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Abstract: Analogs of fundamental physical phenomena can be used in two ways. One way consists in
reproducing specific aspects of the classical or quantum gravity of quantum fields in curved space or
of other high-energy scenarios on lower-energy corresponding systems. The “reverse way” consists
in building fundamental physical theories, for instance, quantum gravity models, inspired by the
lower-energy corresponding systems. Here, we present the case of graphene and other Dirac materials.
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1. Introduction

Richard Feynman wrote beautiful and visionary pages on analogs, in a famous lecture
titled “Electrostatic Analogs”, available in [1] (see also [2] for comments and discussions).
There, he explains how it happens that different physical systems, among which a solid
analogy can be established, are all described in a unified manner. In his now famous words,
this happens because “the same equations have the same solutions”. Therefore, if we have
no access to certain regimes of system A, but they correspond to certain reachable regimes
of the analogous system B, we can perform experiments on system B, and establish results
that are valid for system A.

In the final, and less known, part of the lecture, he ventures into a visionary attempt to
explain why this is so. This goes on until the thrilling hypothesis of the existence of more ele-
mentary constituents than the ones we deem to be fundamental. All those systems, including
electrostatics itself, are just different coarse-grained versions of one dynamics, even more
fundamental than quantum electrodynamics. Amazingly, Feynman realizes that the physi-
cal properties of space itself play a crucial role in the identification of such fundamental
objects (that he calls “little Xons” [1]). It is precisely when space itself, besides matter, is in-
cluded as part of the emergent phenomenon that these are also the conclusions of certain
completely independent arguments of the contemporary quantum gravity (QG) [3–7].

As for the field of gravity analogs (see [8]), the seminal work is the 1981 paper of
Bill Unruh [9], where he proposed to search for the experimental signatures of the Unruh
effect [10] and of the Hawking effect [11], in a fluid-dynamical analog.

Due to our deeper theoretical understanding of these phenomena and to the higher ex-
perimental control of condensed matter systems, it is now becoming increasingly popular to
reproduce that and other aspects of fundamental physics in analog systems. Examples in-
clude the Hawking phenomenon in Bose–Einstein condensates [12], the Weyl symmetry [13,14]
and the related Hawking/Unruh phenomenon on graphene [15–17], gravitational and axial
anomalies in Weyl semimetals [18], “Moiré gravity” in bilayer graphene [19,20]), and more.
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Let us mention, for instance, the beautiful example of supernova explosions simulated
in the laboratory by plasma implosions induced by intense lasers. Both systems are
examples of fluid dynamics, and the Euler equations are invariant under an inversion
transformation, which is an arbitrary uniform expansion or contraction of the system.
This symmetry is studied in cosmology, and allows to map an explosion problem to a
dual implosion problem. In principle, this duality allows the complete three-dimensional
evolution of highly structured explosion ejecta to be modeled using a static target in an
implosion facility. In [21], the maximal invariance group was determined to be the semi-
direct product of the Galilei group with SL(2, R), the latter containing time translations,
dilations, and the inversion. Those results had an important impact on the field. More
details are in the contribution [22] to this Issue.

Gravity analogs are not limited to condensed-matter systems, as shown by heavy-ion
collisions at high energy [23–25]. In fact, hadron production in high-energy scattering
processes is just a Unruh effect in quantum chromodynamics (QCD) [23], with the Unruh
temperature, TU = (h̄a)/(2πckB), given by the hadronization temperature, Th ' 160 MeV,
thus corresponding to an enormous acceleration, a ' 4.6× 1032 m/s2 that makes the effect
very easy to detect. Here, we explicitly write the Planck constant, speed of light and
Boltzmann constant. More details on this approach are in the contribution [26] to this Issue.

Here, we focus on the proposal of graphene as an analog of high-energy funda-
mental physics [13–17,27–29], based on the fact that its low-energy excitations [30] are
massless Dirac pseudo-relativistic fermions (the matter fields ψ), propagating in a car-
bon two-dimensional honeycomb lattice. The emergent (long-wave limit) description of
the latter is a surface (a portion of spacetime described by the “emergent” metric gµν).
Such a behavior is shared by a wide range of materials, ranging from silicene and ger-
manene through d-wave superconductors to topological insulators [31]. Each of those
materials has its own peculiarities, which allow for further extensions of results obtained
with graphene, and hence permit to explore a wider range of the high-energy target systems.
Let us now give some details.

Despite those impressive advances in the highly active area of analog physics, there
are still two milestones to reach. One is to fully understand the epistemic role of analogs in
fundamental high energy physics, as not all theorists would agree that analogs are much more
than mere divertissements. In fact, experimental results obtained with analogs are not used as
feedback for the target theories that they are analogs of (see, for example, [2,32]). Another
milestone would be a reliable definition of an analog black-hole (BH) entropy, or at least, of
a quantum field theory (QFT)-like entanglement entropy that, in the presence of horizons,
might serve the scope of setting-up some form of the second principle of BH thermodynamics.

Any progress in this direction would be truly important for the QG research. Having
some results there, we could eventually be able to address the so-called information paradox,
i.e., the apparent loss of information during BH evaporation, a question that, most probably,
cannot be entirely solved via theoretical reasonings. See, for example, [33–37] for different
points of view.

In fact, there are plenty of unreachable regimes in fundamental physics, starting from
BHs, that we do know to exist but that are not (easily or at all) reproducible in a laboratory.
It is then of tremendous interest to establish solid criteria for such systems to correspond to
other systems, within our reach, and to perform experiments on the latter to know of the
former. On the other hand, when such correspondences are solidly established, why not
infer from the analog system the most intimate nature of the target system? For instance, if
QG behaves like graphene (under certain conditions for graphene and for certain specific
regimes of QG), and since we still do not know how QG really is, why not trying to guess
the whole QG picture from what we learned of the partial overlap between the two systems?

This is a less beaten track, but not a completely empty one. For instance, inspired by
the findings of [13–17,27–29], in Ref. [6], the authors propose the existence of fundamental,
high-energy constituents underlying both matter and space, and that these, at our low
energies, exist in an entangled state. This entanglement is there because both matter and
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space emerge from the dynamics of the same more fundamental objects, whose existence
can be inferred from the celebrated upper bound on the entropy of any system, conjectured
by Bekenstein [3]. Quoting Feynman and paraphrasing Bekenstein, those objects are called
“Xons” [2]. If such a view is correct, even matter that we deem to be fundamental, i.e., ele-
mentary, is in fact “quasi-matter”, just like the massless quasi-particles, ψ, of graphene [30]
that owe their properties to the interaction with the lattice1. The most noticeable result
of this “quasi-particle picture” [6] is that the evaporation of a BH inevitably leads to an
information loss, in the sense that, in general, there is a nonzero entanglement entropy asso-
ciated to the final products of the evaporation. On the other hand, within the same picture,
in [40], the authors describe BH evaporation from the point of view of the Xons. They see
there that the Bekenstein bound [3–5] can be an effect of the Pauli exclusion principle, and
that a full unitary picture, leading to a complete recovering of the initial information, is
only possible if one could track the evolution of those fundamental constituents.

The paper is organized in two large Sections and some concluding remarks. Section 2
is dedicated to graphene and Dirac materials (DMs) as analogs of high-energy fundamental
physics. Section 3 is dedicated to the QG that the latter research has inspired. Each large
Section has many Subsections. As for Section 2, Sections 2.1–2.3 explain the main reasons
why graphene is good at reproducing scenarios of fundamental physics; then Section 2.4
tells about old, new and future developments of this line of research, dedicating to each
topic a brief Subsubsection; finally, Section 2.5 comments on the experimental search. As for
Section 3, Section 3.1 introduces the quasi-particle picture in the QG context;
Sections 3.2 and 3.3 deal with BH evaporation as seen from the quasi-particles and as seen
from the Xons, respectively; the last Section 3.4 comments on recent work on how (classical)
space emerges from the underlying (quantum) dynamics of Xons during BH evaporation.
Section 4 is dedicated to our concluding remarks, which are a chance to point to future
developments of the whole analog enterprise, in general, and those based on graphene,
in particular.

2. Analog Gravity on Graphene

Graphene is an allotrope of carbon. It is one-atom-thick; hence it is the closest to
a two-dimensional object in nature. It was theoretically speculated [41,42] and, decades
later, it was experimentally found [43]. Its honeycomb lattice is made of two intertwined
triangular sub-lattices LA and LB; see Figure 1. As is now well known, this structure is
behind a natural description of the electronic properties of π electrons2 in terms of massless,
(2 + 1)-dimensional, Dirac (hence, relativistic-like) quasi-particles.

s
3

s
1

s
2

a1

a2

= sublattice LA = sublattice LB

l

Figure 1. The honeycomb lattice of graphene, and its two triangular sublattices LA and LB. The
choice of the basis vectors, (~a1,~a2) and (~s1,~s2,~s3), is, of course, not unique. Here we indicate the one
used in [17]. Figure taken from [16].
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2.1. First Scale, E < E`: From the Tight-Binding to the Dirac Hamiltonian

Such electrons, in the tight-binding low-energy approximation, are customarily described
by the Hamiltonian (as here we use natural units, the reduced Planck constant is h̄ = 1)

H = −η ∑
~r∈LA

3

∑
i=1

(
a†(~r)b(~r +~si) + b†(~r +~si)a(~r)

)
, (1)

where the nearest-neighbor hopping energy is η ' 2.8 eV, and a, a† (b, b†) are the anti-
commuting annihilation and creation operators, respectively, for the planar π electrons
in the sub-lattice LA (LB); see Figure 1. All the vectors are bi-dimensional, ~r = (x, y),
and, for the choice of basis vectors made in Figure 1, if we Fourier transform, a(~r) =

∑~k a(~k)ei~k·~r, etc., then H = ∑~k( f (~k)a†(~k)b(~k) + h.c.), with

f (~k) = −η e−i `ky
(

1 + 2 ei 3`ky/2 cos(
√

3`kx/2)
)

, (2)

where ` ' 1.4 A is the graphene honeycomb lattice length (see Figure 1). Solving
E(~k) = ±| f (~k)| ≡ 0 tells us if, in the first Brillouin zone (FBZ), conductivity and valence
bands touch and where. Indeed, this does happen for graphene, pointing to a gapless
spectrum, for which we expect massless excitations to emerge. Furthermore, the solution is
not a Fermi line (the (2 + 1)-dimensional version of the Fermi surface of the (3 + 1) dimen-
sions), but instead, they are two Fermi points,~kD

± =
(
± 4π

3
√

3`
, 0
)

. Even if the mathematical

solution to | f (~k)| = 0 has six points, only the two indicated are unequivalent [30].
The label “D” on the Fermi points stands for “Dirac”. This refers to the all-important

fact that, near those points, the spectrum is linear, as can be seen from Figure 2, E± ' ±vF|~k|,
where vF = 3η`/2 ∼ c/300 is the Fermi velocity. This behavior is expected in a relativistic
theory, whereas, in a non-relativistic system, the dispersion relations are usually quadratic.

1.8
2.0

2.2
2.4

0.8
1.0

1.2
1.4

1.6

E

-1.0

-0.5

0.0

0.5

1.0

Figure 2. The linear dispersion relations near one of the Dirac points, showing the typical behavior of
a relativistic-like system (the “vF-light-cone” in k-space). Figure taken from [17].
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If one linearizes around ~kD
±, ~k± ' ~kD

± + ~p, then f+(~p) ≡ f (~k+) = vF(px + ipy),
f−(~p) ≡ f (~k−) = −vF(px − ipy), and a±(~p) ≡ a(~k±), b±(~p) ≡ b(~k±). Therefore,
the Hamiltonian (1) becomes

H|~k± ' vF ∑
~p

(
ψ†
+~σ · ~p ψ+ − ψ†

−~σ
∗ · ~p ψ−

)
(3)

where ψ± ≡
(

b±
a±

)
are two-component Dirac spinors, and~σ ≡ (σ1, σ2),~σ∗ ≡ (σ1,−σ2),

with σi the Pauli matrices. Notice that here the 1/2-spinor description emerges from the
two sublattice honeycomb structure instead of the intrinsic spin of the π electron.

Hence, if one considers the linear/relativistic-like regime only, the first scale is

E` ∼ vF/` ∼ 4.2 eV. (4)

Notice that E` ∼ 1.5η, and that the associated wavelength, λ = 2π/|~p| ' 2πvF/E,
is 2π`. The electrons’ wavelength, at energies below E`, is large compared to the lattice
length, λ > 2π`. Those electrons see the graphene sheet as a continuum.

The two spinors are connected by the inversion of the full momentum ~kD
+ + ~p →

−~kD
+ − ~p ≡~kD

− − ~p. Whether one needs one or both such spinors to describe the physics
strongly depends on the given set-up. For instance, when only strain is present, one
Dirac point is enough (see, for example, [27]), similar (see below here) to when certain
approximations on the curvature are valid [15–17]. The importance and relevance of the
two Dirac points for emergent descriptions of scenarios of the high-energy theoretical
research were discussed at length in [28], where the role of grain boundaries and the related
necessity for two Dirac points were explained in terms of a relation to spacetime torsion;
see below. The full focus on torsion, though, is in [44].

When only one Dirac point is necessary over the whole linear regime, the following
Hamiltonian well captures the physics of undeformed (planar and unstrained) graphene

H = −i vF

∫
d2x ψ†~σ ·~∂ ψ , (5)

where the two-component spinor is, for example, ψ ≡ ψ+, we moved back to configuration
space, ~p→ −i~∂, and sums turned into integrals because of the continuum limit. In various
papers, this regime was exploited to a great extent until the inclusion of curvature and
torsion in the geometric background. On the other hand, the regimes beyond the linear one
were also investigated. There, granular effects associated with the lattice structure emerge;
see [45] and also the related [46].

When both Dirac points are necessary, one needs to consider four-component spinors in a

reducible representation [17,47,48] Ψ ≡
(

ψ+

ψ−

)
, and 4× 4 Dirac matrices αi =

(
σi 0
0 −σ∗ i

)
,

β =

(
σ3 0
0 σ3

)
, i = 1, 2. These matrices satisfy all the standard properties, see, e.g., [17,28].

With these, the Hamiltonian is

H = −i vF

∫
d2x
(

ψ†
+~σ ·~∂ ψ+ − ψ†

−~σ
∗ ·~∂ ψ−

)
= −i vF

∫
d2x Ψ̄~γ ·~∂ Ψ . (6)

2.2. Second Scale, E < Er < E`: From the Flat Space to Curved Space Dirac Hamiltonian

In [13], the goal was to identify the conditions for graphene to get as close as possible
to a full-power QFT in curved spacetime. Therefore, key issues had to be faced, such as
the proper inclusion of the time variable in a relativistic-like description and the role
of the nontrivial vacua and their relation to different quantization schemes for different
observers. All this finds its synthesis in the Unruh or the Hawking effects, the clearest
and unmistakable signatures of QFT in curved spacetime. Therefore, starting from [13,14],
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this road was pursued in [15,16]. Let us explain here the main issues and the approximations
made there.

Besides the scale (4), when we introduce curvature, we also have a second scale. When
this happens, E` is our “high energy regime”, as we ask the curvature to be small compared
to a maximal limiting curvature, 1/`2, otherwise: i) it would make no sense to consider
a smooth metric, and ii) r < ` (where 1/r2 measures the intrinsic curvature), means that
we should bend the very strong σ-bonds, an instance that does not occur. Therefore, our
second scale is

Er ∼ vF/r , (7)

with Er = `/r E` < E`. To have a quantitative handle on these scales, let us take, e.g.,
r ' 10` as a small radius of curvature (high intrinsic curvature). To this corresponds an en-
ergy Er ∼ 0.4 eV, whereas to r ∼ 1 mm ∼ 106 `, corresponds Er ∼ 4 µeV. The “high energy”
to compare with is E` ∼ 4 eV.

When energies are within Er (wavelengths comparable to 2πr), the electrons experi-
ence the global effects of curvature. That is to say, at those wavelengths, they can distinguish
between a flat and curved surface and, in particular, between, for example, a sphere and
a pseudosphere. Therefore, whichever curvature r > ` we consider, the curvature effects
are felt until the wavelength becomes comparable to 2π`. The formalism we have used,
though, considers all deformations of the geometric kind, except for torsion. Hence, this
includes the intrinsic curvature and elastic strain of the membrane (on the latter, see [27]).
However, the power stops before E` because there, local effects (such as the actual structure
of the defects) play a role that must be taken into account in a QG-type theory. On the latter,
the first steps were moved in [45] and also in [46] and in the forthcoming [49].

The intrinsic curvature is taken here as produced by disclination defects, that are
customarily described in elasticity theory (see, for example, [50]), by the (smooth) derivative
of the (non-continuous) SO(2)-valued rotational angle ∂iω ≡ ωi, where i = 1, 2 is a “curved”
spatial index3. The corresponding (spatial) Riemann curvature tensor is easily obtained

Rij
kl = εijεklε

mn∂mωn = εijεlk2K. (8)

where K is the Gaussian (intrinsic) curvature of the surface. In this approach, we have
included time, although the metric we adopted is

ggraphene
µν =

 1 0 0
0
0
−gij

 , (9)

i.e., the curvature is all in the spatial part, and ∂tgij = 0. Since the time dimension is
included, the SO(2)-valued (abelian) disclination field has to be lifted up to a SO(1,2)-valued
(non-abelian) disclination field4, ωµ

a, a = 0, 1, 2, with ω a
µ = eb

µω a
b , and the expression

ω d
a =

1
2

εbcd
(

eµa∂bEµ
c + eµb∂aEµ

c + eµc∂bEµ
a

)
, (10)

gives the relation between the disclination field and the metric (dreibein). All the informa-
tion about intrinsic curvature does not change. For instance, the Riemann curvature tensor,
Rλ

µνρ, has only one independent component, proportional to K, just like in (8) (see [13]).
With all of the above in mind, the hypothesis is that, when only curvature is important,

the long wavelength/small energy electronic properties of graphene are well described
by the following action

A = i vF

∫
d3x
√

g Ψ̄γµ(∂µ + Ωµ)Ψ , (11)

where Ωµ ≡ ωµ
a Ja, and Ja are the generators of SO(1,2), the local Lorentz transformations

in this lower-dimensional setting. Notice that Ja can never take into account the mixing
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of the ψ± because they are of the form Ja =

(
ja
+ 0
0 ja

−

)
, whereas what is necessary are

generators of the form Ka =

(
0 ka

+

ka
− 0

)
. This point was discussed at length in [28],

within the Witten approach [51]. In that approach, the most general gauge field that takes
into account curvature (intrinsic and extrinsic) and torsion has the following structure
Aµ = Ωµ + Kµ, where Kµ ≡ ea

µKa, hence a Poincaré (ISO(2, 1)) or (A)dS type of gauge the-
ory, depending on the role played in here by the cosmological constant (on this see [15,16],
and the review [17]). The matter, though, might be faced by taking an alternative view, for
which the gauge fields are internal rather than spatiotemporal. In this case, a link with the
supersymmetry (SUSY) introduced in [52] (that is a SUSY without superpartners, often
referred to as unconventional SUSY (USUSY)) can be established, as is shown in [28] and
in [53–55], as is briefly discussed in Section 2.4.2.

Let us clarify here an important point. Within this scenario, a nontrivial g00 in (9),
and hence a clean nontrivial general relativistic effect (recall that g00 ∼ Vgrav) can only
happen if specific symmetries and set-ups map the lab system into the wanted one. A lot of
work went into it, e.g., [15,16], and went as far as producing measurable predictions of a
Hawking/Unruh effect, for certain specific shapes. Let us recall here the main ideas behind
this approach, which we may call the “Weyl symmetry approach” [17].

2.3. The Importance of Weyl Symmetry

First of all, one notices that the action (11) enjoys local Weyl symmetry

gµν → e2σ(x)gµν and Ψ→ e−σ(x)Ψ , (12)

that is an enormous symmetry among fields/spacetimes [56]. As explained in [13,14], to
make the most of the Weyl symmetry of (11), we better focus on conformally flat metrics.
The simplest metric to obtain in a laboratory is of the kind (9). For this metric, the Ricci
tensor is Rµ

ν = diag(0,K,K). This gives as the only nonzero components of the Cotton
tensor, Cµν =

(
εµσρ∇σRρ

ν + µ↔ ν
)
, the result C0x = −∂yK = Cx0 and C0y = ∂xK = Cy0.

Since conformal flatness in (2 + 1) dimensions amounts to Cµν = 0, this shows that all
surfaces of constant K give rise in (9) to conformally flat (2 + 1)-dimensional spacetimes.
This points the light-spot to surfaces of constant Gaussian curvature.

The result Cµν = 0 is intrinsic (it is a tensorial equation, true in any frame), but
to exploit Weyl symmetry to extract non-perturbative exact results, we need to find the
coordinate frame, say Qµ ≡ (T, X, Y), where

ggraphene
µν (Q) = φ2(Q)gflat

µν (Q) . (13)

Besides the technical problem of finding these coordinates, the issue to solve is the
physical meaning of the coordinates Qµ, and their practical feasibility. See [17,57].

Tightly related to the previous point is the conformal factor that makes the model
globally predictive, over the whole surface/spacetime. The simplest possible solution would
be a single-valued, and time independent φ(q), already in the original coordinates frame,
qµ ≡ (t, u, v), where t is the laboratory time, and, for example, u, v are the meridian and
parallel coordinates of the surface.

Here, we are dealing with a spacetime that is embedded into the flat (3 + 1)-dimensional
Minkowski. Although, as said, the focus is on intrinsic curvature effects, just like in a general
relativistic context, issues related to the embedding, even just for the spatial part, are important.
For instance, when the surface has negative curvature, one needs to move from the abstract
objects of non-Euclidean geometry, to objects measurable in a Euclidean real laboratory. This
involves the last point above about global predictability, and, in the case of negative curvature,
necessarily leads to singular boundaries for the surfaces, as proved in a theorem by Hilbert,
see, for example, [17,58]. Even the latter fact is, once more, a coordinates effect, due to our
insisting in embedding a negative curvature surface in R3, and clarifies the hybrid nature of
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these emergent relativistic settings. The quantum vacuum of the field that properly takes into
account the measurements processes, as for any QFT on a curved spacetime, was identified,
including how the graphene hybrid situation can realize that [15,16]. As well known, this is
crucial in QFT, in general, and on curved space, in particular.

The above leads us to propose a variety of set-ups, the most promising being the one
obtained by shaping graphene as a Beltrami pseudosphere [15–17], a configuration that
can be put into contact with three key spacetimes with horizon: the Rindler, the de Sitter
and the Bañados–Teitelboim–Zanelli (BTZ) BH [59]. The predicted impact on measurable
quantities is reported in the first papers, and then explored in the subsequent efforts of
computer-based simulations.

2.4. Ramifications

Many other high energy scenarios can be reached with graphene and related systems
that go under the name of Dirac materials (DMs) [31]. Here, we list some such directions.

2.4.1. Generalized Uncertainty Principles on DMs

In Ref. [45] (see also [46]), the realization in DMs of specific generalized uncertainty
principles (GUPs) associated with the existence of a fundamental length scale was stud-
ied. The scenarios that one wants to reproduce there is that for which the commutation
relations are modified by quantum gravity effects to be (see, for example, [60–69] and
references therein)

[xi, pj] = i h̄
(

δij − A
(
|~p|δij +

pi pj

|~p|

)
+ A2

(
|~p|2δij + 3pi pj

))
, (14)

where A = Ã `P/h̄, with Ã a phenomenological dimensionless parameter and `P ∼ 10−35 m
the Planck length.

In Ref. [45], it is shown that a generalized Dirac structure survives beyond the linear
regime of the low-energy dispersion relations. Additionally, a GUP of the kind compatible
with (14) related to QG scenarios with a fundamental minimal length (there, the graphene
lattice spacing) and Lorentz violation (there, the particle/hole asymmetry, the trigonal
warping, etc.) is naturally obtained. It is then shown that the corresponding emergent
field theory is a table-top realization of such scenarios by explicitly computing the third-
order Hamiltonian and giving the general recipe for any order. Remarkably, these results
imply that going beyond the low-energy approximation does not spoil the well-known
correspondence with analog massless quantum electrodynamics phenomena (as usually
believed). Instead, it is a way to obtain the experimental signatures of quantum-gravity-like
corrections to such phenomena.

In Ref. [46], the authors investigated the structure of the gravity-induced GUP in
(2 + 1)-dimensions. They showed that the event horizon of the M 6= 0 BTZ micro-black-
hole furnishes the most consistent limiting “gravitational radius” Rg (that is, the fundamen-
tal minimal length induced by gravitational effects). A suitable formula for the GUP and
estimate the corrections induced by the latter on the Hawking temperature and Bekenstein
entropy could be obtained. As for the role of graphene, it is shown that the extremal M = 0
case, and its natural unit of length introduced by the cosmological constant, ` = 1/

√
−Λ,

is a possible alternative to Rg, and DMs when shaped as hyperbolic pseudospheres rep-
resent condensed matter analog realizations of this scenario with ` = `DM. Due to the
peculiarities of three-dimensional gravity [70], this configuration can still be regarded
as a BH, even though M = 0; on this, see, for example, [71–73].

More work in this QG phenomenology direction is forthcoming [49]. There, it is
found that even more GUPs are at work at different energy scales, and a link is established
between the abstract coordinates satisfying the GUPs and the coordinates one measures in
the lab.
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With this in mind, one sees that our scales here are much more within reach than
those of (14). Indeed, `P needs to be traded for the lattice spacing `, that, for example, for
graphene is `graphene ∼ 1.4× 10−10 m. Therefore, we have much more hope to see in DMs
the effects of the modifications to [xi, pj] = i h̄ δij compared with the direct effects of O(`P).

2.4.2. Grain Boundaries on DMs and Two Scenarios: Witten 3D Gravity, and Ususy

In Ref. [28], two different high-energy-theory correspondences on DMs associated
with grain boundaries (GBs) are proposed. We recall here that a GB can be realized as a line
of disclinations of opposite curvature, for instance, pentagons and heptagons, arranged
so that two regions (grains) of the membrane match. These grains have different relative
orientations, given by the so-called misorientation angle θ, which characterizes the GB
defect. Each side of the GB corresponds to one of the Dirac points (and the other is related
by a parity transformation, see Appendix B of [28] for details) in the continuous π electron
description. Therefore, the continuous limit description of the π electrons living in a
honeycomb with GB needs the two inequivalent Dirac points. Even more, as the θ angle
is related to a non-zero Burgers vector ~b through the Frank formula, and a non-zero ~b
implies non-zero torsion in the continuous limit5, such a description should take into
account torsion.

The first correspondence points to a (3 + 1)-dimensional theory, with spatiotem-
poral gauge group SO(3, 1), with nonzero torsion, locally isomorphic to the Lorentz
group in (3 + 1) dimensions, or the de Sitter group in (2 + 1) dimensions, in the spirit of
(2 + 1)-dimensional gravity à la Witten [51]. The other correspondence treats the two Dirac
fields as an internal symmetry doublet, and it is linked there with USUSY [52] with SU(2)
internal symmetry [53]. One of the properties of USUSY is the absence of gravitini, although
it includes gravity and supersymmetry. Even if in (2 + 1) dimensions it is constructed
from a Chern–Simons connection containing fermion fields, the only propagating local
degrees of freedom are the fermions [75]. Notice that in USUSY, the torsion of geometric
backgrounds appears naturally, and its fully antisymmetric part is coupled with fermions.

Those results pave the way for the inclusion of GB in the emergent field theory picture
associated with these materials, whereas disclinations and dislocations have already been
well explored.

2.4.3. Particle–Hole Pairs in Graphene to Spot Spatiotemporal Torsion

In Ref. [44], assuming that dislocations could be meaningfully described by tor-
sion, a scenario is proposed based on the role of time in the low-energy regime of two-
dimensional DMs, for which coupling of the fully antisymmetric component of the torsion
with the emergent spinor is not necessarily zero. That approach is based on the realization
of an exotic time loop, that could be seen as oscillating particle–hole pairs. Although that
is a theoretical paper, the first steps were moved toward testing the laboratory realization
of these scenarios by envisaging Gedankenexperiments on the interplay between an exter-
nal electromagnetic field (to excite the particle–hole pair and realize the time loops) and
a suitable distribution of dislocations described as torsion (responsible for the measurable
holonomy in the time loop, hence a current). The general analysis establishes that we
need to move to a nonlinear response regime. Then the authors conclude by pointing
to recent results from the interaction of laser–graphene that could be used to look for
manifestations of the torsion-induced holonomy of the time loop, e.g., as specific patterns
of suppression/generation of higher harmonics. As said before, USUSY takes into account
torsion and couples its fully antisymmetric component with fermions in a very natural way.
Therefore, it could play a significant role also in this exotic time loop [76].

2.4.4. Vortex Solutions of Liouville Equation and Quasi-Spherical Surfaces

In Ref. [57], the authors identified the two-dimensional surfaces corresponding to
specific solutions of the Liouville equation of importance for mathematical physics, the
non-topological Chern–Simons (or Jackiw–Pi [77,78]) vortex solutions, characterized by
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an integer [79] N ≥ 1. Such surfaces, called S2(N), have positive constant Gaussian
curvature, K, but are spheres only when N = 1. They have edges and, for any fixed K, have
a maximal radius c that is found there to be c = N/

√
K. If such surfaces are constructed

in a laboratory using DMs, these findings could be of interest to realize table-top Dirac
massless excitations on nontrivial backgrounds. Then the types of three-dimensional
spacetimes obtained as the product S2(N)×R are also briefly discussed.

2.5. Realization in the Labs

Besides the theoretical work just outlined, one should always aim at the actual real-
ization of the necessary structures in real laboratories. See, for example, the work [58],
where Lobachevsky geometry was realized via simulations by producing a carbon-based
mechanically stable molecular structure arranged in the shape of a Beltrami pseudosphere. It
was found there that this structure (i) corresponds to a non-Euclidean crystallographic group,
namely a loxodromic subgroup of SL(2,Z), and (ii) has an unavoidable singular boundary
that is fully taken into account. That approach, substantiated by extensive numerical sim-
ulations of Beltrami pseudospheres of different sizes, might be applied to other surfaces of
constant negative Gaussian curvature, and points to a general procedure to generate them.
Such results pave the way for future experiments. More work is currently undergoing.

3. Graphene-Inspired Quantum Gravity: The Quasiparticle Picture

If the entropy of any physical system of volume V, including the entropy associated to
space itself, is never bigger than the entropy of the BH whose event horizon coincides with
the boundary of V [3]

S ≤ SBH , (15)

this means that the associated Hilbert space, H, has finite dimension, dim(H) ∼ eSBH .
This simple consideration poses serious questions.

In fact, at our energy scales, the world is well described by fields (matter) and the space
they live in. Quantum fields, as we know them, act on infinite-dimensional Hilbert spaces,
to which one should add the degrees of freedom surely carried by (the quanta of) space
itself. How can then be that the ultimate Hilbert space, which must include all degrees
of freedom, is not only separable, like for a single harmonic oscillator, but is actually
finite-dimensional?

This logic points to the existence of something more fundamental, making both matter
and space. Hence, the elementary particles of the standard model (leptons, quarks, etc.)
would be, in fact, quantum quasi-particles, whose physical properties (spin, mass, etc.) are
the effect of the interaction with a lattice whose emergent picture is, in turn, (classical) space.
Inspired by Feynman [1] (see the Introduction here) these objects were called Xons [2]. To
access the Xons, one needs resolutions of the order of the Planck length, which might not
only be technically unfeasible, but actually impossible; see, for example, [80].

In Ref. [6], and later in [40], general arguments are provided regarding the connection
between our low-energy quantum-matter-on-classical-space description and an hypotheti-
cal fundamental theory of the Xons. The reshuffling of the fundamental degrees of freedom
during the unitary evolution then leads to an entanglement between space and matter. The
consequences of such a scenario are considered in the context of BH evaporation (see, for
example, [81–83]) and the related information loss: a simple toy model is provided in which
an average loss of information is obtained as a consequence of the entanglement between
matter and space. Pivotal for the previous study is the work of [84], where the Hawking–
Unruh phenomenon is studied within an entropy–operator approach, à la thermo-field
dynamics (TFD) [85,86] that discloses the thermal properties of BHs.

3.1. The Universal Quasiparticle Picture

Emergent, nonequivalent descriptions of the same underlying dynamics are ubiquitous
in QFT [87], as, in general, the vacuum has a nontrivial structure with nonequivalent6

“phases” [86]. That is, for a given basic dynamics (governed by an Hamiltonian or a
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Lagrangian), one should expect several different Hilbert spaces, representing different
“phases” of the system with distinct physical properties. Distinct excitations play the role of
the elementary excitations for the given “phase”, but their general character is that of the
quasiparticles of condensed matter [85,86].

What it is added here to that QFT picture is the following:

• The degrees of freedom are finite, hence fields are necessarily emergent;
• Spacetime is also emergent.

Taking this view, the continuum of fields and space is then only the result of an approx-
imation, of a limiting process. In general, there must be (many) microscopic configurations
of the Xons giving rise to the same emergent space but to different/non-equivalent fields.

With this in mind (for details, see [6]), the generic state |ψ〉 ∈ H can be written as

|ψ〉 =
NT⊕
i=1

pi

∑
I=1

qi−1

∑
n=0

c(i)In |Ii〉 ⊗ |ni〉, (16)

where the vectors |Ii〉 and |ni〉 form a basis of Hpi
G and H

qi
F , that are the Hilbert space of the

“spatial degrees of freedom” (geometry) of dimension pi and of the Hilbert space of the
“matter degrees of freedom” (fields) of dimension qi, respectively, and c(i)In are numerical
coefficients. Notice that NT is the number of specific rearrangements (topologies) of the
degrees of freedom.

By denoting with P(i) : H 7→ T(i) a projector onto T(i), a subspace with a given
“topology”, the associated density matrix, representing the state of the field, is

ρ(i) = Tr
H

pi
G
|ψ〉i〈ψ|i, (17)

where |ψ〉i ∼ P(i)|ψ〉, and we trace away the degrees of freedom of the gravitational field.
Correspondingly, the entropy of entanglement between matter and space, for a given
topology of the lattice, is the usual expression7

S(i) = −Tr
H

qi
F

ρ(i) ln ρ(i) . (18)

This picture needs to be compared to the standard QFT picture, recalled earlier, of the
non-equivalent field configurations, or “phases” à la TFD [85,86] where the mirror degrees
of freedom, that characterize TFD (often called there the tilde degrees of freedom), model
the degrees of freedom of the geometry. These degrees of freedom are then traced away,
leaving us with quantities all referring solely to matter (fields). Indeed, the vacuum of TFD
can be written as [85]

|0(θ)〉 = ∑
n

√
wn(θ)|n, ñ〉, (19)

where θ is a physical parameter labeling the different “‘phases”, wn are probabilities
such that ∑n wn = 1, and the states |n, ñ〉 (infinite in number) are the components of the
condensate, each made of pairs of n quanta and their n mirror counterparts (ñ). Therefore,
such a vacuum is clearly an entangled state. Notice that [85]

〈0(θ)|0(θ′)〉 → 0, (20)

in the field limit, which formalizes the inequivalence we discussed. Notice also that, if one
fixes θ, there is no unitary evolution to disentangle the vacuum, as the interaction with the
environment and non-unitarity are the basis for the generation and the stability of such an
entanglement [84].
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The expected value of field’s observables, O, are obtained by tracing away the mirror
modes, ñ. In the TFD formalism, this corresponds to taking the vacuum expectation value
over the vacuum (19)

〈O〉 ≡ 〈0(θ)|O|0(θ)〉 = ∑
n

wn(θ) 〈n|O|n〉 . (21)

In particular, there is always an entanglement entropy associated to any field, given by,
for example,

〈S〉 = ∑
k
[nk ln nk + (1− nk) ln(1− nk)] . (22)

where nk = 〈Nk〉 is the expected value of the number operator for the given (fermionic, in
this example) mode k. The analogy of (22) with (18) is stronger, if we think that in TFD the
process of taking statistical averages through tracing is replaced, by construction [85], by
taking vacuum expectation values (vevs) over the vacuum (19). Furthermore, as is well
known, in the basis where the density matrix in the entropy (18) is diagonal, the entropy
can be written as

〈S〉 = −∑
n

wn(θ) ln wn(θ) , (23)

as shown, for example, in [86].
In this comparison, the mirror (tilde) image of the field mimics the effects of the

entanglement with space where the field lives, even when the space is flat. This happens
on a level that is both emergent and effective. This would have far reaching consequences,
surely worth a serious exploration. For instance, the entanglement entropy associated
to any field, would never be zero. Furthermore, this would explain why the attempt to
quantize gravity as we quantize the matter fields, cannot make much sense.

To compare TFD entropies and the entropies obtained in the quasi-particle picture,
a different point of view is taken in [40]. There, the authors focus on BH evaporation as
seen from the point of view of the fundamental Xons, and were able to establish formulae
and structures indeed similar to those of TFD. The main difference with TFD is that, at the
level of the discrete structures related to Xons, the quantum field theoretical considerations
illustrated above are only an approximation. In Section 3.3, we recall those results. Before
doing so, let us focus on BH evaporation as seen from the point of view of the emergent
quantum fields and emergent space.

3.2. Effects of the Quasiparticle Picture on Black Hole Evaporation

When applied to BH evaporation, the immediate consequence of the above is that it is
impossible after the evaporation to retrieve the very same “phase” we had before the BH
was formed. Hence, the information associated to the quantum fields before the formation
of the BH is, in general, lost after the BH has evaporated, due to the entanglement between
matter and space.

Even when the emergent spaces, before the formation and after the evaporation, are
the same (say they are both Minkowski spacetimes), the emergent fields belong, in general,
to non-equivalent Hilbert spaces. Therefore, even assuming unitary evolution at the X
level, the initial and final Hilbert spaces of fields cannot be the same. There is always a relic
matter–space entanglement entropy.

Looking at Equation (16), it is clear that the Hilbert space H can be written as

H =
NT⊕
i=1

H
pi
G ⊗H

qi
F (24)

where we can now introduce measures, RFs, RGs, of the “degeneracies”, pi = NG Ri
G,

with the NG classical geometries available (they represent the BH with mass M(a) = a ε,
where a = 0, 1, . . . NG − 1), and each classical geometry can be realized by Ri

G microstates.
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On the other hand, qi = NF Ri
F, that is, each emergent field state can be realized by Ri

F
indistinguishable microstates.

The analytic computations of the entanglement entropy demand a heavy toll, so in [6],
the authors proceeded numerically. The case we present here is for the following choice
of NG = 30, NT = 2, and Ri

F = 1, for each topology. The plots in Figure 3 show the
entanglement entropies, corresponding to the three sets of values given in the box, as
functions of the discrete evolution parameter k.

M0 0

0

S1

S2

S3
R1

G = 1, R2
G = 5

R1
G = 2, R2

G = 10

R1
G = 4, R2

G = 20

Figure 3. Entropy of the entanglement between matter and space, as a function of the decreasing
mass of the evaporating BH. The initial and final points of this curve are in exact correspondence
with the initial and final points of the Page curve. The plot here is for two topologies and three cases.
The more microscopic realizations of macroscopic classical geometries are allowed, the higher the
residual entropies. Here, S1 = 0.77, S2 = 1.43, S3 = 2.06. Figure taken from [6].

As can be seen from the figure, the residual entropies are never zero, and are given by

S1 = 0.77, S2 = 1.43, S3 = 2.06 , (25)

corresponding to the set of values in the box going from the top to the bottom, respectively.
The more microscopic realizations of the same macroscopic geometry (i.e., the bigger the
degeneracy RG), the higher the relic entanglement entropy. This is as it must be.

The fact that, at the end of the evaporation, the entanglement entropy remains finite
signals a dramatic departure from the information conservation scenario of the famous Page
curve [82], presented here in Figure 4. There, the total Hilbert space has the dimension mn,
and consists of two subsystems: the BH subsystem, of dimension n ∼ eA/4, where A is
the area of the event horizon, and the radiation subsystem, of dimension m ∼ esth , where
sth is the thermodynamic radiation entropy. In Page’s picture, there is no explicit mention
of the degrees of freedom of space, and the evolution is taken to be unitary. Thus, in that
picture, one sees that, when the BH is formed, there is no Hawking radiation outside; hence,
m = 1 and n = dimH. The BH-radiation entanglement entropy, Sm,n is trivially zero. As
the BH evaporates, m increases, while n decreases, keeping m n constant. Since the emitted
photons are entangled with the particles under the horizon, Sm,n increases, but only up
to, approximately, half of the evaporation process. There, the information stored below
the horizon starts to leak from the BH, so that Sm,n decreases until full evaporation; hence
n = 1 and m = dimH and Sm,n returns to zero.



Universe 2022, 8, 455 14 of 23

0 lnmmax

0

Smax
Sm,n

Im,n

Figure 4. Page curve, representing the entanglement between matter modes inside the BH and matter
modes of the radiation leaving the BH (in this picture there is no explicit reference to the degrees
of freedom related to space) vs. the log of the dimension m of the Hilbert space of the radiation,
obtained in [81,82]. The point ln m = 0 corresponds to the initial mass of the BH, M = M0. Indeed,
m = 1 means that only the vacuum state populates the radiation subsystem of the Hilbert space, at
the start of the evaporation. On the other hand, mmax corresponds a fully evaporated BH, M = 0.
Figure taken from [6].

From the point of view of the quasiparticle picture, we may say that, even if one takes
a conservative view for which the Xons evolve unitarily, nonunitarity is unavoidable:

• The unitary evolution may as well be only formally possible, but physically impossible
to measure, for some form of a generalized uncertainty forbidding the necessary Planck
scale localization/resolution (see, for example, [80]).

• The emergent description of the evolution is that of the combined system gravity +
matter, and hence there is inevitably information loss, due to the relic entanglement of
the matter field with the space.

• This description should apply also to standard nonunitary features of QFT, and we
evoke here the possibility that the tilde degrees of freedom of TFD could be interpreted
as “how the emergent fields see the degrees of freedom of space with which they
are entangled”.

Notice that this description does allow for an arbitrary number of different fields, and
hence naturally includes the possibility of yet unknown (“dark”) kinds of matter.

3.3. BH Evaporation as Seen from the Xons and the Unification of the Entropies

In Ref. [40], the authors describe BH evaporation from the point of view of the funda-
mental constituents, assuming they are fermions, so that only one excitation per quantum
level is permitted. Because the Xons must be responsible for the formation of both matter
and space, no geometric notions can be used. For example, it is assumed that only a
finite number N of quantum states/slots are available to the system. This last condition
is a non-geometric way of requiring that the system is localized in space. Moreover, it is
not meaningful to refer to the interior and the exterior of a BH. Instead, the authors there
distinguish between free and interacting Xons, respectively: BH evaporation is the process
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in which the number of free Xons decreases, N → (N − 1) → (N − 2) → · · · , while
interacting Xons form matter (quasi-particles) and space (geometry), i.e., the environment.

The Hilbert space of physical states H is the subspace of a larger kinematical Hilbert
space K ≡ HI ⊗ HII , and it has dimension Σ ≡ dim H = 2N . Here I and II refer to BH
and environment, respectively, in the sense explained above.

The state of the system |Ψ(σ)〉 ∈ H is [40]

|Ψ(σ)〉 =
N

∏
i=1

∑
ni=0,1

Ci(σ)
(

a†
i

)ni
(

b†
i

)1−ni |0〉I ⊗ |0〉II , (26)

where a and b are environment and BH ladder operators, respectively, and

Ci(σ) = (sin σ)ni (cos σ)1−ni . (27)

σ is an interpolating parameter going from 0 to π/2. We can also define TFD-like en-
tropy operators

SI(σ) = −∑N
n=1

(
a†

n an ln sin2 σ + an a†
n ln cos2 σ

)
. (28)

SII(σ) = −∑N
n=1

(
b†

n bn ln cos2 σ + bn b†
n ln sin2 σ

)
. (29)

so that their averages on |Ψ(σ)〉 give the von-Neumann entropy of the two subsystems:

SI(σ) = SII(σ) = −N
(

sin2 σ ln sin2 σ + cos2 σ ln cos2 σ
)

. (30)

Such entropy quantifies the entanglement between the environment and the BH.
As for the original Page result, the entropy (30) shows that the BH evaporation at such
fundamental level is a unitary process, with S(0) = S(π/2) = 0 and a maximum value
Smax = N ln 2 = ln Σ, so that Σ = eSmax . Smax quantifies the maximum information
necessary in order to describe the BH and should be identified with the BH entropy before
the evaporation. When the BH evaporates the mean number NII(σ) = N cos2 σ of free
Xons decreases, while the mean number of interacting Xons NI(σ) = N sin2 σ increases.
Then, BH and environment entropy should be

SBH = N ln 2 cos2 σ , Senv = N ln 2 sin2 σ . (31)

Moreover, σ finds a natural explanation as a discrete parameter in the interval [0, π/2],
essentially counting the diminishing number of free Xons.

The entanglement, BH and environment entropy satisfy SI ≤ SBH + Senv = Smax:
the entropy of both BH and environment is bounded from above, in accordance with the
Bekenstein bound. In Figure 5, these three entropies are plotted as functions of the discrete
parameter σ.

For a full identification of Smax with the entropy SBH of the initial BH, one would have
(for a non-rotating, uncharged black hole)

N =
4 π M2

0
l2
P ln 2

, (32)

where M0 is the initial BH mass. Finally, identifying the N quantum levels with the quanta
of area, in the spirit of Refs. [89–92], one obtains

A = 4 N l2
P ln 2 , (33)

for the BH horizon area. Notice that the value of α ≡ A/(Nl2
P) could be inferred from

measurement on BH quasinormal modes [93].
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Figure 5. Plot of SBH (black), Senv (green) and SI (red), as function of σ, for N = 1000. Figure taken
from [40].

3.4. Topological Phases and the Emergence of Space from Evaporating BHs

How is the existence of different phases of matter compatible with the finiteness of
degrees of freedom? Such an issue is closely related with the evasion of the Stone–von
Neumann theorem [94–96]. In fact, it is known that in quantum mechanics, all continuous,
irreducible representations of Weyl–Heisenberg (for bosons) or Clifford (for fermions)
algebra, are unitarily equivalent. However, as it was previously noted, such a theorem
does not apply to QFT, where systems with an infinite number of degrees of freedom
are studied [97–100]. The existence of unitarily inequivalent representations of canonical
(anti)commutation relations permits to describe transitions among disjoint phases of the
same system, in the QFT framework.

However, it is known that it is also possible to evade the Stone–von Neumann theorem
by relaxing the continuity hypothesis [101]. This has been shown in quantum mechanical
systems with a multiple-connected configuration space [102–104] or in polymer quantum
mechanics [105–107].

In Ref. [108], the authors studied an example where both thermodynamical and topologi-
cal disjoint phases are realized: a vortex solution in a QFT with a spontaneously broken
U(1) symmetry was analyzed by means of the boson transformation method [109–111]. Such
an idea, firstly developed by H. Umezawa and collaborators, permits to describe classical
extended objects emerging from an underlying QFT, by means of a canonical transformation
performed on bosonic quasi-particle fields, which induces an inhomogeneous condensate
on vacuum. Then, the authors showed that spontaneous symmetry breaking (SSB) is indeed
possible, even when the volume of the system stays finite [108]. This represents a first step
to understand the emergence of different phases in the Xons model.

The above method also permits to shed some light on the mechanism of the forma-
tion of space and quasi-particles from an underlying Xons dynamics. In Ref. [112], the
authors face the delicate and fascinating issue of how space itself might be viewed as a
classical extended object stemming from the SSB of underlying quantum dynamics, with
the associated Goldstone bosons. In that case, discrete Xons Ψj are approximated by a field
Ψ(x), and the space structure and geometric tensors (metric, curvature, torsion) emerge as
a result of the condensation of Goldstone bosons, while quasi-particles are described by
fields on a classical (curved) space.

4. Concluding Remarks and Future Perspectives of the Graphene Analog Enterprise

QG and other fundamental scenarios can be tested also with analog experiments. In
fact, the exciting and rapidly evolving field of analog physics is facing a new era. The
interest is shifting from the reproduction of the kinematical aspects of the Hawking/Unruh
phenomenon that has reached a climax of precision and accuracy, to the realization of
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some form of BH (thermo)dynamics. The latter is a challenging problem, but given its
importance, even a partial solution is surely worth the effort.

The primary goals of the research in this field should then be to search for realizations
of such dynamical aspects, and to learn from the above on QG. Here we have described the
results found following the road of graphene. Let us now collect the many directions we
see departing from there.

4.1. Hunting for Analog BH (Thermo)Dynamics

A conservative approach to BH evaporation [81,82] assumes that the evolution of the
collapsing matter to produce a BH and its subsequent evaporation is a unitary process. This
is what we would like to test in our analog systems. Indeed, current ongoing work [112]
primarily focuses on the emergence of space in a QG scenario, as described in Section 3.4;
henceforth, from there we are on the hunt for a BH dynamics on graphene and other DMs.
In fact, the results of that general work will help us construct an experimentally sound
geometry/gravity theory that describes the dynamics of the elastic DM membrane and
explore the relations to existing gravity models. Having an action, we would be able to
compute the Wald entropy in the usual way [113].

With this in mind, we are studying the realization of BHs on DM, based on the
discoveries we summarized in Section 2.4. One important case under scrutiny is that
of the BTZ BH realized using hyperbolic pseudospheres [46]. We shall operate through
theoretical investigations but will interact more and more with the experimentalists to test
the formulae obtained in [15,16] (or variants, obtained by refining earlier computations in
the light of the new results; see, for example, [28]), and we shall produce more predictions
of this kind for different samples’ morphologies and various graphene observables.

In the “time-wise” approach, the focus will be on reproducing BH (and other non-
trivial) emergent metrics, by suitably engineering the interaction of the electromagnetic
field with the appropriate DM. The basis for the study are two kinds of results obtained
in earlier investigations and discussed here. On the one hand is the emergence of the
Hawking/Unruh effect for specific spatial geometries. On the other hand is the great
level of accuracy reached with laser pulses to control spatial and temporal resolution for
graphene’s electrons dispersion relation [114]. The latter results inspired Ref. [44], where
important details are obtained that will pave the way to a full understanding of how
to engineer suitable temporal components of the emergent metric, and how to control
their dynamics. The two approaches are, of course, tightly related, as one goal will be
to rephrase the spatial analysis of previous work into a temporal language, namely by
identifying the appropriate transformations among spatial and temporal nontriviality of
the emergent metric, and by envisaging the physical setups that could realize those metrics
in a laboratory, for instance in the laser–DM interaction.

On the more proper QG side, we expect that lattice effects will play a role, even within
the continuous approximation regime [27], but surely at the “very high energy” regimes,
where the linear approximation no longer works, these aspects become dominant. In the
latter regimes, the (pseudo-)relativistic structure of the Dirac field will be deformed, and
the discrete nature of the space(time) becomes so important that the continuum description,
in terms of smooth metrics, will no longer be valid. This will become an important point to
enforce the analogy with QG scenarios of the discrete spacetime. Indeed, the results in [45],
where the natural analog of the Planck length is the lattice spacing ` of the material, point
in that direction.

4.2. BH Entropy, the Information Paradox and the Xons Model

Having in our hands a suitable emergent gravitational dynamics, along the lines of
what is explained in Section 3.4, it surely will be a great advancement and a necessary step
toward analog BH thermodynamics. Still it would not be enough, as a suitable and reliable
analog of a BH entropy is the key problem to be solved. In this respect, we have two roads
in mind, one being easier than the other: i) entanglement entropy of the Dirac fields, on the
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given dynamical emergent BH background; ii) computation of the Wald entropy through
standard classical calculations based on the experimentally sound geometry/gravity theory
that describes the dynamics of the elastic graphene membrane.

The first approach is easier in two respects. First, one does not need an action for the
geometry/gravity theory in point. Second, there are many results at our disposal on the
entanglement entropy, from the general ones on generic bipartite systems [115], to the spe-
cific ones on the BH thermodynamics [84,116,117]. With these in our hands, we can surely
attempt various things, and it will be exciting to see how certain issues of the theoretical
side are solved here in practice. Given the results on the granular regimes beyond the linear
theory [45,118] (see also [49]), we are also in the position to compute QG corrections to the
formula, and compare theoretical predictions on the QG side, as well as experiments on the
condensed matter side. The second approach is more difficult; nonetheless, we plan to also
move steps in that direction because of its more direct link with purely gravitational sce-
narios. An exciting perspective is that these two approaches are complementary. It will be
illuminating to compare the two, Bekenstein/Wald and entanglement.

To have these aspects under control, it is clearly necessary to face, within this approach,
the long-standing issue of the information loss. In [6], it was investigated the impact on the
Page curve of a picture born in analogy with condensed matter, named there the “quasi-
particle picture”. In this picture, more fundamental entities exist (we might call them Xons,
with Feynman), and they make particles and spacetime at once: hence, the (information
preserving) unitarity of the BH evaporation of the Page curve is not tenable. In [40], it was
shown how entanglement, Bekenstein and thermodynamic entropies all stem from the
same operator, whose structure is the one typical of Takahashi and Umezawa’s TFD [86].
We expect that the several interesting new insights gained from this work will substantially
help to reach the goals.

Finally, in [46], taking advantage of the peculiarities of the BTZ BH [59], the extremal
M = 0 case was identified as furnishing an alternative way for the emergence in DMs of a
maximal resolution/minimal length, given by the lattice length `, and related to the (nega-
tive) cosmological constant as ` = 1/

√
−Λ. Noticeably, a similar independent proposal

emerged in the discussion of the entanglement entropy of the BTZ; see [119]. There, the
AdS length is promoted to the typical length, below which spatial quantum correlation is
traced out. Clearly, this road has the potential to produce very interesting results.

4.3. Other Hep-Th Scenarios on DMs

Many other aspects that will contribute toward the main goal of testing QG scenarios
with DMs but that are important on their own right are in sight. Let us mention one.

The action of graphene can be recast [28] in a form very similar to the action of USUSY,
for an external non-abelian SU(2) gauge field and a fixed curved background [52]. Indeed,
if the geometric background is fixed and the non-abelian gauge field is external (there is no
dynamics for the phonons and gauge fields), then the only difference between such actions
is the coefficient in front of the torsion term. Interestingly enough, the vacuum sector is
defined by configurations that are locally Lorentz flat as is the case of BTZ BHs [120], and
SU(2) connections carrying nontrivial global charges [121].

4.4. HELIOS

Let us close by making the case for a laboratory where QG and other fundamental the-
ories of nature are tested with analogs. Bearing in mind what we discussed at length in this
review, and that these are the days of the AdS/CFT correspondence (see, for example, [122]),
relating gravity and matter, we believe that the times are mature for a dedicated laboratory,
entirely devoted to test fundamental theories by using analogs [123–125]. A laboratory built
with the same spirit of CERN will unify, systematize and organize those efforts, but will also
raise the status of the analog enterprise to the quest to reach beyond the known. The other
side of the story is that analogs are often important materials for technological applications,
like the case of graphene discussed in this review. Such a laboratory would then be an
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invaluable think-tank, where unconventional thinking would be routinely applied to create
new technology, and to solve fundamental problems. Within our research group in Prague,
we call this future facility HELIOS, for High Energy Lab for Indirect Observations.

Funding: This research was funded by Charles University Research Center (UNCE/SCI/013), by
Fondo Nacional de Desarrollo Científico y Tecnológico–Chile (Fondecyt Grant No. 3200725) and by
the Polish National Science Center grant 2018/31/D/ST2/02048.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We gladly thank Raffaele Agostino, Francisco Correa, Arundhati Dasgupta,
Gaston Giribet, Paco Guinea, Vit Jakubsky, Siddhartha Sen, Guillermo Silva, Maria Vozmediano
and Jorge Zanelli, for the many stimulating and informative discussions on the experimental and
theoretical physics of this “graphene analog enterprize”. L.S. acknowledges the kind hospitality of
the Institute of Particle and Nuclear Physics of Charles University.

Conflicts of Interest: The authors declare no conflict of interest.

Notes
1 Interestingly, there is a proposal called “atoms of spacetime matter” that could be closely related with this concept of Xons [38,39].
2 As the π electrons do not participate in the stronger covalent σ bonds, these electrons are not so attached to the carbon nuclei and

are freer to “hop” from an atom to a neighbor one.
3 Here our notations: µ, ν = 0, 1, . . . , n− 1 are Einstein indices, responding to diffeomorphisms, a, b = 0, 1, . . . , n− 1 are flat indices,

responding to local Lorentz transformations, while α, β are spin indices. The covariant derivative is

∇µψα = ∂µψα + Ωµ
β

α
ψβ ,

with
Ωµ

β
α
=

1
2

ωab
µ (Jab)

β
α ,

where (Jab)
β

α are the Lorentz generators in spinor space, and

ωµ
a
b = ea

λ(δ
λ
ν ∂µ + Γλ

µν)Eν
b ,

is the spin connection, whose relation to the Christoffel connection comes from the full metricity condition∇µea
ν = ∂µea

ν − Γλ
µνea

λ +

ωa
µ beb

ν = 0. We also introduced the Vielbein ea
µ (and its inverse Eµ

a ), satisfying ηabea
µeb

ν = gµν, ea
µEν

a = δν
µ, ea

µEµ
b = δa

b , where
ηab = diag(1,−1, . . . ). The Weyl dimension of the Dirac field ψ in n dimensions is dψ = (1− n)/2. Here n = 3, and we can move
one dimension up (embedding), or down (boundary). More notations can be found in [13].

4 Recall that in three dimensions ωµ ab = εabc ω c
µ .

5 Roughly speaking, torsion is the surface density of the Burgers vector~b. For technicalities, see [50,74].
6 Let us explain why we use the word phase in quotation marks. Given the general vacuum of a QFT, one can identify several vacua

that cannot be obtained one from the other through a smooth unitary transformation. Starting from each of these “sub vacua”,
and acting with the appropriate creation operators, one builds several (infinite) sectors, sometimes called super-selection sectors.
Not all of them correspond to a phase of the system, in the proper statistical mechanical/thermodynamical sense. On the other
hand, all such phases need be described by a super-selection sector or by a set of them. On this, see, for example, [88].

7 As it is impossible to distinguish the space corresponding to different topologies of the lattice, the expected value of the
entanglement between the fields and the geometrical degrees of freedom is 〈S〉 = ∑i p(i)S(i).
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