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Adam Gudyś1†*, Michał Wojciech Szcześniak2†*, Marek Sikora1,3 and Izabela Makałowska2

Abstract

Background: Machine learning techniques are known to be a powerful way of distinguishing microRNA hairpins
from pseudo hairpins and have been applied in a number of recognised miRNA search tools. However, many current
methods based on machine learning suffer from some drawbacks, including not addressing the class imbalance
problem properly. It may lead to overlearning the majority class and/or incorrect assessment of classification
performance. Moreover, those tools are effective for a narrow range of species, usually the model ones. This study aims
at improving performance of miRNA classification procedure, extending its usability and reducing computational time.

Results: We present HuntMi, a stand-alone machine learning miRNA classification tool. We developed a novel
method of dealing with the class imbalance problem called ROC-select, which is based on thresholding score
function produced by traditional classifiers. We also introduced new features to the data representation. Several
classification algorithms in combination with ROC-select were tested and random forest was selected for the best
balance between sensitivity and specificity. Reliable assessment of classification performance is guaranteed by using
large, strongly imbalanced, and taxon-specific datasets in 10-fold cross-validation procedure. As a result, HuntMi
achieves a considerably better performance than any other miRNA classification tool and can be applied in miRNA
search experiments in a wide range of species.

Conclusions: Our results indicate that HuntMi represents an effective and flexible tool for identification of new
microRNAs in animals, plants and viruses. ROC-select strategy proves to be superior to other methods of dealing with
class imbalance problem and can possibly be used in other machine learning classification tasks. The HuntMi software
as well as datasets used in the research are freely available at http://lemur.amu.edu.pl/share/HuntMi/.
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Background
MicroRNAs (miRNAs) are ∼21 bases long RNAs that
post-transcriptionally control multiple biological pro-
cesses, such as development, hematopoiesis, apoptosis
and cell proliferation [1]. Mature miRNAs are derived
from longer precursors called pre-miRNAs that fold into
hairpin structures containing one or more mature miR-
NAs in one or both arms [2]. Their biogenesis is highly
regulated at both transcriptional and post-transcriptional
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levels [3], and disregulation ofmiRNAs is linked to various
human diseases, including cancer [4].
Identification of miRNA is a challenging task that allows

us to better understand post-transcriptional regulation of
gene expression. In last ten years a number of experimen-
tal and computational approaches were proposed to deal
with the problem. However, experimental approaches,
including direct cloning and Northern blot, are usu-
ally able to detect only abundant miRNAs. MicroRNAs
that are expressed at very low levels or in a tissue- or
stage-specific manner, often remain undetected. These
problems are partially addressed by applying the deep-
sequencing techniques that nevertheless require extensive
computational analyses to distinguishmiRNAs from other
non-coding RNAs or products of RNA degradation [5].
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Computational approaches in miRNA search can
be homology-based, take advantage of machine learn-
ing methods, or use both of these. Homology-based
approaches rely on conservation of sequences, secondary
structures or miRNA target sites (e.g. RNAmicro [6],
MIRcheck [7]). As a result, these methods are not suitable
for detection of lineage- or species-specific miRNAs and
miRNAs that evolve rapidly. Moreover, they are strongly
limited by the current data and performance of available
computational methods, including alignment algorithms
[8]. Another problem is that there are as many as ∼11
million sequences that can fold into miRNA-like hair-
pins in the human genome [9], some of which originate
from functional, non-miRNA loci. It is therefore no sur-
prise that a large number of hairpins that are conserved
between species could be mistakenly classified as miR-
NAs. Nevertheless, homology search has been success-
fully applied in many miRNA gene predictions, in both
animals and plants [10,11].
In some approaches, e.g. PalGrade [12] or miRDeep

[5], experimental and computational procedures are com-
bined. However, as mentioned above, experimental meth-
ods can not easily detect low-expression or tissue-specific
miRNAs and/or they have to meet computational chal-
lenges, as in the case of deep sequencing technology.
miRDeep, for instance, aligns deep sequencing reads to
the genome and selects the regions that can form a hairpin
structure. Then, using a probabilistic model, the hair-
pins are scored based on the compatibility of the position
and frequency of sequenced reads with the secondary
structure of the pre-miRNA. This method achieves high
specificity at the cost of relatively low sensitivity.
Machine learning methods are amongst the most pop-

ular ways of miRNA identification nowadays. They share
the same overall strategy. First, the features of primary
sequence and secondary structure are extracted from
known miRNAs (positive set) and non-miRNA sequences
(negative set). Then, the features are used to construct
a model which serves to classify candidate sequences as
real pre-miRNAs or pseudo pre-miRNAs. There are sev-
eral machine learning methods that have been applied
in the field of miRNA identification. These include hid-
den Markov models (HMM) [13], random forest [14] and
naïve Bayes classifier [15]. Support vector machine, how-
ever, seems to be the most popular framework nowadays
and has been used in a number of well recognised tools.
For instance, Triplet-SVM [16] classifies real human pre-
miRNAs and pseudo pre-miRNAs using 32 structure- and
sequence-derived features that refer to the dot-bracket
representation of the secondary structure i.e. it consid-
ers the frequencies of triplets, such as "A(((" and "U.(.",
consisting of the secondary structure of three adjacent
nucleotides and the nucleotide in the middle. miPred
[8] classifies human pre-miRNAs from pseudo hairpins

represented by twenty nine folding features, using SVM-
based approach. The features were evaluated with the F
scores F1 and F2 on the class-conditional distributions
to assess their discriminative power. Strongly correlated
attributes were rejected. microPred [17] presents nine-
teen new features along with twenty nine taken from
miPred. After feature selection, twenty one attributes were
used to train the classifier. The improved feature selec-
tion approach and addressing the class imbalance problem
resulted in high sensitivity and specificity of the method.
However, the existing machine learning approaches suf-

fer from some drawbacks. First of all, they often make
structural assumptions concerning stem length, loop size
and numbers as well as a minimum free energy (MFE).
Secondly, most of existing miRNA classifiers work well
on data from model species and closely related ones; the
classifiers trained on human data best fit the miRNA
identification problem in human and other primates but
perform unsatisfactorily when applied to, for example,
invertebrates. Finally, the imbalance problem between the
positive and negative classes is usually not addressed
properly, while this is a crucial issue, as the number of
microRNAs throughout a genome is much lower than
the number of non-microRNAs (e.g. ∼1 400 miRNAs vs.
∼11 million pseudo hairpins in H. sapiens). The resulting
difference in misclassification costs of positive and neg-
ative classes requires special techniques of learning from
imbalanced data as well as a proper assessment metrics.
Moreover, in order to accurately judge classifier perfor-
mance in real-life applications, the problem of imbalance
should be reflected in the testing datasets.
In this study we addressed all these issues. We made

no preliminary assumptions about miRNA structure and
carefully took into account class imbalance problem. We
implemented a procedure of thresholding score func-
tion produced by traditional classifiers and called it
ROC-select. This strategy turned out to be superior to
other imbalance-suited techniques in miRNA classifica-
tion. From all classifiers for which ROC-select procedure
was applied we chose random forest as it yields the best
balance between sensitivity and specificity. Regarding the
data representation, we introduced seven new features
and show that they further improve the classification per-
formance. In the experiments we considered large and
strongly imbalanced up-to-date sets of positive and nega-
tive examples, paying much attention to the data quality.
The tests were performed using stratified 10-fold cross-
validation (CV) giving reliable estimates of classification
performance. Finally, we show that the method outper-
forms the existing miRNA classification tools, includ-
ing microPred, without compromising the computational
time.
Our miRNA classification method is freely available as

a framework called HuntMi. HuntMi comes with trained



Gudyś et al. BMC Bioinformatics 2013, 14:83 Page 3 of 10
http://www.biomedcentral.com/1471-2105/14/83

models for animals, plants, viruses and separately for H.
sapiens and A. thaliana. As a result, the tool can be used
in miRNA classification experiments in a wide range of
species. The user can use built-in models in the experi-
ments or train new models using custom datasets prior to
classification.

Methods
Datasets
In order to create positive sets, we retrieved all pre-
miRNAs from miRBase release 17 [18] and filtered out
the sequences lacking experimental confirmation. By
using evidence-supported miRNAs only, we minimize the
chance of introducing false positives into the set. The
sequences were divided into five groups: H. sapiens, A.
thaliana, animals, plants, and viruses.
Negative sets were extracted from genomes andmRNAs

of ten animal and seven plant species as well as twenty
nine viruses (Additional file 1: Table S1). Additional sets
were prepared for H. sapiens and A. thaliana. Start posi-
tions were randomly selected, whereas end positions
were calculated so that the sequence length distribu-
tion in the resulting negative dataset is the same as in
the corresponding positive one. With this approach, the
classifier achieves better performance when applied in
real-life experiments, where miRNA candidates tend to
have lengths similar to those of known miRNAs. Finally,
in order to remove known miRNAs together with simi-
lar sequences that possibly represent unknown homologs
of miRNAs, we ran BLASTN search against miR-
Base hairpins and filtered out sequences that produced
E-value of 10−2 or lower. 96.17% of negative sequences
prepared in this way possess structural features of real pre-
microRNAs, including the minimum free energy below
-0.05 (normalised to the sequence length) and number of
pairings in the stem above 0.15 (also normalised to the
length). At the same time these criteria are met by 97.61%
of hairpins stored in miRBase.
Positive and negative sequences from the analysed

species were gathered to form complete datasets that cor-
respond to miRNA classification problem in the taxa.
They will be referred to as human, arabidopsis, ani-
mal, plant and virus (Table 1). In addition, we used the
dataset from microPred. It contains 691 non-redundant
human pre-miRNAs from miRBase release 12, 754 non-
miRNA ncRNA, 8 494 pseudo hairpins and is denoted
asmicroPred.

Features
The twenty one features selected by [17] were used
as a base representation in the experiments. Thus,
we employed microPred scripts for extracting neces-
sary attributes. In the case of microPred dataset we
took precalculated features from webpage to make our

Table 1 Datasets characteristics

Name #Positives #Negatives Imbalance

human 1 406 81 228 57.8

arabidopsis 231 28 359 122.8

animal 7 053 218 154 30.9

plant 2 172 114 929 52.9

virus 237 839 3.5

microPred 691 9 248 13.4

Characteristics of biological datasets used in the experiments. Imbalance is
defined as a ratio of #Negatives to #Positives. We limited dataset imbalance to
several tens for practical reasons even though proportions of miRNAs to
non-miRNAs in genomes are more extreme. In the case of virus dataset the
imbalance is exceptionally low as we wanted to know howmethods perform on
moderately imbalanced problems. In addition, it is difficult to create
representative dataset for viruses as their genomes differ significantly in sizes
and most of them do not contain miRNAs.

results comparable with the existing research (some of
the features are calculated using randomly generated
sequences).
Beside twenty one microPred features, we calculated

seven additional sequence- and structure-related
attributes. First, we considered the frequencies of sec-
ondary structure triplets composed of three adjacent
nucleotides and the middle nucleotide. We chose four
of them that were shown to have the highest informa-
tion gain [19]: "A(((", "U(((", "G(((", and "C(((", referred to
as tri_A, tri_U, tri_G, and tri_C, respectively. The remain-
ing features are: the maximal length of the amino acid
string without stop codons found in three reading frames:
orf ; the cumulative size of internal loops found in the sec-
ondary structure: loops; a percentage of low complexity
regions detected in the sequence using Dustmasker: dm
(all Dustmasker settings were set to default except for
score threshold for subwindows set from 20 to 15).

Imbalanced learning
Extensive research on imbalanced data classification has
proven that standard machine learning techniques often
overlearn a majority class sacrificing minority examples
[20]. Therefore, special approaches for imbalanced prob-
lems have been developed. They can be divided into
sampling methods, cost-sensitive learning, kernel meth-
ods, active learning and others [21]. microPred authors
carried out exhaustive study of how several classifica-
tion strategies from above perform in a microRNA pre-
diction task [17]. They used standard support vector
machine as a base classifier and combined it with random
over/under-sampling, SMOTE (which is also a represen-
tative of sampling methods) and multi-classifier system.
They additionally tested cost-sensitive SVM modifica-
tions like zSVM and DEC (different error costs), finding
SMOTE to be the best strategy. In the research, geometric
mean (Gm) of classification sensitivity (SE) and specificity
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(SP) was used as an assessment metric. Gm is common in
imbalanced learning problems, including miRNA identi-
fication, as it takes into account unequal misclassification
costs. Therefore, we also decided to use Gm in HuntMi
study.
Our approach to microRNA prediction relies on the

fact that classification with unequal costs is equivalent
to thresholding conditional class probabilities at arbi-
trary quantiles [22]. Many classifiers provide continuous
score function s(x) describing degree of a membership
of instance x to particular class. Ideally, such a function
estimates perfectly a class conditional probability P(c|x)
and is denoted as well-calibrated score function [23]. In
reality, classifiers produce scores which are often not cal-
ibrated [22] thus a lot of algorithms for calibrating them
have been developed [23]. In addition, many meta learn-
ing techniques like bagging or classifier ensembles can
be employed to produce score function on the basis of
class labels alone [24]. As long as scoring function ranks
instances properly, that is s(x) < s(y) ⇔ P(c|x) < P(c|y),
one can successfully use s(x) directly to classify instances
with unequal costs.
Our method combines the idea of thresholding classi-

fier score function with receiver operating characteristics
(ROC) [25]. For each threshold value T established at s(x)
function, a point in a ROC space can be generated. Vary-
ing T from −∞ to +∞ produces entire ROC curve. One
can select a point on it with highest evaluation metric
(Gm in the case) and read corresponding T value. In real
applications ROC curves are generated by simply sorting
elements of dataset by s(x) values and updating true pos-
itive (TP) and false positive (FP) statistics for consecutive
points. In order to prevent threshold selection proce-
dure from overfitting towards training data, a separate
set should be used for constructing ROC curve. Hence,
an internal cross-validation with k1 folds is employed
for this purpose. As we are not interested in variance,
ROC curves are averaged in a straightforward way -
instances from all tuning folds together with assigned s(x)
values are gathered in a single set on which ROC gen-
eration procedure is applied [25]. Threshold leading to
the highest value of evaluation metric is stored and used
for classification of unknown instances. The threshold
selection procedure described above will be referred to
as ROC-select.
In the research we apply ROC-select only on classifiers

directly providing scoring function, no meta learning
techniques were examined. These classifiers are naïve
Bayes [26], multilayer perceptron [27], support vector
machine [28] and random forest [29]. We used radial
basis function as an SVM kernel as it is known to produce
best classification results in wide range of applications
[30]. In order to compare proposed strategy with other
methods, we additionally tested SMOTE filter [31]

combined with SVM as it gave best results in microPred
experiments and a novel method of asymmetric partial
least squares classification (APLSC), which came out
to be superior to other strategies on several strongly
imbalanced datasets [32].

Parameter selection and complexity analysis
In many studies includingmicroRNA prediction, classifier
parameters are selected in order to obtain best possi-
ble results for a particular domain. Hence, we decided to
place parameter tuning phase in our pipeline as a pre-
ceding step for threshold selection. Parameter selection is
also done with an internal cross-validation with a num-
ber of folds equal to k2 and is straightforward. At first,
a search space is defined by specifying a number of dis-
crete values for each parameter to be tuned. Then, full
cross-validation procedure is performed for each point in
that space. Combination of parameter values leading to
the highest average evaluation metric (Gm) is stored and
used in threshold selection and, finally, for classification
of unknown instances.
Let us denote number of points in the parameter

space to be examined as λ. In addition, let L(n) and
T(n) indicate time complexities of training and test-
ing procedures for given classifier with respect to the
dataset size n. ROC-select and parameter tuning are per-
formed inO(k1(L(n(k1 − 1)/k1)+T(n/k1))+n log n) and
O(λk2(L(n(k2 − 1)/k2) + T(n/k2))) time, respectively. As
(k − 1)/k < 1 entire procedure is bounded by expression
O((k1 + λk2)L(n) + k1T(n/k1) + λk2T(n/k2) + n log n).

Experimental setting
All classification experiments were carried out using strat-
ified 10-fold CV, hence distributions of testing samples
are exactly the same as for the entire datasets. Taking
into account strong imbalance of examined sets, obtained
results approximate well the expected performance of a
classifier in practical applications. Additionally, 10-fold
CV was proven to be the best method of model evaluation
in terms of bias and variance [33].
The detailed configuration of examined classifiers

together with parameter values tested in a tuning phase
are listed below (number of points in a parameter space
for tuning phase given in parentheses). Parameters not
mentioned here remained default.

• naïve Bayes: kernel estimation turned on,
• multilayer perceptron: validation set size V = 20%,

validation threshold E = 50, learning rate
η = 0.1, 0.2, . . . , 0.5, momentum μ = 0.1, 0.2, . . . , 0.5
(λ = 25),

• SVM: feature normalization turned on, cost
C = 10−2, 10−1, . . . , 102, exponent in radial basis
kernel γ = 2−2, 2−1, . . . , 22 (λ = 25),
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• random forest: number of trees i = 10, 21, . . . , 219
(λ = 20),

• APLSC: number of dimensions d = 5, 10, 15, 20
(λ = 4).

Preliminary experiments on naïve Bayes classifier con-
firmed that kernel estimation improves classification
results, so this feature was turned on. Validation threshold
parameter in a multilayer perceptron indicates how many
times in a row the validation set error can increase before
training is terminated. Early tests showed that introducing
validation with this stop condition does not influence clas-
sification results but significantly reduces training time,
therefore we decided to use it in our research. SMOTE fil-
ter was configured to balance positive and negative sets
perfectly. SVM parameters in SMOTE + SVM combina-
tion were tuned with a wider range of values, that is C =
10−2, 10−1, ..., 103, and γ = 2−2, 2−1, . . . , 24 (λ = 42).
Authors of microPred used a more exhaustive scanning
strategy, however it is inapplicable for larger problems
because of computational overhead. Hence, we limited
search space to cover parameter values selected most
commonly in preliminary experiments. Geometric mean
(Gm) was chosen as an evaluationmetric to be maximised.
Numbers of folds, k1 and k2, were set to 10 and 5, respec-
tively. We decided to use 5-fold CV in the parameter
tuning because it allowed us to reduce times of analy-
ses with respect to 10-fold CV almost by half (parameter
tuning dominates over other stages in terms of compu-
tation time), rendering slightly inferior results [33]. This
approach follows microPred, which also used 5-fold CV
for parameter tuning.
ROC-Select strategy described in the paper was pre-

pared as a plug-in to Weka [34] package which had been
chosen as the basic environment for all classification
experiments. It provided us with implementations of naïve
Bayes, multilayer perceptron, random forest and SMOTE
filter. Weka interface for LibSVM was used for support
vector machine experiments. The original APLSC code
written in MATLAB was wrapped in Java class and also
attached to Weka as a plug-in.

Results and discussion
Threshold selection
The first step of the experiments was to check how
the threshold selection strategy influences classification
results. For each classifier undergoing ROC-select proce-
dure four tests were carried out: no selection (I), thresh-
old selection only (II), parameter selection only (III),
both parameter and threshold selection (IV). Relative Gm
changes of variants II, III and IV with respect to the vari-
ant I were calculated and averaged over all datasets beside
microPred (Table 2). As one can see, applying threshold
selection procedure leads to significant improvement in

Table 2 Relative gains in classification results

Classifier Threshold Parameter Parameter + threshold

selection (II) selection (III) selection (IV)

Naïve
Bayes

1.11 0.00 1.11

Perceptron 7.70 0.26 7.76

SVM 10.11 1.89 10.29

Random
forest

6.95 1.55 9.30

Relative percentage gains in Gm obtained by applying parameter and/or
threshold selection on different classifiers averaged over all datasets.

Gm values. The exception is naïve Bayes for which the
gain is moderate. This can be explained by intrinsic resis-
tance of naïve Bayes to the class imbalance problem - it
performed well without applying ROC-select. In the case
of naïve Bayes no parameters were tuned, thus variants
III and IV are the same as I and II, respectively. In other
cases the best results were obtained with combination
of parameter and threshold tuning. It is important to
note that variant II overtakes relevantly variant III. This
confirms that standard machine learning techniques are
not suited for imbalanced datasets and adjusting classi-
fier parameters can reduce the problem of overlearning
majority class only by a small marigin. To achieve best
possible performance, classifiers suited for imbalanced
problems (SMOTE + SVM and APLSC) were always
tested with parameter tuning turned on (variant III). For
computational reasons we decided to limit parameter
space from 42 points to 25 while running SMOTE + SVM
on animal set (same points as in SVM and ROC-select
combination were used).
Absolute values of sensitivity, specificity andGm for par-

ticular classifiers and datasets are given in Table 3. As
applying ROC-select procedure improved performance
much more relevantly than parameter tuning, only results
for variants III and IV are presented. The general observa-
tion is that traditional classification algorithms at default
threshold (variant III) clearly overlearn majority class and
lose with SMOTE + SVM and APLSC in terms of Gm.
The greater class imbalance, the more visible is this reg-
ularity. For instance in the case of virus dataset, which is
only slightly imbalanced, traditional algorithms perform
almost as good as imbalance-suited methods. The oppo-
site is human set, in which methods are strongly biased
towards negative class giving low sensitivity (less than
70%) and high specificity (almost 100%) which results in
unsatisfactory values of Gm. The only exception is naïve
Bayes which produces results similar to SMOTE + SVM
or APLSC.
Applying ROC-select procedure to traditional classifiers

(variant IV) balances their sensitivity and specificity sig-
nificantly improving Gm values (except for naïve Bayes
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Table 3 Detailed classification results

Classifier Parameter Parameter + threshold

selection (III) selection (IV)

SE SP Gm SE SP Gm

human

N. Bayes 87.98 96.33 92.06 91.97 93.93 92.94

Perceptron 69.56 99.84 83.34 94.17 94.99 94.58

SVM 69.56 99.85 83.34 92.53 95.69 94.10

R. forest 68.21 99.85 82.53 91.53 96.34 93.90

APLSC 94.88 92.14 93.50

SMOTE
+ SVM

77.67 99.02 87.69

arabidopsis

N. Bayes 86.99 98.91 92.76 91.30 97.77 94.48

Perceptron 80.09 99.95 89.47 93.04 97.47 95.23

SVM 80.07 99.96 89.47 93.04 98.95 95.95

R. forest 83.55 99.94 91.38 95.22 99.04 97.11

APLSC 96.09 90.42 93.21

SMOTE
+ SVM

88.71 99.64 94.02

animal

N. Bayes 85.54 95.53 90.40 88.83 92.81 90.79

Perceptron 74.03 99.65 85.89 91.78 95.13 93.44

SVM 72.04 99.74 84.77 90.67 96.09 93.34

R. forest 72.52 99.72 85.04 92.00 95.21 93.59

APLSC 91.93 91.13 91.53

SMOTE
+ SVM

84.56 98.68 91.35

plant

N. Bayes 83.56 97.56 90.29 87.48 95.84 91.57

Perceptron 77.30 99.80 87.83 89.64 97.38 93.43

SVM 73.07 99.85 85.42 89.46 97.93 93.60

R. forest 78.41 99.81 88.47 90.65 97.96 94.24

APLSC 92.77 89.39 91.07

SMOTE
+ SVM

81.31 99.32 89.86

virus

N. Bayes 93.21 93.21 93.21 95.74 92.37 94.04

Perceptron 87.77 98.10 92.79 94.08 95.71 94.89

SVM 90.31 98.10 94.12 95.38 95.35 95.37

R. forest 88.59 98.45 93.39 93.26 96.31 94.77

APLSC 96.61 92.97 94.77

SMOTE
+ SVM

91.99 97.14 94.53

microPred

N. Bayes 80.32 94.27 87.02 89.43 87.91 88.67

Perceptron 82.35 99.37 90.46 90.74 94.65 92.67

SVM 79.31 99.72 88.93 89.29 97.01 93.07

Table 3 Detailed classification results (Continued)

R. forest 75.83 99.66 86.94 91.89 96.36 94.10

APLSC 91.45 90.96 91.21

SMOTE
+ SVM

87.70 98.83 93.10

Absolute results with parameter selection alone and parameter selection
combined with threshold selection obtained through 10-fold CV. Results of best
classifier for each dataset typed in bold.

in which gains are moderate). The best results were
on average obtained for random forest which beats
SMOTE + SVM and APLSC in all datasets. How-
ever, multilayer perceptron and SVM also overperformed
imbalance-suited methods in the majority of cases. The
conclusion is twofold: (1) score function returned by
examined classifiers properly ranks instances with respect
to the conditional class probability, (2) ROC-select proce-
dure successfully applies this knowledge to solve imbal-
anced classification problem.
Another interesting observation comes from compari-

son of imbalance-suited strategies, that is SMOTE + SVM
and APLSC. Our experiments confirm previous findings
that APLSC is superior to SMOTE [32]. It is especially
visible in large and highly imbalanced sets like human
or plant. We explain this by the fact that SMOTE is able
to produce only a limited number of informative exam-
ples. Above some threshold value, synthetically generated
instances introduce only noise. An important observation
is that APLSC seems to be the only classifier which is
biased towards minority class (sensitivity is always higher
than specificity) which may be a useful feature in some
applications.
If one analyses absolute results for particular datasets,

it becomes clear that animal sets (human and animal) are
more resilient to classification than plant sets (arabidopsis
and plant), even though they are more balanced. This is
probably caused by the fact that plant miRNAs are better
separated from non-miRNAs in the attribute space, hence
they are easier to distinguish. The worst absolute results
in terms of Gm were observed for microPred dataset. We
explain this by the low quality of this set (miRBase 12 was
known to contain some false positives removed in later
releases [18]) and lack of experimental evidence-based
filtering.

Statistical analysis
In order to statistically evaluate differences between clas-
sifiers, Friedman rank test [35] at significance level α =
0.05 was carried out with Gm being chosen as a perfor-
mance metric. All the datasets beside microPred were
used in the procedure. We tested imbalance-suited meth-
ods (SVM + SMOTE, APLSC) together with naïve Bayes,
perceptron, SVM and random forest in variant IV . The
resulting critical difference (CD) diagram for post-hoc
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Figure 1 Statistical significance diagram. Critical difference diagram for Nemenyi tests performed on human, animal, arabidopsis, plant, virus
datasets. Average ranks of examined methods are presented. Bold lines indicate groups of classifiers which are not significantly different (their
average ranks differ by less than CD value).

Nemenyi tests [35] is shown in Figure 1. As one can see,
random forest, SVM and perceptron (which are gath-
ered near rank 2.) outperform APLSC, naïve Bayes and
SVM + SMOTE (clustered near rank 5.). Random for-
est and SVM + SMOTE were confirmed to be the most
and least accurate classifiers, respectively. The differ-
ence between them as well as the difference between
SVM + SMOTE and the second best classifier (SVM) are
statistically significant.

Running time
Time of analysis is an important issue determining appli-
cability of presented methods for real-life problems. As all
investigated algorithms are eager learning strategies, test-
ing time was always irrelevant with respect to the training
time and is not considered here. In Table 4 medians of
training times of all CV runs are given.We show results for
themicroPred set as it was used in other studies, together
with arabidopsis (the most imbalanced set), plant and
animal (two largest sets). Execution times of most time
consuming algorithm variants (IV for naïve Bayes, per-
ceptron, SVM, random forest and III for SMOTE + SVM
and APLSC) are given. As all the algorithms were imple-
mented in a serial manner, single analysis utilised just one
core of quad-core Intel Xeon W3550 3.06GHz CPU used
for the experiment.
One should remember that training times are influ-

enced not only by the classification method itself, but
also by the number of points in the parameter space to
be analysed in a tuning stage. In the case of naïve Bayes

Table 4 Training times

Classifier MicroPred Arabidopsis Plant Animal

Naïve Bayes 00:00:13 00:01:03 00:06:38 00:11:56

Perceptron 00:28:02 01:15:53 05:15:04 10:21:05

SVM 00:23:00 00:25:49 20:22:57 170:47:13

Random forests 00:17:27 00:59:15 07:58:10 23:07:23

SMOTE + SVM 01:26:00 04:05:17 252:02:10 281:11:12

APLSC 00:00:34 00:01:46 00:08:52 00:29:52

Classifier training times for selected datasets (medians over all cross-validation
folds). Times are given in format hh:mm:ss.

classifier no parameters were tuned, thus it was the fastest
classifier in the comparison (training times from seconds
to minutes). For other classifiers undergoing ROC-select
procedure, 20-25 points were evaluated. For smaller sets,
training times obtained by multilayer perceptron, random
forest and SVM were similar (tens of minutes). For larger
sets support vector machines scaled worse than com-
petitors (a few dozen of hours vs. hours). In the case of
SMOTE + SVM strategy, 42 points were checked (except
animal set in which only 25 points were examined). It
is important to keep in mind that original microPred
included more exhaustive, thus more time-consuming
parameter tuning strategy. Limitation of search space did
not prevent SMOTE + SVM from being the slowest strat-
egy in our experiments though. In the case of plant and
animal datasets single training took more than ten days
which makes microPred strategy inapplicable for larger
problems. In contrast, APLSC classifier (4 points in the
parameter space) was very fast.
Eventually, we decided to use random forest combined

with ROC-select as a basic strategy in HuntMi package
due to its superior classification results and reasonable
computation time.

Additional features
The next part of the experiments was to check how
introducing additional features influences classification
results. These experiments were carried out for random
forest + ROC-select combination, selected earlier as a
basic strategy in HuntMi. As Table 5 shows, new fea-
tures introduced additional information into classifica-
tion procedure and improved final results. The absolute
gain in Gm varied from 0.49 to 2.34. Wilcoxon test [35]
performed on all datasets beside microPred confirmed
predominance of the extended representation with p-
value equal to 0.0952. For this reason we decided to
use seven new features together with twenty one pre-
viously introduced to represent sequences in HuntMi
package.

Comparison with other tools
The majority of miRNA classification studies focus on H.
sapiens. As microPred was proven to be the best software
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Table 5 Feature selection results

Dataset SE SP Gm

human 95.31 97.18 96.24

arabidopsis 96.11 99.31 97.70

animal 94.92 96.60 95.76

plant 92.36 98.38 95.32

virus 96.18 95.95 96.06

microPred 92.76 96.46 94.59

Classification results obtained by ROC-select + random forest combination for
extended representation including seven new features. These are also the final
results for HuntMi software.

in this field at the time of its publication, we decided not
to consider its predecessors such as Triplet-SVM, MiPred
or miPred in the comparison. The results produced by
SMOTE + SVM combination on microPred dataset were
very similar to those obtained by [17] (Gm = 93.53),
which confirms that our experiments accurately estimate
microPred performance. The small discrepancy is proba-
bly caused by different splits in cross-validation procedure
(microPred used 5-fold CV for testing). HuntMi software
gave Gm = 94.59 (see Table 5), which is a notice-
able improvement over microPred. The predominance
of HuntMi method over SMOTE + SVM combination
employed by microPred holds also for all other sets and is
statistically significant. To further test the performance of
HuntMi, we prepared a set of animal microRNAs newly
introduced in miRBase issues 18-19 and examined it on a
classification model trained on the entire animal dataset
(built upon miRBase 17). The obtained results clearly
demonstrate that HuntMi is able to efficiently identify
novel microRNAs in animals, achieving the sensitivity of
over 90% in 8 out of 11 analysed species (Table 6). At
the same time the sensitivity achieved by microPred is
considerably lower, exceeding 90% only for O. latipes.
Several studies on improving microPred have been car-

ried out. They exploited techniques like sample selection
[36] or genetic algorithm-based feature selection [37,38]
resulting in very high values of Gm (up to 99). All these
methods were, however, evaluated on balanced subsets
of microPred dataset and some of them suffered from
important methodological incoherences like lack of ran-
dom split of data into training and testing set and, more
importantly, inclusion of training sequences in a testing
set. Therefore, reported results do not accurately estimate
the performance of presented strategies in real miRNA
identification problems. In addition, these methods are
not available as a ready to use packages.
Another strategy, MiRenSVM [39], employed SVM

ensembles formiRNA classification. It was tested onmod-
erately imbalanced dataset (697 human miRNAs, 5 428
pseudo harpins) with 3-fold CV resulting in Gm = 94.76.

Table 6 Comparison with other tools: animal species

Species #Sequences MicroPred HuntMi

Bombyxmori 4 75.00 100.00

Caenorhabditis elegans 16 87.50 93.75

Ciona intestinalis 19 89.47 73.68

Homo sapiens 175 85.14 93.14

Macacamulatta 16 - 81.25

Musmusculus 139 64.03 94.96

Oryzias latipes 152 94.08 96.05

Pongo pygmaeus 54 83.33 94.44

Rattus norvegicus 38 76.32 97.37

Taeniopygia guttata 23 82.61 91.30

Tribolium castaneum 14 64.29 78.57

Classification sensitivity of microPred and HuntMi on animal miRNAs added in
miRBase issues 18-19.

This value is very similar to the one obtained by HuntMi
on microPred dataset which consisted of same positive
examples and 50% more negatives. MiRenSVM was also
tested on a set of 5 238 animal miRNAs successfully iden-
tifying 92.84% of them. As no negative sequences were
included, specificity of the method is unknown. In our
experiments, HuntMi was examined on a set consisting
of 7 053 animal miRNAs and 218 154 pseudo hairpins.
It outperformed MiRenSVM giving sensitivity of 94.92%
and specificity of 96.60%. As MiRenSVM is not available
as a tool, we were not able to compare its performance
with HuntMi on miRNAs introduced in latest builds of
miRBase.
Separate group of methods specialising in plant

microRNA identification has been developed, of which
the most recent is PlantMiRNAPred [19]. It joins feature

Table 7 Comparison with other tools: plant species

Species #Sequences PlantMiRNAPred HuntMi

Arabidopsis thaliana 68 80.88 91.18

Cucumis melo 120 90.00 95.00

Glycinemax 302 - 88.41

Hordeum vulgare 45 55.56 35.56

Malus domestica 206 88.83 99.51

Medicago truncatula 300 - 72.67

Nicotiana tabacum 163 84.66 93.25

Oryza sativa 169 60.95 69.82

Populus trichocarpa 89 89.89 97.75

Sorghum bicolor 58 94.83 94.83

Classification sensitivity of PlantMiRNAPred and HuntMi on plant miRNAs added
in miRBase issues 18-19. PlantMiRNAPred failed to process some Arabidopsis
thalianamiRNAs successfully. However, these sequences were treated as
properly identified.
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and sample selection strategies to improve SVM classi-
fication results. The main dataset used in the research
consisted of 1 906 real pre-miRNAs from miRBase 14 and
2 122 non-miRNAs generated by authors. 980 positive and
980 negative examples were selected using proposed sam-
ple selection method to train the classifier. Majority of the
remaining sequences and 309 newmiRNAs frommiRBase
15-16 constituted the testing set. Surprisingly, as many as
634 training positives were also added to this set. This,
together with lack of random split of data into training
and testing sets results in overestimation of classification
performance. Despite these incoherences, HuntMi per-
formed smililarly to PlantMiRNAPred. After summing up
results from PlantMiRNAPred study we obtained Gm =
96.91, while HuntMi gave 95.32 and 97.70 on plant and
arabidopsis datasets respectively. To further evaluate per-
formance of HuntMi package in plant microRNA clas-
sification, we tested it on miRNAs introduced in 18-19
builds of miRBase. Classification model was trained on
the full plant dataset (constructed upon miRBase 17). As
PlantMiRNAPred permits only for manual submissions of
single sequences (service for processing FASTA files mal-
functioned at the time of this study) we examined it on
species with at most 200 newly introduced miRNAs. The
results are presented in Table 7.
Based on obtained results, all the plant species exam-

ined by HuntMi can be divided into two groups. In the
first group (A. thaliana, C. melo, G. max, M. domestica,
N. tabacum, P. trichocarpa, S. bicolor) the classification
sensitivity varied from 88.41% to 99.51% and is clearly
superior to the performance of PlantMiRNAPred. The
second group (H. vulgare, M. truncatula and O. sativa)
was characterised by much lower sensitivity (35.56% to
72.67%). Two of the latter species belong to monocotyle-
dons, which could suggest that our tool is inefficient when
analysing sequences from this plant group. However, we
obtained satisfactory sensitivity for S. bicolor (94.64%).
This encouraged us to look closer at microRNAs from
low-sensitivity group and we discovered that a large frac-
tion of miRNAs in these species do not meet commonly
recognised criteria for annotation of plant miRNAs e.g.
in the case of osa-MIR5489, osa-MIR5484, hvu-MIR6177,
hvu-MIR6182, mtr-MIR5741d and some other miRNAs
the mature microRNA lies outside the stem part of the
hairpin. Additionally, most of new miRNAs were discov-
ered using deep sequencing approach only, where it is
sometimes only one or several reads that support the
miRNA (e.g. osa-MIR5527). This data is insufficient to
confirm that the miRNA is precisely excised from the
stem. Similarly to HuntMi, PlantMiRNAPred produces
unsatisfactory results when applied to H. vulgare or O.
sativamiRNAs (sensitivities of 56% and 61%).
To sum up, in majority of cases HuntMi was able to

obtain better results than competitors even though it

was evaluated on larger and more imbalanced datasets.
Experiments on animal and plant miRNAs introduced
in releases 18-19 of miRBase confirmed that HuntMi
outperforms other tools like microPred and PlantMiR-
NAPred. There are methods reporting higher Gm val-
ues than HuntMi. However, they were all tested on
balanced datasets, often with important methodological
flaws, which obstructs proper judgement of their perfor-
mance in real-life tasks. Moreover, none of these methods
is available as a ready to use package.

Conclusions
In this study we present a new machine learning-
based miRNA identification package called HuntMi. It
exploits ROC-select, a special strategy of thresholding
score function output by classifiers, combined with ran-
dom forest, which we find to produce best classifica-
tion results. Twenty one features employed by micro-
Pred software together with seven new attributes are
used as a data representation. The method was tested
on large and strongly imbalanced datasets using stratified
10-fold cross-validation procedure. Classifiction perfor-
mance was further verified on miRNAs newly introduced
in latest builds of miRBase. As a result, HuntMi clearly
outperforms state-of-the-art miRNA hairpin classifica-
tion tools like microPred and PlantMiRNAPred without
compromising the training time.
HuntMi comes with Gm-optimised models for H. sapi-

ens, A. thaliana, animals, plants and viruses. There is a
possibility to train a model on any dataset and subse-
quently use it in classification analysis. This featuremay be
useful if one is interested in predicting miRNAs in partic-
ular species or in applying different optimization criterion
than Gm in ROC-select procedure. Therefore, HuntMi
offers the highest flexibility of all existing microRNA clas-
sification packages.

Additional file

Additional file 1: A file with supplementary tables. Table S1
summarises animal and plant species and viruses from which non-miRNA
sequences were extracted.
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