)}

be the n−dimensional Wiener process driving the stochastic volatility process Vt, for all

t ∈ [0, T ].5

3See the discussion in Collin-Dufresne and Goldstein (2002) for example.
4The usual conditions satisfied by a filtered complete probability space are: (a) ℱ0 contains all the ℙ-null

sets of ℱ and (b) the filtration is right continuous. See Protter (2004) for technical details.
5We essentially assume that the filtration At includes At = Af

t ∨ AV
t , where

(Af
t )t≥0 = {�(W (s) : 0 ≤ s ≤ t)}t≥0,

(AV
t )t≥0 = {�(WV (s) : 0 ≤ s ≤ t)}t≥0.
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Assumption 2.1 The commodity futures price process follows a driftless stochastic differ-

ential equation under the risk-neutral measure of the form

dF (t, T,Vt)

F (t, T,Vt)
=

n
∑

i=1

�i(t, T,Vt)dWi(t), (2.1)

where �i(t, T,Vt) are the A-adapted futures price volatility processes, for all T > t. The

volatility process Vt = {V1

t
, . . . ,Vn

t
} is an n− dimensional well-behaved Markovian pro-

cess evolving as

dVt
i = aVi (t,Vt)dt+ �V

i (t,Vt)dW
V
i (t), (2.2)

for i = 1, . . . , n, where aVi (t,Vt), �
V
i (t,Vt) are A-adapted stochastic processes and

E
Q[dWi(t) ⋅ dW

V
j (t)] =

{

�idt, i = j;

0, i ∕= j.
(2.3)

Assume that all the above processes are A-adapted bounded processes with drifts and dif-

fusions that are regular and predictable so that the proposed SDEs admit unique strong so-

lutions. The proposed volatility specification expresses naturally the feature of unspanned

stochastic volatility in the model. The correlation structure of the innovations determines

the extent to which the stochastic volatility is unspanned. If the Wiener processes Wi(t) are

uncorrelated with W V
i (t) then the volatility risk is unhedgeable by futures contracts. When

the Wiener processes Wi(t) are correlated with W V
i (t), then the volatility risk can be par-

tially spanned by the futures contracts. Thus the volatility risk (and consequently options on

futures contracts) cannot be completely hedged by using only futures contracts.

Conveniently, the system (2.1) and (2.2) can be expressed in terms of independent Wiener

processes. By considering the n−dimensional independent Wiener processesW 1(t) = W (t)

and W 2(t), then one possible representation is

dF (t, T,Vt)

F (t, T,Vt)
=

n
∑

i=1

�i(t, T,Vt)dW
1
i (t), (2.4)

dVt
i = aVi (t,Vt

i)dt+ �V
i (t,Vt

i)

(

�idW
1
i (t) +

√

1− �2i dW
2
i (t)

)

. (2.5)

Clearly, the volatility risk of any volatility factors Vt
i with �i = 0 cannot be spanned by

futures contracts.
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Let X(t, T ) = lnF (t, T,Vt) be the logarithm of the futures prices process, then from (2.4)

and an application of Ito’s formula, it follows that

dX(t, T ) = −
1

2

n
∑

i=1

�2
i (t, T,Vt)dt+

n
∑

i=1

�i(t, T,Vt)dWi(t). (2.6)

Lemma 2.2 Under the Assumption 2.1 for the commodity futures price dynamics, the com-

modity spot prices satisfy the SDE

dS(t,Vt)

S(t,Vt)
=�(t)dt+

n
∑

i=1

�i(t, t,Vt)dWi(t), (2.7)

with the instantaneous spot cost of carry �(t) satisfying the relationship

�(t) =
∂

∂t
lnF (0, t)−

1

2

n
∑

i=1

�2
i (t, t,Vt) (2.8)

−

n
∑

i=1

∫ t

0

�i(u, t,Vu)
∂

∂t
�i(u, t,Vu)du+

n
∑

i=1

∫ t

0

∂

∂t
�i(u, t,Vu)dWi(u).

Proof: See Appendix A. ■

The commodity HJM model is Markovian in an infinite dimensional state space due to the

fact that the futures price curve is an infinite dimensional object (one dimension for each

maturity T ). In addition, the path dependent nature of the integral terms in the drift (2.8) of

the commodity spot prices also gives the process an infinite dimensional nature.

2.1 Finite Dimensional Realisations for a Commodity Forward Model

We specify functional forms for the futures price volatility functions �i(t, T,Vt) that will al-

low the proposed commodity forward model to admit finite dimensional realisations (FDR).

Assumption 2.3 The commodity futures price volatility functions �i(t, T,Vt) are of the

form

�i(t, T,Vt) = �i(t,Vt)'i(T − t), (2.9)

where �i : ℝ
+ → ℝ are A-adapted square-integrable stochastic processes and 'i : ℝ → ℝ
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are quasi exponential functions. A quasi-exponential function ' : ℝ → ℝ has the general

form

'(x) =
∑

i

emix +
∑

j

enjx[pj(x) cos(kjx) + qj(x) sin(kjx)], (2.10)

where mi, ni and ki are real numbers and pj and qj are real polynomials.

These very general volatility specifications have been proposed in Björk, Landén, and Svens-

son (2004) and can be adapted for commodity forward models. Björk, Landén, and Svensson

(2004) have demonstrated, by employing methods of Lie algebra, that this functional form

is a necessary condition for a forward interest rate model with stochastic volatility to admit

FDR. In the spirit of Chiarella and Kwon (2001b) and Björk, Landén, and Svensson (2004),

�i may also depend on a finite set of commodity futures prices with fixed tenors. When

level dependent (or constant direction) volatility is considered, it becomes very difficult to

obtain tractable analytical solutions for futures option prices. For this reason, even though

FDR can be obtained for a level dependent stochastic volatility model (clearly with a higher

dimensional state space), we consider the dependence of �i only on stochastic volatility.

These volatility specifications have the flexibility of generating a wide range of shapes

for the futures price volatility surface. Some typical examples of interest rate volatility

curves include, the exponentially declining stochastic volatility structures of the Ritchken

and Sankarasubramanian (1995), and the hump-shaped volatility structures discussed in

Chiarella and Kwon (2001a) and Trolle and Schwartz (2009a), which are special cases of

these general specifications. Furthermore some special examples of commodity volatil-

ity curves include the exponentially declining stochastic volatility structures of Trolle and

Schwartz (2009b) and the gas volatility structures following a regular pattern as discussed

in Björk, Blix, and Landen (2006). Note that the latter authors do not consider a stochastic

volatility model.

2.2 Hump-Shaped Unspanned Stochastic Volatility

Next we propose certain volatility specifications within the general functional form (2.9)

which are not only multi-factor stochastic volatility of Heston (1993) type but also allow for

humps.

Assumption 2.4 The commodity futures price volatility processes �i(t, T,Vt) are of the
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form

�i(t, T,Vt) = (�0i + �i(T − t))e−�i(T−t)

√

Vt
i, (2.11)

where �0i, �i and �i are constants.

When the commodity futures prices volatilities are expressed in this functional form then

finite dimensional realisations of the state space are possible.

Proposition 2.5 Under the volatility specifications of Assumption 2.4, the logarithm of the

instantaneous futures prices at time t with maturity T , namely lnF (t, T,Vt), is expressed in

terms of 6n state variables as

lnF (t, T,Vt) = lnF (0, T, V0)−
n
∑

i=1

(

1

2
(i1(T − t)xi(t) + i2(T − t)yi(t) + i3(T − t)zi(t))+

(�i1(T − t)�i(t) + �i2(T − t) i(t))

)

, (2.12)

where for i = 1, 2, . . . , n

�i1(T − t) = (�0i + �i(T − t))e−�i(T−t), (2.13)

�i2(T − t) =�ie
−�i(T−t), (2.14)

i1(T − t) =�i1(T − t)2, (2.15)

i2(T − t) = 2�i1(T − t)�i2(T − t), (2.16)

i3(T − t) =�i2(T − t)2. (2.17)

The state variables xi(t), yi(t), zi(t), �i(t) and  i(t), i = 1, 2, . . . , n evolve according to

dxi(t) = (−2�ixi(t) +Vt
i)dt,

dyi(t) = (−2�iyi(t) + xi(t))dt,

dzi(t) = (−2�izi(t) + 2yi(t))dt,

d�i(t) = −�i�i(t)dt+

√

Vt
idWi(t),

d i(t) = (−�i i(t) + �i(t))dt,

(2.18)

subject to xi(0) = yi(0) = zi(0) = �i(0) =  i(0) = 0. The above-mentioned 5n state

variables are associated with the stochastic volatility process Vt = {Vt
1, . . . ,Vt

n} which
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is assumed to be an n− dimensional of Heston (1993) type process such that

dVt
i = �V

i (�
V
i −Vt

i)dt+ "Vi

√

Vt
idW V

i (t), (2.19)

where �V
i , �

V
i , and "Vi are constants (they can also be deterministic functions).

Proof: See Appendix B for technical details. ■

Note that the model admits FDR within the affine class of Duffie and Kan (1996). Addition-

ally, the model is consistent, by construction, with the currently observed futures price curve,

consequently it is a time-inhomogeneous model. However for estimation purposes, it is nec-

essary to reduce the model to a time-homogeneous one as presented in Section 3.3 below.

Note that the proposed volatility conditions in Andersen (2010) lead to time-inhomogeneous

models, which cannot be directly applied for estimation purposes.

The price of options on futures can be obtained in closed form as a tractable expression for

the characteristic function exists. By employing Fourier transforms, call and put options on

futures contracts can be priced. These results are summarised in the following proposition

which is a natural extensions of existing literature and are quoted here for completeness.

Proposition 2.6 Under the stochastic volatility specifications (2.19) and for t ≤ To ≤ T ,

the transform �(t; v, To, T ) =: Et[exp{v lnF (To, T, VTo
)}] is expressed as

�(t; v, To, T ) = exp{M(t; v, To) +

n
∑

i=1

Ni(t; v, To)Vt
i + v lnF (t, T,Vt)}, (2.20)

where M(t) = M(t; v, To) and for i = 1, . . . , n, Ni(t) = Ni(t; v, To) satisfy the Ricatti

ordinary differential equations

dM(t)

dt
= −

n
∑

i=1

�Vi �
V
i Ni(t), (2.21)

dNi(t)

dt
= −

v2 − v

2
('i)

2 −
(

"Vi v�i'i − �Vi
)

Ni(t)−
1

2
"Vi

2
N2

i (t), (2.22)

subject to the terminal conditions M(To) = Ni(To) = 0, where 'i = (�0i + �i(T −

t))e−�i(T−t).

The price at time t of a European put option maturing at To with strike K on a futures
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contract maturing at time T , is given by

P(t, To, T,K) = E
Q
t [e

−
∫ To
t

rsds (K − F (To, T ))
+]

= P (t, To)[KG0,1(log(K))−G1,1(log(K))] (2.23)

where P (t, To) is the price at time t of a zero-coupon bond maturing at To and Ga,b(y) is

given by

Ga,b(y) =
�(t; a, To, T )

2
−

1

�

∫ ∞

0

Im[�(t; a+ ibu, To, T )e
−iuy]

u
du. (2.24)

Note that i2 = −1.

Proof: Follows along the lines of Duffie, Pan, and Singleton (2000) and Collin-Dufresne

and Goldstein (2002). Technical details of the characteristic function are also presented in

Appendix C. ■

For the market price of volatility risk, a “complete” affine specification is assumed, see Doran

and Ronn (2008) (where they have shown that the market price of volatility risk is negative)

and in particular Dai and Singleton (2000). Accordingly, the market price of risk is specified

as,

dW ℙ

i (t) = dWi(t)− �i

√

Vt
idt,

dW ℙV
i (t) = dW V

i (t)− �Vi

√

Vt
idt,

(2.25)

for i = 1, . . . , n,whereW ℙ

i (t) andW ℙV
i (t) are Wiener processes under the physical measure

ℙ. Note that under these specifications, the model parameters are 9n, namely; �i, �
V
i , �0i,

�i, �i, �
V
i , �Vi , "Vi , �i that we will estimate next by fitting the proposed model to crude oil

derivative prices.
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3 Data and the estimation method

3.1 Data

We estimate the model using an extended dataset of crude oil futures and options traded on

the NYMEX6. The database spans the 21 years from 1 January 1990 to 31 December 2010.

This is one of the richest databases available on commodity derivatives. In addition, over this

period, noteworthy financial market events with extreme market movements, for instance the

oil price crisis in 1990 and the financial crisis in 2008, have occurred.

Throughout the sample period, the number of available futures contracts with positive open

interest per day has increased from 17 on 1st of January 1990 to 67 on 31st of December

2010. The maximum maturity of futures contracts with positive open interest has also in-

creased from 499 (calendar) days to 3128 days. We can see that the price surfaces change

significantly throughout the sample period. The maximum futures price was US$40 per

barrel in 1990 reaching US$140 per barrel in 2008.

Given the large number of available futures contracts per day, we make a selection of con-

tracts for estimation purposes based on their liquidity. Liquidity has increased across the

sample. For instance, the open interest for the futures contract with 6 months to maturity has

increased from 13,208 contracts in 1990 to 38,766 contracts in 2010. For contracts with less

than 14 days to expiration, liquidity is very low, while for contracts with more than 14 days to

expiration, liquidity increases significantly. We begin with the first seven monthly contracts,

near to the trade date, namely m1, m2, m3, m4, m5, m6, and m7. Note that the first contract

should have more than 14 days to maturity. After that liquidity is mostly concentrated in the

contracts expiring in March, June, September and December. Thus the first seven monthly

contracts are followed by the three contracts which have either March, June, September or

December expiration months. We name them q1, q2 and q3. Beyond that, liquidity is concen-

trated in December contracts only, therefore the next five December contracts, namely y1,

y2, y3, y4 and y5, are included. As a result, the total number of futures contracts to be used

in our analysis is 70,735, with the number of contracts to be used on a daily basis varying

between a maximum of 15 and a minimum of 8. Figure 3.1 plots the selected futures prices

on Wednesdays during the sample period.

6The database has been provided by CME.
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Figure 3.1: Futures curve - 1 January 1990 to December 2010

With regard to option data, we consider the options on the first ten futures contracts only,

namely the futures contractsm1-m7 and q1-q3. We avoid the use of longer maturities because

in the proposed model we have not taken into account interest rates that vary considerably

over the sample period and probably stochastically. Due to this model constraint, the option

pricing equation (2.23) is not very accurate for longer maturities. Furthermore, the option

pricing equation (2.23) provides the price for European options, not American options that

are the options of our database. For the conversion of American prices to European prices,

including the approximation of the early exercise premium, we follow the same approach

proposed by Broadie, Chernov, and Johannes (2007) for equity options and applied by Trolle

and Schwartz (2009b) for commodity options.

For each option maturity, we consider six moneyness intervals, 0.86−0.90, 0.91−0.95, 0.96−

1.00, 1.01− 1.05, 1.06− 1.10, 1.11− 1.15. Note that moneyness is defined as option strike

divided by the price of the underlying futures contract. In each moneyness interval, we use

only the out-of-the-money (OTM) and at-the-money (ATM) options that are closest to the

interval mean. OTM options are generally more liquid and we also benefit by a reduction in

the errors that occurred in the early exercise approximation.
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Based on this selection criteria, we consider 433,137 option contracts over the 21 years, with

the daily range varying between 29 and 100 contracts (per trading day). Note that the total

number of trading days where both futures and options data are available is 5272. ATM

implied volatilities for options on the first ten oil futures contracts were computed by using

the Barone-Adesi and Whaley (1987) option pricing formula and are displayed in Figure 3.2.
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Figure 3.2: ATM implied volatilities of options on oil futures.

3.2 Sample selection

Figure 3.1 shows that the prices of futures contracts change significantly during the 21-

year period from 1990 - 2010. In their study of crude oil futures from October 1991 to

October 2007, Bekiros and Diks (2008) show that the two periods before and after 1999

differ considerably in their statistical features. They argue that there are economic reasons

behind the change, namely the reduction in OPEC spare capacity and the increase in the US

and China’s oil consumption and imports.

Our data coverage is longer than that of Bekiros and Diks (2008), namely from January

1990 until December 2010. It covers two more important events related to crude oil prices,

namely the Gulf War and the Global Financial Crisis. It can be seen in Figure 3.1 that not

only the futures prices surged up during the two periods but there is also a lot of variation.

13



We therefore break the data further down further into smaller subsamples and analyze their

statistical features in Table 3.1.

Period: 1990 - 1994

1M 4M 7M 13M

Mean -0.00022 -0.00017 -0.00013 -0.00010

Standard Deviation 0.02631 0.01837 0.01616 0.01419

Sample Variance 0.00069 0.00034 0.00026 0.00020

Kurtosis 50.19 50.62 31.53 14.35

Skewness -2.96698 -3.26779 -2.22760 -1.03636

Period: 1995 - 1999

1M 4M 7M 13M

Mean 0.00030 0.00023 0.00017 0.00009

Standard Deviation 0.02232 0.01580 0.01354 0.01167

Sample Variance 0.00049 0.00025 0.00018 0.00014

Kurtosis 6.84 7.12 6.60 5.58

Skewness 0.20058 0.14862 0.06334 0.03245

Period: 2000 - 2005

1M 4M 7M 13M

Mean 0.00062 0.00069 0.00075 0.00081

Standard Deviation 0.02426 0.01952 0.01736 0.01528

Sample Variance 0.00059 0.00038 0.00030 0.00023

Kurtosis 6.03 5.09 5.12 4.75

Skewness -0.62528 -0.41719 -0.39037 -0.32096

Period: 2006 - 2010

1M 4M 7M 13M

Mean 0.00029 0.00029 0.00029 0.00028

Standard Deviation 0.02720 0.02272 0.02115 0.01922

Sample Variance 0.00074 0.00052 0.00045 0.00037

Kurtosis 7.71 5.77 5.69 5.59

Skewness 0.15898 -0.15396 -0.12377 -0.11221

Table 3.1: Daily log returns descriptive statistics 1990 - 2010.

Over the last 20 years, the futures returns have increased consistently until the last period,

when the financial crisis hit. The variance of returns started high in the first period surround-

ing the Gulf War, reducing in the second period 1995-1999, bounced back in 2000-2005

and finally reached the highest level in 2006-2010. The variance were also mostly driven

by extreme values (kurtosis) in the Gulf War period. Given these changes, we will later
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empirically estimate the model for each period separately.

3.3 Estimation method

The estimation approach is quasi-maximum likelihood in combination with the extended

Kalman filter. The model is cast into a state-space form, which consists of the system equa-

tions and the observation equations.

For estimation purposes, a time-homogeneous version of the model (2.12) is considered,

by assuming for all T , F (0, T ) = fo, where fo is a constant representing the long-term

futures price (at infinite maturity). This constant is an additional parameter that is also to be

estimated. In the estimation we normalized the long run mean of the volatility process, �Vi ,

to one to achieve identification. 7

The system equations describe the evolution of the underlying state variables. In our case,

the state vector is Xt = {X i
t , i = 1, 2, . . . , n} where X i

t consists of the six state variables

xi(t), yi(t), zi(t), �i(t),  i(t) and Vt
i. The continuous time dynamics (under the physical

probability measure) of these state variables are defined by (2.18), (2.19) and (2.25). The

corresponding discrete evolution is

Xt+1 = Φ0 + ΦXXt + wt+1, wt+1 ∼ iidN(0, Qt), (3.26)

where Φ0, ΦX and Qt can be computed in closed form. Details can be found in Appendix D.

The observation equations describe how observed options and futures prices are related to

the state variables, namely

zt = ℎ(Xt) + ut, ut ∼ iidN(0,Ω). (3.27)

In particular, log futures prices are linear functions of the state variables (as described in

(2.12)) and the options prices are nonlinear functions of the state variables (as described in

(2.23) and (2.24)) so the function ℎ will have to vary accordingly.

7For details see for example the discussion on invariant transformations in Dai and Singleton (2000).
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3.4 Other considerations

3.4.1 Number of stochastic factors

The number of driving stochastic factors affecting the evolution of the futures curve can

be determined by performing a principal component analysis (PCA) of futures price returns.

Table 3.2 show that we do not need more than 3 factors to capture the variations in the futures

returns. We therefore will estimate a 3-factor model for all sample periods in our empirical

analysis and check their performance against corresponding 2-factor models.

Time Period One factor Two factor Three factor

1990 - 1994 0.9056 0.9805 0.9961

1995 - 1999 0.8913 0.9667 0.9951

2000 - 2005 0.8229 0.9059 0.9549

2006 - 2010 0.9275 0.9715 0.9887

Table 3.2: Accumulated percentage of contribution towards return variation.

3.4.2 The discount function

The discount function P (t, T ) is obtained by fitting a Nelson and Siegel (1987) curve each

trading day to LIBOR and swap data consisting of 1-, 3-, 6-, 9- and 12-month LIBOR rates

and the 2-year swap rate, similar to Trolle and Schwartz (2009b).

Let f(t, T ) denote the time−t instantaneous forward interest rate to time T . Nelson and

Siegel (1987) parameterize the forward interest rate curve as

f(t, T ) = �0 + �1e
−�(T−t) + �2�(T − t)e−�(T−t) (3.28)

from which we can price LIBOR and swap rates. This also yields for zero-coupon bond

prices the expression

P (t, T ) = exp

{

�0(T − t) + (�1 + �2)
1

�

(

1− e−�(T−t)
)

+ �2(T − t)e−�(T−t)

}

. (3.29)

On each observation date, we recalibrate the parameters �0, �1, �2 and �, by minimizing the

mean squared percentage differences between the model implied forward rates (3.28) and

the observed LIBOR and swap curve consisting of the 1-, 3-, 6-, 9- and 12-month LIBOR

rates and the 2-year swap rate on that date.
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3.4.3 Computational details

The loglikehood function is maximised by using the constrained optimization routine “e04jy”

in the NAG library. We begin with several different initial hypothetical parameter values,

firstly on monthly data, then on weekly data and finally on daily data, aimed at obtaining

global optima.

The ODE’s (2.21) and (2.22) are solved by a standard fourth-order Runge-Kutta algorithm

using complex arithmetic. The integral in (2.24), is approximated by the Gauss-Legendre

quadrature formula with 30 integration points and truncating the integral at 400.

4 Empirical Results

4.1 Parameter Estimation

Parameter estimates for the two-factor hump-shaped stochastic volatility model are presented

in Table 4.3. Parameter estimates for the three-factor hump-shaped stochastic volatility

model can be found in Table 4.4 and Table 4.5. Estimation is carried out for four different

subsamples due to the marked difference in their price behaviour, as can be seen in Figure 3.1

and Table 3.1.

The combination of different hump-shaped curves can result in a rich pattern of volatility

behaviour. From the parameter estimates, the significance of � in all subsamples indicates

the existence of a hump shape. Figure 4.3 and Figure 4.4 display the shape of each volatility

component and the total volatility of the futures prices for the two-factor models and the

three-factor models, respectively.8 For all sample periods, only one of the three volatility

factors can be described by an exponential decaying function. Table 4.6 shows the contri-

bution of each volatility factor to the total variance. Note that “hump(e)” indicates that the

volatility function has a humped shape, however, at the relevant maturity range (less than 5

years), the volatility appears to be increasing since the hump occurs at a later point in time.

The total contribution of the two hump-shaped volatility factors is at least 78% of the total

futures return variation.

8The likelihood ratio tests strongly reject the 2-factor models in favour of the 3-factor ones.
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1990 - 1994 1995-1999 2000 - 2005 2006-2010

i = 1 i = 2 i = 1 i = 2 i = 1 i = 2 i = 1 i = 2

�0i 0.1509 1.1013 0.1409 0.6226 0.0010 0.6945 0.3510 0.8906

(0.008) (0.0137) (0.0016) (0.0056) (0.0005) (0.0057) (0.0026) (0.0076)

�i 1.9551 0.1252 1.8965 0.1523 0.1159 0.5768 2 0.7115

(0.0126) (0.0013) (0.0112) (0.0013) (0.0016) (0.0043) (0.0162) (0.0063)

�i 1.0338 0.2116 0.7939 0.0538 0.0010 0.4094 0.3697 0.2415

(0.0114) (0.0021) (0.0072) (0.042) (0.0004) (0.0032) (0.0042) (0.0022)

�Vi 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010

(0.0003) (0.0004) (0.0002) (0.0003) (0.0004) (0.0003) (0.0003) (0.0005)

"Vi 2 2 0.6041 1.2011 0.2687 1.5040 0.9475 1.7268

(0.0187) (0.0193) (0.0054) (0.0112) (0.0017) (0.0123) (0.0094) (0.0123)

�i 0.03428 -0.14828 -0.0606 0.0678 -0.0105 -0.1593 -0.2130 -0.0614

(0.0005) (0.0013) (0.0005) (0.0004) (0.0008) (0.0013) (0.0025) (0.0004)

�Vi -0.3492 1.5923 -0.9754 1.0451 1.1228 3.9996 -0.8979 2.3767

(0.0025) (0.0123) (0.0092) (0.0107) (0.0125) (0.0283) (0.0087) (0.0206)

�i -1.6256 1.02266 0.7156 1.0227 -0.2281 0.3499 -0.1093 1.5340

(0.0147) (0.0118) (0.0065) (0.0102) (0.0027) (0.0034) (0.0085) (0.0111)

F 2.9737 1.9575 3.0696 3.8649

(0.0225) (0.0121) (0.0305) (0.0218)

�f 0.0010 0.0010 0.0010 0.0010

(0.0000) (0.0001) (0.0000) (0.0001)

�o 0.0100 0.0100 0.0904 0.5287

(0.0006) (0.0005) (0.0008) (0.0045)

logL −69284.78 −89356.46 −52708.30 −88174.21

Table 4.3: The parameter estimates for the two-factor hump-shaped volatility model.
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1990 - 1994 1995-1999

i = 1 i = 2 i = 3 i = 1 i = 2 i = 3

�0i 0.0954 0.5418 0.3698 0.4173 1.0789 0.2701

(0.0011) (0.0087) (0.0056) (0.0062) (0.0098) (0.0024)

�i 1.8975 0.4884 0.0010 1.2634 0.4559 0.0010

(0.0101) (0.0069) (0.0000) (0.0095) (0.0057) (0.0000)

�i 0.3495 0.0010 0.5720 1.3273 0.2104 0.9548

(0.0036) (0.0001) (0.0076) (0.0105) (0.0025) (0.0099)

�Vi 0.0010 0.0010 1.5480 0.0010 0.0010 2.0000

(0.0001) (0.0001) (0.0112) (0.0001) (0.0001) (0.0129)

"Vi 0.5212 1.2462 0.4184 0.4483 1.5386 0.0011

(0.0074) (0.0113) (0.0046) (0.0041) (0.0132) (0.0001)

�i -0.0078 -0.0800 0.2363 0.1076 -0.5136 0.2154

(0.0005) (0.0010) (0.0039) (0.0021) (0.0042) (0.0018)

�Vi -1.0068 1.0279 -1.0058 -0.8542 0.9683 -0.9559

(0.0270) (0.0162) (0.0183) (0.0187) (0.0224) (0.0198)

�i 0.7370 1.0312 -0.7494 0.9585 1.0204 -0.7919

(0.0127) (0.0218) (0.0115) (0.0227) (0.0321) (0.0175)

F 1.9250 1.9029

(0.0127) (0.0109)

�f 0.0010 0.0010

(0.0000) (0.0001)

�o 0.0180 0.0100

(0.0005) (0.0004)

logL −43294.92 −80252.78

Table 4.4: The parameter estimates for the three-factor hump-shaped volatility model for the

periods 1990 - 1995 and 1996 - 1999.
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2000 - 2005 2006 - 2010

i = 1 i = 2 i = 3 i = 1 i = 2 i = 3

�0i 0.4394 0.1447 0.0010 0.1047 0.4782 0.5435

(0.0068) (0.0011) (0.0000) (0.0009) (0.0071) (0.0059)

�i 0.0033 1.1032 0.0940 1.9057 0.4443 0.0010

(0.0002) (0.0111) (0.0008) (0.0186) (0.0054) (0.0001)

�i 1.3300 0.9989 0.0010 0.2685 0.0053 0.5524

(0.0122) (0.0101) (0.0001) (0.0021) (0.0004) (0.0045)

�Vi 0.0010 0.0010 7.9991 0.0010 0.0010 1.5728

(0.0001) (0.0001) (0.0358) (0.0001) (0.0001) (0.0112)

"Vi 2.3831 3.0000 3.0000 0.5186 1.2218 0.3085

(0.0173) (0.0214) (0.0225) (0.0046) (0.0099) (0.0024)

�i -0.3803 -0.1123 0.7199 -0.0156 -0.0852 0.2346

(0.0033) (0.0008) (0.0040) (0.0007) (0.0012) (0.0022)

�Vi -4.0000 -3.9995 0.3563 -1.0017 1.0357 -1.0003

(0.0211) (0.0225) (0.0030) (0.0102) (0.0098) (0.0101)

�i 2.2278 1.7151 4.0000 0.7387 1.0238 -0.7623

(0.0210) (0.0164) (0.0267) (0.0043) (0.0099) (0.0065)

F 3.1410 1.9324

(0.0087) (0.0015)

�f 0.0010 0.0010

(0.0000) (0.0000)

�O 0.0487 0.1321

(0.0002) (0.0008)

logL −48460.89 −36962.34

Table 4.5: The parameter estimates for the three-factor hump-shaped volatility model for the

periods 2000 - 2005 and 2006 - 2010.

Appendix E presents the model specifications that allow for exponential volatility structures

only and the estimation results for the exponential volatility model.

All of the volatility factors are highly persistent (evidenced by the very low value of �V
i ),

suggesting that they are important for the pricing of futures and options of all maturities. For

each of the subsamples, the innovation to at least one of the volatility factors has a very low

correlation (absolute values from 0.7% − 11%) with the innovations to the futures prices,

implying the large extent to which the volatility is unspanned by the futures contracts.

We note that there were three major events that affected the volatility of the crude oil market,

namely the Gulf War 1990-1991, the Iraq War 2003 and the Global Financial Crisis 2008.

The implied volatility especially for short-dated options increased by more than 100% over

the 1991 and 2003 crises while implied volatilities for both short-dated and long-dated op-
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Subsample �1 Shape �2 Shape �3 Shape

1990 - 1994 28.80% Hump 57.27% Hump(e) 13.93% Exp decaying

1995 - 1999 1.18% Hump 77.55% Hump 21.27% Exp decaying

2000 - 2005 0.75% Exp decaying 76.04% Hump 23.21% Hump(e)

2006 - 2010 26.12% Hump 52.64% Hump(e) 21.24% Exp decaying

Table 4.6: Shape and contribution of each volatility factor to the total variance for the three-

factor models.

tions increased by 90% and 50%, respectively, over the 2008 crisis. Furthermore the effect

of the shock to the implied volatility was more persistent over the 2008 crisis. We certainly

expect the parameter estimates to be affected by these extreme market conditions. Neverthe-

less, Figure 4.4 shows that our estimates did pick up some, if not all, of these effects.

4.2 Pricing performance

Figure 4.5 graphs the RMSEs of the percentage differences between actual and fitted fu-

tures prices as well as of the difference between actual and fitted implied option volatilities,

whereas Table 4.7 gives the average values. The overall goodness of fit is quite good, except

during the special events of 1991, 2003 and 2008. Table 4.7 also compares the goodness

of the fit of the hump-shaped volatility specification to the exponential decaying specifica-

tion. The log likelihood ratio tests clearly favour the hump volatility specification. The

improvement for the fit of futures prices averages at 2.4%. The improvement for the fit of

option implied volatility is not much for the period 1995-2005, but very significant during

the periods 1990-1994 and 2006-2010 at 4.15% and 10.86% respectively.

Sample hump-shaped improvement compared to exponential decaying

futures option futures options lnL0 − lnL1

1990 - 1994 0.0145 0.0339 1.69% 4.15% 20401.56

1995 - 1999 0.0128 0.0354 2.85% 0.76% 8861.78

2000 - 2005 0.0159 0.0173 1.54% 1.79% 9756.18

2006 - 2010 0.0155 0.0148 3.57% 10.86% 14264.89

RMSEs for futures are the percentage differences between actual and fitted futures prices.

RMSEs for options are the differences between actual and fitted implied option volatilities.

Table 4.7: Goodness of the fit of the model - RMSEs
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Figure 4.6 displays time series of implied volatilities and the fit to the three-factor model.

There was a lot of fluctuation in the implied volatilities over the last 21 years. The model does

well in capturing these changes, as well as the special periods of the Gulf War 1990− 1991,

the Iraq War 2003 and the Global Financial Crisis 2008.

5 Hedging Performance

To gauge the impact of the hump-shaped volatility specification compared to exponential de-

caying only volatility specification, we assess the hedging performance of option portfolios

on crude oil futures by using the hedge ratios implied by the corresponding models. The

various factors of the model manifested by the empirical analysis represent different dimen-

sions of risk to which a portfolio of oil derivatives is exposed. In our stochastic volatility

modelling framework, the variation in the crude oil forward curve is instigated by random

changes of these forward curve volatility factors as well as random changes in a general sto-

chastic volatility factor. By extending the traditional factor hedging method to accommodate

the stochastic volatility specification, a set of futures and futures options are used to hedge

the risk associated to the forward curve variation. The technical details of the extended factor

hedging are presented in Appendix F.

The portfolio that we choose to hedge is a straddle, which is a typical option portfolio that

is traded in these markets and is sensitive to volatility. A long straddle consisting of a call

and a put with the same strike of 130 and the same maturity of February 2009 is constructed

and hedged by using weights implied by the three-factor models in Section 4.9 The hedging

period is from August 1, 2008 to the straddle maturity of February 17, 2009.

A large number of derivative contracts are available to serve as the hedging instruments.

Motivated by the presence of unspanned stochastic volatility, we will start by using futures

contracts alone, then using a mixture of futures and option contracts. The 3 futures contracts

that will be used have maturities of six-months, nine-months and one-year (ie. February

2009, May 2009 and August 2009), chosen due to their liquidity. The three options contracts

used as hedging instruments have the same maturities as the (three) futures contracts but

different strikes from the target option. Their strikes are 133, 128 and 132.5 respectively.

9Seeking a representative example of a period in which the market was very volatile, the hedging perfor-

mance of an option during the financial crisis in 2008 has been selected. The hedging result is not sensitive to

the particular straddle chosen.
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We apply a small shock to the system, including both the shock to the stochastic volatility

component and the shock directly to the future curve. We then calculate the hedging portfolio

weight so that the resulting portfolio is delta neutral, delta-vega neutral, or delta-gamma

neutral. The portfolio is then rebalanced every forthnight. The daily P&L of the hedged and

unhedged positions are computed, by using the root mean squared error (RMSE) to assess

the hedging performance. The daily P&L of a perfect hedge should be 0. The RMSE of our

hedged position is computed as

RMSEℎedge =

√

∑

day

(P&L)2day.

We repeat the procedure 10,000 times for each of the two model specifications (hump shaped

volatility and exponential volatility), under each of the three different hedging schemes, with

different combinations of hedging instruments. Table 5.8 shows the hedging errors of the

best hedged portfolios. The reported R-squared is the percentage of the variation accounted

for in the residuals of the unhedged positions.

RMSE R2(%)

hump exp hump exp

Unhedged 2.6170 2.6170

Delta Hedge (3 futures) 2.2152 2.7465 28.3496 0

Delta Hedge (2 futures + 1 option) 2.0811 2.6081 36.7620 0.6790

Delta-Gamma Hedge (3 futures + 3 options) 1.7513 2.4556 55.2170 11.9544

Delta-Vega Hedge (3 futures + 3 options) 1.5301 2.0576 65.8153 38.1821

Table 5.8: Example: Hedging performance of factor hedging for straddles with forthnightly

re-balancing

Regarding the best hedged positions, three observations stand out. First, delta hedging is not

as effective as delta-gamma and delta-vega hedging, confirming the existence of stochastic

volatility. Moreover, the significant improvement from delta hedging to delta-vega hedging

highlights the relative importance of the volatility shocks. Second, hedging performance

improves when we replace futures with options as the hedging instruments, accentuating the

feature of unspanned futures volatility. Third, hedging performance is always better under

the hump shaped volatility specification compared to the exponential volatility specification.

Under the simple delta hedging scheme, the hedge under the hump volatility specification

can explain 28.3% of of the variation of the unhedged residuals, whereas the hedge under the

exponential specification can explain virtually none of the variation. R-squared for the hump
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volatility specification increases to 65.8% with the more sophisticated delta-vega hedging

scheme.

To understand whether this best hedging performance is representative of the hedging per-

formance in general, we investigate the stability of the hedging performance. Table 5.9

shows the standard deviation of the hedging errors when we apply 10,000 different shocks

to the system. The hedging performance is quite stable under the hump shaped volatility

specification. On the contrary, the exponential volatility specification results in a very wide

range of hedging errors. This result clearly favours the use of the humped shape volatility

specification.

Standard Deviation

hump exp

Delta Hedge (3 futures) 0.6823 4.4529

Delta-Gamma Hedge (3 futures + 3 options) 1.2247 30.5192

Delta-Vega Hedge (3 futures + 3 options) 0.1728 11.4623

Table 5.9: Stability of dynamic hedges

6 Conclusion

A multi-factor stochastic volatility model for commodity futures curves within the Heath,

Jarrow, and Morton (1992) framework is proposed. The model aims to capture the main

characteristics of the volatility structure in commodity futures markets. The model accom-

modates exogenous stochastic volatility processes that may be partially unspanned by fu-

tures contracts. We specify a hump component for the volatility of the futures curves, which

can generate a finite dimensional Markovian forward model. The resulting model is highly

tractable with quasi-analytical prices for European options on futures contracts.

The model was fitted to an extensive database of crude oil futures prices and option prices

traded in the NYSE over 21 years. We find supporting evidence for three volatility fac-

tors, two of which exhibit a hump. This provides new evidence on the volatility struc-

ture in crude oil futures markets, which has been traditionally modelled with exponentially

declining volatility functions. Finally, by using hedge ratios implied by the proposed un-

spanned hump-shaped stochastic volatility model, the hedging performance of factor hedg-

ing schemes is examined. The results favour the proposed model compared to a model with

only exponential decaying volatility.
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The current work suggests new developments in commodity market modelling. Firstly, it

will be interesting to verify the existence of humps in the volatility structure of other com-

modities. Our methodology is generic and can be adapted to any commodity futures mar-

ket. Additionally, the current model can be adjusted to accommodate stochastic convenience

yield and stochastic interest rates. This direction has the potential to provide useful insights

on the features of convenience yields in commodity markets.
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A Proof of Lemma 2.2

Define the processX(t, T ) = lnF (t, T,Vt). Then an application of the Ito’s formula derives

dX(t, T ) = −
1

2

n
∑

i=1

�2
i (t, T,Vt)dt+

n
∑

i=1

�i(t, T,Vt)dWi(t). (A.1)

By integrating (A.1) we obtain

F (t, T,Vt) = F (0, T ) exp

[

−
1

2

n
∑

i=1

∫ t

0

�2
i (s, T,Vs)ds+

n
∑

i=1

∫ t

0

�i(s, T,Vs)dWi(s)

]

.

(A.2)

For t = T , (A.2) derives the dynamics of the commodity spot price as

S(t,Vt) = F (0, t) exp

[

−
1

2

n
∑

i=1

∫ t

0

�2
i (s, t,Vs)ds+

n
∑

i=1

∫ t

0

�i(s, t,Vs)dWi(s)

]

, (A.3)

or equivalently,

lnS(t,Vt) = lnF (0, t) +

[

−
1

2

n
∑

i=1

∫ t

0

�2
i (s, t,Vs)ds+

n
∑

i=1

∫ t

0

�i(s, t,Vs)dWi(s)

]

.

By differentiating, it follows that S(t,Vt) satisfies the stochastic differential equation (2.7).

B Proof of Lemma 2.5

We consider the process X(t, T ) = lnF (t, T,Vt) and by integrating (A.1) we obtain (A.2).

We need to calculate

I =

∫ t

0

�i(u, T,Vu
i)dWi(u) (B.4)

II =

∫ t

0

�2
i (u, T,Vu

i)du (B.5)
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We substitute the volatility specifications (2.9) to obtain

I =

∫ t

0

(�0i + �i(T − u))e−�i(T−u)

√

Vu
idWi(u)

=

∫ t

0

(�0i + �i(T − t+ t− u))e−�i(T−t+t−u)

√

Vu
idWi(u)

= �i1(T − t)

∫ t

0

e−�i(t−u)

√

Vu
idWi(u) + �i2(T − t)

∫ t

0

(t− u)e−�i(t−u)

√

Vu
idWi(u)

= �i1(T − t)�i1(t) + �i2(T − t)�i2(t)

where

�i1(T − t) = (�0i + �i(T − t))e−�i(T−t)

�i2(T − t) = �ie
−�i(T−t)

and the state variables are defined by

�i1(t) =

∫ t

0

e−�i(t−u)

√

Vu
idWi(u),

�i2(t) =

∫ t

0

(t− u)e−�i(t−u)

√

Vu
idWi(u).

(B.6)

Next

II =

∫ t

0

�2
i (u, T,Vu

i)du

=

∫ t

0

(�0i + �i(T − u))2e−2�i(T−u)
Vu

idu

=

∫ t

0

(

�i1(T − t)e−�i(t−u) + �i2(T − t)(t− u)e−�i(t−u)
)2

Vu
idu

=

∫ t

0

(i1(T − t) + i2(T − t)(t− u) + i3(T − t)(t− u)2)e−2�i(t−u)
Vu

idu

= i1(T − t)xi(t) + i2(T − t)yi(t) + i3(T − t)zi(t)

where

i1(T − t) = �i1(T − t)2, i2(T − t) = 2�i1(T − t)�i2(T − t), i3 = �i2(T − t)2.
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We define the state variables

xi(t) =

∫ t

0

e−2�i(t−u)
Vu

idu,

yi(t) =

∫ t

0

(t− u)e−2�i(t−u)
Vu

idu,

zi(t) =

∫ t

0

(t− u)2e−2�i(t−u)
Vu

idu.

(B.7)

Hence by differentiating we find that

dxi(t) = (−2�ixi(t) +Vt
i)dt,

dyi(t) = (−2�iyi(t) + xi(t))dt,

dzi(t) = (−2�izi(t) + 2yi(t))dt.

C Characteristic Function

We consider the characteristic function

�(t; v, To, T ) =: Et[exp{v lnF (To, T )}]

= Et[ET0
[exp{v lnF (To, T )}]] = Et[�(T0; v, To, T )].

Therefore the process k(t) = �(t; v, To, T ) is a martingale under the risk-neutral measure.

Given that k(t) should be of the form (2.20), an application of Ito’s lemma yields that

dk(t)

k(t)
=

(

dM(t)

dt
+

n
∑

i=1

dNi(t)

dt
Vt

i

)

dt+

n
∑

i=1

Ni(t)dVt
i + v

dF (t, T )

F (t, T )

+
1

2

n
∑

i=1

N2
i (t)(dVt

i)2 +
v2 − v

2

(

dF (t, T )

F (t, T )

)2

+ v

n
∑

i=1

Ni(t)dVt
idF (t, T )

F (t, T )
(C.8)

+
n
∑

j ∕=i=1

Ni(t)Nj(t)dVt
idVt

j.
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The drift of this sde should be zero, thus

0 =
dM(t)

dt
+

n
∑

i=1

dNi(t)

dt
Vt

i +

n
∑

i=1

Ni(t)�
V
i (�

V
i −Vt

i)

+
1

2

n
∑

i=1

N2
i (t)("

V
i )

2
Vt

i +
v2 − v

2

n
∑

i=1

(

(�0i + �i(T − t))e−�i(T−t)
√

Vt
i

)2

(C.9)

+ v

n
∑

i=1

Ni(t)"
V
i

√

Vt
i�i(�0i + �i(T − t))e−�i(T−t)

√

Vt
i.

By using 'i = (�0i + �i(T − t))e−�i(T−t) then from (C.9) we obtain the ODE (2.21) and

(2.22) for M(t) and Ni(t) respectively.

D Appendix: Extended Kalman Filter

D.1 The extended Kalman filter

Our model consists of 2 sets of equations. The first one is the system equation that describes

the evolution of the state variables, namely

Xt+1 = Φ0 + ΦXXt + wt+1, wt+1 ∼ iidN(0, Qt), (D.10)

whereas the second one is the observation equation that links the state variables with the

market-observable variables and is of the form

zt = ℎ(Xt) + ut ut ∼ iidN(0,Ω). (D.11)

It is noted that the ℎ function is nonlinear here.

Let X̂t = Et[Xt] and X̂t∣t−1 = Et−1[Xt] denote the expectations of Xt at t and t− 1 respec-

tively and let Pt and Pt∣t−1 denote the corresponding estimation error covariance matrices.

Linearizing the ℎ− function around X̂t∣t−1 we obtain,

zt = (ℎ(X̂t∣t−1)−H ′
tX̂t∣t−1) +H ′

tXt + ut, ut ∼ iidN(0,Ω), (D.12)

where

H ′
t =

∂ℎ(Xt)

∂X ′
t

∣Xt=X̂t∣t−1

. (D.13)
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The Kalman filter yields

X̂t+1∣t = Φ0 + ΦXX̂t, (D.14)

Pt+1∣t = ΦXPtΦ
′
X +Qt, (D.15)

and

X̂t+1 = X̂t+1∣t + Pt+1∣tH
′
tF

−1
t �t, (D.16)

Pt+1 = Pt+1∣t − Pt+1∣tH
′
tF

−1
t HtPt+1∣t, (D.17)

where

�t = zt+1 − ℎ(X̂t+1∣t), (D.18)

Ft = HtPt+1∣tH
′
t + Ω. (D.19)

The log-likelihood function is constructed as

logL = −
1

2
log(2�)

T
∑

t=1

Nt −
1

2

T
∑

t=1

log ∣Ft∣ −
1

2

T
∑

t=1

�′tF
−1
t �t. (D.20)

D.2 The system equation

The dynamics of the state vector under the physical measure can be written as

dX i
t = (Ψi −KiX

i
t)dt+

√

V i
t ΣidW

P
i (t)

where X i
t = (xi(t), yi(t), zi(t), �i(t),  i(t),Vt

i)′, and W P
i (t) = (W 1

i (t),W
2
i (t))

′, and

Ψi =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0

0

0

0

0

�V
i �

V
i

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, Ki =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2�i 0 0 0 0 −1

−1 2�i 0 0 0 0

0 −2 2�i 0 0 0

0 0 0 �i 0 0

0 0 0 0 −1 �i

0 0 0 0 0 �V
i

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,Σi =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0

0 0

0 0

0 0

1 0

0 "Vi

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⋅Ri
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where Ri is the correlation matrix for the Wiener processes, i.e. dW P
i (t)dW P

i (t)′ = Ridt

with

Ri =

(

1 0

�i
√

1− �2i

)

.

Applying Ito’s Lemma to eKitX i
t , we have

d(eKitX i
t) = eKitKiX

i
tdt+ eKitdX i

t

= eKitΨidt+ eKit
√

V i
t ΣdW

P (t). (D.21)

It follows that X i
s, s > t is given as

X i
s = e−Ki(s−t)X i

t +

∫ s

t

e−Ki(s−u)Ψidu+

∫ s

t

e−Ki(s−u)
√

V i
uΣidW

P
i (u)

The conditional mean of X i
s, given time t information, is given by

Et[X
i
s] =

∫ s

t

e−Ki(s−u)Ψidu+ e−Ki(s−t)X i
t . (D.22)

and the conditional covariance matrix of X i
s, given time- t information, is given by

Covt[X
i
s] = Et

[(
∫ s

t

e−Ki(s−u)
√

V i
uΣidW

P (u)

)(
∫ s

t

e−Ki(s−u)
√

V i
uΣidW

P (u)

)′]

=

∫ s

t

Et[V
i
u ]e

−Ki(s−u)ΣiRiΣ
′
ie

−K′
i(s−u)du

=

∫ s

t

(

1− e−�V
i (u−t)

)

�Vi e
−Ki(s−u)ΣiRiΣ

′
ie

−K′
i(s−u)du

+

(
∫ s

t

e−�V
i (u−t)e−Ki(s−u)ΣiRiΣ

′
ie

−K′
i(s−u)du

)

V i
t . (D.23)

Putting the three factors together, we obtain

Xt =

⎛

⎜

⎝

X1
t

X2
t

X3
t

⎞

⎟

⎠
,W P (t) =

⎛

⎜

⎝

W P
1 (t)

W P
2 (t)

W P
3 (t)

⎞

⎟

⎠
,

Ψ =

⎛

⎜

⎝

Ψ1

Ψ2

Ψ3

⎞

⎟

⎠
,K =

⎛

⎜

⎝

K1 0 0

0 K2 0

0 0 K3

⎞

⎟

⎠
,Σ =

⎛

⎜

⎝

Σ1 0 0

0 Σ2 0

0 0 Σ3

⎞

⎟

⎠
,
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Covt[Xs] =

⎛

⎜

⎝

Covt[X
1
s ] 0 0

0 Covt[X
2
s ] 0

0 0 Covt[X
3
s ]

⎞

⎟

⎠

The system equation, therefore, can be written in discrete form as

Xt+1 = Φ0 + ΦXXt + wt+1, wt+1 ∼ iidN(0, Qt), (D.24)

where

Φ0 =

∫ t+dt

t

e−K(t+dt−u)Ψdu, ΦX = e−Kdt,

and Qt can be derived directly from (D.23).

E Models with exponential decaying volatility

E.1 Volatility functions

Proposition: If the volatility function has the form �i(t, T, V
i
t ) = �0i exp (−�i(T − t))

√

V i
t

then the logarithm of the time−t instantaneous futures prices at time T , lnF (t, T ), is given

by

lnF (t, T, Vt) = lnF (0, T, V0) +

3
∑

i=1

(

�i1(T − t)xi(t)−
1

2
�i2(T − t)yi(t)

)

(E.25)

where xi(t), yi(t) evolve according to

dxi(t) = −�ixi(t)dt +
√

V i
t dWi(t), (E.26)

dyi(t) = (−2�iyi(t) + V i
t )dt, (E.27)

(E.28)

subject to xi(0) = yi(0) = 0. We also have, for i = 1, 2, 3,

�i1(T − t) = �0ie
−�i(T−t), (E.29)

�i2(T − t) = �20ie
−2�i(T−t). (E.30)

(E.31)
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Proof. Similar to the proofs of the case with a hump.

E.2 Transition density

The dynamic of the state vector under the physical measure can be written as

dX i
t = (Ψi −KiX

i
t)dt+

√

V i
t ΣidW

P
i (t)

where, X i
t = (xi(t), yi(t), V

i
t )

′, and W P
i (t) = (W 1

i (t),W
2
i (t))

′, and

Ψi =

⎛

⎜

⎝

0

0

�V
i �

V
i

⎞

⎟

⎠
, Ki =

⎛

⎜

⎝

�i 0 0

0 2�i −1

0 0 �V
i

⎞

⎟

⎠
,Σi =

⎛

⎜

⎝

1 0

0 0

"Vi � "Vi
√

1− �2

⎞

⎟

⎠
,

where Ri is the correlation matrix for the Wiener processes, i.e. dW P
i (t)dW P

i (t)′ = Ridt

and

Ri =

(

1 0

�i
√

1− �2i

)

.

Applying Ito’s Lemma to eKitX i
t , we have

d(eKitX i
t) = eKitKiX

i
tdt+ eKitdX i

t

= eKitΨidt+ eKit
√

V i
t ΣdW

P (t). (E.32)

It follows that X i
s, s > t is given as

X i
s = e−Ki(s−t)X i

t +

∫ s

t

e−Ki(s−u)Ψidu+

∫ s

t

e−Ki(s−u)
√

V i
uΣidW

P
i (u).

The conditional mean of X i
s, given time t information, is given by

Et[X
i
s] =

∫ s

t

e−Ki(s−u)Ψidu+ e−Ki(s−t)X i
t . (E.33)
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and the conditional covariance matrix of X i
s, given time- t information, is given by

Covt[X
i
s] = Et

[(
∫ s

t

e−Ki(s−u)
√

V i
uΣidW

P (u)

)(
∫ s

t

e−Ki(s−u)
√

V i
uΣidW

P (u)

)′]

=

∫ s

t

Et[V
i
u ]e

−Ki(s−u)ΣiRiΣ
′
ie

−K′
i(s−u)du

=

∫ s

t

(

1− e−�V
i (u−t)

)

�Vi e
−Ki(s−u)ΣiRiΣ

′
ie

−K′
i(s−u)du

+

(
∫ s

t

e−�V
i (u−t)e−Ki(s−u)ΣiRiΣ

′
ie

−K′
i(s−u)du

)

V i
t . (E.34)

Putting three factors together, we would get

Xt =

⎛

⎜

⎝

X1
t

X2
t

X3
t

⎞

⎟

⎠
,W P (t) =

⎛

⎜

⎝

W P
1 (t)

W P
2 (t)

W P
3 (t)

⎞

⎟

⎠
,

Ψ =

⎛

⎜

⎝

Ψ1

Ψ2

Ψ3

⎞

⎟

⎠
,K =

⎛

⎜

⎝

K1 0 0

0 K2 0

0 0 K3

⎞

⎟

⎠
,Σ =

⎛

⎜

⎝

Σ1 0 0

0 Σ2 0

0 0 Σ3

⎞

⎟

⎠
,

Covt[Xs] =

⎛

⎜

⎝

Covt[X
1
s ] 0 0

0 Covt[X
2
s ] 0

0 0 Covt[X
3
s ]

⎞

⎟

⎠

E.3 Estimation Results

The parameter estimates for the two-factor exponential volatility model are presented in

Table 5.10 and Table 5.11. Parameter estimates for the three-factor exponential volatility

volatility model can be found in Table 5.12 and Table 5.13.
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1990 - 1994 1995-1999

i = 1 i = 2 i = 1 i = 2

�0i 0.7650 0.7692 0.2673 1.2553

(0.0101) (0.0087) (0.0026) (0.0126)

�i 0.1475 1.3558 0.1378 1.0869

(0.0006) (0.0109) (0.0012) (0.0122)

�i 0.0100 1.1412 0.6317 3.2399

(0.0003) (0.0118) (0.0052) (0.0219)

"Vi 0.8359 1.5542 2 0.8097

(0.0087) (0.0131) (0.0203) (0.0074)

�i -0.1071 0.0734 0.0061 0.0346

(0.0025) (0.0003) (0.0001) (0.0002)

�Vi 0.1098 -0.2736 -0.2044 -0.4682

(0.0012) (0.0020) (0.0022) (0.0067)

�i 0.1155 -1.5835 -0.2507 -1.5830

(0.0027) (0.0218) (0.0015) (0.0157)

F 3.0887 2.9849

(0.0227) (0.0226)

�f 0.0010 0.0010

(0.0000) (0.0001)

�o 0.0100 0.0100

(0.0005) (0.0004)

logL −71508.76 −118968.91

Table 5.10: The two-factor exponential volatility model for the periods 1990 - 1994 and 1995

- 1999.
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2000 - 2005 2006 - 2010

i = 1 i = 2 i = 1 i = 2

�0i 1.7606 1.5413 2.1136 0.9585

(0.0201) (0.0187) (0.0162) (0.0096)

�i 0.0189 1.0204 0.0100 0.9195

(0.0005) (0.0099) (0.0010) (0.0102)

�i 0.0100 3.8547 0.0100 1.3699

(0.0012) (0.0287) (0.0020) (0.0118)

"Vi 0.3520 2 0.3167 2

(0.0037) (0.0151) (0.0033) (0.0174)

�i -0.2311 0.0570 -0.1622 -0.1193

(0.0021) (0.0004) (0.0011) (0.0010)

�Vi 0.2568 0.0176 0.3226 0.4541

(0.0020) (0.0007) (0.0022) (0.0047)

�i 0.1021 -1.5832 -0.1757 -1.5832

(0.0021) (0.0118) (0.0014) (0.0147)

F 2.6574 4.6764

(0.0217) (0.0326)

�f 0.0010 0.0010

(0.0000) (0.0001)

�o 0.0560 0.0618

(0.0006) (0.0007)

logL −166933.26 −155215.79

Table 5.11: The two-factor exponential volatility model for the periods 2000 - 2005 and 2006

- 2010.
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1990 - 1994 1995-1999

i = 1 i = 2 i = 3 i = 1 i = 2 i = 3

�0i 1.2195 0.7024 0.5306 0.7549 0.6545 0.3073

(0.0101) (0.0087) (0.0066) (0.0062) (0.0058) (0.0024)

�i 0.0672 1.0433 0.0638 0.2418 1.2081 0.1812

(0.0006) (0.0099) (0.0006) (0.0022) (0.0158) (0.0019)

�i 0.0100 0.8102 0.4636 0.1456 3.0024 0.4493

(0.0002) (0.0088) (0.0052) (0.0011) (0.0301) (0.0039)

"Vi 0.9529 1.6467 0.0100 0.6071 1.4203 2

(0.0100) (0.0131) (0.0003) (0.0054) (0.0112) (0.0201)

�i 0.1908 -0.0891 -0.9630 -0.0081 0.0120 0.0500

(0.0025) (0.0003) (0.0089) (0.0001) (0.0002) (0.0006)

�Vi 0.9168 0.1016 0.0608 0.6161 0.9896 0.5258

(0.0112) (0.0020) (0.0002) (0.0067) (0.0094) (0.0048)

�i -0.2883 -2.1251 -4 -0.5820 -1.4319 -0.1304

(0.0027) (0.0218) (0.0315) (0.0057) (0.0132) (0.0017)

F 3.3139 3.0540

(0.0227) (0.0209)

�f 0.0010 0.0010

(0.0000) (0.0001)

�o 0.0100 0.0100

(0.0005) (0.0004)

logL −63696.40 −89114.50

Table 5.12: The three-factor exponential volatility model for the periods 1990 - 1994 and

1995 - 1999.
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2000 - 2005 2006 - 2010

i = 1 i = 2 i = 3 i = 1 i = 2 i = 3

�0i 0.9220 2.2277 0.3365 1.0144 0.8733 0.3308

(0.0087) (0.0211) (0.0027) (0.0109) (0.0071) (0.0039)

�i 0.0304 0.9992 0.0307 0.0100 0.4187 0.0143

(0.0002) (0.0101) (0.0003) (0.0005) (0.0034) (0.0010)

�Vi 0.0100 0.6694 3.5999 0.0100 2.1468 0.0100

(0.0011) (0.0056) (0.0308) (0.0001) (0.0112) (0.0001)

"Vi 0.7205 2 1.2997 0.8725 2 2

(0.0073) (0.0174) (0.0125) (0.0076) (0.0199) (0.0178)

�i -0.4674 0.0969 0.6958 -0.6028 0.3760 0.0708

(0.0033) (0.0008) (0.0050) (0.0047) (0.0032) (0.0002)

�Vi -0.2296 -0.4694 0.1256 -4 4 0.4564

(0.0011) (0.0045) (0.0030) (0.0302) (0.0328) (0.0051)

�i 0.0168 1.7566 -3.9994 0.1188 4 3.9994

(0.0010) (0.0164) (0.0267) (0.0023) (0.0299) (0.0269)

F 2.8234 9.9989

(0.0117) (0.0615)

�f 0.0010 0.0010

(0.0000) (0.0000)

�O 0.0384 0.2384

(0.0003) (0.0012)

logL −58217.07 −51227.23

Table 5.13: The three-factor exponential volatility model for the periods 2000 - 2005 and

2006 - 2010.

F Factor hedging for a multi-factor stochastic volatility

model

Factor hedging is a broad hedging method that allows one to hedge simultaneously the mul-

tiple factors impacting the forward curve of commodities and subsequently the value of

commodity derivative portfolios. By considering the n factor stochastic volatility model

developed in Section 2, the forward curve should be shocked by each of the n forward curve

volatility processes. However, by using a stochastic volatility model, initially an appropriate

shock to the variance process is applied, see equation (2.2),

ΔVt
i = aVi (t,Vt)Δt + �V

i (t,Vt)ΔW
V
i ; i = 1, . . . , n. (F.35)
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Then, a shock to each volatility factor of the multi-factor model (2.1) is applied, namely for

i = 1, . . . , n,

ΔFi(t, T,Vt) = F (t, T,Vt)�i(t, T,Vt)ΔWi, (F.36)

where ΔWi is specified through its correlation structure with ΔW V
i , as given by (2.3). By

allowing for both positive and negative changes, the corresponding shocks to the forward

curve are obtained. The size of the shocks ΔWi and ΔW V
i should be chosen to give a

typical movement of the curve and the variance over the hedging period, respectively. If Υ

denotes the value of a portfolio, then the changes ΔΥi in the value of the portfolio between

the downward and upward shifts of the forward curve for each volatility factor i are computed

as

ΔΥi = Υ(Fi,U(t, T,Vt))−Υ(Fi,D(t, T,Vt)); i = 1, . . . , n, (F.37)

where the subscript U indicates an up movement of the forward curve embedding the impact

of the change in the variance and subscript D indicates the corresponding down movement

of the forward curve.

F.1 Delta Hedging

For an n factor model, factor delta hedging necessitates n hedging instruments. The hedging

instruments could be futures contracts or options contracts, but with different maturities.

We denote their values by Ψ(t, Tj) for j = 1, . . . , n. By selecting appropriate positions

� = (�1, �2, . . . , �n) in these hedging instruments such that, for each factor, the change in the

hedged portfolio ΥH is zero, the following conditions are obtained, for i = 1, . . . , n,

ΔΥH,i = ΔΥi + �1ΔΨi(t, T1) + �2ΔΨi(t, T2) + . . .+ �nΔΨi(t, Tn) = 0. (F.38)

The system of equations (F.38) is a system of n linear equations with n unknowns and the

�i, i = 1, . . . , n, that can be easily obtained explicitly. The ΔΨi(t, Tj) can be specified as

follows; if the hedging instrument is a futures contract with maturity Tj then from (F.36)

ΔΨi(t, Tj) = Ψ(t, Tj)�i(t, Tj,Vt)ΔWi. (F.39)

If the hedging instrument is an option on a futures contract with value F (t, Tj,Vt) then

ΔΨi(t, Tj) = Ψ(Fi,U(t, Tj,Vt))−Ψ(Fi,D(t, Tj ,Vt)). The conditions (F.38) eliminate only

risk generated by small changes in the forward curve without directly accounting for the

impact of the changes in the volatility, which are crucial in the stochastic volatility setup of
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our model.

F.2 Delta-Vega Hedging

In order to account also for the variation in the volatility process, n additional hedging

instruments are required to make the portfolio Υ simultaneously delta-vega neutral. Let

� = (�1, �2, . . . , �n) denote the positions held in these hedging instruments that have values

of Λ(t, Tj,Vt) for j = 1, . . . , n. The positions � are selected such that, for each factor, the

overall change of the hedged portfolio is zero, after applying a shock ΔW V
i to the variance

process. Thus the following conditions should hold for i = 1, . . . , n

ΔΥH,i = ΔΥi + �1ΔΛi(t, T1) + �2ΔΛi(t, T2) + . . .+ �nΔΛi(t, Tn) = 0, (F.40)

where

ΔΛi(t, Tj) = Λi(t, Tj,V
U
t )− Λi(t, Tj,V

D
t ). (F.41)

The change ΔΥi as a result of this shock is computed by equation (F.37). By initially solving

equation (F.40), the position � in the n hedging instruments is determined. For these posi-

tions, the portfolio combining Υ and the n hedging instruments, by construction, has a vega

of zero but in general, a non-zero residual delta. We can neutralise the delta of the combined

portfolio by taking positions in n additional hedging instruments to satisfy condition (F.38)

in which ΔΥi is now the changes of the combined portfolio for each factor i.

F.3 Delta-Gamma Hedging

Sensitivity to large price changes can be controlled by gamma hedging. For the portfolio Υ

to be gamma neutral, n hedging instruments are required and more specifically n options (as

the gamma of a forward or futures contract is zero). The positions  = (1, 2, . . . , n) in

these hedging instruments, with values Φ(t, Tj ,Vt) for j = 1, . . . , n, are selected such that

the gamma of the hedged portfolio is zero with respect to each factor i, that is

ΓΥH,i = ΓΥi + 1ΓΦi(t, T1) + 2ΓΦi(t, T2) + . . .+ nΓΦi(t, Tn) = 0, (F.42)
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where for i = 1, . . . , n,

ΓΥi = Υ(Fi,U(t, T,VU))− 2×Υ(Fi(t, T,V)) + Υ(Fi,D(t, T,VD)); (F.43)

ΓΦi = Φ(Fi,U(t, T,VU))− 2× Φ(Fi(t, T,V)) + Φ(Fi,D(t, T,VD)). (F.44)

For these positions, the portfolio combining Υ and the n hedging instruments have a non-

zero residual delta. For the portfolio Υ to be simultaneously delta-gamma neutral, we must

neutralise also the delta of the combined portfolio by taking positions in n additional hedging

instruments to satisfy condition (F.38), as it was done for vega-delta hedging, in which ΔΥi

is now the changes of the combined portfolio for each factor i.
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Figure 4.3: �i(T − t) and Vt
i for the two-factor model - Top panel: January 1990 to De-

cember 1994; Second panel: January 1995 to December 1999; Third panel: January 2000 to

December 2005; Bottom Panel: January 2006 to December 2010
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Figure 4.4: �i(T − t) and Vt
i for the three-factor model - Top panel: January 1990 to

December 1994; Second panel: January 1995 to December 1999; Third panel: January 2000

to December 2005; Bottom Panel: January 2006 to December 2010
45



Jan90 Jul92 Jan95 Jul97 Jan00 Jul02 Jan05 Jul07 Jan10 Jul12
0

1

2

3

4

5

6

7

8

Time t

R
M

S
E

 (
P

er
ce

nt
ag

e)

RMSE of the futures prices

Jan90 Jul92 Jan95 Jul97 Jan00 Jul02 Jan05 Jul07 Jan10 Jul12
0

2

4

6

8

10

12

14

16

18

20

Time t

R
M

S
E

 (
P

er
ce

nt
ag

e)

RMSE of the implied volatilities

Figure 4.5: RMSEs of the percentage differences between actual and fitted futures prices as

well as of the difference between actual and fitted implied option volatilities for a three-factor

model from January 1990 to December 2010
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Figure 4.6: Time series of implied volatilities and the fit to the three-factor model
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