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HURWITZ CLASS NUMBERS WITH LEVEL AND MODULAR

CORRESPONDENCES

YUYA MURAKAMI

Abstract. In this paper, we prove Hurwitz-Eichler type formulas for Hurwitz class numbers
with each level M when the modular curve X0(M) has genus zero. A key idea is to calculate
intersection numbers of modular correspondences with the level in two different ways. A gen-

eralization of Atkin-Lehner involutions for Γ0(M) and its subgroup Γ
(M′)
0 (M) is introduced to

calculate intersection multiplicities of modular correspondences at cusps.

1. Introduction and statement of results

For a positive integer M,D with D ≡ 0, 3 mod 4, let us define

HM (D) :=
∑

[Q]∈QM
−D,>0/Γ0(M)

2

#Γ0(M)Q

and call it the Dth Hurwitz class number of level M . Here, for integers a, b, c, let us write a
quadratic form [a, b, c] := aX2 + bXY + cY 2 whose discriminant is discQ := b2 − 4ac and let

QM
−D,>0 := {Q = [Ma, b, c] | a, b, c ∈ Z, a > 0,discQ = −D} .

The group

Γ0(M) :=

{

γ ∈ SL2(Z)

∣

∣

∣

∣

γ ≡
(

∗ ∗
0 ∗

)

mod M

}

acts on QM
−D,>0 by

(

Q ◦
(

a b
c d

))

(X,Y ) := Q(aX + bY, cX + dY ), Q ∈ QM
−D,>0,

(

a b
c d

)

∈ Γ0(M).

We denote by Γ0(M)Q the stabilizer ofQ ∈ QM
−D,>0 under this action. To computeQM

−D,>0/Γ0(M)
is equivalent to understand imaginary quadratic points with discriminant −D on a suitable fun-
damental domain for the modular curve Y0(M) := Γ0(M)\H and the related reduction theory
as well. This will be carried out in Section 9.

When M = 1, we put H(D) := H1(D). For a positive integer N which is not a square, the
following relation is known as Hurwitz-Eichler relation:

(1.1)
∑

x∈Z, x2<4N

H(4N − x2) =
∑

ad=N

max{a, d}.

Eichler’s original proof is found in [7]. Another proof will be found in [10] by calculating
intersection multiplicities at cusps and intersection number of certain algebraic cycles on P1×P1

which are called modular correspondences.
In this paper, we consider an analog of the relation (1.1) for M > 1 such that the genus of

the modular curve X0(M) is zero. Our main result is the following theorem:

Theorem 1.1. Let M be 2 ≤ M ≤ 10 or M ∈ {12, 13, 16, 18, 25}. Let N be a positive integer

which is coprime to M and is not a square. It holds that
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(i)
∑

x∈Z, x2<4N

HM
(

4N − x2
)

=
∑

ad=N

|a− d|

if either of the following conditions is satisfied:

(a) M ∈ {2, 3, 5, 7, 13},
(b) M = 9 and N ≡ −1 mod 3,
(c) M = 25 and N ≡ ±2 mod 5,

(ii)
∑

x∈Z, x2<4N

H4
(

4N − x2
)

= 2
∑

ad=N,a>d

(a− 2d)

if M = 4,
(iii)

∑

x∈Z, x2<4N

HM
(

4N − x2
)

= 2
∑

ad=N,a>d

(a− 3d)

if either of the following conditions is satisfied:

(a) M ∈ {6, 8, 10},
(b) M = 9 and N ≡ 1 mod 3,
(c) M = 16 and N ≡ −1 mod 4,
(d) M = 18 and N ≡ −1 mod 6,

(iv)
∑

x∈Z, x2<4N

H12
(

4N − x2
)

= 2
∑

ad=N,a>d

(a− 5d)

if either of the following conditions is satisfied:

(a) M = 12,
(b) M = 16 and N ≡ 1 mod 4,

(v)
∑

x∈Z, x2<4N

H18
(

4N − x2
)

= 2
∑

ad=N,a>d

(a− 7d)

if M = 18 and N ≡ 1 mod 6,
(vi)

∑

x∈Z, x2<4N

H25
(

4N − x2
)

=
∑

ad=N

|a− d| − 8
∑

ad=N,a>d,a≡d mod 5

d

if M = 25 and N ≡ ±1 mod 5.

To prove Theorem 1.1, we calculate both sides in two ways as is done in the proof of [10,

Corollary 1.1]. In our calculation, we use the modular correspondence T
Γ0(M)
N with level M and

degree N , which is our main theme.
We state a definition of modular correspondences. Let

H := {τ = x+ y
√
−1 | x, y ∈ R, y > 0}

be the complex upper half-plane. For a positive integer M , we define the modular curves of
level M as

Y0(M) := Γ0(M)\H, X0(M) := Γ0(M)\(H ∪Q ∪ {i∞}).
They admit the structure as Riemann surfaces and it turns out that X0(M) is compact. Each
element in Γ0(M)\(Q ∪ {i∞}) is called a cusp.

In this paper, we assume that the modular curve X0(M) has genus zero. It is well-known
that such M is 1 ≤ M ≤ 10 or M = 12, 13, 16, 18, 25 ([13, Section 3]). For a positive integer N
coprime to M , the modular correspondence of degree N with respect to Γ0(M) introduced in
[12] is defined by

(1.2) T
Γ0(M)
N :=

⋃

A=
(

a b
0 d

)

∈M2(Z), ad=N, 0≤b<d

{(Γ0(M)τ,Γ0(M)A(τ)) ∈ X0(M)×X0(M)} .
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It turns out that the modular correspondence T
Γ0(M)
N is an algebraic cycle in X0(M)×X0(M)

by [12, Theorem 2.9]. The modular correspondence T
Γ0(M)
N and the diagonal set

∆ := {(Γ0(M)τ,Γ0(M)τ) ∈ X0(M)×X0(M)}
intersect properly whenN is not a square and the intersection number of them on Y0(M)×Y0(M)
coincides with the left-hand side in Theorem 1.1 by [12, Theorem 1.2].

On the other hand, we can calculate the intersection number on Y0(M)×Y0(M) by subtracting
it on X0(M)×X0(M)rY0(M)×Y0(M) from it on X0(M)×X0(M). The result coincides with
the right-hand side in Theorem 1.1 by the following theorem.

Theorem 1.2. Let M ∈ {2, 3, 5, 6, 7, 8, 10, 12, 13} and N be a positive integer coprime to M
which is not a square. Then the following holds.

(i) The intersection number of ∆ and T
Γ0(M)
N is

(∆ · TΓ0(M)
N )X0(M)×X0(M) = 2

∑

d|N
d.

(ii) The intersection multiplicity of ∆ and T
Γ0(M)
N at a pair (s, s) of cusp s is

(∆ · TΓ0(M)
N )(s,s) = 2

∑

ad=N,a>d

d.

(iii) We have

(∆ · TΓ0(M)
N )Y0(M)×Y0(M) = 2

∑

ad=N,a>d

(a− (c0(M)− 1)d)

where

c0(M) := #{cusps in X0(M)} =



















2 if M ∈ {2, 3, 5, 7, 13},
3 if M = 4,

4 if M ∈ {6, 8, 10},
6 if M = 12.

In the above theorem, we treat only the case when M ∈ {2, 3, 5, 6, 7, 8, 10, 12, 13} for simplic-
ity. In other remaining cases, we state similar results in Section 8.

The most important part of Theorem 1.2 is to calculate the intersection multiplicities at
cusps in (ii). Although we can achieve it by using Atkin-Lehner involutions, they exist less than
cusps for some levels and thus we introduce generalized Atkin-Lehner involutions.

Recently, Brunier-Schwagenscheidt gave various interesting formulas involving our generalized
Hurwitz class numbers in a different context [3, Example 4.2]. As the second author of loc.cit.
commented to the author, it would be interesting to study any relation between our work and
theirs.

This paper will be organized as follows. In Section 2, we summarize known results for our

modular correspondences T
Γ0(M)
N . In Section 3, we introduce a subgroup G0(M) ⊂ GL2(Q)

which contains the above matrix A. In Section 4, for each cusp s, we give explicitly a matrix
W ∈ GL2(Q)∩M2(Z) which satisfies W (i∞) = s and normalize Γ0(M). When M is square-free,
each cusp is represented by the image of i∞ under an Atkin-Lehner involution. However, this
is not true when M is not square-free. then there exists a cusp such that there does not exist
an For this reason, we introduce a generalization of Atkin-Lehner involutions. In Section 5, we
give a condition whether such matrices introduced in Section 4 normalize Γ0(M). In Section 6,
we classify cusps. We calculate the intersection multiplicities at cusps in Section 7 and prove
Theorem 1.1 in Section 8. In Section 9, we give explicit computation of the Hurwitz class
number HM (D) for M when 2 ≤ M ≤ 10 or M = 13. In Section 10, we give some examples of
Theorem 1.1 for small N and conjecture for a square N .
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2. Known results

In this section, we summarize results for modular correspondences in [12]. Let M be a positive
integer such that the modular curve X0(M) has genus zero. In this case, there exists the unique

isomorphism t : X0(M)
∼−→ P1(C) satisfying div(t) = (0) − (∞) and having an expansion

t(τ) = q−1 + c0 + c1q + · · · ∈ q−1 + Z[[q]]

with q := e2π
√
−1τ forM > 1. Such t is given as an explicit products of the Dedekind eta function

in [12, Table 1] which refers to [11, Subsection 3.1]. For M = 1, we put t : X0(1)
∼−→ P1(C) as

the j-invariant.

The modular correspondence T
Γ0(M)
N defined in (1.2) is an algebraic cycle in X0(M)×X0(M)

by the following theorem. We remark that the definition of the modular correspondence T
Γ0(M)
N

in (1.2) differs from the original definition in [12] but it is essentially the same.

Theorem 2.1 ([12, Theorem 2.9]). For a positive integer N coprime to M , the image of the

modular correspondence T
Γ0(M)
N under the map t× t : X0(M)×X0(M) → P1(C)× P1(C) is the

zero set of a polynomial Φ
Γ0(M)
N (X,Y ) ∈ Z[X,Y ].

The polynomial Φ
Γ0(M)
N (X,Y ) is called the modular polynomial of level M and degree N .

The following theorem states that the intersection number of two modular correspondences
on Y0(M)× Y0(M) is equal to the left-hand side in Theorem 1.1.

Theorem 2.2 ([12, Theorem 1.2]). For positive integers N1 and N2 coprime to M , two algebraic

cycles T
Γ0(M)
N1

and T
Γ0(M)
N2

intersect properly if and only if the integer N1N2 is not a square.

Moreover, in this case, the intersection number on Y0(M)× Y0(M) is given as

(T
Γ0(M)
N1

· TΓ0(M)
N2

)Y0(M)×Y0(M) :=
∑

(x0,y0)∈Y0(M)×Y0(M)

(T
Γ0(M)
N1

· TΓ0(M)
N2

)(x0,y0)

=
∑

x∈Z, x2<4N1N2

∑

d|(N1,N2,x)

d ·HM

(

4N1N2 − x2

d2

)

.

In particular, for a non-square positive integer N coprime to M , we have

(T
Γ0(M)
1 · TΓ0(M)

N )Y0(M)×Y0(M) =
∑

x∈Z, x2<4N

HM
(

4N − x2
)

.

Here we remark that T
Γ0(M)
1 is equal to the diagonal set ∆ by (1.2).

3. A subgroup G0(M) in GL2(Q)

In this section, we introduce and study the subgroup G0(M) of GL2(Q) which plays an
important role in studying intersections of modular correspondences at cusps.

Let M be a positive integer.

Definition 3.1. Set

Z(M) :=
{a

b
∈ Q

∣

∣

∣
a, b ∈ Z, (b,M) = 1

}

,

GL2(Z(M)) :=
{

γ ∈ M2(Z(M)) | det γ ∈ Z×
(M)

}

,
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and

G0(M) :=

{

γ ∈ GL2(Z(M))

∣

∣

∣

∣

γ ≡
(

∗ ∗
0 ∗

)

mod MZ(M)

}

.

If M is a prime number p, then Z(p) is a localization of Z at the prime ideal (p) := pZ. We
also remark that Γ0(M) = G0(M) ∩ SL2(Z).

Our aim in this section is to prove the following proposition which plays an important role
in studying the action of G0(M) on cusps in the next section.

Proposition 3.2. It holds that G0(M) = Γ0(M)G0(M)i∞.

Before giving a proof, we prepare the followings.

Definition 3.3. For rational numbers a and b, we have a unique rational number g ∈ Q≥0 such

that aZ+ bZ = gZ. We put (a, b) := g and call it the greatest common divisor of a and b.

If g 6= 0, then a/g, b/g ∈ Z. In the case when both a and b are integers, the above (a, b) is
the usual greatest common divisor of a and b.

The following property of the greatest common divisor is quite elementary.

Lemma 3.4. For rational numbers a ∈ Z×
(M) and b ∈ Z(M), we have (a, b) ∈ Z×

(M).

Proof. Let g := (a, b) ∈ Z(M). Since g−1a ∈ Z, we have g ∈ Z×
(M). �

Proof of Proposition 3.2. For a matrix

A =

(

a b
Mc d

)

∈ G0(M),

we have a ∈ Z×
(M) since D := ad −Mbc ∈ Z×

(M). By Lemma 3.4, we have (a, c) ∈ Z×
(M). Thus

there exists a matrix

γ =

(

a/(a, c) ∗
Mc/(a, c) ∗

)

∈ Γ0(M).

We have A(i∞) = γ(i∞). �

4. Cusps and Atkin-Lehner involutions

In this section, for each cusp s in X0(M), we consider whether there exists a matrix W ∈
SL2(R) which satisfies W (i∞) = s and normalize both of Γ0(M) and G0(M). Since all cusps
are expressed as the form m/M with an integer 0 ≤ m < M , we need a matrix W ∈ SL2(R)
with the form

1√
D

(

m u
M v

)

.

Typical such matrices are Atkin-Lehner involutions.

Definition 4.1. For a positive divisor m of a positive integer M such that (m,M/m) = 1,
there exist integers u, v such that mv −Mu/m = 1. We denote

Wm = WM
m :=

1√
m

(

m u
M mv

)

∈ SL2(R).

For m = 0, we set

(4.1) W0 = WM
0 :=

1√
M

(

0 −1
M 0

)

∈ SL2(R).

We call them Atkin-Lehner involutions.

We can check that Atkin-Lehner involutions normalize Γ0(M) and G0(M) by direct calcula-
tion.

If M is square-free, one can find an Atkin-Lehner involution W such that W (i∞) = s for
each cusp s ∈ X0(M). However, this is not true if M is not square-free.

For this reason, we introduce the following generalization of Atkin-Lehner involutions.
5



Definition 4.2. For a positive integer M and an integer m, let D := (M,m2). Take u and v
such that (M,m)mv −Mu = D and sert We set

Wm = WM
m :=

1√
D

(

m u
M (M,m)v

)

∈ SL2(R).

It is called a generalized Atkin-Lehner involution.

In the case whenm is a positive divisor ofM such that (m,M/m) = 1, Wm is an Atkin-Lehner
involution.

In general, generalized Atkin-Lehner involutions do not normalize neither Γ0(M) nor G0(M).
For example, if M = 25 and (m, 25) = 5, then it turns out that WM

m do not normalize neither
Γ0(M) nor G0(M) in Section 5. To calculate the intersection multiplicity of the modular
correspondences at a pair of cusps in such a case, we define the following subgroup of Γ0(M).

Definition 4.3. For a positive integer M and its positive divisor M ′, put

Γ
(M ′)
0 (M) :=

{(

a ∗
∗ d

)

∈ Γ0(M)

∣

∣

∣

∣

a ≡ d mod M ′
}

.

This group is a congruence subgroup of level M since Γ(M) ⊂ Γ
(M ′)
0 (M). We put X

(M ′)
0 (M) :=

Γ
(M ′)
0 (M)\(Q ∪ {i∞}) ∪H be the associated modular curve.

For example, Γ
(1)
0 (M) = Γ0(M).

To conclude this section, we enumerate cusps m/M and generalized Atkin-Lehner involutions
WM

m when the genus of the modular curve X0(M) is zero, that is exactly when 1 ≤ M ≤ 10 or
M ∈ {12, 13, 16, 18, 25}.

Here we remark that i∞ and 1/M are Γ0(M)-equivalent. When M = 1, X0(1) has only one
cusp i∞ and X0(M) has two cusps i∞ and 0 for a prime number M . For a composite number
M , X0(M) has one or more cusps except for i∞, 0.

In the case when M is a composite number, we list the cusps in X0(M) in Table 1 and
Atkin-Lehner involutions WM

m for m 6= 1,M in Table 2. In the case when M is not a prime
number nor a product of two prime numbers, that is, M ∈ {4, 8, 9, 12, 16, 18, 25}, in Table 3
we compile generalized Atkin-Lehner involutions for cusps s = m/M in X0(M) which is not an
image of i∞ under any Atkin-Lehner involution.

Table 1. Cusps except for i∞ and 0 in X0(M) with a composite number M

M Cusps

4
1

2

6
1

2
,
1

3

8
1

2
,
1

4

9
1

3
,
2

3

10
1

2
,
1

5

M Cusps

12
1

2
,
1

3
,
1

4
,
1

6

16
1

2
,
1

4
,
3

4
,
1

8

18
1

2
,
1

3
,
2

3
,
1

6
,
5

6
,
1

9

25
1

5
,
2

5
,
3

5
,
4

5

5. The normalizer of Γ
(M ′)
0 (M)

In this section, we study the normalizers of Γ0(M), G0(M), and the congruence subgroup

Γ
(M ′)
0 (M) in SL2(Z) and give conditions whether generalized Atkin-Lehner involutions normalize

6



Table 2. Atkin-Lehner involutions for m 6= 1,M

M A cusp s = m/M An Atkin-Lehner involution Wm = WM
m

6
1

2
=

3

6
,
1

3
=

2

6
W3 =

1√
3

(

3 1
6 3

)

, W4 =
1√
2

(

2 1
6 4

)

10
1

2
=

5

10
,
1

5
=

2

10
W5 =

1√
5

(

5 2
10 5

)

, W2 =
1√
2

(

2 1
10 6

)

12
1

3
=

4

12
,
1

4
=

3

12
W4 =

1

2

(

4 1
12 4

)

, W3 =
1√
3

(

3 2
12 9

)

18
1

2
=

9

18
,
1

9
=

2

18
W9 =

1

3

(

9 4
18 9

)

, W2 =
1√
2

(

2 1
18 10

)

Table 3. Generalized Atkin-Lehner involutions for cusps /∈ {0,∞, 1
pe ,

1
qf
} when

M = peqf

M A cusp s = m/M A generalized Atkin-Lehner involution Wm = WM
m

4
1

2
=

2

4
W2 =

1

2

(

2 2
4 6

)

8
1

2
=

4

8
,
1

4
=

2

8
W4 =

1

2
√
2

(

4 1
8 4

)

, W2 =
1

2

(

2 1
8 6

)

9
1

3
=

3

9
,
2

3
=

6

9
W3 =

1

3

(

3 2
9 9

)

, W6 =
1

3

(

6 1
9 3

)

12
1

2
=

6

12
,
1

6
=

2

12
W6 =

1

2
√
3

(

6 2
12 6

)

, W2 =
1

2

(

2 1
12 8

)

16
1

2
=

8

16
,
1

4
=

4

16
, W8 =

1

4

(

8 1
16 4

)

, W4 =
1

4

(

4 1
16 8

)

,

3

4
=

12

16
,
1

8
=

2

16
W12 =

1

4

(

12 2
16 4

)

, W2 =
1

2

(

2 1
16 10

)

18
1

3
=

6

18
,
2

3
=

12

18
, W6 =

1

3
√
2

(

6 1
18 6

)

, W12 =
1

3
√
2

(

12 3
18 6

)

,

1

6
=

3

18
,
5

6
=

15

18
W3 =

1

3

(

3 1
18 9

)

, W15 =
1

3

(

15 2
18 3

)

25
1

5
=

5

25
,
2

5
=

10

25
, W5 =

1

5

(

5 1
25 10

)

, W10 =
1

5

(

10 1
25 5

)

,

3

5
=

15

25
,
4

5
=

20

25
W15 =

1

5

(

15 2
25 5

)

, W20 =
1

5

(

20 3
25 5

)

them. Throughout this section, we fix positive integers M,f and M0 such that M = f2M0 and
M0 is square-free.

Firstly, we prepare the following subgroup of SL2(R) which turns out to be the normalizer of

Γ
(M ′)
0 (M) later in this section.

Definition 5.1. For a positive integer h with h2 | M , that is, h | f , define

Γ∗,h
0 (M) :=

{

1√
e

(

ep q/h
Mr/h es

)

∈ SL2(R)

∣

∣

∣

∣

e ∈ Z>0, e | M/h2,
p, q, r, s ∈ Z

}

,

G∗,h
0 (M) :=

{

1√
e

(

ep q/h
Mr/h es

)

∈ SL2(R)

∣

∣

∣

∣

e ∈ Z>0, e | M/h2,
p, q, r, s ∈ Z(M)

}

.

We give several remarks for Γ∗,h
0 (M).

Remark 5.2. (i) The symbol Γ∗,h
0 (M) is introduced in [15, Definition 1.7].
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(ii) The subset Γ∗,h
0 (M) is a subgroup of SL2(R) by [15, Proposition 1.2 (i)] and the same

argument shows that G∗,h
0 (M) is a subgroup of SL2(R).

(iii) For a fixed integer h with h2 | M and a matrix

1√
e

(

ep q/h
Mr/h es

)

∈ Γ∗,h
0 (M),

the positive integer e is uniquely determined and called eterminant in [1].

(iv) The group Γ∗,1
0 (M) is generated by Γ0(M) and Atkin-Lehner involutions and it is

usually written as Γ∗
0(M).

The following states whether generalized Atkin-Lehner involutions are in Γ∗,h
0 (M).

Lemma 5.3. For a positive integer m and a generalized Atkin-Lehner involution WM
m , we have

WM
m ∈ Γ

∗,(f,m)
0 (M).

Proof. Let

WM
m =

1√
D

(

m u
M (M,m)v

)

, D := (M,m2).

Here we put e := D/(f,m)2,m′ := m/(f,m). Then we have

WM
m =

1√
e

(

m′ u/(f,m)
M/(f,m) (M/(f,m),m′)v

)

and e = (M0f
2/(f,m)2,m′2). Since f2/(f,m)2 and m′2 are coprime and M0 is square-free, we

have e = (M0,m
′). Thus e | (M/(f,m),m′) and WM

m ∈ Γ
∗,(f,m)
0 (M). �

Here we remark that Lemma 5.3 does not cover the fact that Atkin-Lehner involutions are
in Γ∗

0(M).

Secondly, we compare Γ∗,h
0 (M) and Γ∗,h′

0 (M).

Lemma 5.4. If h | h′ then Γ∗,h
0 (M) ⊂ Γ∗,h′

0 (M) and G∗,h
0 (M) ⊂ G∗,h′

0 (M).

Proof. We prove only the first statement since the second statement can be proved by the
following argument.

For a matrix

W =
1√
e

(

ep q/h
Mr/h es

)

∈ Γ∗,h
0 (M),

put positive integers g, e0 such that e = g2e0 and e0 is square-free. Let g′ := (g, h′/h) and
e′ := e/g′2. Since

W =
1√
e′

(

e′g′p q(h′/gh)/h′

Mr(h′/gh)/h′ e′g′s

)

,

it suffices to show e′ | M/h′2.
Because g2e0 = e | M/h2 = M0(f/h)

2 and M0 is square-free, we have g | f/h. Thus
e0 = e/g2 | M/g2h2 = M0(f/gh)

2. We have e0 | M0f/gh since e0 is square-free. Here
detW = 1 implies

1 =

(

e,
M

h2e

)

=

(

g2e0,
M0f/gh

e0

f

gh

)

and thus (e0, f/gh) = 1. Therefore we have e0 | M0.
Since g | f/h, we have g/g′ | f/g′h = (f/h′)(h′/g′h). By the definition of g′, we have

(g/g′, h′/g′h) = 1 and thus g/g′ | f/h′.
As a result, we have e′ = e0(g/g

′)2 | M0(f/h
′)2 = M/h′2. �

Lemma 5.5. For a positive integer h with h2 | M and a matrix

W =
1√
e

(

ep q/h
Mr/h es

)

∈ Γ∗,h
0 (M),
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let g := (h, p, s)(h, q, r) and h′ := h/g. Then we have W ∈ Γ∗,h′

0 (M).

The same result holds for G∗,h
0 (M).

Proof. Since detW = 1, (h, p, s) and (h, q, r) are coprime and thus g | h. Let
e′ := e(h, p, s)2, p′ := p/(h, p, s)2, q′ := q/(h, q, r)2, r′ := r/(h, q, r)2, s′ := s/(h, p, s)2.

Then we have

W =
1√
e′

(

e′p′ q′/h′

Mr′/h′ e′s′

)

and e′ | Mg2/h2 = M/h′2. Thus we have W ∈ Γ∗,h′

0 (M).

The statement for G∗,h
0 (M) is proved by the same argument. �

Thirdly, we determine the normalizers.
The first statement in the following proposition is proved in [15, Lemma 2.1, Proposition 2.3].

We give other proof.

Proposition 5.6. We have
{

W ∈ SL2(R)
∣

∣ W−1Γ1(M)W ⊂ Γ0(M)
}

= Γ∗,f
0 (M),

{

W ∈ SL2(R)
∣

∣ W−1Γ1(M)W ⊂ G0(M)
}

= G∗,f
0 (M).

Proof. We prove only the first statement. The second statement can be proved similarly by
replacing Z with Z(M) in the following argument.

Let

W =

(

p q
r s

)

be an element of the left-hand side. Then

W−1

(

1 1
0 1

)

W =

(

1 + rs s2

−r2 1− rs

)

,

W−1

(

1 0
M 1

)

W =

(

1−Mpq −Mq2

Mp2 1 +Mpq

)

,

W−1

(

1 1
M 1 +M

)

W =

(

1 + rs−Mq(p + r) s2 −Mq(q + s)
−r2 +Mp(p+ r) 1− rs+Mp(q + s)

)

are in Γ0(M). Hence p2,Mq2, r2/M, s2,Mpq, pr, rs ∈ Z. Therefore we can rewrite

W =
1√
e

(

ep q/f
Mr/f es

)

with a positive square-free integer e and rational numbers p, q, r, s which satisfy

ep2,
M

f2e
q2,

M

f2e
r2, es2 ∈ Z.

Since e andM0 = M/f2 are square-free, p, q, r, s are integers. Also we haveMqr/f2e = 1−eps ∈
Z. Thus e | M(q2, qr, r2)/f2 = M0(q, r)

2. Since M0 is square-free, we have e | M0(q, r).
Let g := (e, q, r). We will show g = 1. Since detW = 1, we have e = (e2,M(q, r)/f2) =

(e2,M0g(q, r)/g). Here (q, r)/g is coprime to e and thus e = (e2,M0g) = g(g(e/g)2 ,M0). Since
M0 is square-free, we have e = g(e,M0). Therefore e/g | M0 and (g,M0/(e/g)) = 1. Hence
gM0/(e/g) = g2M0/e is square-free. Since e is square-free, we have g = 1.

By combining the above discussion, we have e | M0 and thus W ∈ Γ∗,f
0 (M).

Conversely, suppose

W =
1√
e

(

ep q/f
Mr/f es

)

∈ Γ∗,f
0 (M).
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For any matrix γ =
(

a b
Mc d

)

∈ Γ1(M), we have

W−1γW =

(

A B
MC D

)

,

A := eaps+
M

f
(brs− cpq)− M

f2e
dqr,

B := −(a− d)qs

f
− M

f2e
cq2 + ebp2,

C := −(a− d)pr

M
− M

f2e
br2 + ecs2,

D := − M

f2e
aqr − M

f
(brs− cpq) + edps.

(5.1)

Thus we obtain W−1γW ∈ Γ0(M). �

To determine the normalizers of Γ0(M) and G0(M), we prepare a lemma from elementary
number theory.

Lemma 5.7. For a positive integer M , let ε(M) be the greatest common divisor of a− d for all

integers a and d such that
(

a ∗
∗ d

)

∈ Γ0(M). Similarly, let e(M) be the greatest common divisor

of a− d for all integers a and d such that
(

a ∗
∗ d

)

∈ G0(M) ∩M2(Z). Then we have

ε(M) = (M, 24), e(M) = (M, 2).

Thus we have Γ0(M) = Γ
(M ′)
0 (M) where M ′ := (M, 24).

Proof. Since the map

Γ0(M) → (Z/MZ)×,

(

a ∗
∗ ∗

)

7→ a mod M

is surjective, we have

ε(M) = (a− d | ad ≡ 1 mod M), e(M) = (a− d | a, d ∈ Z ∩ Z×
(M)).

It suffices to show when M is a power of a prime number since ε(M), e(M) divides M .
If M = 16, then a pair (a, d) ∈ ((Z/16Z)×)2 such that ad ≡ 1 mod 16 is ±(1, 1), ±(3, 11) or

±(7, 7). This implies that ε(16) = (16, 1− 1, 11− 3, 7− 7) = 8. Thus if M is a power of 2, then
ε(M) = (M, 24).

If M = 9, then then a pair (a, d) ∈ ((Z/9Z)×)2 such that ad ≡ 1 mod 9 is ±(1, 1) or ±(2, 5)
and we have ε(9) = 3. Thus if M is a power of 3, then ε(M) = (M, 24).

SupposeM is a power of a prime number p ≥ 5. For an integer a such that 2a ≡ 1 mod p, since
4 6≡ 1 mod p we have a 6≡ 2 mod p. Therefore, we find ε(p) | (p, a− 2) = 1 and ε(M) = (M, 24).

The same argument works for e(M). �

For a group G and its subgroup H, we denote by NG(H) the normalizer of H in G.
By Proposition 5.6, (5.1) and Lemma 5.7, we have the following proposition whose the first

statement is stated without a proof in [1], [2, Theorem 1], [5, Section 3] and a proof is found in
[15, Corollary 3.2].

Proposition 5.8. We have the followings.

(i) NSL2(R)(Γ0(M)) = Γ
∗,(f,24)
0 (M).

(ii) NSL2(R)(G0(M)) = Γ
∗,(f,2)
0 (M).

(iii) For a positive divisor M ′ of M , we have NSL2(R)(Γ
(M ′)
0 (M)) = Γ

∗,(f,M ′,2M/M ′)
0 (M).

Proof. (i). Since both sides are in Γ∗,f
0 (M) by Lemma 5.4 and Proposition 5.6, it is enough to

show that for W ∈ Γ∗,f
0 (M), W normalizes Γ0(M) if and only if W ∈ Γ

∗,(f,24)
0 (M). By Lemma
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5.5, we can assume

W =
1√
e

(

ep q/h
Mr/h es

)

∈ Γ∗,h
0 (M), h | f, (h, p, s) = (h, q, r) = 1.

In this case, W normalizes Γ0(M) if and only if h | (a − d)(pr, qs) for any a, d ∈ Z with
ad ≡ 1 mod M by (5.1). By Lemma 5.7, this is equivalent to h | (M, 24)(pr, qs).

Since detW = 1, we have (p, q) = (p, r) = (q, s) = 1. Thus

(p, s) = (p, q)(p, s) = ((p, q, s)p, qs) = (p, qs),

(q, r) = (q, r)(s, r) = ((q, r, s)r, qs) = (r, qs),

(p, qs)(r, qs) = (pr, (p, r, qs)qs) = (pr, qs).

and we obtain (pr, qs) = (p, s)(q, r). Since (h, p, s) = (h, q, r) = 1, W normalizes Γ0(M) if and

only if h | (M, 24). Since f | h, this is equivalent to h | (f, 24), that is, W ∈ Γ
∗,(f,24)
0 (M) by

Lemma 5.4.
(ii) can be proved by the same argument in (i).
(iii). Let

W =
1√
e

(

ep q/h
Mr/h es

)

∈ Γ∗,h
0 (M)

with h | f, (h, p, s) = (h, q, r) = 1. For a matrix γ =
(

a b
Mc d

)

∈ Γ
(M ′)
0 (M), let

W−1γW =

(

A B
MC D

)

.

By (5.1), B,C ∈ Z for any γ ∈ Γ
(M ′)
0 (M) if and only if h | M ′(pr, qs) = M ′(p, s)(q, r). Since

(h, p, s) = (h, q, r) = 1 and f | h, this is equivalent to h | (f,M ′).

By (5.1), A ≡ D mod M ′ for any γ ∈ Γ
(M ′)
0 (M) if and only if

0 ≡ A−D ≡ 2
M

h
(brs− cpq) mod M ′

for any γ ∈ Γ
(M ′)
0 (M), which is equivalent to h | (pr, qs)2M/M ′ = (p, s)(q, r)2M/M ′. This is

equivalent to h | (f, 2M/M ′). �

Finally, we give conditions whether generalized Atkin-Lehner involutions normalize Γ0(M),

G0(M), or Γ
(M ′)
0 (M).

Proposition 5.9. For a positive integer m and a generalized Atkin-Lehner involution WM
m , the

followings hold.

(i) WM
m ∈ NSL2(R)(Γ0(M)) if and only if (f,m) | (f, 24).

(ii) WM
m ∈ NSL2(R)(G0(M)) if and only if (f,m) | (f, 2).

(iii) For M ′ := M/(f,m), we have WM
m ∈ NSL2(R)(Γ

(M ′)
0 (M)).

Proof. These follow from Lemma 5.3, Lemma 5.4, and Proposition 5.8. �

In the case when the modular curve X0(M) has genus zero, we have the following.

Proposition 5.10. Let s ∈ X0(M) be a cusp expressed as s = m/M = WM
m (i∞) with an

integer 0 ≤ m < M . Let WM
m be a generalized Atkin-Lehner involution.

(i) If (M,s) /∈ {(25, 1/5), (25, 2/5), (25, 3/5), (25, 4/5)}, then we have WM
m ∈ NSL2(R)(Γ0(M)).

(ii) If

(M,s) /∈



















(9, 1/3), (9, 2/3),

(16, 1/2), (16, 1/4), (16, 3/4), (16, 1/8),

(18, 1/3), (18, 2/3), (18, 1/6), (18, 5/6),

(25, 1/5), (25, 2/5), (25, 3/5), (25, 4/5),



















,

then we have WM
m ∈ NSL2(R)(G0(M)).
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(iii) If M = 25 and s ∈ {1/5, 2/5, 3/5, 4/5}, then we have WM
m ∈ NSL2(R)(Γ

(5)
0 (25)).

6. The action of G0(M) on cusps

In this section, we study the action of G0(M) on cusps to give a condition that a pair of
cusps is a point of modular correspondence and calculate the intersection multiplicity.

Firstly, we describe explicitly cusps and the action of G0(M) on them.

Definition 6.1. Let C0(M) := Γ0(M)\(Q ∪ {i∞}) be the set of cusps in the modular curve

X0(M) and we define its subset

C0(M)n :=

{

Γ0(M)
l

n

∣

∣

∣

∣

l̄ ∈ (Z/(n,M/n)Z)×
}

for a positive divisor n of M .

We have a decomposition

(6.1) C0(M) =
∐

n|M
C0(M)n

by the following lemma.

Lemma 6.2 ([6, Proposition 3.8.3]). For integers l, n, l′, n′ with (l, n) = (l′, n′) = 1, let s =
l/n, s′ = l′/n′. Then Γ0(M)s = Γ0(M)s′ if and only if there exists an integer d such that

(d′,M) = 1, n′ ≡ dn mod M, dl′ ≡ l mod (M,n).

By the above lemma, the group G0(M) acts on C0(M)n for a positive divisor n of M .
This action is essentially it of G0(M)i∞ by Proposition 3.2. We describe it in the following
Proposition.

Proposition 6.3. Let 0 ≤ m,m′ < M be integers, s = m/M, s′ = m′/M be rational numbers

and

A =

(

a b
0 d

)

∈ G0(M) ∩M2(Z).

Then Γ0(M)s = Γ0(M)A(s′) if and only if

(M,m) = (M,m′), m′ad ≡ m(d,m′a+Mb)2 mod M.

Proof. Let g := (d,m′a+Mb). By Lemma 6.2, Γ0(M)s = Γ0(M)A(s′) if and only if there exists
an integer d′ such that

(d′,M) = 1,
M

(M,m′)
d

g
≡ d′

M

(M,m)
mod M, d′

m′a+Mb

(M,m′)g
≡ m

(M,m)
mod

M

(M,m)
.

This is equivalent to the condition in the statement since we can choose d′ = d/g. �

Secondly, we establish definitions of some kind of cusps and study the action of G0(M) on
them.

Definition 6.4. We define subsets of C0(M) as

C ′
0(M) := {W (i∞) ∈ C0(M) | W ∈ NSL2(R)(Γ0(M))},

C ′′
0 (M) := {W (i∞) ∈ C0(M) | W ∈ NSL2(R)(Γ0(M)) ∩NSL2(R)(G0(M))}.

Proposition 6.5. It holds that

C ′
0(M) =

∐

n|M, (n,M/n)|(24,M/(M,24))

C0(M)n, C ′′
0 (M) =

∐

n|M, (n,M/n)|(2,M/(M,2))

C0(M)n.

12



Proof. Let f and M0 be positive integers such that M = f2M0 and M0 is square-free. For
a positive integer m, let n := M/(M,m). It suffices to show that (f, n) = (n,M/n) since
(f,m) = (f, n). Since (n,M/n)2 | n ·M/n = M , we have (n,M/n) | (f, n). Since

(f, n)2 | M =
M

n

n

(f, n)
(f, n),

we have (f, n) | M/n and thus (f, n) | (n,M/n). By Proposition 5.9, we obtain the statement.
�

The actions of G0(M) on C ′
0(M) and C ′′

0 (M) is described as follows by Proposition 6.5.

Corollary 6.6. The sets p–00–C ′′
0 (M), C ′

0(M) \ C ′′
0 (M), and C0(M) \ C ′

0(M) are stable under

the action of G0(M).

In the case when the modular curve X0(M) has genus zero, we have the following by Propo-
sition 5.10.

Corollary 6.7. Let 1 ≤ M ≤ 10 or M ∈ {12, 13, 16, 18, 25}.
(i) If M 6= 25, then C0(M) = C ′

0(M).
(ii) If M /∈ {9, 16, 18, 25}, then C0(M) = C ′

0(M) = C ′′
0 (M).

(iii) If M ∈ {9, 16, 18, 25}, then

C0(9)r C ′′
0 (9) =

{

1

3
,
2

3

}

, C ′′
0 (9) = {i∞, 0} ,

C0(16) r C ′′
0 (16) =

{

1

2
,
1

4
,
3

4
,
1

8

}

, C ′′
0 (16) = {i∞, 0} ,

C0(18) r C ′′
0 (18) =

{

1

3
,
2

3
,
1

6
,
5

6

}

, C ′′
0 (18) =

{

i∞, 0,
1

2
,
1

9

}

,

C0(25) r C ′′
0 (25) =

{

1

5
,
2

5
,
3

5
,
4

5

}

, C ′
0(25) = C ′′

0 (25) = {i∞, 0} .

7. Intersection multiplicities at cusps

In the rest of this paper, we assume that the modular curve X0(M) has genus zero, that is,
1 ≤ M ≤ 10 or M = 12, 13, 16, 18, 25.

Our goal in this section is to calculate the intersection multiplicity of the modular correspon-
dences at a pair (s, s′) of cusps in the modular curve X0(M).

Firstly, we consider the condition Γ0(M)s = Γ0(M)A(s′) for s, s′ ∈ Q ∪ {i∞} and a matrix
A ∈ G0(M) in (1.2).

Let t : X0(M)
∼−→ P1(C) be the isomorphism defined in Section 2.

Proposition 7.1. Let 0 ≤ m,m′ < M be integers and put

s = m/M, s′ = m′/M, D := (M,m2), D′ := (M,m′2).

Let

W = WM
m =

1√
D

(

m u
M v

)

, W ′ = WM
m′ =

1√
D′

(

m′ ∗
M ∗

)

∈ SL2(R)

be generalized Atkin-Lehner involutions and

A =

(

a b
0 d

)

∈ G0(M) ∩M2(Z)

be a matrix such that Γ0(M)s = Γ0(M)A(s′). Then the order of t ◦ AW ′(τ) − t(s) with respect

to q := e2π
√
−1τ is (d,m′a+Mb)2/ad.
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Proof. Put

W−1AW ′ =

√

D

D′

(

k ∗
−Ml ∗

)

with rational numbers k, l. Then we have

k =
v

D

(

m′a+Mb
)

− M

D
ud ∈ Z, l =

m′a−md

D
+

M

D
b ∈ 1

D
Z.

There exists a matrix

γ =

(

k ∗
−Ml ∗

)

∈ SL2(Z).

Let g = (k,Ml). We have

W−1AW ′ =

√

D

D′γ

(

g ∗
0 ad/g

)

.

We show g = (d,m′a+Mb). Since k− vl = d by direct calculation, we have g = (k,Md,Ml).
Since k ≡ vm′a/D mod (M,m), we have (k,M) = 1. Thus we have

g = (k, d,Ml) = (k, d,Dl) = (k, d,m′a+Mb) = (d,m′a+Mb).

By assumption there exists a matrix δ ∈ Γ0(M) such that δ(s) = A(s′). Since

δW (i∞) = δ(s) = A(s′) = AW ′(i∞) = Wγ

(

g ∗
0 ad/g

)

(i∞) = Wγ(i∞),

we have γ−1W−1δW ∈ SL2(Q)i∞.
We show that the diagonal elements of γ−1W−1δW are integers. If W ∈ NSL2(R)(Γ0(M)),

then W−1δW ∈ Γ0(M) and thus γ−1W−1δW ∈ SL2(Z). If W 6∈ NSL2(R)(Γ0(M)), then M = 25

and W ∈ NSL2(R)(Γ
(5)
0 (25)) by Proposition 5.10. By Definition 4.2 and (5.1), a matrix W−1δW

has integral element except for the (1, 2) entry and its (1, 2) entry is in 5−1Z. Since l ∈ 5−1Z,
the diagonal elements of γ−1W−1δW are integers.

Thus we can express as

γ−1W−1δW = ±
(

1 ∗
0 1

)

.

Therefore we have

t ◦ AW ′ = t ◦Wγ

(

g ∗
0 ad/g

)

= t ◦ δW
(

±1 ∗
0 ±1

)(

g ∗
0 ad/g

)

= t ◦W
(

g ∗
0 ad/g

)

.

Let n be the order of t ◦W (τ)− t(s) with respect to q. Then the order of t ◦AW ′(τ)− t(s) with
respect to q is ng2/ad. We need to show n = 1.

If W ∈ NSL2(R)(Γ0(M)), then by Proposition 5.10 and thus t ◦ W : X0(M) → P1(C) is an
isomorphism. Therefore n = 1.

If W 6∈ NSL2(R)(Γ0(M)), then M = 25 and W ∈ NSL2(R)(Γ
(5)
0 (25)) by Proposition 5.10.

The map t ◦ W : X
(5)
0 (25) → P1(C) is the composition of the isomorphism W : X

(5)
0 (25) →

X
(5)
0 (25), natural projection X

(5)
0 (25) → X0(25) and the isomorphism t : X0(25) → P1(C). The

ramification index at i∞ the natural projection X
(5)
0 (25) → X0(25) is

[{±I}Γ0(25)i∞ : {±I}Γ(5)
0 (25)i∞] = 1

by [6, Section 3.1] and thus we also have n = 1 in this case. This completes the proof. �

Secondly, we consider the condition that a pair of cusps is a point on the modular correspon-
dence.
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Definition 7.2. Let s, s′ ∈ X0(M) be cusps and

W =
1√
D

(

m u
M v

)

,W ′ =
1√
D′

(

m′ u′

M v′

)

∈ SL2(R)

be generalized Atkin-Lehner involutions such that s = W (i∞), s′ = W ′(i∞). Let N be a positive

integer coprime to M . We define δs,s′(N) := 1 if (M,m) = (M,m′) and there exists an integer

g such that m′N ≡ mg2 mod M . Otherwise we define δs,s′(N) := 0.

Remark 7.3. In the case when M 6= 25, we have δs,s′(N) = 1 if and only if D = D′ and
m ≡ Nm′ mod (M,m2) since (M,m2) | 12 and 1̄ is the unique square element of (Z/12Z)×. In
the case when M = 25, we have δs,s′(N) = 1 if and only if D = D′ and s ≡ ±Ns′ mod Z by
Table 3. Thus δs,s′(N) = 1 if and only if s = s′ ∈ C ′′

0 (M),

M = 9, N ≡ 1 mod 3, s = s′ ∈
{

1

3
,
2

3

}

,

M = 9, N ≡ 1 mod 3,
(

s, s′
)

∈
{(

1

3
,
2

3

)

,

(

2

3
,
1

3

)}

,

M = 16, s = s′ ∈
{

1

2
,
1

8

}

,

M = 16, N ≡ 1 mod 4, s = s′ ∈
{

1

2
,
1

4
,
3

4
,
1

8

}

,

M = 16, N ≡ −1 mod 4,
(

s, s′
)

∈
{(

1

4
,
3

4

)

,

(

3

4
,
1

4

)}

,

M = 18, N ≡ 1 mod 6, s = s′ ∈
{

1

3
,
2

3
,
1

6
,
5

6

}

,

M = 18, N ≡ −1 mod 6,
(

s, s′
)

∈
{(

1

3
,
2

3

)

,

(

2

3
,
1

3

)

,

(

1

6
,
5

6

)

,

(

5

6
,
1

6

)}

,

M = 25, s, s′ ∈
{

1

5
,
2

5
,
3

5
,
4

5

}

, s ≡ ±Ns′ mod Z

by Table 3.

Theorem 7.4. For a positive integer N coprime to M , the modular correspondence T
Γ0(M)
N ⊂

X0(M)×X0(M) satisfies that

T
Γ0(M)
N ⊂ Y0(M)2 ∪ {(s, s′) | δs,s′(N) 6= 0}.

In particular, if M /∈ {9, 16, 18, 25} then a pair of cusps on T
Γ0(M)
N is a form (s, s).

Proof. By (1.2), if (τ, τ ′) ∈ X0(M)×X0(M) is a point of T
Γ0(M)
N , then there exist integers a, b,

and d such that ad = N, 0 ≤ b < d and Γ0(M)τ = Γ0(M)aτ
′+b
d . Thus (τ, τ ′) is a point on

Y0(M)× Y0(M) or a pair of two cusps (s, s′).
Suppose that (τ, τ ′) = (s, s′) is a pair of two cusps. Since N is coprime to M , we have

A :=
(

a b
0 d

)

∈ G0(M). By Proposition 6.3, we have (M,m) = (M,m′) and m′N ≡ m(d,m′a +

Mb)2 mod M and thus δs,s′(N) = 1. �

Finally, we calculate the intersection multiplicity at cusps by Proposition 7.1.

Proposition 7.5. Let N1, N2 be positive integers coprime to M . Suppose that N1N2 is not a

square. Then for two cusps s, s′ in X0(M), we have

(T
Γ0(M)
N1

· TΓ0(M)
N2

)(s,s′) = δs,s′(N1)δs,s′(N2)
∑

a1d1=N1,a2d2=N2

min {a1d2, a2d1}
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unless M = 25 and s, s′ ∈ {1/5, 2/5, 3/5, 4/5}. If M = 25 and s, s′ ∈ {1/5, 2/5, 3/5, 4/5}, then
we have

(T
Γ0(M)
N1

· TΓ0(M)
N2

)(s,s′) = δs,s′(N1)δs,s′(N2)
∑

a1d1=N1,a2d2=N2,
a1s≡d1s′,a2s≡d2s′ mod Z

min {a1d2, a2d1} .

Proof. Let s = m/M, s′ = m′/M ′ with integers 0 ≤ m,m′ < M and W := WM
m ,W ′ := WM

m′ ∈
SL2(R) be generalized Atkin-Lehner involutions. Let Φ

Γ0(M)
Ni

(X,Y ) ∈ Z[X,Y ] be the modular
polynomial whose existence is guaranteed by Theorem 2.1. Then the intersection multiplicity
at (s, s′) is

(T
Γ0(M)
N1

· TΓ0(M)
N2

)(s,s′)

=(T
Γ0(M)
N1

· TΓ0(M)
N2

)(W (∞),W ′(∞))

=dimC C
[[

q, q′
]]

/(Φ
Γ0(M)
Ni

(t ◦W (τ), t ◦W ′(τ ′)) | i = 1, 2)

=
1

N1N2

∑

Ai∈IΓ0(M)
Ni,mat,

Γ0(M)s=Γ0(M)Ai(s′),i=1,2

dimCC
[[

q, q′N1N2

]]

/

(

t ◦W (τ), t ◦AiW
′(τ ′)) | i = 1, 2

)

.

By Proposition 7.1 in the case when A is the identity matrix, the order of t ◦W (τ)− t(s) with
respect to q is 1. Thus we have

C
[[

q, q′N1N2

]]

= C
[[

t ◦W (τ), q′N1N2

]]

.

Hence the intersection multiplicity is

(T
Γ0(M)
N1

· TΓ0(M)
N2

)(s,s′)

=
1

N1N2

∑

Ai∈IΓ0(M)
Ni,mat,

Γ0(M)s=Γ0(M)Ai(s′),i=1,2

dimCC
[[

q′N1N2

]]

/

(

t ◦ A1W
′(τ ′)− t ◦A2W

′(τ ′)
)

=
∑

Ai∈IΓ0(M)
Ni,mat,

Γ0(M)s=Γ0(M)Ai(s
′),i=1,2

(the order of t(A1W
′(τ ′))− t(A2W

′(τ ′)) with respect to q′).

By Proposition 7.1, this is equal to

∑

Ai=
(

ai bi
0 di

)

∈IΓ0(M)
Ni,mat,

Γ0(M)s=Γ0(M)Ai(s′),i=1,2

min
i=1,2

{

(di,m
′ai +Mbi)

2

Ni

}

.

For a positive integer N coprime to M and its positive divisor g, set

A(N, g) := #

{

A =

(

a b
0 d

)

∈ I
Γ0(M)
N,mat

∣

∣

∣

∣

g = (d,m′a+Mb)

}

.

By Proposition 6.3, the intersection multiplicity is

δs,s′(N1)δs,s′(N2)
∑

g1|N1,g2|N2,
m′N1≡mg21,m

′N2≡mg22 mod M

A(N1, g1)A(N2, g2)min

{

g21
N1

,
g22
N2

}

.

Here we have

A(N, g) = #
{

(a, b̄, d)
∣

∣ ad = N, b̄ ∈ Z/dZ, g = (d,m′a+Mb)
}

.

Since the plus m′a map Z/dZ → Z/dZ induces the bijection between
{

b̄ ∈ Z/dZ
∣

∣ g = (d,Mb) = (b, d)
}
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and
{

b̄ ∈ Z/dZ
∣

∣ g = (d,m′a+Mb)
}

,

we have

A(N, g) =
∑

g|d|N
#{b̄ ∈ Z/dZ | g = (b, d)} =

∑

g|d|N
#(Z/(d/g)Z)×

=
∑

e|N/g

#(Z/eZ)× =
N

g
.

Thus the intersection multiplicity is

δs,s′(N1)δs,s′(N2)
∑

g1|N1,g2|N2,
m′N1≡mg21 ,m

′N2≡mg22 mod M

N1

g1

N2

g2
min

{

g21
N1

,
g22
N2

}

=δs,s′(N1)δs,s′(N2)
∑

g1h1=N1,g2h2=N2,
g1s≡h1s′,g2s≡h2s′ mod Z

min {g1h2, g2h1} .

Unless M = 25 and s, s′ ∈ {1/5, 2/5, 3/5, 4/5}, the condition g1s ≡ h1s
′, g2s ≡ h2s

′ mod Z
holds for any g1, h1, g2 and h2. �

8. The class number formulas

In this section, let N1 and N2 be positive integers coprime to M and suppose N1N2 is not a
square.

The intersection number of modular correspondences on X0(M) × X0(M) is calculated as
follows.

Lemma 8.1. We have

(T
Γ0(M)
N1

· TΓ0(M)
N2

)X0(M)×X0(M) = 2σ(N1)σ(N2) =
∑

a1d1=N1,a2d2=N2

(a1d2 + a2d1).

Proof. Since X0(M) has genus zero, X0(M)×X0(M) is isomorphic to P1×P1. The intersection
number of divisors on the algebraic surface P1 × P1 only depends on its degrees. The degree of

the algebraic cycle T
Γ0(M)
Ni

is [SL2(Z) : Γ0(Ni)], which is the same value in the case when M = 1

which is treated in [10]. Thus the intersection number on P1 × P1 is

(T
Γ0(M)
N1

· TΓ0(M)
N2

)P1×P1 = 2σ1(N1)σ1(N2)

by [10, Lemma 3.1]. The last equality follows from the definition of the divisor function σ(N).
�

By combining Proposition 7.5 and Lemma 8.1, we can calculate the intersection number of

T
Γ0(M)
N1

and T
Γ0(M)
N2

on X0(M)×X0(M) as follows.

Theorem 8.2. Unless M = 25 and N1 ≡ ±N2 mod 5, we have

(T
Γ0(M)
N1

· TΓ0(M)
N2

)Y0(M)×Y0(M) = 2
∑

a1d1=N1,a2d2=N2,a1d2>a2d1

(a1d2 − δM (N1, N2)a2d1)
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where

δM (N1, N2) := −1 +
∑

(s,s′)∈C0(M)

δs,s′(N1)δs,s′(N2)

=











































































































0 if M = 1,

1 if M = 2, 3, 5, 7, 13,

2 if M = 4,

3 if M = 6, 8, 10,

3 if M = 9, N1 ≡ N2 mod 3,

1 if M = 9, N1 ≡ −N2 mod 3,

5 if M = 12,

5 if M = 16, N1 ≡ N2 mod 4,

3 if M = 16, N1 6≡ N2 mod 4,

7 if M = 18, N1 ≡ N2 ≡ 1 mod 6,

5 if M = 18, N1 ≡ N2 ≡ −1 mod 6,

3 if M = 18, N1 6≡ N2 mod 6,

1 if M = 25, N1 6≡ ±N2 mod 5.

If M = 25 and N1 ≡ ±N2 mod 5, then

(T
Γ0(25)
N1

· TΓ0(25)
N2

)Y0(25)×Y0(25)

=
∑

a1d1=N1,a2d2=N2

|a1d2 − a2d1| − 4
∑

a1d1=N1,a2d2=N2,
a1d2≡a2d1 mod 5

min {a1d2, a2d1} .

In particular, if M is a prime number p, that is, M = p = 2, 3, 5, 7, 13, we have

(T
Γ0(p)
N1

· TΓ0(p)
N2

)Y0(p)×Y0(p) =
∑

a1d1=N1,a2d2=N2

|a1d2 − a2d1|.

Proof. By Theorem 7.4, the intersection number is

(T
Γ0(M)
N1

· TΓ0(M)
N2

)Y0(M)2

=(T
Γ0(M)
N1

· TΓ0(M)
N2

)P1×P1 −
∑

(s,s′)∈C0(M)2

(T
Γ0(M)
N1

· TΓ0(M)
N2

)(s,s′).

Unless M = 25 and N1 ≡ ±N2 mod 5, the intersection number is
∑

a1d1=N1,a2d2=N2

(a1d2 + a2d1)− (1 + δM (N1, N2))
∑

a1d1=N1,a2d2=N2

min {a1d2, a2d1}

=2
∑

a1d1=N1,a2d2=N2,a1d2>a2d1

(a1d2 − δM (N1, N2)a2d1)

by Proposition 7.5. If M = 25 and N1 ≡ ±N2 mod 5, then the intersection number is

(T
Γ0(25)
N1

· TΓ0(25)
N2

)P1×P1 − (T
Γ0(25)
N1

· TΓ0(25)
N2

)(i∞,i∞) − (T
Γ0(25)
N1

· TΓ0(25)
N2

)(0,0)

−
∑

s,s′∈{1/5,2/5,3/5,4/5}
(T

Γ0(25)
N1

· TΓ0(25)
N2

)(s,s′)

=
∑

a1d1=N1,a2d2=N2

|a1d2 − a2d1| −
∑

s,s′∈{1/5,2/5,3/5,4/5}

∑

a1d1=N1,a2d2=N2,
a1s≡d1s′,a2s≡d2s′ mod Z

min {a1d2, a2d1}

=
∑

a1d1=N1,a2d2=N2

|a1d2 − a2d1| − 4
∑

a1d1=N1,a2d2=N2,
a1d2≡a2d1 mod 5

min {a1d2, a2d1} .
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�

We have the following main Theorem in this paper.

Theorem 8.3. Unless M = 25 and N1 ≡ ±N2 mod 5, we have

∑

x∈Z, x2<4N1N2

∑

d|(N1,N2,x)

d ·HM

(

4N1N2 − x2

d2

)

= 2
∑

a1d1=N1,a2d2=N2,a1d2>a2d1

(a1d2 − δM (N1, N2)a2d1)

where δM (N1, N2) is defined in Theorem 8.2. If M = 25 and N1 ≡ ±N2 mod 5, then

∑

x∈Z, x2<4N1N2

∑

d|(N1,N2,x)

d ·H25

(

4N1N2 − x2

d2

)

=
∑

a1d1=N1,a2d2=N2

|a1d2 − a2d1| − 8
∑

a1d1=N1,a2d2=N2,a1d2>a2d1,
a1d2≡a2d1 mod 5

a2d1.

Proof. It follows from Theorem 2.2 and Theorem 8.2. �

Theorem 1.1 is the special case in this theorem.

9. Explicit computation of HM (D) for some M

In this section, we give a method to compute the Hurwitz class number HM (D) for M when
2 ≤ M ≤ 10 or M ∈ {12, 13, 16, 18, 25}.

If the level is a prime number p ∈ {2, 3, 5, 7, 13}, then Hp(D) can be calculated from H(D)
by the following theorem.

Theorem 9.1 ([4, Lemma 3.2]). For a prime number p ∈ {2, 3, 5, 7, 13} and a positive integer

D ≡ 0, 3 mod 4, we have

Hp(D) =

(

1 +

(−D

p

))(

H(D) + p ·H
(

D

p2

))

.

Here we define H(D/p2) := 0 if p2 ∤ D.

This theorem is slightly different from the original statement of [4, Lemma 3.2]. See also a
proof of [12, Proposition 3.3].

In general, we can calculate the Hurwitz class number HM (D) by considering a fundamental
domain of Γ0(M). The following elementary lemma is useful for computing HM (D).

Lemma 9.2. Let D ≡ 0, 3 mod 4 be a positive integer, [Ma, b, c] ∈ QM
−D,>0 with a, c ≥ 1 and

wQ :=
−b+

√
−D

2Ma
.

For positive integers m and n, if
∣

∣

∣
wQ ± m

n

∣

∣

∣
≥ 1

n
,

then ±b ≤ ka+ lc where

k :=
M(m2 − 1)

mn
, l :=

n

m
.

Moreover, if m ≥ 2, |b| ≤ ka+ lc, and r−c+ t− ≤ a ≤ r+c− t+ with t+, t− > 0 and

r+ :=
1

M

(

n

m− 1

)2

, r− :=
1

M

(

n

m+ 1

)2

,

then a ≤ D/C where

C := min

{

t+

(

k2 − l2

r+(r+ − t+)

)

, −t−

(

k2 − l2

r−(r− + t−)

)}

.
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Proof. By direct calculation, the condition
∣

∣

∣
wQ ± m

n

∣

∣

∣
≥ 1

n

is equivalent to Mam2 ∓ bmn+ cn2 ≥ Ma, that is, ±b ≤ ka+ lc.
Suppose m ≥ 2 and |b| ≤ ka+ lc. Let f(x) := k2x+ l2/x. Then we have

D ≥ 4Mac − (ka+ lc)2 = ac
(

4M − 2kl − f
(a

c

))

.

By direct calculation, f(x) = 4M−2kl if and only if x = r+ or x = r−. Moreover, if r− ≤ x ≤ l/k
then f(x) is monotonic decreasing and if l/k ≤ x ≤ r+ then f(x) is monotonic increasing by
elementary calculus. For t+, t− > 0, we have

f

(

r− +
t−
c

)

= f(r−) +
t−
c

(

k2 − l2

r−(r− + t−/c)

)

≤ f(r−) +
t−
c

(

k2 − l2

r−(r− + t−)

)

and

f

(

r+ − t+
c

)

= f(r+)−
t+
c

(

k2 − l2

r+(r+ − t+/c)

)

≤ f(r+) +
t+
c

(

k2 − l2

r+(r+ − t+)

)

.

Hence if r−c+ t− ≤ a ≤ r+c− t+, then

D ≥ ac
(

4M − 2kl − f
(a

c

))

≥ aC.

�

Here we calculate HM (D) when M is a composite number by the following lemma.

Lemma 9.3. Let D ≡ 0, 3 mod 4 be a positive integer.

(i) The set
{

[4a, b, c] ∈ Q4
−D,>0

∣

∣

∣

∣

∣

|b| ≤ 4min{a, c},
if |b| = 4min{a, c} then 0 ≤ b

}

is a complete system of representatives of Q4
−D,>0/Γ0(4). Moreover, if [4a, b, c] is an

element of this set, then a, c ≤ (D + 1)/8.
(ii) The set

{

[6a, b, c] ∈ Q6
−D,>0

∣

∣

∣

∣

∣

|b| ≤ 6min{a, c, (2/5)(a + c)},
if |b| = 6min{a, c, (2/5)(a + c)} then 0 ≤ b

}

is a complete system of representatives of Q6
−D,>0/Γ0(6). Moreover, if [6a, b, c] is an

element of this set, then a, c ≤ (25/24)D.

(iii) The set










[8a, b, c] ∈ Q8
−D,>0

∣

∣

∣

∣

∣

∣

∣

|b| ≤ 8a,−8c ≤ b ≤ 4c,−(8/7)(2a + 3c) ≤ b,−(4/5)(4a + 3c) ≤ b

if b ∈ {±8a,−8c, 4c,−(8/7)(2a + 3c),−(4/5)(4a + 3c)}
then − 4a ≤ b











is a complete system of representatives of Q8
−D,>0/Γ0(8). Moreover, if [8a, b, c] is an

element of this set, then a, c ≤ (245/96)D.

(iv) The set
{

[9a, b, c] ∈ Q9
−D,>0

∣

∣

∣

∣

∣

|b| ≤ 9min{a, c, (2/5)(3a + 2c)},
if |b| = 9min{a, c, (2/5)(3a + 2c)} then 0 ≤ b

}

is a complete system of representatives of Q9
−D,>0/Γ0(9). Moreover, if [9a, b, c] is an

element of this set, then a, c ≤ (25/72)D.
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(v) The set











[10a, b, c] ∈ Q10
−D,>0

∣

∣

∣

∣

∣

∣

∣

|b| ≤ 10min{a, (3/5)c, (1/11)(4a + 3c), (2/9)(2a + c)},
if |b| = 10min{a, (3/5)c, (1/11)(4a + 3c), (2/9)(2a + c)}

then (20/3)a ≤ b or |b| ≤ 6a











is a complete system of representatives of Q10
−D,>0/Γ0(10). Moreover, if [10a, b, c] is an

element of this set, then a, c ≤ (121/35)D.

(vi) The set



















[12a, b, c] ∈ Q12
−D,>0

∣

∣

∣

∣

∣

∣

∣

∣

∣

|b| ≤ min{12a, (12/5)(2a + c), (24/7)(a + c)},
−12c ≤ b ≤ 8c, b ≥ max{−(12/11)(2a + 5c),−(8/9)(3a + 5c)},

if |b| = min{12a, (12/5)(2a + c), (24/7)(a + c)}, b = −12c, b = 8c or

b = max{−(12/11)(2a + 5c),−(8/9)(3a + 5c)}, then − 4a ≤ b ≤ 12a



















is a complete system of representatives of Q12
−D,>0/Γ0(12). Moreover, if [12a, b, c] is an

element of this set, then a, c ≤ (1573/240)D.

(vii) The set































[16a, b, c] ∈ Q16
−D,>0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

|b| ≤ min{16a, 8c, (8/7)(4a + 3c)}, b ≤ (4/5)(8a + 3c),

b ≥ max{−(48/17)(2a + c),−(16/31)(12a + 5c),−(4/9)(16a + 5c)},
if |b| = min{16a, 8c, (8/7)(4a + 3c)}, b = (4/5)(8a + 3c) or

b = max{−(48/17)(2a + c),−(16/31)(12a + 5c)},
then |b| ≤ 8a, b ≥ (32/3)a or − 12a ≤ b ≤ −(32/3)a































is a complete system of representatives of Q16
−D,>0/Γ0(16). Moreover, if [16a, b, c] is an

element of this set, then a, c ≤ D.

(viii) The set



































[18a, b, c] ∈ Q18
−D,>0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

|b| ≤ min

{

18a, 12c, (12/11)(3a + 5c), (18/19)(4a + 5c),

(12/7)(3a + 2c), (12/5)(3a + c), (72/17)(a + c)

}

,

if |b| = min

{

18a, 12c, (12/11)(3a + 5c), (18/19)(4a + 5c),

(12/7)(3a + 2c), (12/5)(3a + c), (72/17)(a + c)

}

,

then |b| ≤ 6a, (36/5)a ≤ b ≤ 9a, 12a ≤ |b| < 18a or b = 18a



































is a complete system of representatives of Q18
−D,>0/Γ0(18). Moreover, if [18a, b, c] is an

element of this set, then a, c ≤ (361/45)D.

(ix) The set



































[25a, b, c] ∈ Q25
−D,>0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

|b| ≤ min

{

25a, 10c, (10/9)(5a + 4c), (2/7)(25a + 12c),

(10/11)(10a + 3c), (20/9)(5a + c)

}

,

if |b| = min

{

25a, 10c, (10/9)(5a + 4c), (2/7)(25a + 12c),

(10/11)(10a + 3c), (20/9)(5a + c)

}

,

then |b| ≤ 10a, 14a ≤ |b| ≤ 20a or b = 25a



































is a complete system of representatives of Q25
−D,>0/Γ0(25). Moreover, if [25a, b, c] is an

element of this set, then a, c ≤ (968/175)D.

Proof. Firstly, we get a complete system of representatives of QM
−D,>0/Γ0(M) in each case

by Lemma 9.2 since we have fundamental domains of Γ0(4),Γ0(6),Γ0(8),Γ0(9),Γ0(10),Γ0(12),
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Γ0(16), Γ0(18), and Γ0(25) as
{

τ ∈ H

∣

∣

∣

∣

∣

|Re(τ)| ≤ 1/2, |τ ± 1/4| ≥ 1/4,

if |Re(τ)| = 1/2 or |τ ± 1/4| = 1/4 then Re(τ) ≤ 0

}

,

{

τ ∈ H

∣

∣

∣

∣

∣

|Re(τ)| ≤ 1/2, |τ ± 1/6| ≥ 1/6, |τ ± 5/12| ≥ 5/12,

if |Re(τ)| = 1/2, |τ ± 1/6| = 1/6 or |τ ± 5/12| ≥ 5/12 then Re(τ) ≤ 0

}

,



















τ ∈ H

∣

∣

∣

∣

∣

∣

∣

∣

∣

|Re(τ)| ≤ 1/2, |τ + 1/4| ≥ 1/4, |τ − 1/8| ≥ 1/8,

|τ − 7/24| ≥ 1/24, |τ − 5/12| ≥ 1/12,

if |Re(τ)| = 1/2, |τ + 1/4| = 1/4, |τ − 1/8| = 1/8, |τ − 7/24| = 1/24

or |τ − 5/12| = 1/12 then Re(τ) ≤ 1/4



















,

{

τ ∈ H

∣

∣

∣

∣

∣

|Re(τ)| ≤ 1/2, |τ ± 1/6| ≥ 1/6, |τ ± 5/12| ≥ 5/12,

if |Re(τ)| = 1/2, |τ ± 1/6| = 1/6 or |τ ± 5/12| ≥ 5/12 then Re(τ) ≤ 0

}

,

(9.1)











τ ∈ H

∣

∣

∣

∣

∣

∣

∣

|Re(τ)| ≤ 1/2, |τ ± 1/6| ≥ 1/6, |τ ± 11/30| ≥ 1/30, |τ ± 9/20| ≥ 1/20,

if |Re(τ)| = 1/2, |τ ± 1/6| = 1/6, |τ ± 11/30| = 1/30 or |τ ± 9/20| = 1/20

then Re(τ) ≤ −1/3 or |Re(τ)| ≤ 3/10











,































τ ∈ H

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

|Re(τ)| ≤ 1/2, |τ ± 5/12| ≥ 1/12, |τ ± 7/24| ≥ 1/24, |τ + 1/8| ≥ 1/8,

|τ − 1/12| ≥ 1/12, |τ − 11/60| ≥ 1/60, |τ − 9/40| ≥ 1/40,

if |Re(τ)| = 1/2, |τ ± 5/12| = 1/12, |τ ± 7/24| = 1/24, |τ + 1/8| = 1/8,

|τ − 1/12| = 1/12, |τ − 11/60| = 1/60 or |τ − 9/40| = 1/40

then − 1/2 ≤ Re(τ) ≤ 1/6































,































τ ∈ H

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

|Re(τ)| ≤ 1/2, |τ ± 1/8| ≥ 1/8, |τ ± 7/24| ≥ 1/24, |τ + 5/12| ≥ 1/12,

|τ − 17/48| ≥ 1/48, |τ − 31/80| ≥ 1/80, |τ − 9/20| ≥ 1/20,

if |Re(τ)| = 1/2, |τ ± 1/8| = 1/8, |τ ± 7/12| = 1/24, |τ + 5/12| = 1/12,

|τ − 17/48| = 1/48, |τ − 31/80| = 1/80 or |τ − 9/20| = 1/20,

then |Re(τ)| ≤ 1/4,Re(τ) ≤ −1/3 or 1/3 ≤ Re(τ) ≤ 3/8































,































τ ∈ H

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

|Re(τ)| ≤ 1/2, |τ ± 1/12| ≥ 1/12, |τ ± 11/60| ≥ 1/60,

|τ ± 19/90| ≥ 1/90, |τ ± 17/72| ≥ 1/72, |τ ± 7/24| ≥ 1/24, |τ ± 5/12| ≥ 1/12,

if |Re(τ)| = 1/2, |τ ± 1/12| = 1/12, |τ ± 11/60| = 1/60,

|τ ± 19/90| = 1/90, |τ ± 17/72| = 1/72, |τ ± 7/24| = 1/24 or |τ ± 5/12| = 1/12,

then |Re(τ)| ≤ 1/6,−1/4 ≤ Re(τ) ≤ −1/5, 1/3 ≤ |Re(τ)| < 1/2 or |Re(τ)| = −1/2































,

and

(9.2)































τ ∈ H

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

|Re(τ)| ≤ 1/2, |τ ± 1/10| ≥ 1/10, |τ ± 9/40| ≥ 1/40,

|τ ± 7/24| ≥ 1/24, |τ ± 11/30| ≥ 1/30, |τ ± 9/20| ≥ 1/20,

if |Re(τ)| = 1/2, |τ ± 1/10| = 1/10, |τ ± 9/40| = 1/40,

|τ ± 7/24| = 1/24, |τ ± 11/30| = 1/30 or |τ ± 9/20| = 1/20,

then |Re(τ)| ≤ 1/5, 7/25 ≤ |Re(τ)| ≤ 2/5 or |Re(τ)| = −1/2































by using the algorithm in [9] which is based on the theory of Farey symbols in [8] and is
implemented for Sage [14] by Chris A. Kurth.

Secondly, we bound a and c in each case.
(i). For a quadratic form [4a, b, c], (−b+

√
b2 − 4ac)/2 is a point of above fundamental domain

if and only if [4a, b, c] is an element of the set in statement. In this case, if a > c then

D = −b2 + 16ac ≥ −16c2 + 16ac = 16c(a − c)
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and thus we have c ≤ D/16 and a− c ≤ D/16. Then we obtain c < a ≤ D/8. Similarly, if a < c
then we have a < c ≤ D/8. If a = c, then |b| ≤ 4a− 1 since 0 < D = −b2+16a2. Thus we have
D ≥ −(4a− 1)2 + 16a2 = 8a− 1.

For other cases, we have the boundings by Lemma 9.2 and similar argument in (i). For (ii),
we have:

(a) If 3a < 2c or 3c < 2a, then a, c ≤ D/6.
(b) If 3a = 2c or 3c = 2a, then a, c ≤ (D + 1)/8.
(c) If 2a ≤ 2c < 3a or 2c ≤ 2a < 3c, then a, c ≤ (25/24)D.

For (iii), we have:

(a) If 2a < c or 2c < a, then a, c ≤ (3/16)D.
(b) If 2a = c or 2c = a, then a, c ≤ (D + 1)/8.
(c) If c < 2a and b ≥ 0, then a, c ≤ D/16.
(d) If 4c < 8a < 9c and b ≤ 0, then a, c ≤ (25/16)D.
(e) If 9c < 8a < 16c and b ≤ 0, then a, c ≤ (245/96)D.

For (iv), we have:

(a) If 9a < 4c, then a, c ≤ (5/18)D.
(b) If 9a = 4c, then a, c ≤ (D + 1)/4.
(c) If 4a < 4c < 9a, then a, c ≤ (25/72)D.
(d) If a = c, then a, c ≤ (D + 1)/6.
(e) If c < a, then a, c ≤ D/18.

For (v), we have:

(a) If 5a < 2c, then a, c ≤ (3/20)D.
(b) If 5a = 2c, then a, c ≤ (D + 1)/8.
(c) If (2/5)c < a < (5/8)c, then a, c ≤ (81/40)D.
(d) If 8a = 5c, then a, c ≤ (D + 1)/10.
(e) If (5/8)c < a < (9/10)c , then a, c ≤ (121/35)D.
(f) If 10a = 9c, then a, c ≤ (D + 1)/12.
(g) If 9c < 10a, then a, c ≤ D/4.

For (vi), we have:

(a) If 3a < c or 3c < a, then a, c ≤ D/12.
(b) If 3a = c or 3c = a, then a, c ≤ (D + 1)/8.
(c) If (1/3)c < a < (3/4)c, then a, c ≤ (25/8)D.
(d) If a = (3/4)c or a = (4/3), then a, c ≤ (D + 1)/12.
(e) If (3/4)c < a < (4/3)c, then a, c ≤ (49/36)D.
(f) If (4/3)c < a < (25/12)c, then a, c ≤ (243/64)D.
(g) If a = (25/12)c, then a, c ≤ (3/125)(D + 1).
(h) If (25/12)c < a < 3c, then a, c ≤ (1573/240)D.

For (vii), we have:

(a) If 4a < c, then a, c ≤ (5/64)D.
(b) If 4a = c, then a, c ≤ (D + 1)/8.
(c) If (1/4)c < a < (9/16)c, then a, c ≤ (25/32)D.
(d) If 16a = 9c, then a, c ≤ (D + 1)/12.
(e) If (9/16)c < a < c, then a, c ≤ (245/192)D.
(f) If a = c, then a, c ≤ (D + 1)/32.
(g) If c < a, then a, c ≤ D/32.

For (viii), we have:

(a) If 9a < 2c, then a, c ≤ (5/36)D.
(b) If 9a = 2c, then a, c ≤ (D + 1)/8.
(c) If (2/9)c < a < (1/2)c, then a, c ≤ (425/72)D.
(d) If 2a = c or a = 2c, then a, c ≤ (D + 1)/24.
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(e) If (1/2)c < a < (8/9)c, then a, c ≤ (686/360)D.
(f) If 9a = 8c or 8a = 9c, then a, c ≤ (D + 1)/16.
(g) If (8/9)c < a < (9/8)c, then a, c ≤ (289/64)D.
(h) If (9/8)c < a < (25/18)c, then a, c ≤ (361/45)D.
(i) If 18a = 25c, then a, c ≤ (5/72)(D + 1).
(j) If (25/18)c < a < 2c, then a, c ≤ (1573/360)D.
(k) If 2c < a, then a, c ≤ D/24.

For (ix), we have:

(a) If 25a < 4c, then a, c ≤ (3/50)D.
(b) If 25a = 4c, then a, c ≤ (D + 1)/80.
(c) If (4/25)c < a < (1/4)c, then a, c ≤ (81/16)D.
(d) If 4a = c, then a, c ≤ (D + 1)/100.
(e) If (1/4)c < a < (9/25)c, then a, c ≤ (968/175)D.
(f) If 25a = 9c, then a, c ≤ (D + 1)/120.
(g) If 9c < 25a < 16c, then a, c ≤ (245/72)D.
(h) If 25a = 16c, then a, c ≤ (D + 1)/160.
(i) If c < a, then a, c ≤ D/100.

�

To compute HM (D), we need a criterion whether the stabilizer Γ0(M)Q is non-trivial for a
quadratic form Q ∈ QM

−D,>0. Such quadratic forms correspond to elliptic points for Γ0(M). By

[6, Corollary 3.7.2], Γ0(M) has no elliptic points for M ∈ {4, 6, 8, 9, 12, 16, 18} and has exactly
2 elliptic points of period 2 and no elliptic points of period 3 for M ∈ {10, 25}. For M = 10,
elliptic points in the fundamental domain in (9.1) are (±3 +

√
−1)/10 whose corresponding

quadratic forms are [10,∓6, 1]. For M = 25, elliptic points in the fundamental domain in (9.2)
are (±7 +

√
−1)/25 whose corresponding quadratic forms are [25,∓14, 2].

We show H(D) and HM (D) for a positive integer D ≤ 50 in Tables 4 and 5.

10. Examples

In this section, we give several examples of our formula in Theorem 1.1 and give conjectures
for a square N .

To extend our formula in Theorem 1.1 for a square N , we need to define HM (0).
In the case when the level is 1, put the 0th Hurwitz class number H(0) := −1/12. Then

Hurwitz-Eichler relation (1.1) holds for a square N :

∑

x∈Z, x2≤4N

H(4N − x2) =
∑

ad=N

max{a, d}.

Similarly, we define the Hurwitz class number HM (0) for M with 2 ≤ M ≤ 10 or M ∈
{12, 13, 16, 18, 25} by

(10.1) HM (0) := − [SL2(Z) : Γ0(M)]

12
= −M

12

∏

p|M

(

1 +
1

p

)

.

Under this definition, we calculate

S(N) :=
∑

x∈Z, x2≤4N

H
(

4N − x2
)

, SM (N) :=
∑

x∈Z, x2≤4N

HM
(

4N − x2
)

for a positive integer N ≤ 12 in Table 6 and Table 7. We can confirm that Theorem 1.1 holds
for square-free N coprime to M .

Here we have the following conjecture which treats the case when N is a square.
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Conjecture 10.1. Let M be 2 ≤ M ≤ 10 or M ∈ {12, 13, 16, 18, 25} and N be a positive

integer coprime to M . We put the number δM (1, N) as in Theorem 8.2 and the Hurwitz class

number HM (0) as in (10.1). Unless M = 25 and N ≡ ±1 mod 5, we have
∑

x∈Z, x2≤4N

HM
(

4N − x2
)

=
∑

ad=1

(max{a, d} − δM (1, N)min{a, d})

and if M = 25 and N ≡ ±1 mod 5, we have
∑

x∈Z, x2≤4N

H25
(

4N − x2
)

=
∑

ad=N

|a− d| − 4
∑

ad=N,a≡d mod 5

min {a, d} .
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Table 4. H(D) and HM (D) for positive integers D ≤ 100.

D H(D) H2(D) H3(D) H4(D) H5(D) H6(D) H7(D) H8(D)
0 −1/12 −1/4 −1/3 −1/2 −1/2 −1 −2/3 −1
3 1/3 0 1/3 0 0 0 2/3 0
4 1/2 1/2 0 0 1 0 0 0
7 1 2 0 2 0 0 1 2
8 1 1 2 0 0 2 0 0
11 1 0 2 0 2 0 0 0
12 4/3 2 4/3 2 0 2 8/3 0
15 2 4 2 4 2 4 0 4
16 3/2 5/2 0 3 3 0 0 2
19 1 0 0 0 2 0 2 0
20 2 2 4 0 2 4 4 0
23 3 6 6 6 0 12 0 6
24 2 2 2 0 4 2 4 0
27 4/3 0 7/3 0 0 0 8/3 0
28 2 4 0 6 0 0 2 8
31 3 6 0 6 6 0 6 6
32 3 5 6 6 0 10 0 4
35 2 0 4 0 2 0 2 0
36 5/2 5/2 4 0 5 4 0 0
39 4 8 4 8 8 8 0 8
40 2 2 0 0 2 0 4 0
43 1 0 0 0 0 0 0 0
44 4 6 8 6 8 12 0 0
47 5 10 10 10 0 20 10 10
48 10/3 6 10/3 7 0 6 20/3 8
51 2 0 2 0 4 0 0 0
52 2 2 0 0 0 0 4 0
55 4 8 0 8 4 0 8 8
56 4 4 8 0 8 8 4 0
59 3 0 6 0 6 0 6 0
60 4 8 4 12 4 8 0 16
63 5 10 8 10 0 16 5 10
64 7/2 13/2 0 9 7 0 0 10
67 1 0 0 0 0 0 0 0
68 4 4 8 0 0 8 8 0
71 7 14 14 14 14 28 0 14
72 3 3 6 0 0 6 0 0
75 7/3 0 7/3 0 4 0 14/3 0
76 4 6 0 6 8 0 8 0
79 5 10 0 10 10 0 0 10
80 6 10 12 12 6 20 12 8
83 3 0 6 0 0 0 6 0
84 4 4 4 0 8 4 4 0
87 6 12 6 0 0 12 12 12
88 2 2 0 0 0 0 0 0
91 2 0 0 0 4 0 2 0
92 6 12 12 18 0 24 0 24
95 8 16 16 16 8 32 0 16
96 6 10 6 12 12 10 12 8
99 3 0 6 0 6 0 0 0
100 5/2 5/2 0 0 5 0 0 026



Table 5. HM (D) for positive integers D ≤ 100.

D H9(D) H10(D) H12(D) H13(D) H16(D) H18(D) H25(D)
0 −1 −3/2 −2 −7/6 −2 −3 −5/2
3 0 0 0 2/3 0 0 0
4 0 1 0 1 0 0 1
7 0 0 0 0 2 0 0
8 2 0 0 0 0 2 0
11 2 0 0 0 0 0 2
12 0 0 2 8/3 0 0 0
15 0 4 4 0 4 0 0
16 0 5 0 3 0 0 3
19 0 0 0 0 0 0 2
20 4 2 0 0 0 4 0
23 6 0 12 6 6 12 0
24 0 4 0 0 0 0 4
27 4 0 0 8/3 0 0 0
28 0 0 0 0 8 0 0
31 0 12 0 0 6 0 6
32 6 0 12 0 0 10 0
35 4 0 0 4 0 0 0
36 6 5 0 5 0 6 5
39 0 16 8 4 8 0 8
40 0 2 0 4 0 0 0
43 0 0 0 2 0 0 0
44 8 12 12 0 0 12 8
47 10 0 20 0 10 20 0
48 0 0 7 20/3 8 0 0
51 0 0 0 4 0 0 4
52 0 0 0 2 0 0 0
55 0 8 0 8 8 0 0
56 8 8 0 8 0 8 8
59 6 0 0 0 0 0 6
60 0 8 12 0 16 0 0
63 12 0 16 0 10 24 0
64 0 13 0 7 12 0 7
67 0 0 0 0 0 0 0
68 8 0 0 8 0 8 0
71 14 28 28 0 14 28 14
72 12 0 0 0 0 12 0
75 0 0 0 14/3 0 0 10
76 0 12 0 0 0 0 8
79 0 20 0 10 0 0 10
80 12 10 24 0 24 20 0
83 6 0 0 0 0 0 0
84 0 8 0 0 0 0 8
87 0 0 12 12 12 0 0
88 0 0 0 4 0 0 0
91 0 0 0 2 0 0 4
92 12 0 36 12 36 24 0
95 16 16 32 16 32 32 0
96 0 20 10 0 12 0 12
99 12 0 0 0 0 0 6
100 0 5 0 5 0 0 1527



Table 6. S(N) and SM (N) for positive integers N ≤ 25.

N S(N) S2(N) S3(N) S4(N) S5(N) S6(N) S7(N) S8(N)
1 1 0 0 −1 0 −2 0 −2
2 4 6 2 4 2 2 2 4
3 6 4 10 2 4 6 4 0
4 10 18 6 18 6 10 6 12
5 10 8 8 6 18 4 8 4
6 18 28 30 20 12 46 12 20
7 14 12 12 10 12 8 26 8
8 24 46 18 52 18 34 18 52
9 21 16 40 11 16 30 16 6
10 30 48 24 36 54 36 24 36
11 22 20 20 18 20 16 20 16
12 44 80 74 83 32 134 32 64
13 26 24 24 20 24 20 24 20
14 42 68 36 52 36 56 78 52
15 40 32 68 24 72 52 32 16
16 52 102 42 118 42 82 42 132
17 34 32 32 30 32 28 32 28
18 66 106 126 80 54 202 54 80
19 38 36 36 34 36 32 36 32
20 70 128 56 136 126 100 56 108
21 56 48 96 38 48 80 104 32
22 66 108 60 60 60 96 60 84
23 46 44 44 42 44 40 44 40
24 100 192 170 196 80 326 80 224
25 55 48 48 41 108 34 48 34
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Table 7. SM (N) for positive integers N ≤ 25.

N S9(N) S10(N) S12(N) S13(N) S16(N) S18(N) S25(N)
1 −2 −2 −4 0 −4 −6 −4
2 2 2 0 2 4 2 2
3 8 0 2 4 0 4 4
4 −2 10 8 6 8 −6 −2
5 8 14 0 8 0 4 16
6 24 16 32 12 20 36 4
7 8 8 4 12 8 0 12
8 18 34 36 18 44 34 18
9 44 6 20 16 −4 28 4
10 12 86 24 24 36 12 48
11 20 16 12 20 16 16 12
12 60 56 139 32 56 108 32
13 20 20 14 50 16 12 24
14 36 56 40 36 52 56 20
15 56 56 36 32 16 40 64
16 22 82 90 42 132 42 18
17 32 28 24 32 24 28 32
18 144 82 152 54 80 228 54
19 32 32 28 36 32 24 36
20 56 230 104 56 104 100 112
21 80 32 62 48 64 64 40
22 48 96 72 60 64 72 60
23 44 40 36 44 52 40 44
24 140 152 370 80 308 268 40
25 34 94 16 48 44 6 126
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