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Abstract—In modern cities, more and more vehicles, such as 
taxis, have been equipped with GPS devices for localization 
and navigation. Gathering and analyzing these large-scale real-
world digital traces have provided us an unprecedented 
opportunity to understand the city dynamics and reveal the 
hidden social and economic “realities”. One innovative 
pervasive application is to provide correct driving strategies to 
taxi drivers according to time and location. In this paper, we 
aim to discover both efficient and inefficient passenger-finding 
strategies from a large-scale taxi GPS dataset, which was 
collected from 5350 taxis for one year in a large city of China. 
By representing the passenger-finding strategies in a Time-
Location-Strategy feature triplet and constructing a train/test 
dataset containing both top- and ordinary-performance taxi 
features, we adopt a powerful feature selection tool, L1-Norm 
SVM, to select the most salient feature patterns determining 
the taxi performance. We find that the selected patterns can 
well interpret the empirical study results derived from raw 
data analysis and even reveal interesting hidden “facts”. 
Moreover, the taxi performance predictor built on the selected 
features can achieve a prediction accuracy of 85.3% on a new 
test dataset, and it also outperforms the one based on all the 
features, which implies that the selected features are indeed the 
right indicators of the passenger-finding strategies. 

Keywords-Taxi Data Mining, GPS, Passenger-Finding 
Strategy, Large-scale Data, Reality Mining 

I. INTRODUCTION 
GPS has become a powerful ubiquitous sensor in our 

daily life. Nowadays, it has been embedded into many smart 
phones, vehicles, and other devices. GPS devices are playing 
a front-line role to continuously create and record the digital 
footprints of the carrier. Many daily facets of the carrier can 
be inferred from these spatio-temporal data. Since the most 
commonly used GPS devices by average population are 
smart phones and vehicles, which are extensively deployed 
in metropolitan areas, they can thus be a very rich data 
source for understanding city dynamics and revealing hidden 
social and economic “realities”. Previous works along this 
line include similar place identification (Mobile Landscapes) 
[1], mobility pattern analysis [2-4], traffic condition 
prediction [5-9], and taxi-mobility intelligence [10-13]. 

Public transportation is one of the most popular and 
important application fields of GPS. In modern cities, many 
public transportation vehicles, such as taxis, have been 
equipped with GPS devices. In the beginning, GPS devices 
equipped in taxis were mainly used for localization, 

navigation, scheduling and planning. As more and more taxis 
are equipped with GPS sensors and wireless communication 
units, immense amount of taxi status and GPS trajectory data 
can be collected in real-time. Based on the collected GPS 
trajectory dataset, besides the applications like “location-
based services” based on the real-time context of individual 
taxis, some new applications leveraging the mobility pattern 
of a large collection of taxi GPS data are emerging, ranging 
from urban design to traffic prediction. Many interesting 
research issues have been explored based on the large-scale 
taxi GPS trajectories, such as hotspots and traffic condition 
detection [7-9], and taxi mobility intelligence mining [10-13]. 

In this paper, we intend to investigate what are the 
efficient and inefficient passenger-finding strategies based on 
a large-scale real-world taxi GPS dataset, which was 
collected from 5350 taxis for one year in a large city of 
China. In particular, we would like to study what feature sets 
have most significant impact on taxi drivers’ performance 
and how these feature sets can be used to guide the ordinary 
taxi drivers to improve their driving strategies, based on the 
pattern analysis of top- and ordinary-performance taxi group 
dataset. With this objective in mind, the big challenge is how 
to translate the underlying “strategy” into the machine-
understanding formalism, such that it can be processed by 
the appropriate data mining algorithms to discover the latent 
knowledge. To this end, we first symbolize various 
passenger-finding strategies into a collection of feature 
patterns represented by triplet (Time, Location, Strategy). 
The rationale behind is to study what taxi drivers’ behavior 
in a certain timeslot and location will lead to good or 
ordinary performance. We list all the combinations of the 
three attributes and count the times that a taxi falls in each 
pattern. We then adopt a powerful feature selection tool, L1-
Norm SVM, to select the most salient patterns for 
discriminating top- and ordinary-performance taxis. We find 
that the selected patterns can well interpret the empirical 
study results derived from raw data analysis and even reveal 
interesting hidden “facts”. Moreover, the taxi performance 
predictor built on the selected features can achieve a 
prediction accuracy of 85.3% on a new test dataset, and it 
also outperforms the one based on all the features, which 
implies that the selected features are indeed the right 
indicators of the passenger-finding strategies. 

The remainder of the paper is organized as follows. In 
Section II, we will have a brief review on the related work. A 
large-scale real-world taxi data is introduced in Section III 
and an empirical study with visualization is presented in 
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Section IV. In Section V, we symbolize a collection of 
passenger-finding strategies and adopt a feature selection 
technique to select the most salient feature patterns for 
determining the performance of taxis, accompanied with 
analysis. We conclude this work in Section VI. 

II. RELATED WORK 
Urban vehicle transportation and service understanding: 

Yamamoto et al. [14] proposed an adaptive routing algorithm 
using fuzzy clustering to improve taxi dispatching by 
assigning vacant taxis to pathways with many potential 
customers expected. Chang et al. [8] described a model that 
predicts taxi demand distribution based on time, weather 
condition, and location. Santi et al [9] used taxi data to 
identify and predict vacant taxis in the city. Yang et al 
[10,11] aimed to model urban taxi services in a network 
context which can describe vacant and occupied taxi 
movements in a road network and the relationship between 
customer and taxi waiting times. 

Taxi Driver mobility intelligence: Few works have been 
reported on this topic. The closest work to ours is [12,13] for 
uncovering taxi drivers’ mobility intelligence, which has the 
similar goal as ours. They use K-means clustering technique 
to analyze the spatio-temporal patterns of the GPS data and 
understand the operation patterns of taxi drivers [12]. They 
also use a GPS dataset for one year to reveal the behaviors of 
taxi drivers by analyzing continuous digital traces [13]. The 
differences between [12,13] and ours are: 1) We design a 
triplet descriptor to symbolize the pickup/dropoff events as 
the features, while they employ other features of trajectories. 
2) We use feature selection technique to discover the most 
salient feature patterns for determining the performance of 
taxis, while they only predict the taxi performance based on 
the full set of features. 3) Last and most important, we model 
the subjective passenger-finding strategies and discover the 
useful ones which can be guidelines for taxi drivers, while 
they focus on revealing what characteristics top drivers have. 
Different from the previous papers, our work is the first one 
that investigates what features have most significant impact 
on taxi drivers’ performance and how these features can be 
used to guide taxi drivers to improve their driving strategies.  

III. DATA PREPROCESSING & EXTRACTION 
We get a large-scale real-world taxi GPS dataset of more 

than 5350 taxis served in a large city in China (Hangzhou) 
for one year (Apr 2009 ~ Mar 2010). Hangzhou has a 
population of more than 6 million people and it is also a 
famous tourism city. The large population and massive 
passenger flows raised great challenges and opportunities to 

taxi drivers. Good or bad passenger-finding strategies can 
significantly influence taxi drivers’ performances. 

In our taxi dataset, each taxis is deployed with a GPS 
device for recording real-time taxi information at a sampling 
frequency of 1~7 times per minute. Each record contains the 
following fields which we will use in this research work:  

• VEHICLE_ID: unique ID of the taxi in the dataset; 
• LONGITUDE: current longitude of the taxi; 
• LATITUDE: current latitude of the taxi; 
• SPEED: current speed of the taxi; 
• STATE: current status (occupied/vacant) of the taxi; 
• SPEED_TIME: sampling timestamp in the format of 

“YYYY-MM-DD HH:MM:SS”. 
There are more than 200 billion records in the entire 

dataset. To reduce the computing burden, we choose the 
records of 15 working days in Oct 2009 as our research 
dataset. To limit our interested area only in Hangzhou 
metropolitan area, we choose the records with both pickup 
and dropoff locations within the area of longitude [120,120.5] 
and latitude [30.15,30.40]. The records out of the selected 
time and location range are discarded. We also discard the 
records which may be caused by device errors and noises. 
After data pruning, we obtain 4548 taxis with more than 500 
valid GPS records in the selected 15 days. 

In this paper, we are interested in studying the passenger-
finding strategies, in particular, the taxi drivers’ behaviors 
before picking up and after dropping off passengers. And we 
don’t investigate the driving trajectories. Thus, we only need 
to extract the pickup and dropoff events for each ride. 

For each pickup/dropoff event, we extract the GPS data 
and event timestamp. Besides, we also estimate the driving 
distance during 3 minutes before a pickup event and the 
driving distance during the period after current dropoff event 
and before the next pickup event. With these two distance 
indicators and proper thresholds (discussed in Section V), for 
pickup event, we can know whether a taxi is waiting at a 
location or roaming around, while for dropoff event, we can 
know whether a taxi is directly heading for somewhere for 
next passengers or just haunting near the dropoff location. 
The extracted information from the raw GPS records for 
pickup/dropoff events are represented in a table (Table 1), 
where tag value 1 denotes a pickup event and -1 a dropoff 
event. For example, the first row means that “at 00:19:48, 12 
Oct 2009, taxi 20731 picked up a passenger at [120.107590, 
30.320194], and 3 minutes before this pickup event, the taxi 
had run 0.68km”. The second row means that “at 00:38:15, 
12 Oct 2009, taxi 20731 dropped off a passenger at 
[120.191025, 30.265770], and from this dropoff event to the 
next pickup event, the taxi had run 1.99km” . 

TABLE I.  AN EXAMPLE OF PICKUP/DROPOFF RECORDS 

Taxi Longitude Latitude Year Month Day Hour Min Sec Tag Dist 
20731 120.107590 30.320194 2009 10 12 0 19 48 1 0.68 

20731 120.191025 30.265770 2009 10 12 0 38 15 -1 1.99 

20731 120.179450 30.268055 2009 10 12 0 49 53 1 0.11 

20731 120.156630 30.256460 2009 10 12 0 58 5 -1 2.94 
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Figure 1.  (Left) Hangzhou metropolitan area partition (40×20 grids). Two red spots are the raliway station (left) and the int’l airport (right), respectively. 
(Right) Density map of Hangzhou metropolitan area. The grayscales indicate the pickup/dropoff times in a certain region in the selected 15 days. We number 
the top 99 busiest regions and the rest non-hot area is treated as one region with label 100. Different label colors indicate different region functions. The 
railway station is in region 69 and the int’l airport is in region 99. 

IV. EMPIRICAL STUDY 

A. Hotspots Analysis 
We partition Hangzhou metropolitan area (longitude 

[120.0,120.5], latitude [30.15,30.4]) into 40×20 grids with 
equal intervals (see Figure 1). We count all the pickup and 
dropoff events during the selected 15 days in each region and 
select the top 99 busiest regions as the hotspots and the rest 
as non-hot area. The locations and functions of the hotspots 
are numbered as shown in Figure 1. The far away isolated 
region 99 is the int’l airport. The railway station, commercial 
zones, residential zones, and the main campus of Zhejiang 
University surrounding the West Lake are the top hotspots. 

The skeleton of Hangzhou metropolitan area can be 
outlined by all the pickup/dropoff points as shown in Figure 
2. We can see that the dropoff points (blue) are more 
scattered than the pickup points (red) since people usually 
catch a taxi on main roads while get off anywhere. We count 
the pickup/dropoff points in each region at 6 equal time slots 
(sub-captions in Figure 2). We plot the top 10 pickup/dropoff 
hotspots on the background of pickup/dropoff point cloud in 
Figure 2. Most of the top 10 pickup/dropoff regions are 
surrounding the West Lake across different time slots. The 
top 10 pickup/dropoff hotspots also depend on the time. The 
railway station is among the top 10 pickup/dropoff hotspots 
across the whole day. During mid-night (00h~04h), as 
expected, the dropoff locations are almost located in 
residential zones while the pickup locations are mainly in the 
railway station and entertainment zones. During rush hours 
(04h~08h), the pickup locations are mainly in residential 
zones while the dropoff locations are mainly in commercial 
zones. As seen from Figure 2(b), the airport is among top 10 
hotspots only during the early morning. The reason may be 
that passengers are inclined to take airport shuttle buses in 
daytime since it is cheaper. While during the early morning 
people turn to take taxis since airport shuttle buses are out of 
services.  

B. Hunting or Waiting? 
Two passenger-finding strategies, namely hunting and 

waiting, are mainly adopted by taxi drivers when they are 

trying to find passengers. By analyzing the average pickup 
numbers during one certain period of time in one certain 
location with respect to both strategies, we can get a clear 
view of which one is more effective in the context. We 
estimat this average value with our data in the following 
method. During a certain time period of each day in one 
certain region, we count the number of pickup events 
separately with respect to hunting and waiting in the selected 
15 days. We also calculate the total waiting hours and 
hunting hours of these taxis. Then we divide the counted 
numbers with each waiting and hunting hours respectively 
and get the averaged pickup times per hour in terms of 
hunting and waiting. The comparison result is shown in 
Figure 3. In each subplot, the X-axis is the hotspot label 
defined in Figure 1. Those locations are the top 20 pickup 
density locations in the corresponding time slots. The Y-axis 
is the average passenger pickup times. 

From Figure 3 we can see that during 22h~23h and 
00~01h, the total pickup number is smaller than the other 
time periods and hunting performs better than waiting in 
most of the hotspots. This reflects that the good traffic 
condition in this time period may help the taxi drivers find 
passengers when they hunt and also as the passengers are 
fewer compared to those in rush hours, waiting in one 
location is unlikely to find passengers. During 06h~07h 
hunting performs far better than waiting since it’s the time 
when people go to work from their scattered homes. One 
exception is the railway station. It is because the railway 
station has strict rules for taxis to wait in line for the coming 
passengers and those taxis’ behaviors are defined as waiting 
since they hardly move in the 3 minutes before picking up 
passengers. 

During 10h~11h, 12h~13h and 18h~19h time periods, 
waiting performs better than hunting for the hottest spots, 
and as the grids become less hot, hunting performance 
increases while waiting performance decreases. And finally 
hunting performs better than waiting. This may be because 
those hottest spots are normally associated with traffic 
congestion. As a result, the taxis are normally regarded as 
waiting since their moving speed is too slow. On the contrary, 
the traffic conditions of these less hot regions are normally 
good and taxi drivers can travel around to find passengers. 
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(a) 00h~04h                                                                     (d) 04h~08h 

 
(c) 08h~12h                                                                      (d) 12h~16h 

 
(e) 16h~20h                                                                       (f) 20h~24h 

Figure 2.  Top 10 pickup/dropoff hotspots (matked with ‘o’/‘x’) at different time slots in Hangzhou metropolitan area. The background point clouds are 
plotted by using all the pickup points (red) and dropoff points (blue) at the same time slot. 
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    (a) 00h~01h                                               (b) 06h~07h                                               (c) 10h~11h 
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    (d) 12h~13h                                             (e) 18h~19h                                                (f) 22h~23h 

Figure 3.  Comparision of the amount of passenger pickup beween the hunting and waiting behaviors 

V. TAXI-PATTERN DISCOVERY 
In this section, we are going to automatically extract taxi-

patterns from the raw pickup/dropoff records to describe the 
semantics of taxi drivers’ behaviors, and adopt a feature 

selection technique to select the underlying taxi-patterns that 
are most salient for taxi performance. There are three steps 
as follows: 1) we design a set of taxi-patterns in terms of 
times, locations, and the driving behavior before picking up 
or after dropping off a passenger, and obtain a rich collection 
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of features; 2) we use L1-Norm SVM to simultaneously 
select the most discriminative features and learn a predictor 
based on the selected patterns; 3) we predict the performance 
of a set of test taxis based on the selected patterns.  

A. Passenger-Finding Strategy Descriptors 
Normally, the factors that can significantly influence a 

taxi driver’s performance are subjective factors. Subjective 
factors may determine the passenger-finding strategies when 
the taxi is unoccupied. Thus, in this paper, we focus on 
analyzing the passenger-finding strategies that the taxi driver 
adopts when the taxi is vacant. We find out two major 
passenger-finding strategies, which largely depend on the 
subjective factors, can significantly influence a driver’s 
performance, they are  

1) Hunting or Waiting before a Pickup? At a certain 
time and a certain location, which strategy should the taxi 
driver adopt, hunting passengers by keeping driving the taxi  
or waiting passengers by finding a hotspot nearby? 

2) Local or Distance after a Dropoff: After dropping off 
a  passenger at some time and some location, which strategy 
should the taxi driver adopt, finding passengers locally in 
the region where the last passenger gets off or returning to a 
region in a distance that the taxi driver is more familiar with? 

To analyze these two subjective factors, first of all, we 
need to design a descriptor to describe the semantics of the 
two factors in machine-understanding formalism. To this end, 
we symbolize the both factors using a triplet 

(Time, Location, Strategy)                        (1) 

For “Time”, we divide one day into 12 equal intervals and 
the resulting time slots are {00h~02h, 02h~04h, …, 
22h~24h}. For “Location”, we use the region labels {1, …, 
100} defined in Figure 1, in which each cell is approximately 
a 1200×1200 m2 area. For “Strategy”, it is a boolean value 
for indicating that a taxi driver is “hunting” or “waiting” 
passengers before a pickup or chooses “local” or “distance” 
to find the next passenger after a dropoff. This attribute can 
be described in terms of distance using the following rules: 

        Waiting
Pickup:        

        Hunting
pick

pick
pick

d
τ
τ

≤⎧
⎨>⎩

                  (2)

             Local
Dropoff:        

        Distance
drop

drop
drop

d
τ
τ

≤⎧
⎨>⎩

                 (3) 

where dpick/ddrop is the value in the last column of Table 1. 
The intuition is that: if the distance covered by a taxi before 
it picks up a passenger is not long, the taxi driver is very 
likely to wait passengers; if the distance covered by a taxi 
between the last dropoff and the next pickup is not long, the 
taxi driver is very likely to have found passengers locally in 
the region where the last passenger gets off. 

By symbolizing the three attributes in (1) into taxi-
pattern descriptors, we can obtain 12 (Time) × 100 (Location) 
× 2 (Strategy) × 2 (Pickup/Dropoff) = 4800 descriptors. The 

large collection of descriptors can enumerate all the 
possibilities of the passenger-find strategies. We construct a 
taxi-pattern table to count the times of a pattern a taxi driver 
has adopted during the selected 15 days. We have 4548 taxis 
and 4800 patterns, and then we have a 4548×4800 table. The 
element (i,j) denotes the times of jth patterns conducted by 
the ith taxi in the selected 15 days. The resultant table can 
thus be as a feature matrix for further data mining procedures. 

B. Good/Bad Strategy Discovery 
Next we aim to discover the underlying taxi-patterns that 

are most salient for working performance. We adopt a 
powerful supervised feature selection method, L1-Norm 
SVM [15], to simultaneously select the most discriminative 
features and learn a taxi performance predictor based on the 
selected patterns to discover which taxi-patterns are most 
associated with the drivers with better performance and 
which ones are most associated with worse performance. 

The label of a taxi’s performance is determined by the 
accumulated distance covered by the taxi in the selected 15 
days when it is occupied. To assign a label to each taxi’s 
feature (a row in the taxi-pattern table), we first sort the 
accumulated distance for all the 4548 taxis in descending 
order, and select the top 2000 taxis for our analysis. We use 
top 600 taxis out of the 2000 taxis as the positive examples 
and the bottom 600 taxis as the negative examples. We 
discard the rest 800 taxis with average performance. As a 
result, we have a data set with 1200 examples, in which 600 
are positive and 600 are negative.  

Based on the obtained training examples and their labels, 
we use L1-Norm SVM [15] to learn a classifier as well as 
select a small subset of most salient features for good and 
ordinary taxis from a collection of the taxi-patterns. L1-
Norm SVM is a SVM with L1-norm regularization, which 
can lead to a sparsity solution over a large collection of 
features (“sparsity” means most features will get zero 
weights and they have no effect on the learned classifier).  

The learning result of L1-Norm SVM is a set of feature 
weights { }1, , Mw w… , and the resulting classifier has the form 

( ) T
1 1

M M
i i j ji j

f b w x w x b
+ −

+ −
= =

= + = + +∑ ∑x w x            (4) 

where M
+

denotes the number of positive weights and M
−

 
the number of negative weights. Due to the L1-norm 
regularization, the non-zero weights can be very few, i.e., 
( )M M M+ −+ << , An intuitive interpretation based on (4) is 
that, for positive (or negative) weights, the corresponding 
features are more salient for the positive (or negative) 
examples, while for the zero weights, the corresponding 
features have no effect for discriminating positive and 
negative examples. Thus we can see L1-Norm SVM indeed 
performs a feature selection procedure implicitly during 
learning the classifier. The larger (or smaller) the feature’s 
weight is, the more salient for the good (or ordinary) taxi. 

We randomly split the 1200 examples into 800 training 
and 400 test examples for 10 times. The results we reported 
below are all in the form of “Mean±Std”. The learning and 
test results are as follows: 186.4±7.6 taxi-patterns are 
selected (with non-zero weights) by L1-Norm SVM, in 
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which there are 135.3±6.8 positive features and 51.1±9.4 
negative features. The test accuracy on the 400 examples is 
0.853±0.013. We also compare the result obtained by a 
standard SVM based on the full set of features (i.e., 4800 
taxi-patterns), and get an accuracy on the 400 test examples 
is 0.742±0.008. The prediction result based on the selected 
features clearly outperforms the one based on the all features, 
which implies that the selected features are indeed useful for 
suggesting efficient passenger-finding strategies. 

The top 10 positive and top 10 negative taxi-patterns are 
listed in the descending order of the absolute value of the 
weights (see Figure 4). One can easily see that hunting is 
always a good way to identify the best taxis while waiting is 
always associated with ordinary ones. For [12h-13h, Region 
69] and [0h-1h, Region 65], Pickup-Hunting are the good 
features, which is consistent with the fact that hunting is 
much better than waiting as shown in Figure 3. Although the 
pickup times is a bit smaller for hunting in [0h-1h, Region 39] 
an [12h-13h, Region 61] than waiting, in contrarily hunting 
is still a good behavior for both these regions. Possible 
explanation could be that during 0h~1h, hunting may 
happens not only in Region 39/61, but also in the downtown 
areas nearby, which together suggest hunting a good strategy.  

 
Figure 4.  Top 10 positive/negative taxi-patterns discovered by feature 
selection. The numbers in the first column are the associated weights. 

VI. CONCLUSION 
In this paper we develop a novel method to represent the 

passenger-finding strategies using time-location-strategy 

triplet, transform the digital traces of 5350 taxis of Hangzhou 
in a year into a taxi-pattern table and training/test datasets, 
and select the determining taxi-patterns for efficient and 
inefficient passenger-finding via an advanced data mining 
algorithm. We find that the selected taxi-patterns can well 
interpret the empirical study results derived from raw data 
analysis and even reveal hidden “facts”. Moreover, we have 
built a taxi performance predictor on the selected patterns 
and achieve a prediction accuracy of 85.3%. With the 
proposed method, for the first time we could mine most 
salient features for efficient and inefficient passenger-finding 
strategies, which can guide taxi drivers to perform better.  
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