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Abstract: The long-term goal of artificial intelligence (AI) is to make machines learn and think like human

beings. Due to the high levels of uncertainty and vulnerability in human life and the open-ended nature of problems

that humans are facing, no matter how intelligent machines are, they are unable to completely replace humans.

Therefore, it is necessary to introduce human cognitive capabilities or human-like cognitive models into AI systems

to develop a new form of AI, that is, hybrid-augmented intelligence. This form of AI or machine intelligence is

a feasible and important developing model. Hybrid-augmented intelligence can be divided into two basic models:

one is human-in-the-loop augmented intelligence with human-computer collaboration, and the other is cognitive

computing based augmented intelligence, in which a cognitive model is embedded in the machine learning system.

This survey describes a basic framework for human-computer collaborative hybrid-augmented intelligence, and the

basic elements of hybrid-augmented intelligence based on cognitive computing. These elements include intuitive

reasoning, causal models, evolution of memory and knowledge, especially the role and basic principles of intuitive

reasoning for complex problem solving, and the cognitive learning framework for visual scene understanding based

on memory and reasoning. Several typical applications of hybrid-augmented intelligence in related fields are given.

Key words: Human-machine collaboration; Hybrid-augmented intelligence; Cognitive computing; Intuitive

reasoning; Causal model; Cognitive mapping; Visual scene understanding; Self-driving cars
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1 Introduction

The unprecedented development of artificial in-

telligence (AI) technology (Marr, 1977; Russell and

‡ Corresponding author
* Project supported by the Chinese Academy of Engi-

neering, the National Natural Science Foundation of China

(No. L1522023), the National Basic Research Program (973)

of China (No. 2015CB351703), and the National Key Re-

search and Development Plan (Nos. 2016YFB1001004 and

2016YFB1000903)

ORCID: Nan-ning ZHENG, http://doi.org/0000-0003-1608-

8257

c©Zhejiang University and Springer-Verlag Berlin Heidelberg 2017

Norvig, 1995) is profoundly changing the relation-

ships and interactive modes between humans and be-

tween humans and their physical environments and

society (McCarthy and Hayes, 1987; Holland, 1992).

With the help of AI, solving various problems of high

complexity, uncertainty, and vulnerability in every

field of engineering technology, scientific research,

and human social activities (Eakin and Luers, 2006;

Martin, 2007; Gil et al., 2014; Ledford, 2015) and

continuously promoting the development of society

and socioeconomics have become the cherished goals
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of science and technology. AI is an enabling tech-

nology leading to numerous disruptive changes in

many fields (Minsky, 1961; Stone et al., 2016). Using

AI technology reasonably and effectively can greatly

promote valuable creativity and enhance the com-

petitiveness in both humans and machines. Thus,

AI is no longer an independent, isolated, and self-

cycling academic system, but a part of the human

evolutionary process.

In recent years, deep learning methods have

gained rapid development with the boost in com-

puter data acquisition, storage, and calculation ca-

pabilities (Hagan et al., 2002; Sun et al., 2014). A

new boom in AI has been triggered, especially in

high demand fields such as cloud computing (Youseff

et al., 2008), big data (O’Leary, 2013), wearable de-

vices (Son et al., 2014), and intelligent robots (Thrun

et al., 1998), which all promote the development of

AI theory and technology.

The development of AI can be described us-

ing a three-dimensional (3D) space, which includes

strength, extension, and capability. Strength refers

to the intelligence level of AI systems, extension

refers to the scope of the problems that can be

solved by AI systems, and capacity refers to the av-

erage solution quality that AI systems can provide.

General AI systems can do unsupervised learning

deftly based on experience and knowledge accumu-

lation. However, general AI cannot be realized with

a simple combination of computing models and algo-

rithms from AI methods. DeepBlue (Campbell et al.,

2002), Watson (?Rachlin, 2012; Shader, 2016), and

AlphaGo (Silver et al., 2016) are AI systems that

have achieved great success in challenging human in-

telligence in some fields by relying on the powerful

processing ability of computers. However, these sys-

tems cannot evolve to a higher intelligence level by

virtue of their own thought processes yet. There is a

gap between those systems and general AI in regards

to a high self-learning ability (Simon, 1969; Newell

and Simon, 1972; Selfridge, 1988).

Intelligent machines have become the intimate

companions of humans, where the interaction and

cooperation between a human and an intelligent ma-

chine will become integral in the formation of our

future society. However, many problems that hu-

mans face tend to be of high complexity, uncertainty,

and open-ended. Because the human is the service

object and arbiter in the ultimate ‘value judgment’

of an intelligent machine, human intervention in the

machine has been consistent throughout the evolu-

tion of these systems. In addition, even if sufficient

or infinite data resources are provided for AI sys-

tems, human intervention cannot be ruled out of

intelligent systems. There are many problems to

be solved in AI, for example, how to understand

the nuances and fuzziness of human language in

the face of the human-computer interaction system,

and especially how to avoid the risks or even harms

caused by the limitations of AI technology in some

important applications, such as industrial risk con-

trol (de Rocquigny et al., 2008), medical diagnosis

(Szolovits et al., 1988), and the criminal justice sys-

tem. To solve these problems, human supervision,

interaction, and participation must be introduced

for verification purposes. Hence, on the one hand,

the confidence level in intelligent systems will be

improved, and human-in-the-loop hybrid-augmented

intelligence will be constructed; on the other hand,

human knowledge will be optimally used. Therefore,

in this paper, we highlight the concept of hybrid-

augmented intelligence, which skillfully combines hu-

man cognitive ability and the capabilities of comput-

ers in fast operations and mass storage. Particularly,

the definitions are as follows:

Definition 1 (Human-in-the-loop hybrid-

augmented intelligence) Human-in-the-loop

(HITL) hybrid-augmented intelligence is defined as

an intelligent model that requires human interaction.

In this type of intelligent system, human is always

part of the system and consequently influences the

outcome in such a way that human gives further

judgment if a low confident result is given by a

computer. HITL hybrid-augmented intelligence

also readily allows for addressing problems and

requirements that may not be easily trained or

classified by machine learning.

Definition 2 (Cognitive computing based hybrid-

augmented intelligence) In general, cognitive com-

puting (CC) based hybrid-augmented intelligence

refers to new software and/or hardware that mim-

ics the function of the human brain and improves

computer’s capabilities of perception, reasoning, and

decision-making. In that sense, CC based hybrid-

augmented intelligence is a new framework of com-

puting with the goal of more accurate models of how

the human brain/mind senses, reasons, and responds

to stimulus, especially how to build causal models,
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intuitive reasoning models, and associative memories

in an intelligent system.

In addition, because of issues with qualifica-

tion (Thielscher, 2001) and ramification (Thielscher,

1997), not all problems can be modeled; i.e., it is

impossible to enumerate all the prerequisites of an

action, or to enumerate all the branches following

an action. Machine learning cannot understand real

world environments, nor can it process incomplete

information and complex spatial and temporal cor-

relation tasks better than the human brain does. It

is impossible for a formal system of machine learning

to describe the interaction of the human brain across

the spectrum of non-cognitive factors and cognitive

functions or to emulate the high plasticity of the

brain’s nervous system. The brain’s understanding

of non-cognitive factors is derived from intuition and

influenced by empirical and long-term knowledge ac-

cumulation (Pylyshyn, 1984). All these biological

characteristics of the brain contribute to enhancing

the adaptability of machines in complex dynamic en-

vironments or on the scene, promoting machine abil-

ities in non-integrity and unstructured information

processing and self-learning, and inspiring the build-

ing of CC hybrid-augmented intelligence.

CC frameworks can combine the modules for

complex planning, problem solving, and perception

as well as actions. These frameworks can possibly

provide an explanation for some human or animal

behaviors and study their actions in new environ-

ments, and they could build AI systems that require

much less calculation than existing systems.

2 Human-computer collaborative
hybrid-augmented intelligence

2.1 Human intelligence vs. artificial intelli-

gence

Humans can learn, speak, think, and interact

with the environment to perform actions and study.

The capacity for human movement also depends on

such learning mechanism. The most ingenious and

important ability of human beings is to learn new

things. The human brain has the ability for self-

adaptation and knowledge inference, which tran-

scends experience. In addition, human is gregarious,

a quality where cooperation and dynamic optimiza-

tion show that collective intelligence is much better

than that of any individual. In one word, human

intelligence is creative, complex, and dynamic (Guil-

ford, 1967; Sternberg, 1984). The creativity of hu-

man beings means that human intelligence is skillful

in abstract thinking, reasoning, and innovation, cre-

ating new knowledge and making associations. The

complexity of human intelligence implies the struc-

tural complexity and connective plasticity of the neu-

ral system inside the human brain, and the complex-

ity inherent to a series of intuitive, conscious, and

thinking mechanisms. At present, there is no com-

mon conclusion regarding the mechanism of human

intelligence, but it is precisely because of the complex

structure of the human brain that human intelligence

can better specialize in dealing with non-integrity

and unstructured information. The dynamic nature

of human knowledge evolution and learning abil-

ity makes humans more adept at learning, reason-

ing, collaborating, and other advanced intelligence

activities.

In considering an analogy with human intelli-

gence, AI has the features of normalization, repeata-

bility, and logicality. Normalization refers to the fact

that AI can deal only with structural information at

present; i.e., the input of programs must conform to

certain norms. Repeatability refers to the mechan-

ical nature of AI. Repetitive work does not degrade

the efficiency or accuracy of the machine because

of the powerful computing ability and abiotic char-

acteristic of a computer. Logicality means that AI

has advantage in dealing with the symbolized prob-

lem, which means that AI is better at processing

some discrete tasks, instead of discovering or break-

ing the rules by itself (Poole et al., 1997). Fig. 1

shows a comparison between human intelligence and

AI. It can be seen that although AI and human in-

telligence each have distinctive advantages, they are

highly complementary.

2.2 Limitations of existing machine learning

methods

Machine learning (Nilsson, 1965; Michalski

et al., 1984; Samuel, 1988) makes it possible to pre-

dict the future through the patterns of past data. In

short, machine learning can be considered to be the

automation of predictive analyses and it generates

models based on computer data. When dealing with

a new task, the system makes a corresponding judg-

ment according to a data-based model, which is a
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‘training & test’ learning mode. This learning mode

depends entirely on the machine’s performance and

learning algorithms (Bradley, 1997). In fact, the pro-

cess of using machine learning to deal with complex,

dynamic, and unstructured information (Wang et al.,

2017) is much more complex than that of the hu-

man process because a machine has to make choices

between data sources and options, while a human

can quickly make a decision according to slight dif-

ferences in the tasks and the complex relationships

among the data.

Machine learning relies excessively on the rules,

which results in poor portability and scalability.

Thus, it can work only in an environment where there

are tight constraints and limited objectives, and it

cannot process dynamic, non-complete, and unstruc-

tured information. Although hybrid-augmented

computational intelligent systems can be constructed

by artificial neural networks (Yegnanarayana, 1994),

fuzzy reasoning (Mizumoto, 1982), rough sets, ap-

proximate reasoning (Zadeh, 1996), and optimiza-

tion methods, such as evolutionary computation

(Fogel, 1995) and group intelligence (Williams and

Sternberg, 1988), to overcome individual limitations

and achieve synergies to some degree with the in-

tegration of different machine learning methods and

adaptive techniques, these systems are still incapable

of exercising common sense, to solve time-varying

complex problems, and to use experience for future

decisions (Jennings, 2000). Indeed, no matter how

much development happens in machine learning, it

is impossible for a machine to complete all the tasks

in human society individually. In other words, a hu-

man cannot rely completely on machine learning to

carry out all work, such as economic decision making,

medical problem solving, and mail processing.

Humans are capable of extracting abstract con-

Creativity 

Dynamism Logicality

RepeatabilityComplexity

Normalization

Formulation and 

calculable mathematical

 model

Dealing with 

difficult 

problems

Fig. 1 Human intelligence vs. artificial intelligence

cepts from a small number of samples. However, even

though deep neural network (DNN) has made great

progress in recent years, it is still difficult to make

a machine do such things like a human. However,

Lake et al. (2015) used Bayesian learning methods

so that a machine can learn how to write letters like

a human through a small amount of training data.

Compared with traditional machine learning meth-

ods, which require a great deal of training data, this

method requires only a rough model, and then uses a

reasoning algorithm to analyze the case and update

the details of the model.

The growth in the amount of data is a source of

‘complexity’ that must be tamed via algorithms or

hardware, whereas in statistics, the growth in the

amount of data brings ‘simplicity’ in a statistical

sense, which often provides more support for rea-

soning, leading to stronger, asymptotic results. At

a formal level, the gap is made evident by the lack

of a role for computational concepts (such as ‘run-

time’ in core statistical theory) and the lack of a role

for statistical concepts (such as ‘risk’ in core compu-

tational theory). Therefore, machine learning with

a stronger reasoning capacity requires more integra-

tion of computational and inferential aspects at the

foundational level (Jordan, 2016).

2.3 Human-in-the-loop hybrid-augmented in-

telligence

Introducing human intelligence to the loop of

intelligence systems can realize a close coupling

between the analysis-response advanced cognitive

mechanisms in fuzzy and uncertain problems and

the intelligent systems of a machine (Fig. 2). Hence,

the two adapt to and collaborate with each other,

forming a two-way information exchange and con-

trol. Such a ‘1 + 1 > 2’ hybrid-augmented intelli-

gence can be achieved by integrating human percep-

tion, cognitive ability, machine computing, and stor-

age capacities (Pan, 2016). Ultimately, information

from a large-scale, non-complete, and unstructured

knowledge base can be processed, and the risks of out

of control brought by AI technologies can be avoided.

The Internet provides an immense innovation

space for HITL hybrid-augmented intelligence. In-

ternet information processing is considered by some

researchers as the processing of highly structured and

standardized semantic information, a process they

believe can be processed by computers as long as



Zheng et al. / Front Inform Technol Electron Eng 2017 18(2):153-179 157

Human intelligence Artificial intelligence
Human-in-loop

hybrid intelligence

system

1+1>2

Unstructured information

processing

Intuitional reasoning

Self-organizing learning

Computing power

Storage capacity

Will not feel tired

Fig. 2 Human-in-the-loop hybrid-augmented intelli-

gence

human knowledge is properly marshaled. In fact,

the Internet is full of disorganized, messy fragments

of knowledge (Wang et al., 2017), and much of it can

be understood only by humans. Therefore, machines

cannot complete all the tasks of Internet information

processing. Human intervention is still needed on

many occasions.

HITL hybrid-augmented intelligence needs to

cover the basic functions of computable interaction

models, including dynamic reconstruction and op-

timization, autonomy and adaptivity during inter-

active sharing, interactive cognitive reasoning, and

methodologies for online evaluation. HITL hybrid-

augmented intelligence can effectively realize the

concept of human-computer communication, espe-

cially at the conceptual level of knowledge, where

computers can not only provide intelligent-ware in

different models, but also talk to human beings at

the conceptual level of knowledge.

Different HITL hybrid-augmented intelligence

systems should be constructed for different fields.

Fig. 3 shows the basic framework of HITL hybrid

intelligence, which can be considered a hybrid learn-

ing model. The hybrid learning model integrates

machine learning, knowledge bases, and human de-

cision making. It uses machine learning (supervised

and unsupervised) to learn a model from training

data or a small number of samples, and predicts new

data by using the model. When the predictive con-

fidence score is low, humans will intervene to make

judgments. In the hybrid learning framework shown

in Fig. 3, when the system is abnormal, or when the

computer is not confident in success, the confidence

estimation or the state of the computer’s cognitive

load will determine whether the prediction needs to

be adjusted by a human or whether human interven-

tion is required, and the knowledge base of the sys-

tem is automatically updated. In fact, human pre-

diction and intervention in the algorithm increases

(improves) the accuracy and credibility of the sys-

tem. Of course, HITL hybrid-augmented intelligence

needs to reduce human participation as much as pos-

sible, so that the computers can complete most of the

work. The intelligence of a hybrid learning mode as

shown in Fig. 3 is able to greatly expand the scale

and efficiency of the tasks humans can complete.

The main research topics for HITL hybrid-

augmented intelligence include:

1. how to break through the human-computer

interaction barrier, so that machines can be trained

in the intelligence circuit in a natural way,

2. how to combine human decision making and

experience with the advantages of machine intelli-

gence in logical reasoning, deductive inference, and
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Fig. 3 Basic framework of human-in-the-loop hybrid-augmented intelligence (integrating supervised and

unsupervised learning, knowledge bases, and human decision-making hybrid learning models)
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so on, so that a man-machine collaboration of high

efficiency can be realized,

3. how to build cross-task, cross-domain contex-

tual relations, and

4. how to construct task- or concept-driven ma-

chine learning methods which allow machines to

learn from both massive training samples and human

knowledge, to accomplish highly intelligent tasks by

using the learned knowledge.

HITL hybrid-augmented intelligence is able to

process highly unstructured information, generating

more accurate and more credible results than what

can be derived from a single AI system.

3 Hybrid-augmented intelligence
based on cognitive computing

In nature, human intelligence is undoubtedly

the most robust. The construction of hybrid-

augmented intelligence based on CC, which uses re-

search on effective cooperation mechanisms between

biologically inspired information processing systems

and modern computers, could possibly provide a

novel method to solve the long-term planning and

reasoning problems in AI.

3.1 Computing architecture and computing

process

The construction of CC hybrid-augmented in-

telligence should take into consideration computing

architecture and computing processes. That is to

say, the kind of computing architecture and the kind

of computing process needed to complete the calcu-

lation must be decided.

Modern computers are based on the von Neu-

mann architecture. The computing process is based

on the fact that computing tasks can be formulated

by a symbolic system. Running a modern computer

is a process of calculation by a formal model (soft-

ware) in the von Neumann architecture, which can

achieve complete and undifferentiated copies of data.

Different solutions (software programs) to different

problems are required. Once the model is estab-

lished, its computational capabilities and the tasks

it faces are determined.

The computing architecture of a biological in-

telligence is based on the brain and nervous system.

The calculation process of biological intelligence is

the process of constantly adapting to an environ-

ment or a situation, that is, applying risk judgments

and value judgments. The biological intelligence’s

information processing mechanism has two aspects.

One is a natural evolutionary process, which requires

the biological intelligence system to be able to model

the status of the environment and of itself and then

provide an ‘interpretable model’, which forms the

measurement of risk and value. The other is ‘selec-

tive attention’ (Moran and Desimone, 1985), which

provides an efficient mechanism for comprehensive

judgments of risk or value and screening key factors

in complex environments, such as children looking

for a father’s face in the crowd after school. In many

cases, risk and value judgments are based on contin-

uously cycling thinking activities of prediction and

choice on the basis of cognitive models, and veri-

fication thinking activities evolve and improve the

cognitive models, such as summing up an abstract

or formulaic experience as a theorem. Biological in-

telligence is a process of evolution; in addition to the

common characteristics, it presents individual differ-

ences such as individual experience (memory), value

orientation (psychological factors), and even ‘nerve

expressions’ of microscopic differentiation. For in-

stance, the same face may be represented differently

in different human brains.

Experience indicates that for different tasks, the

computing process of a biological intelligence is pos-

sibly separated from its computing architecture. Yet,

sometimes these two parts cannot be separated from

each other (how to identify this separation is also

worthy of study). For a computing architecture,

the cognitive model of biological intelligence can be

used to complete the ‘modeling’ progress and for-

malize its representation. Finally, taking advantages

of modern computers (computing devices), an effec-

tive collaborative calculation can be realized. For

the computing process, a neuromorphology model

can be constructed to emulate the biological brain

in structure and processing. Therefore, the critical

step in forming an effective CC framework is to de-

velop the hybrid-augmented intelligence inspired by

biological intelligence.

3.2 Basic elements of cognitive computing

Fig. 4 shows a schematic diagram of the ba-

sic components in a framework for CC. A CC

framework includes six interrelated cognitive compo-

nents, which are understanding, verifying, planning,
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Fig. 4 Basic framework of cognitive computing

evaluating, attention, and perception. Any of them

can serve as a starting point or an objective in a spe-

cific cognitive task. The system chooses a simple or

complex interactive path (e.g., repeated iteration) to

achieve the goal of cognition, according to the infor-

mation required to interact with the outside world.

Usually, the top-down selective attention is based on

the planning attention, while the bottom-up selec-

tive attention is essentially based on the perception

attention. Evaluation based on understanding or

planning is the prior probability (performance as pre-

diction), while evaluation based on perception is the

posterior probability (performance as observation).

In short, the process of CC is to constantly inter-

act with the outside world based on the information

required to meet objective tasks, and to gradually

start a thinking activity, rather than be limited to

knowledge-based processing. In the face of problems

involving a lack of preparation, an intelligent system

should have a cycle capability of ‘do until ...’, with-

out traversing every possibility to achieve the goal of

planning. This requires the CC process to contain

verifying steps, including: What to do next? Did it

produce the expected results? Whether to make fur-

ther effort or try other methods? In such a process,

the understanding and guidance of the environment

is enriched based on reasoning and experience (long-

term memory), and the ability to ‘verify’ is enhanced

accordingly.

The above CC process requires construction of

a causal model to explain and understand the world.

Using the causal model to update the prior proba-

bility (the prediction) by the posterior probability

(the observation), the association analysis is com-

pleted based on the probability analysis of given

data, and the time/space-based imagination or pre-

diction (such as spatial variation over time), pro-

vides understanding, supplement, and judgment of

the environment or situation. Planning action se-

quences are used to maximize future rewards, and

prior knowledge is applied to enrich the reasoning of

small-scale data to achieve good generalization abil-

ity and fast learning speed.

The main research topics for CC are as follows:

1. how to realize brain-inspired machine intu-

itive reasoning,

2. how to construct a causal model to explain

and understand the world,

3. how to use the causal model to support and

extend learned knowledge through intuitive reason-

ing, and

4. how to construct the knowledge evolution

model, i.e., how to learn to learn and how to ac-

quire and generate knowledge rapidly through the

combination of knowledge.

3.3 Intuitive reasoning and casual model

3.3.1 Intuition and cognitive mapping

Intuition is a series of processes in the human

brain including high-speed analysis, feedback, dis-

crimination, and decisions (Fischbein, 2002). Studies

have shown that the average accuracy of human in-

tuitive judgment is higher than that of non-intuitive

judgment (Salvi et al., 2016). Humans make many

decisions through intuition in their daily lives, such

as judging the proximity of two objects, perceiving

the unfriendliness of another’s tone, and choosing

one’s partner or a book. Intuitive decision mak-

ing is not just done by common sense. It involves

additional sensors to perceive and become aware of

information from outside.

Intuition can be divided into three processes,

namely selective encoding, selective combination,

and selective comparison (Sternberg and Davidson,

1983; Sternberg, 1984). Selective encoding involves

sifting out relevant information from irrelevant in-

formation. However, selective encoding is still insuf-

ficient for a human to achieve accurate understand-

ing. Selective combination is also needed to com-

bine the encoded information in some way and form

reasonable internal relations with other information

as a whole. Thus, selective combination involves

combining what might originally seem to be isolated

pieces of information into a unified whole that may

or may not resemble its parts. Selective comparison

involves relating newly acquired information to old
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information that one already has. When people re-

alize the similarity to a certain degree between the

old information and new information, people can use

this similarity to achieve a better understanding of

the new information.

Therefore, intuition helps humans make rapid

decisions in complex and dynamic environments. Be-

sides, it greatly reduces the search space in the pro-

cess of solving problems and makes the human cog-

nitive process more efficient.

Intelligence represents a model of characteriza-

tion and facilitates a better ultimate cognition. One

kind of cognitive ‘pattern’ that arises in the mind can

be thought of as a world model constructed based on

prior knowledge. This model contains three kinds

of relationships: interaction, causality, and control.

The world model can be considered a cognitive map

of the human brain, which resembles an image of the

environment. It is a comprehensive representation

of the local environment, including not only a simple

sequence of events but also directions, distance, and

even time information. This concept of a cognitive

map was first proposed by Tolman (1948). A cogni-

tive map can also be represented by a semantic web

(Navigli and Ponzetto, 2012). From the aspect of

information processing theory, a cognitive map (or

cognitive mapping) is a dynamic process with steps

of data acquisition, encoding, storage, processing,

decoding, and using external information (O’Keefe

and Nadel, 1978).

People are able to model their own state and

relationship within the environment, and then pro-

vide an interpretable model to form a basis and mea-

sure of evaluation and judgment of risk and value.

Human cognitive activities are embodied in a series

of decision-making activities based on the cognitive

map, which is a process of pattern matching. The

formation of a current cognitive map is related to the

brain’s perception and the understanding of external

information. As shown in Fig. 5, through the hu-

man individual’s growth and accumulation of learn-

ing, common sense, and experience, a human forms

a ‘decision-making space’, and the brain searches de-

cisions in the decision space randomly; once the se-

lected decision matches the current cognitive map,

where the match may be defined by a minimum cost,

people will respond intuitively. In this process, the

role that intuition plays can be considered guidance

for a decision-making search as well as the construc-
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Fig. 5 Relation of intuitive reasoning and cognitive

mapping

tion of a cost space in the computing process (Janis

and Mann, 1977).

Humans’ intuitive reasoning is closely related to

the prior knowledge processing ability of the brain.

This ability is about abstraction and generalization

instead of the rote memory of prior knowledge. It is

precise because of this ability that human intuition

can make rapid risk mitigation decisions based on

the world model in the human brain.

3.3.2 Machine implementation of intuitive reasoning

Although a machine has the power of symbolic

computation and a storage capacity that the human

brain cannot match, it is hard for existing machine

learning algorithms to realize the concepts men-

tioned above, such as a cognitive map, decision space

searching, and cost of space, like a human brain.

If the intuitive response can be considered as

finding the global optimal solution in the search

space, intuition can be regarded as the initial iter-

ation position of the solution. This position is valid

with large probabilities. This initial iteration posi-

tion is not important when solving a simple problem.

However, when solving complex problems, compared

with traditional machine reasoning methods, the ad-

vantages of intuitive reasoning will be highlighted. In

the latter case, traditional machine reasoning meth-

ods are likely to fall into local minima (Ioffe, 1979),

while intuitive reasoning can provide a reasonable

initial iteration position so that it can avoid the lo-

cal minima problem to a great extent.

In practical terms, the solution space is of-

ten complex, non-convex, or even structurally in-

definable (Hiskens and Davy, 2001). Therefore, the



Zheng et al. / Front Inform Technol Electron Eng 2017 18(2):153-179 161

selection of an initial iterative position is critical and

can even decide whether the final result is the global

optimal solution or not. In common machine learn-

ing methods, the initial iteration position is usually

obtained at the sacrifice of the generalization abil-

ities of the algorithm, such as the introduction of

strong assumptions (Lippmann, 1987) and increas-

ing human intervention (Muir, 1994). Constructing

brain-inspired machine intuitive reasoning methods

will avoid the problem of local minima and improve

the generalization abilities of AI systems. Then, we

can establish models for problems with uncertainty.

As seen from the above discussion, intuitive

reasoning depends on the heuristics and reference

points. The heuristic information is derived from

experience, i.e., the prior information, which deter-

mines the direction of the problem solving. The

choice of the reference point depends on other re-

lated factors, which determine the initial iteration

position of the solution. Intuitive decision making

does not seek to find the absolute solution of the tar-

get solution position, but to assess whether or not the

deviation from the reference point is more conducive

to the avoidance of loss. In reality, intuitive judg-

ments tend to show the characteristics of the minimal

cost (or minimal risk) based on the ‘reward and pun-

ishment’ rule. Therefore, intuitive reasoning can be

simulated by machines. The hybrid-augmented in-

telligence based on CC requires optimally integrating

the two reasoning mechanisms, i.e., intuitive reason-

ing (Tversky and Kahneman, 1983) and deductive

reasoning (Dias and Harris, 1988), based on mathe-

matical induction.

The success of AlphaGo can be seen as a success-

ful example of the application of machine intuitive

reasoning. The solution space for Go is nearly impos-

sible to exhaust and the approaches based on rules

or exhaustive searching cannot make Go programs

reach the master level of a human. AlphaGo achieved

intuitive reasoning to a certain extent. Its intuition

is reflected in its simulation of the ‘Go sense’, which

is realized by the policy network and value network

(Fig. 6). The policy network is a quick judgment of

where to move, i.e., which actions can be considered

and which cannot. A value network evaluates overall

positions. AlphaGo gains the ‘Go sense’ by training

30 million positions from the KGS Go server and the

reinforcement learning process. The Go sense nar-

rows the search space in the process of finding the

Policy 

network
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network

Output

Monte Carlo

tree search

Intuitional 

reasoning

Input position

Results of 

intuitional 

reasoning

Fig. 6 Intuitive reasoning of AlphaGo

optimal solution, so that the computer can find the

approximate optimal solution from the vast solution

space through multithread iterations. The success of

AlphaGo shows the importance of intuitive reasoning

for problem solving.

Although AlphaGo has adopted a more general

framework, it still involves a great deal of manu-

ally encoded knowledge. Designing specific encoding

schemes for specific problems is the most common

way to describe a problem to be solved in previ-

ous and present AI research. However, encoding

methods are often manually designed for a partic-

ular purpose and do not ensure optimality. Be-

sides, AlphaGo does not have the ability of asso-

ciative memory. However, AlphaGo combines intu-

ition (Go sense) with explicit knowledge (rules and

chessboard) by the nonlinear mapping of deep learn-

ing and the jumping of Monte Carlo tree searching

(Browne et al., 2012). It is of great value to the

research into novel AI technologies.

In the research on hybrid-augmented intelli-

gence, more attention must be paid to other meth-

ods of learning and reasoning, such as deep learn-

ing based reinforcement learning (Mnih et al., 2015),

recurrent neuron network based methods (Mikolov

et al., 2010), and differentiable neuron computers

(Graves et al., 2016).

3.3.3 Casual model

Constructing an interpretable and understand-

able causal model is very important for the realiza-

tion of the hybrid-augmented intelligence based on a
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CC framework (Freyd, 1983). As shown in Fig. 7, the

posture of a person riding downhill is clearly different

from that when riding uphill. The angle between the

postures and the slopes of the ground are bounded by

a physical causal relationship. The relationship be-

tween the police and the thief can be seen as a kind of

social causal relationship. Non-causal relationships

manifest as no causal association between any two

independent individuals. The causal model, which

can be explained and understood in the framework

of cognitive computation, should satisfy the physical

constraints arising from the physical causal relation-

ship in cognitive tasks, and regard the machine as

‘itself’ and understand itself and the causality in-

volved in order to produce psychological reasoning

judgments in the current cognitive task.

Physical causality Non-causality Social causality

Fig. 7 Causal relationship: (a) physical causality; (b)

non-causality; (c) social causality

Cognitive reasoning at the psychological level

refers to the study and forecasting process of hu-

mans constrained or guided by their own mental

state, such as in imitation activities (Premack and

Premack, 1997; Johnson et al., 1998; Tremoulet and

Feldman, 2000; Schlottmann et al., 2006). As shown

in Fig. 8, a child remembers reward and punishment

when he sees his friend playing a new game. On the

next day, when he plays the same game, based on the

memory of how his friend played the game, he can

quickly find out how to deal with similar scenes. The

child’s behavior is guided by his psychological state

when he is playing the same game. This is a kind

of imitative learning and shows that people’s percep-

tion of new things can be predicted based on their

prior knowledge instead of complying with entirely

new rules.

The causal model in CC can track the develop-

ment spatiotemporally by cognitive inference at the

physical level as well as at the psychological level,

which means the learning procedure is guided by the

mental state.

Fig. 9 shows the general framework of the causal

model (Rehder and Hastie, 2001). Various objects

Recall

Fig. 8 Reasoning guided at the psychological level

that exist in the real world are represented by differ-

ent class attributes in this model. A1, A2, A3, and

A4 represent four different objects. In the common-

cause schema (Fig. 9a), A1 has causal effects on A2,

A3, and A4; i.e., in A1/A2, A1/A3, and A1/A4, A1

is the cause. In the common-effect schema (Fig. 9b),

A4 is the effect, and the others are the cause. In

the no-cause control schema (Fig. 9c), there exist no

causal relationships between A1, A2, A3, and A4.
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Fig. 9 General framework of the causal model: (a)

common-cause schema; (b) common-effect schema;

(c) no-cause control schema

Temporal and spatial causality widely exist in

many AI tasks, especially in object recognition. For

example, Chen D et al. (2016) proposed a tracking

system for video applications. Because the spatial

causality between the target and the surrounding

samples changes rapidly, the ‘support’ in the pro-

posed system is transient. Thus, a short-term re-

gression is used to model the support. The short-

term regression is related to support vector regres-

sion (SVR), which exploits the spatial causality be-

tween targets and context samples and uses spatial

causality to help locate the targets based on tempo-

ral causality.

Perceptual causality is the perception of causal

relationships from observation. Humans, even as

infants, form such models from observation of the

world around them (Saxe and Carey, 2006). Fire and

Zhu (2016) proposed a framework for unsupervised

learning of this perceptual causal structure from

video. It takes action and object status detections

as input and uses cognitive heuristics to produce the
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causal links perceived between them. This method

has the precision to select the correct action from

a hierarchy. Similarly, a typical application of pre-

diction or inference tasks based on a causal model

is in the action recognition tasks in video sequences

(Wei et al., 2013; 2016). As shown in Fig. 10, a good

action recognition system is expected to be able to

deal with temporal and spatial correlation, discover

causal relationships and constraints among samples,

investigate the relationships between actions and en-

vironment at a sematic level, and then transform an

action recognition task into a structured prediction

problem.

An enhanced deep learning system with struc-

tured prediction modules (Honey et al., 2010) has

been applied to address issues including natural lan-

guage processing (Fig. 11a) (Xiao et al., 2016), pose

detection (Fig. 11b) (Wang LM et al., 2016), and

semantic segmentation (Fig. 11c) (Noh et al., 2015).

3.4 Memory and knowledge evolution

3.4.1 Implementation of memory by artificial neural

networks

The human learning mechanism (Nissen and

Bullemer, 1987; Norman and O’Reilly, 2003) is based

on memory, which is the foundation of human intelli-

gence. The human brain has an extraordinary mem-

ory capability and can identify individual samples

and analyze the logical and dynamic characteristics

of the input information sequence. The informa-

tion sequence contains a great amount of informa-

tion and complex temporal correlations. Therefore,

these characteristics are especially important for de-

veloping models for memory. Memory is equally im-

portant, if not more than computation for cognitive

functions. Effective memory is able to greatly re-

duce the cost of computation. Take the cognition

of human faces as an example. The human brain

can complete this cognitive process through a few

photos or even a single photo of a face. This is be-

cause a common cognitive basis of human faces has

been formed in the brain and the common features

of the face have been kept in mind so that identi-

fying the new or unique features of the faces is the

only task for a human. However, machines require

many training samples to achieve the same level as a

human does. For example, in natural language pro-

cessing tasks such as a question-answering system,

a method is needed to temporarily store the sepa-

rated fragments. Another example is to explain the

events in a video and answer related questions about

the events, where an abstract representation of the

events in the video must be memorized. These tasks

require the modeling of dynamic sequences in the

time scale and forming long- and short-term memo-

ries of historical information properly.

However, information is converted into binary

code and written into memory for computer devices.

The capacity for memory is completely determined

by the size of the storage devices. In addition, stor-

age devices are hardly capable of processing data,

which means storage and calculation are completely

separated physically and logically. Therefore, it is

difficult for existing AI systems to achieve an associa-

tive memory function. For future hybrid-augmented

intelligence systems, a brain-like memory ability is

in great demand (Graves et al., 2013) so that the

machine can imitate the human brain’s long- and

short-term memories. For example, we could form a

Fig. 10 Action recognition system integrating causal constraints
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Fig. 11 Combining deep learning with structured prediction to address issues of natural language processing

(a), pose detection (b), and semantic segmentation (c)

stable loop that represents some basic feature, and

maintain it for some period of time in a part of the

artificial neural network (Williams and Zipser, 1989).

DeepMind proposed a structure for a neural

Turing machine (Graves et al., 2014). Its structure

consists of two basic components: the neural net-

work controller and the memory pool. As shown

in Fig. 12, each neuron in a neural Turing machine

interacts with the outside via input and output vec-

tors as in traditional neural networks. The difference

is that the neural Turing machine interacts with a

memory matrix having selective read and write op-

erations. Therefore, it can achieve a simple memory

based inference. Park and Kim (2015) developed a

coherent recurrent convolutional network architec-

ture based on the neural Turing machine and used

it to create novel and smooth stories from a series of

images. Based on the neural Turing machine, Deep-

Mind has proposed a differentiable neural computer

(DNC) (Graves et al., 2016). As shown in Fig. 13,

the DNC also interacts with the external storage unit

to complete the memory function and it is similar to

a differentiable function from a mathematical point

of view. Thus, the structure is also used to solve the

problem of vanishing gradient in the long short-term

memory (LSTM) network for modeling longer time

series.

Differentiable neural networks combine well the

advantages of the structured memory of a traditional

computer with the capabilities for learning and deci-

sion making in a neural network, so they can be used

to solve complex structured tasks that a traditional

neural network is quite unable to do. The core of

the differentiable neural network is the controller,

which is characterized by a deep neural network,

where the controller can carry out intelligent read

External input External output

Controller

Read heads Write heads

Memory

Fig. 12 Structure of the neural Turing machine
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from and write in memory and reasoning decisions

(Mnih et al., 2013; 2015; Lillicrap et al., 2016). For

a given condition, the differentiable neural network

makes inferences and autonomous decisions based

on the relevant experience and knowledge in mem-

ory, and constantly makes itself remember, learn,

and update strategies to complete the processing of

complex data and tasks.

3.4.2 Knowledge evolution

The evolutionary process for human knowledge

is the synergistic effect of the brain’s memory mecha-

nism and its knowledge transfer mechanism. Fig. 14a

depicts the structure and hierarchy of the evolution-

ary process of human knowledge, which are alongside

mental activities such as associative memory and as-

sociation. This process is structural and hierarchi-

cal. Similarly, as shown in Fig. 14b, in the neo-

cortex, neurons are not random, but have a certain

structure and hierarchy. Moreover, knowledge is in a

distributed representation in the human brain. The

neural system stores information mainly by chang-

ing the strength of synaptic connections between

neurons, and expresses different concepts through

changes in multiple assemblies of neurons.

Human memory is associative memory (Ogura

et al., 1989), so the input information and the re-

trieved memory in the human brain are correlated

at some level. For example, the former is part of

the latter, or both of them are similar or related in

content (such as the opposite), or they normally ap-

pear to exist simultaneously (spatial correlation) or

sequentially (event-related), synchronously, or suc-

cessively. Moreover, memory storage and retrieval

is a well-structured sequence with rich dynamic fea-

tures. This characteristic is the premise of knowl-

edge evolution. In addition, memory and informa-

tion processing are tightly coupled. The knowledge

evolution model in the brain-inspired CC framework

is expected to meet the following four requirements:

1. A probabilistic model is established for prior

knowledge.

2. The evolution model is expected to achieve

knowledge combinations and update them.

3. The evolution model is expected to determine

whether to go further by using an existing strat-

egy, or trying other methods, which is a self-proven

process.

4. In the process of validation, the evolution

model is expected to generate a rich understanding of

the environment by taking advantage of causal mod-

els through intuitive reasoning and experience at the

physical or psychological level (Lake et al., 2016).

Such understanding forms the basis of a verification

capacity.

The general framework of the evolution model

(Griffiths et al., 2010; Tenenbaum et al., 2011) is

shown in Fig. 15. The first (bottom) layer repre-

sents the first-order logical expression of the abstract

causal relationships, the weight status of the external

intervention factors (x, y) that influence the develop-

ment of the causal relationship, and the influence of
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Fig. 14 Process of the synergistic effect of brain’s memory mechanism and knowledge transfer mechanism: (a)

dynamic process of knowledge evolution; (b) organization of the neocortex in six layers
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Fig. 15 General framework of the evolution model

the extrinsic intervention factors (F1). Causality and

external intervention factors are modeled as proba-

bility information (different data matrices). At the

top level, the hypothesis space for event development

is established, based on a probability computation,

and the model can quickly converge to a certain event

in the hypothesis space, that is, to predict the evo-

lution of the results.

3.5 Visual scenes understanding based on

memory and inference

The visual system plays a crucial role in un-

derstanding a scene through the visual center. The

perception of the environment constructs a cogni-

tive map in the human brain. Combining rules and

knowledge stored in the memory with external infor-

mation, such as map navigation information, a driver

can make his/her driving decision and then control

the vehicle following the decision.

Similarly, a brain-inspired automatic driving

framework can be constructed and enlightened by

the memory and reference mechanisms of the hu-

man brain. When someone is driving, the primary

perception to create a basic description of the envi-

ronment can be formed by the brain with a single

glance. According to these environment perception

results, integrating with the knowledge of the situa-

tion and related rules in the memory, the knowledge

map of the traffic scene can be constructed.

Fig. 16 shows a hybrid learning network for

an automatic driving vehicle using architecture with

memory and inference. In this hybrid learning net-

work, the road scene is first processed by multiple

convolutional neural networks to simulate the func-

tion of human visual cortex and form a basic cogni-

tive map similar to human brain’s, which is a struc-

tured description of the road sense and may contain

explicit information and descriptions of hidden vari-

ables of the road sense. A more explicit cognitive

map should be constructed based on the initial for-

mation of the cognitive map and combined with prior

elements of traffic and external traffic guidance in-

formation. Then, the cognitive map should contain

both the description of the road sense and the driving

strategy of the near future. Through the recurrent

neural network (RNN) (Funahashi and Nakamura,

1993), the cognitive map formed in each frame is

modeled to give the temporal dependency in motion

control, as well as the long- and short-term memo-

ries of past motion states, imitating human motion

(Kourtzi and Kanwisher, 2000). Finally, the con-

trol sequence of the automatic driving vehicle can be

generated.

4 Competition-adversarial cognitive
learning method

4.1 Generative model and adversarial net-

work

The generative model and adversarial network

(Xiao et al., 2016) are combined by the competitive

and adversarial cognitive learning methods, which

can effectively represent the intrinsic nature of the

data. This learning framework combines supervised

learning with unsupervised learning to form an ef-

ficient cognitive learning. Adversarial training was

first proposed by Szegedy et al. (2013) and Goodfel-

low et al. (2014a). The main idea of this learning

framework is to train a neural network to correctly

classify both normal examples and ‘adversarial ex-

amples’, which are bad examples intentionally de-

signed to confuse the model.

Approaches to machine learning can be roughly

divided into two categories: generative and dis-

criminative methods. Models obtained by the two

methods correspond to a generative model and a

discriminative model, respectively. The genera-

tive model learns the joint probability distribution

P (X,Y ) of samples and generates new data ac-

cording to the learned distribution, and the dis-

criminative model learns the conditional probability

distribution P (Y |X). A generative model can be

used for unsupervised as well as supervised learning.
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Fig. 16 Hybrid learning model for self-driving cars using architecture with memory and inference

In supervised learning, the conditional probabil-

ity distribution P (X|Y ) is obtained from the joint

probability distribution P (X,Y ) according to the

Bayes formula; hence, many observation models have

been constructed, such as the Naive Bayesian model

(Lewis, 1998), mixed Gaussian model (Rasmussen,

2000), and Markov model. An unsupervised genera-

tive model is to learn the essential characteristics of

real data, to give the distribution characteristics of

samples, and to generate new data corresponding to

the learned probability distribution. In general, the

number of parameters of the generative model is far

smaller than the size of the training dataset. Thus,

the generative model can discover data interdepen-

dency and manifest the high-order correlation of the

data without labeling information.

Generative adversarial networks (GANs)

(Goodfellow et al., 2014b; Denton et al., 2015;

Radford et al., 2015) were proposed to promote

the training efficiency of the generative model, and

to solve the problems that the generative model

fails to process. GAN consists mainly of two parts,

a generative network used to generate samples

and a discriminator used to identify the source

of the samples. When new samples generated by

the generative network and real-world samples are

fed into the discriminator, the discriminator will

distinguish the two kinds of samples as accurately as

possible. The generative network tries to generate

new samples that cannot be discriminated by the

discriminator (Mirza and Osindero, 2014; Salimans

et al., 2016; van den Oord et al., 2016). Actually,

generative adversarial learning is inspired by the

zero-sum game from the game theory (Nash, 1950).

During the training, the parameters of the generative

model and the discriminative model are alternately

updated (update one when the other is fixed) to

maximize each other’s error rate. Thus, the two
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parts compete with each other in an unsupervised

manner, and ultimately a nearly perfect generative

model can be obtained.

4.2 Generative adversarial networks in self-

driving cars

Self-driving car is a hotspot of recent AI re-

search. Fig. 17 shows a framework of the generative

adversarial model used in unmanned vehicles. There

are two critical problems in self-driving technology.

One is how to acquire enough training samples, es-

pecially negative samples; the other is how to build a

vivid off-line test system to verify the performance of

unmanned vehicles. Generative adversarial models

can be used to generate abundant and more natural

scenes for solving these two problems.

Input noise

Adversarial Genera  

sample

Discriminative 

result

Fig. 17 Generative adversarial networks

First, the construction of a reliable and safe un-

manned vehicle system requires to learn a variety of

complex road scenes and extreme situations. How-

ever, in reality, the collected data cannot cover all of

the road conditions. Therefore, complex and vivid

scenes with more traffic elements need to be con-

structed to train a more robust unmanned system

online by combining the generative adversarial net-

work with traffic knowledge base and structure of the

cognitive map.

Second, off-line test and evaluation require a

real-time simulation system that combines the test

requirements with the real vehicle status skillfully.

As illustrated in Fig. 18, a small number of samples

can be used to train a real-time system in unsuper-

vised manner to simulate a variety of road environ-

ments by taking advantage of the generative adver-

sarial model. This system can evaluate the perfor-

mance of the unmanned vehicle through generating

virtual traffic scenes according to the requirements

of a real-time simulation environment and the con-

straints of a road scene.
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Fig. 18 Generative adversarial networks in self-

driving cars

Machine learning systems will no longer rely too

much on manually labeled data with models that

can generate similar data according to the limited

labeled data. Hence, an unsupervised computing ar-

chitecture, which relies only on a small amount of

manually labeled data, can be constructed for effi-

ciently competitive adversarial learning.

5 Typical applications of hybrid-
augmented intelligence

AI technology is creating numerous new prod-

ucts and changing the way of people’s work, study,

and life in almost every aspect. It has become a

powerful driving force to promote sustained growth

and innovative development of social economy. In

this section we introduce some typical applications

of hybrid-augmented intelligence.

5.1 Managing industrial complexities and

risks

Managing industrial complexities and risks is a

typical application of hybrid-augmented intelligence.

In the networked era, how to manage the complexity

and inherent risks of industry in a modern economic
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environment has become a daunting task for many

sectors (Shrivastava, 1995). Due to the dynamic na-

ture of the business environment, various industrial

environments are facing extensive risks and uncer-

tainties. In addition, the importance of enterprise

risk control, business process socialization, business

social networks, and the configuration of social tech-

nology are promoted extensively because of the ad-

vances in our information society and sociocultural

environment. The socialization of business is a pro-

cess of socialization defined, specified, and imple-

mented by an organization for the purpose of achiev-

ing implicit or explicit business benefits. The so-

cialization and business social networks require es-

tablishing a specific business-driven social structure,

or a specific business configuration. They facilitate

the flow of information and knowledge (primarily

through advanced technologies such as the Inter-

net and AI) and contribute to business intelligence.

In particular, the external networks of enterprises

not only directly affect the competitiveness of enter-

prises, but also indirectly affect the competitiveness

of enterprises by influencing the internal resources

such as total assets and levels of technical expertise

(Hu et al., 2010; 2013).

To manage the inherent complexity brought

about by society-economy (Wang, 2004), society-

technology, and society-politics relationships, a mod-

ern process of business social networks and socializa-

tion is formed (Fig. 19). In this context, enterprises

need innovative solutions to reconstruct different in-

ternal organizational functions and operational mod-

els, as well as to optimize the scheduling of resources

and technology. Innovative solutions depend not

only on the ability of decision makers and cognitive

conditions (how much information is possessed), but

also on the social capabilities based on technology.

These capabilities are provided by hybrid-augmented

intelligence (Liyanage, 2012; Wang FY et al., 2016),

including advanced AI, information and communica-

tion technologies (ICTs), social networks, and busi-

ness networks. This hybrid-augmented intelligence

integrates organizational events, technological com-

ponents, and society to create a human-computer

interaction environment where learning, understand-

ing, reasoning, and decision making are supported

and core technologies are available. The applica-

tions of hybrid-augmented intelligence can greatly

improve the risk management capability of modern

enterprises, enhance their value creation, and pro-

mote competitiveness.

5.2 Collaborative decision-making in enter-

prises

Collaborative decision-making is critical to al-

most all businesses (Hoffman, 1998; Ball et al., 2001).

The free exchange of ideas in an enterprise is likely to

create more innovative products, strategic solutions,

and lucrative business decisions (Fjellheim et al.,

2008).

Human-computer collaborative hybrid-

augmented intelligence can provide application

solutions for large-scale workflow coordination,

which has great potential in value creation. Fig. 20
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Fig. 20 General framework of hybrid-augmented in-

telligence for enterprise collaborative decision-making

shows an example of hybrid-augmented intelligence

for enterprise collaborative decision-making that

supports coordination and communication among

participants in the process. The hybrid-augmented

intelligence systems of enterprise collaboration

decision-making must be accessible to all CEO

partners to provide transparency and make it easy

to follow workflows at any time. The integration

of multiple machine learning methods, decision

models, and domain knowledge is critical for hybrid-

augmented intelligence systems. That is to say, the

integration process is very complicated. In addition,

a collaborative application is considered to include

an expert system that provides recommendations

for an optimal solution through a combination of

existing explicit knowledge in the knowledge base,

rule reasoning, and experts’ implicit knowledge.

Such a collaborative application demands smooth

interfaces (decision support, communication, work

process compliance, etc.) among different modules.

For example, in an application, members are able to

discuss and solve problems by communicating and

sharing pictures, videos, audio, and other language

contexts. During the process of solving the problem,

different solutions need to be combined into the

decision-making model to obtain the recommended

best solution.

5.3 Online intelligence learning

AI makes education traceable and visible. On-

line learning is another important application of

hybrid-augmented intelligence (Yau et al., 2003; Atif

and Mathew, 2015). Future education must be per-

sonalized, and students will benefit from interact-

ing with an online learning system. As shown in

Fig. 21, such an online learning system is based on

a hybrid-augmented intelligence system under the

framework of CC. The human-computer interaction

in online learning is not a simple interface interac-

tion, but the continuous impartation and update of

knowledge (Marchiori and Warglien, 2008) between

students and machines during the learning process.

Online hybrid-augmented intelligence learning sys-

tem will be designed to provide personalized tutorial

according to each student’s knowledge structure, in-

telligence, and proficiency.
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To provide personalized tutorial, the online

hybrid-augmented intelligence learning system can

construct a sense-making model dynamically, and

plan different learning schemes according to different

abilities and responses of learners. The core of the

system is to transform traditional education into a

customized and personalized learning system, which

will profoundly change the formation and dissemina-

tion of knowledge.

5.4 Medical and healthcare

In the medical field, a large amount of knowl-

edge and rules need to be memorized, of which most

are empirical, complex, and unstructured and have

been changing over time. Furthermore, there are

complex causal relationships between medical knowl-

edge and rules (Lake et al., 2016). Fig. 22 shows a

schematic of various medical relationships among pa-

tients, precision medicine, healthcare, diagnosis, and

clinical practice. In addition, the ‘human disease

space’ cannot be exhaustively searched. Therefore,

it is necessary to establish a medical care oriented

hybrid-augmented intelligence system.
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Fig. 22 Precision medical schematic

The medical field is closely related to human life,

and a wrong decision is intolerable. So, completely

replacing doctors by AI is impossible and unaccept-

able. At present, the most successful application in

medical field is IBM’s Watson health system, which

is still in rapid development and improvement (Ando

et al., 2005; Ando, 2007; Chen Y et al., 2016). For

a doctor, the necessary preconditions to become an

expert are formal training, reading a large amount

of medical literature, rigorous clinical practice, and

knowledge accumulation through cases. However,

the knowledge and experience accumulated in the

whole life of a doctor are still very limited. Mean-

while, the knowledge in each academic field is rapidly

increasing; it is impossible for any expert to un-

derstand and master all the latest information and

knowledge. In contrast to humans, the Watson sys-

tem can accumulate knowledge easily by memorizing

the literature, cases, and rules and by translating a

number of doctors’ diagnosis about diseases into an

improvement in system capability. The Watson sys-

tem is able to understand natural language, answer

questions, and mine patient data and other available

data systematically to obtain hypotheses and present

them by a confidence score. Then, a doctor can give

the ultimate diagnosis according to the information

offered by the system. To some extent, AI systems

can diagnose individually (Dounias, 2003), but it is

difficult to exhaust human diseases by the rules. So,

the involvement of doctors is required (Fig. 23a).

Integrating doctors’ clinical diagnostic process into

a medical AI system with powerful storage, search-

ing, and reasoning capabilities (Fig. 23a) can make

a better and faster diagnosis. Fig. 23b shows the

basic framework of a medical hybrid-augmented in-

telligence system.

The applications of cognitive medical hybrid-

augmented intelligence systems with human-

computer interaction, medical imaging, biosensors,

and nano surgery will bring a revolutionary change

to the medical field.

5.5 Public safety and security

The current public safety and security issues

show a complex and diversified development trend,

especially in security areas such as national secu-

rity (Cimbala, 2012), financial security (Hilovska

and Koncz, 2012), web security (Shuaibu et al.,

2015), public security (Ferreira et al., 2010), and

anti-terrorism. Hybrid-augmented intelligence can

provide strong technical support and a basic infras-

tructure framework to meet the increasing challenges

in those security areas. Generally, the processing

of anomaly events can be divided into three parts:

prediction, detection, and subsequent disposition.

To make full use of human intelligence in complex

problem judging and of AI in processing massive

data, security systems should be a human-computer

collaborative hybrid-augmented intelligence, that is,

humans’ participation in prediction, detection, and

subsequent disposition. A general framework of the

system is given in Fig. 24.
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Fig. 23 Integrating doctors’ clinical diagnostic pro-

cess into a medical AI system (a) and the basic frame-

work of a medical hybrid-augmented intelligence sys-

tem (b)

A typical example of an anomaly prediction task

is sentiment analysis (Zhao et al., 2010). With the

development of social networks, analyzing sentiment

access by Internet data is possible. Sentiment anal-

ysis is an effective means to predict the occurrence

of abnormal events (public safety events). Facing

massive unstructured Internet data, it is, however,

impossible for humans to predict abnormal events
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Fig. 24 General framework of hybrid-augmented in-

telligence for public safety and security

without the aid of Al. This requires the prediction

module of the security system to process large-scale

data automatically and hand the results to humans,

who will make further judgment. In the process of

anomaly detection and subsequent disposition, there

is a similar interaction mechanism between a human

and a security system. Thus, a security system based

on human-computer collaborative hybrid-augmented

intelligence is formed.

At present, surveillance cameras are deployed

almost everywhere, which can provide massive video

streams for monitoring public security. Due to the

lack of manpower, those videos are not fully used.

Hybrid-augmented intelligence based on CC can de-

tect suspect events and characters from massive data

(e.g., dangerous carry-on items, anomaly postures,

and anomaly crowd behaviors). For results with low

confidence or significant impact, experts will get in-

volved and interact with the security system and

make further judgments by their intuition and do-

main knowledge. Meanwhile, a cognition model can

leverage experts’ feedbacks to improve the analytical

ability for video understanding and finally, a better

and faster system can be achieved for prediction,

detection, and subsequent disposition of anomaly

events.

5.6 Human-computer collaborative driving

Automatic driving system (Varaiya, 1993; Wal-

drop, 2015) is a highly integrated AI system and also
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a hotspot of research in recent years. Currently, fully

automatic driving is still facing difficult technological

challenges. A conception of human-computer collab-

orative driving was first put forward in the 1960s

(Rashevsky, 1964). Along with the development of

intelligent transportation systems, 5G communica-

tion technologies, and vehicle networking, human-

computer collaborative driving has become more and

more robust and advanced (Im et al., 2009).

Human-computer collaborative driving refers

to the sharing of vehicle control between a driver

and the intelligent system. It means accomplish-

ing the driving task cooperatively (Fig. 25). Ob-

viously, this is an HITL human-computer collabo-

rative hybrid-augmented intelligence system where

there is a strong complementarity between a human

driver and an assisted-driving machine. First of all,

humans are of strong robustness and adaptability

towards scene understanding, but humans’ driving

behaviors are easily affected by physical and psycho-

logical factors (such as fatigue) (Sharp et al., 2001).

Human-computer collaborative driving can reduce

the risks of human error and free people from repet-

itive work. In addition, humans rely mainly on vi-

sion for environment perception, which is vulnerable

to light, weather, and other factors. The machine

assisted-driving system can take advantage of a va-

riety of sensors to achieve continuous monitoring of

the driving scenes with high precision, provide more

driving information to make up for the lack of human

manipulation, and broaden the perception domain.

The system is also able to intervene humans’ driving

behaviors when humans fail to detect danger.

Easy cases

Human driver Machine driver

Driving assistance

Return the control

Complex cases

Fig. 25 Human-computer collaborative driving

The key problems of man-machine collaborative

driving are how to realize machine perception and

judgment, interaction of information in machine and

humans’ cognition, and decision-making (Saripalli

et al., 2003). Therefore, how to coordinate the two

‘drivers’ to realize safe and comfortable driving of

the vehicle is a pressing fundamental problem faced

by the hybrid-augmented intelligence man-machine

collaborative driving system.

At present, automatic driving has been applied

in specific situations, but technical difficulties still

exist in public and natural traffic scenes. However,

there are still more than 1 billion passenger cars on

the road every day. Therefore, it is quite important

to solve the current safety problems of passenger

cars by man-machine collaborative driving (Zheng

et al., 2004). Fig. 26 shows a three-layer architec-

ture for a driver assistance and safety warning sys-

tem. The sensory layer completes data collection

and communication with different types of in-vehicle

sensors and roadside devices. The decision-making

layer processes the data that the sensor layer collects,

extracts valuable information, combines it with the

GIS database for real-time decision, and recommends

corresponding actions for the human driver. Simul-

taneously, the actions of the driver are compared

with the driver’s dangerous actions to make appro-

priate rational decision-making. The human inter-

face layer displays a variety of guidance information,

offers real-time presentations to the driver for the

safety of high-level road information, and warns for

unreasonable posture actions.
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Fig. 26 Architecture for a driver assistance and safety

warning system

Man-machine collaborative driving is also able

to provide an approach to driving learning for the

automatic driving intelligence system. The system
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learns the actions of human drivers, including driv-

ing behavioral psychology from the process of man-

machine collaborative driving.

5.7 Cloud robotics

In recent years, robots have been widely used

in industrial manufacturing (Johnson et al., 2014;

Schwartz et al., 2016), life services (Walters et al.,

2013; Boman and Bartfai, 2015; Hughes et al., 2016),

military defense (Gilbert and Beebe, 2010; Barnes

et al., 2013), and other fields. However, traditional

robots have the problem of simplification of instruc-

tions, which makes them difficult to update the

knowledge among the robots and hard to interact

with humans; so, it is difficult to carry out complex

tasks. Therefore, how to enhance the intelligence of

an individual in a multi-robot collaborative system is

a major challenge for multi-robot collaborative aug-

mented intelligence

Cloud robot is one of the fastest fields of trans-

forming hybrid-augmented intelligence research into

commercial applications. An important application

of mobile Internet is the Internet of Things (IoT).

The concept of IoT is the support of millions of

ordinary devices or all the items used in daily life,

connected to a mobile Internet cloud. This is a long-

term goal that people are pursuing, but this kind

of interconnection has already been reflected in the

cloud robot field. In these systems, different tasks

can be optimized so that different robots can inde-

pendently cope with specific tasks, and robots can

share solutions with each other via the cloud. The

robots can share data with each other via the cloud,

enabling any robot or intelligent system connected

to the same network to analyze the data. For ex-

ample, if robot A sends some knowledge to robot

B, robot B in turn can improve that knowledge and

continue to transmit it in a cooperative way, and can

realize multi-robot motion planning in the shared

space and limited time. Thus, the learning poten-

tial and connectivity of the robots are significantly

improved. Fig. 27 shows the hybrid-augmented intel-

ligence framework for cloud robot interconnection.

In addition, entertainment is an important ap-

plication of hybrid-augmented intelligence. In recent

years, technologies such as augmented reality and

virtual reality have been widely used in game indus-

try, such as Pokemon Go, which enhances humans’

participation by superimposing users’ real scenes
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Fig. 27 Hybrid-augmented intelligent framework for

cloud robot interconnection

and game virtual scenes, promotes the development

of game industry, and contributes to the techno-

logical progress. Moreover, social platforms such

as Facebook and WeChat, shopping websites, and

other entertainment websites push related informa-

tion to users by making personal preference analysis,

which can become more effective and accurate by

introducing human-computer collaborative hybrid-

augmented intelligence.

6 Conclusions

Intelligence machines have become human com-

panions, and AI is profoundly changing our lives and

shaping the future. Ubiquitous computing and in-

telligence machines are driving people to seek new

computational models and implementation forms of

AI. Hybrid-augmented intelligence is one of the im-

portant directions for the growth of AI.

Building human-computer interaction based

HITL hybrid-augmented intelligence by combining

perception and cognitive capabilities of humans with

the computer’s capabilities to calculate and store

data can greatly enhance AI system’s decision-

making capability, the level of cognitive sophistica-

tion required to handle complex tasks, and adapt-

ability to complex situations. Hybrid-augmented in-

telligence based on CC can solve the problems of

planning and reasoning that AI research area has

been facing for a long time through intuitive reason-

ing, experience learning, and other hybrid models.

In this survey, the importance of the devel-

opment of human-computer cooperative hybrid-

augmented intelligence and its basic framework are

described on the basis of discussing the limitations

of existing machine learning methods. The basic

problems of hybrid-augmented intelligence based on
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CC such as intuitive reasoning, causal modeling,

memory, and knowledge evolution are discussed,

and the important role and basic approach of

intuitive reasoning in complex problem solving are

described. The visual scene understanding method

based on memory and reasoning is also presented.

Finally, typical applications of hybrid-augmented

intelligence in the fields of managing industrial

complexities and risks, collaborative decision-

making in enterprises, online intelligent learning,

medical and healthcare, public safety and security,

human-computer collaborative driving, and cloud

robotics are introduced. We encourage both the

industry and academia to investigate and enrich

hybrid-augmented intelligence, in both theory and

practice.
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