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Hurwitz numbers: on the edge between

combinatorics and geometry

Sergei K. Lando ∗

Abstract. Hurwitz numbers were introduced by A. Hurwitz in the end of the nineteenth
century. They enumerate ramified coverings of two-dimensional surfaces. They also have
many other manifestations: as connection coefficients in symmetric groups, as numbers
enumerating certain classes of graphs, as Gromov–Witten invariants of complex curves.
Hurwitz numbers belong to a tribe of numerical sequences that penetrate the whole body
of mathematics, like multinomial coefficients. They are indexed by partitions, or, more
generally, by tuples of partitions, which does not allow one to overview all of them simul-
taneously. Instead, we usually deal with some of their specific subsequences. The Cayley
numbers NN−1 enumerating rooted trees on N marked vertices is may be the simplest
such instance. The corresponding exponential generating series has been considered by
Euler and he gave it the name of Lambert function. Certain series of Hurwitz numbers
can be expressed by nice explicit formulas, and the corresponding generating functions
provide solutions to integrable hierarchies of mathematical physics. The paper surveys
recent progress in understanding Hurwitz numbers.
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1. Hurwitz numbers

Since their introduction by A. Hurwitz in the end of the 19th century [23, 24],
the numbers experienced attraction of prominent mathematicians, like H. Weyl,
as well as long periods of neglect. During these periods, the efforts of A. Mednykh
(see e.g., [39]) were rare attempts to improve our understanding of their nature.
The situation changed dramatically in the beginning of 1990’s, when the reviving
of interest has been strongly supported by demands from mathematical physics,
group theory, and algebraic geometry simultaneously. The present paper is devoted
to a description of the progress made in the last couple of decades. This progress
is a result of joint efforts of many people all over the world.
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In this section we give the definition of Hurwitz numbers and discuss some of
their combinatorial aspects.

1.1. Simple and general Hurwitz numbers. Let SN denote the sym-
metric group consisting of permutations of N elements {1, 2, . . . , N}. Any permu-
tation σ ∈ SN can be represented as a product of transpositions, and there are
many such representations. For a given m, we are interested in enumeration of
m-tuples of transpositions η1, . . . , ηm whose product is a given permutation σ,

σ = ηm ◦ · · · ◦ η1.

The following statements are clear:

• the number of such representations depends on the cyclic type of the permu-
tation σ rather than on the permutation itself;

• there is a minimal number mmin = mmin(σ) for which such a representation
exists, and this minimal number is N − c(σ), where c(σ) is the number of
cycles in σ. Indeed, the minimal number of transpositions whose product is
a cycle of length l is l − 1;

• all values of m for which the number of representations is nonzero have the
same parity, which coincides with the parity of the permutation σ.

Now we are ready to give a precise definition of a simple Hurwitz number.

Definition 1. Let µ be a partition, µ ` |µ|. The simple Hurwitz number h◦m;µ is
defined as

h◦m;µ =
1
|µ|!

∣∣{(η1, . . . , ηm), ηi ∈ C2(S|µ|)|ηm ◦ · · · ◦ η1 ∈ Cµ(S|µ|)}
∣∣ .

Here C2(S|µ|) denotes the set of all transpositions in S|µ|, and Cµ(S|µ|) is the
set of all permutations of cyclic type µ ` |µ| in S|µ|, so that, in particular,
C2(S|µ|) = C1|µ|−221(S|µ|). The connected simple Hurwitz number hm;µ is defined
in a similar way, but we take into account only m-tuples of transpositions such
that the subgroup 〈η1, . . . , ηm〉 ⊆ S|µ| they generate acts transitively on the set
{1, . . . , |µ|}.
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The terminology has a topological origin and will be explained later. Below,
we denote partitions in one of the two equivalent ways: either as a sequence of
decreasing parts, µ = (µ1, µ2, . . . ), where µ1 ≥ µ2 ≥ . . . , with only finitely many
nonzero parts, or in the multiplicative form 1k12k2 . . . , where ki denotes the mul-
tiplicity of the part i in the partition, all but finitely many multiplicities being 0
(and the corresponding parts omitted in the notation).

In slightly different terms, Hurwitz numbers enumerate ordered factorizations
of permutations of given cyclic type into transpositions, while connected Hurwitz
numbers enumerate those factorizations that are transitive.

Hurwitz numbers are not necessarily integers. This is true even for the simplest
case,

h◦1;21 = h1;21 =
1
2
· 1 =

1
2
.

More generally, for a tuple µ1, . . . , µm of partitions of N , one can consider
general Hurwitz numbers enumerating representations of the identity permutation
as the product of the form σm ◦ · · · ◦ σ1, where each permutation σi has the cyclic
type µi, 1 ≤ i ≤ m. (For simple Hurwitz numbers, all the permutations but one
are transpositions, and the last permutation is σ−1, whose cyclic type coincides
with that of σ). The general Hurwitz number is defined as the number of m-tuples
of permutations σ1, . . . , σm of given cyclic types whose product is the identity
permutation, divided by N !. Connected Hurwitz numbers are defined similarly,
but with the restriction that the subgroup 〈σ1, . . . , σm〉 ⊆ SN generated by the
permutations σi must act transitively. We do not introduce notation for general
Hurwitz numbers, since we are not going to use them in our survey.

It is also worth mentioning other kinds of Hurwitz numbers, like real Hurwitz
numbers (see e.g., [1]) or tropical Hurwitz numbers [5], but we are not going to
discuss them in detail.

1.2. Topological interpretation. Hurwitz numbers naturally arise in the
enumeration problem for ramified coverings of the 2-sphere. Below, a surface means
an oriented two-dimensional manifold. A continuous mapping β : E1 → E2 of two
surfaces is called a covering if it is an orientation preserving local homeomorphism,
that is, for each point t ∈ E2 there is a disk neighborhood U = U(t) ⊂ E2 such
that its total preimage β−1(U) ⊂ E1 is a disjoint union of disks, and the restriction
of β to each of these disks is an orientation preserving homeomorphism. If E2 is
connected, then the number of disks in the preimage of any disk neighborhood U
is the same whatever is the point t, and this number (which may well be infinite)
is called the degree of the covering.

From the point of view of topology, a smooth projective complex curve is a
compact surface. Every nonconstant holomorphic mapping β : E1 → E2 of two
complex curves E1, E2 is a ramified covering, meaning that it becomes a covering
after puncturing E2 at finitely many points and E1 at their preimages under β.
Locally, at a neighborhood of each point in E1, a ramified covering looks like
z 7→ zk, for an appropriate choice of complex local coordinates in the source and
the target. For all but finitely many points in E1, the value of k is 1, and it is
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greater than 1 for some preimages of the punctures. It is called the degree of the
preimage.

For any point t ∈ E2, the sum of the degrees of all its preimages is the same,
and it is called the degree of the ramified covering. In other words, the degrees
of the preimages of any point form a partition of the degree of the covering. For
a ramified covering of degree N , all partitions different from 1N constitute the
ramification type of the covering. We say that a ramification point in the target
surface E2 is non-degenerate if the corresponding partition is 1N−221, that is, if
there is one preimage of degree 2, and N − 2 preimages at which the mapping
is unramified. Otherwise, the ramification point is said to be degenerate. Below,
we shall consider finite ramified coverings of the 2-sphere S2 by compact oriented
two-dimensional surfaces.

Consider the ramified covering z 7→ zk of the unit disk by the unit disk. As a
nonzero point in the target disk goes around 0 and returns to its initial position,
its k preimages experience a cyclic permutation of length k. This property allows
one to associate to a ramified covering of the sphere a tuple of permutations.

Let β : E → S2 be a ramified covering of degree N , and let t1, . . . , tm ∈ S2

be all its points of ramification. Pick a point t ∈ S2 distinct from all ti and
connect it with the points ti by smooth nonintersecting segments, whose cyclic
order at t coincides with the numbering. Now make each segment into a narrow
path γi around the ramification point in the positive direction. Then the path γi
induces a permutation σi of the fiber β−1(t). The cyclic type of the permutation σi
coincides with the partition given by the degrees of the preimages in β−1(ti), and
the product σm ◦ · · · ◦ σ1 is the identity permutation of the fiber β−1(t), since the
concatentation of the paths γm ◦ · · · ◦ γ1 is contractible in the punctured sphere
S2 \ {t1, . . . , tm}.

The m-tuple of permutations of the fiber determines the covering uniquely, up
to a homeomorphism of the domain. By numbering the preimages β−1(t) of the
generic point from 1 to N , we can make each permutation σi into a permutation
of the set {1, 2, . . . , N}. Since there are N ! possible numberings, we conclude that
Hurwitz numbers enumerate ramified coverings of the 2-sphere, with prescribed
ramification types. The covering surface is connected if and only if the subgroup
of SN generated by the permutations σi acts transitively on the fiber β−1(t), which
justifies the definition of connected Hurwitz numbers.

Let E → S2 be a ramified covering. The Riemann–Hurwitz formula allows
one to recover the Euler characteristic χ(E) of the covering surface E from the
ramification type. We shall use this formula only for the case of simple Hurwitz
numbers, where it acquires the form

χ(E) = N + c(µ)−m.

Here µ is a partition of N = |µ|, c(µ) is the number of parts in the partition, and m
is the number of transpositions. If the covering surface is connected, then its Euler
characteristic is χ(E) = 2 − 2g, where g is the genus of the surface. Hence the
number m of points of simple ramification can be considered as a substitute for
the genus of the covering surface.
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1.3. Cut-and-join equation of Goulden and Jackson. Collect the
simple Hurwitz numbers into two generating functions:

H◦(u; p1, p2, . . . ) =
∞∑
m=1

∑
µ

h◦m;µpµ1pµ2 . . .
um

m!
; (1)

H(u; p1, p2, . . . ) =
∞∑
m=1

∑
µ

hm;µpµ1pµ2 . . .
um

m!
, (2)

where in each case µ runs over the set of all partitions of all numbers. These
generating functions depend on infinitely many variables and are formal: we do
not put any convergence requirements on them.

A very general combinatorial construction relating connected and disconnected
objects justifies the following relationship between these two generating functions:

We have H◦ = exp(H).
This assertion allows one to translate statements about simple Hurwitz numbers

into statements about connected simple Hurwitz numbers and vice versa.
The following result explains many properties of the Hurwitz numbers.

Theorem 1.1 (cut-and-join equation, [14]). The generating function H◦ for simple
Hurwitz numbers satisfies the following partial differential equation:

∂H◦

∂u
=

1
2

∞∑
n=1

∑
i+j=n

(
(i+ j)pipj

∂

∂pi+j
+ ijpi+j

∂2

∂pi∂pj

)
H◦. (3)

Before explaining why the statement is true, let us note that the cut-and-join
equation provides an explicit formula for the generating function H◦. Expand it
in a power series in u,

H◦(u; p1, p2, . . . ) =
∞∑
m=0

H◦
(m)(p1, p2, . . . )

um

m!
.

Then the cut-and-join equation can be rewritten as the recurrence

H◦
(m+1) =

1
2

∞∑
n=1

∑
i+j=n

(
(i+ j)pipj

∂

∂pi+j
+ ijpi+j

∂2

∂pi∂pj

)
H◦

(m) = AH◦
(m).

Note that the differential operator A on the right is well known in mathematical
physics under the name of Calogero–Moser operator. Starting with H◦

(0) = ep1 , we
immediately obtain the first few terms of the expansion:

H◦(u; p1, p2, . . . ) = ep1
(

1 +
1
2
p2
u

1!
+ (p2

1 +
1
2
p2
2 + p3)

u2

2!
+ . . .

)
.

The application of the operator A to the function H◦
(m) always produces finitely

many nonzero terms, although the operator itself contains infinitely many of them.
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The reason is that the function H◦
(m) has the form ep1 times a polynomial in p1, . . . ,

pm, and its derivatives over each pk with k > m vanish.
Now let us explain why the cut-and-join equation is true. It describes what

happens if one of the transpositions in the decomposition of a given permutation
is glued with the distinguished permutation, that is, we replace the representation

σ = ηm ◦ ηm−1 ◦ · · · ◦ η1

by the representation
ηm ◦ σ = ηm−1 ◦ · · · ◦ η1

(here we make use of the fact that η2
m is the identity permutation). Decreasing of

the number of transpositions on the right by one reflects the derivation with respect
to u on the left of the cut-and-join equation (3), since this procedure diminishes
the degree of u by 1.

Multiplication by a transposition ηm can affect the permutation σ in one of
the two different ways: either ηm exchanges two elements belonging to the same
cycle of σ, or the elements it exchanges belong to distinct cycles. In the first
case, a cycle in σ is split into two cycles the sum of whose lengths coincides with
the length of the initial one. In the second case, conversely, two cycles are glued
into a single cycle of length equal to the sum of the lengths of the two. Each of
the two summands on the right of the cut-and-join equation is in charge of the
corresponding possibility. The coefficients reflect the number of ways to choose
two elements to be transposed by ηm: for each of the i + j elements in a cycle of
length i+ j an appropriate pair can be chosen in a unique way (if we fix the cyclic
order), while in two cycles, of length i and j, respectively, there are ij choices for
a pair whose transposition glues them together.

1.4. Certain formulas for rational Hurwitz numbers. Hurwitz
numbers are said to be rational if the number of transpositions in the decomposi-
tion is the minimal possible one. The terminology comes from the fact that these
numbers enumerate ramified coverings of the sphere by the sphere, that is, rational
functions. Thus, rational Hurwitz numbers are, in a sense, the simplest species of
Hurwitz numbers, and there are a number of explicit formulas for them.

The first such formula is the one due to Hurwitz (1891), for rational connected
simple Hurwitz numbers.

Theorem 1.2 ([23]). We have

h|µ|+n−2;µ =
(|µ|+ n− 2)!
|Aut(µ)|

n∏
i=1

µµi

i

µi!
|µ|n−3,

where µ = (µ1, . . . , µn) is a partition of |µ| = µ1 + · · · + µn, and |Aut(µ)| is the
order of the automorphism group of the partition (for µ = 1k1 . . . NkN , we have
|Aut(µ)| = k1! . . . kN !).

Here |µ|+ n− 2 is the minimal number of transpositions (generating a permu-
tation group acting transitively) in a product that can produce a permutation of
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cyclic type µ. In fact, Hurwitz did not publish the proof of his formula stating
that it is too long for a journal paper. The formula was rediscovered in [14], af-
ter the problem has been revived in quantum chromodynamics models [7, 22]. A
reconstruction of Hurwitz’s presumable proof is given in [50]. The ELSV formula,
see below, provides an alternative geometric proof [10].

Another instance of formulas for rational Hurwitz numbers is the following

Theorem 1.3 ([14]). The number of factorizations of a cyclic permutation in SN
into a product of permutations of cyclic types ν1, . . . , νm, νi ` N , is

Nm−1 (c(ν1)− 1)!
|Aut(ν1)|

. . .
(c(νm)− 1)!
|Aut(νm)|

,

where c(ν) denotes the number of parts in a partition ν.

The proof in [14] is purely combinatorial. Once again, the geometric proof was
given in [34].

The formula due to Bousquet-Mélou and Schaeffer enumerates decompositions
of a given permutation into a product of a given number of permutations, whatever
are their types. It reads as follows.

Theorem 1.4 ([4]). Denote by Gµ(m) the number of m-tuples of permutations
whose product is a permutation of cyclic type µ, divided by N !, µ ` N . We have

Gµ(m) = m
((m− 1)N − 1)!

((m− 1)N − c(µ) + 2)!

∏
i

(
mµi − 1
µi

)
µi,

where c(µ) is the number of parts in µ.

The original proof got a simplification in [19]. Similarly to the previous two
formulas, this one also must have a geometric proof, which is still lacking.

2. Integrable hierarchies for Hurwitz numbers

The Kadomtsev–Petviashvili (below, KP, for brevity) hierarchy is a completely
integrable system of partial differential equations playing an important role in
mathematical physics. The main goal of the present section is to discuss the
following statement.

Theorem 2.1. The generating function H(u; p1, p2, . . . ) for connected simple Hur-
witz numbers is a 1-parameter family of solutions to the KP hierarchy.

In this form the theorem was first stated in [27], but it is implicitly contained
in Okounkov’s paper [41]. In fact, Okounkov proves a slightly more complicated
theorem stating that the generating function for double Hurwitz numbers (those,
enumerating ramified coverings of the sphere with two points of degenerate ram-
ification) produces a solution to the Toda lattice integrable hierarchy, which was
previously conjectured by R. Pandharipande [46].
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The theorem above has numerous applications, both on combinatorial and ge-
ometric side. In particular, it produces nontrivial recurrence relations on Hurwitz
numbers, which mix numbers of different genera.

A general theory of KP equations, due to Sato, interprets solutions to these
equations as semi-infinite planes, that is, points in the semi-infinite Grassmannian.
We present a brief overlook of Sato’s construction. Proving that a given function is
a solution, is thus reduced to identification of the semi-infinite plane corresponding
to this function. There is no need, in particular, to know the explicit form of the
equations. We make such an identification for the function H(u; p1, p2, . . . ) from a
purely combinatorial point of view, without references to their geometric nature.

2.1. Grassmannian embeddings and Plücker equations. Con-
sider the Grassmannian G(2, 4) of vector 2-planes in the 4-space V ≡ C4. Any
2-plane in V can be represented by the wedge product β1 ∧β2 of any pair β1, β2 of
linearly independent vectors in the plane. This wedge product is well defined up to
a constant factor; it determines the 2-plane uniquely and thus defines an embedding
of G(2, 4) into the projectivization of the wedge square of V , G(2, 4) ↪→ PΛ2V .
An immediate generalization of this construction produces an embedding of any
Grassmannian G(k, n) of k-planes in n-space V into the projectivization PΛkV .

The Plücker equations are the equations of the image of this embedding. Note
that the dimension of G(k, n) is k(n− k), while the dimension of PΛkV is

(
n
k

)
− 1,

whence, generally speaking, the image of the embedding does not coincide with
the whole projectivized wedge product PΛkV . For example, the image of the
embedding of G(2, 4) into PΛ2V is a hypersurface in the 5-dimensional projective
space.

Let us find the equation of this hypersurface. Pick a basis e1, e2, e3, e4 in V .
Then Λ2V is endowed with the natural basis βij = ei ∧ ej , 1 ≤ i < j ≤ 4, and
the corresponding natural coordinate system yij . The image of the embedding of
the Grassmannian consists of decomposable vectors. By definition of the wedge
product, for a pair of vectors (a1, a2, a3, a4), (b1, b2, b3, b4), the image of the plane
spanned by these two vectors has the projective coordinates

yij =
∣∣∣∣ai bi
aj bj

∣∣∣∣ = aibj − ajbi.

An immediate calculation shows that these coordinates satisfy the homogeneous
equation

y12y34 − y13y24 + y14y23 = 0,

and this is the Plücker equation of the image.
For general values of n and k, the Plücker equations still are quadratic equa-

tions. In other words, the ideal in the ring of polynomials consisting of polynomials
vanishing on the image of the Plücker embedding is generated by quadratic polyno-
mials.

2.2. Space of Laurent series. Take for the space V the infinite dimen-
sional vector space of formal Laurent series in one variable. Elements of this space
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have the form c−kz
−k+c−k+1z

−k+1+. . . . The powers zk, k = . . . ,−2,−1, 0, 1, 2, . . .
form the standard basis in V . By definition, the semi-infinite wedge product Λ

∞
2 V

is the vector space freely spanned by the vectors

vµ = zm1 ∧ zm2 ∧ zm3 ∧ . . . , m1 < m2 < m3 < . . . , mi = µi − i,

where µ is a partition, µ = (µ1, µ2, µ3, . . . ), µ1 ≥ µ2 ≥ µ3 ≥ . . . , and all but
finitely many parts are 0. In particular, mi = −i for all i large enough.

The vacuum vector
v∅ = z−1 ∧ z−2 ∧ z−3 ∧ . . .

corresponds to the empty partition. Similarly, we have

v11 = z0∧z−2∧z−3∧ . . . , v21 = z1∧z−2∧z−3∧ . . . , v12 = z0∧z−1∧z−3∧ . . . ,

and so on.

2.3. The boson-fermion correspondence. Numbering basis vectors
in the semi-infinite wedge product Λ

∞
2 V (the space of fermions) by partitions es-

tablishes a natural vector space isomorphism (the boson-fermion correspondence)
between this space and the vector space of power series in infinitely many vari-
ables p1, p2, . . . (the space of bosons). This isomorphism takes a basis vector vµ
to the Schur polynomial sµ = sµ(p1, p2, . . . ). The latter is a quasihomogeneous
polynomial, of degree |µ|, in the variables pi, with the degree of pi set to be i.

The Schur polynomial corresponding to a one-part partition is defined by the
expansion

s0 + s1z + s2z
2 + s3z

3 + s4z
4 + · · · = ep1z+p2

z2
2 +p3

z3
3 +...,

and for a general partition κ it is given by the determinant

sκ = det ||sκj−j+i||. (4)

The indices i, j here run over the set {1, 2, . . . , n} for n large enough, and since
κi = 0 for i sufficiently large, the determinant, hence sκ, is independent of n. Here
are a few first Schur polynomials:

s0 = 1, s11 = p1, s21 =
1
2
(p2

1 + p2), s31 =
1
6
(p3

1 + 3p1p2 + 2p3),

s12 =
1
2
(p2

1 − p2), s1121 =
1
3
(p3

1 − p3), s13 =
1
6
(p3

1 − 3p1p2 + 2p3).

2.4. Semi-infinite Grassmannian and the KP equations. The
semi-infinite Grassmannian G(∞2 ,∞) consists of decomposable vectors in PΛ

∞
2 V ,

that is, of vectors of the form

β1(z) ∧ β2(z) ∧ β3(z) ∧ . . . ,

where each βi is a Laurent power series in z and, for i large enough, the leading
term in the expansion of βi is z−i:

βi(z) = z−i + ci1z
−i+1 + ci2z

−i+2 + . . . .
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Definition 2. The Hirota equations are the Plücker equations of the embedding
of the semi-infinite Grassmannian in the projectivized semi-infinite wedge product
PΛ

∞
2 V . Solutions to the Hirota equations (that is, semi-infinite planes) are called

τ -functions for the KP hierarchy.

As polynomial equations for the coefficients of the expansions of τ -functions, the
Hirota equations can be treated as partial differential equations for the functions
themselves. Being Plücker equations, the Hirota equations are quadratic in τ .

Definition 3. The form the Hirota equations take for the logarithms of τ -functions
under the boson-fermion correspondence is called the Kadomtsev–Petviashvili, or
KP, equations.

In other words, any solution to the KP equations can be obtained as the result
of the following procedure:

• take a semi-infinite plane β1(z) ∧ β2(z) ∧ . . . in V ;

• by expanding, rewrite the corresponding point in the semi-infinite Grassman-
nian as a linear combination of the basis vectors vκ and normalize so as the
coefficient of v∅ becomes 1;

• replace in this linear combination each vector vκ by the corresponding Schur
polynomial sκ(p1, p2, . . . ), which produces a series in infinitely many variables
p1, p2, . . . ;

• take the logarithm of the resulting series.

An infinite sequence of homogeneous generators can be chosen for the KP
equations, involving derivatives over extending sets of variables. For example, the
first KP equation for an unknown function W = W (p1, p2, . . . ) looks like

∂2W

∂p2
2

=
∂2W

∂p1∂p3
− 1

2

(
∂2W

∂p2
1

)2

− 1
12
∂4W

∂p4
1

(it contains derivatives only over p1, p2, p3, and is homogeneous, in a natural sense).

2.5. Action of the diagonal matrices. Linear transformations of the
vector space V of Laurent polynomials induce linear transformations of the semi-
infinite wedge product Λ

∞
2 V . Since linear transformations of V take planes in V to

planes, the induced transformations preserve the embedded Grassmannian. In this
section we consider the action of those transformations that can be represented by
diagonal matrices in the basis {zk} in V , k ∈ Z: these are the only transformations
we need in the study of simple Hurwitz numbers. By obvious reasons, the induced
action on Λ

∞
2 V , written in the basis vκ, also is diagonal.

Example 2.2. Consider the linear transformation V → V which multiplies z−1

by a constant a preserving all the other basis vectors. Clearly, the action of this
transformation on Λ

∞
2 V , written in the basis vκ, multiplies by a each basis vector
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containing z−1 in its decomposition (v∅, v12 , and so on), and preserves all other
basis vectors (v11 , v21 , and so on). The requirement that z−1 enters the decom-
position of a vector vκ means that the partition κ contains a part κi such that
κi − i = −1. Note that any partition can have at most one such part, since the
parts κi follow in a decreasing order, while the sequence i grows strictly.

An important consequence of this example is that the eigenvalue of the action
on Λ

∞
2 V of a diagonal matrix on V corresponding to the eigenvector vκ depends

symmetrically on the differences κi − i. In other words, it belongs to the ring of
so-called shifted symmetric functions.

Definition 4. A function on partitions κ = (κ1, κ2, . . . ) is said to be shifted
symemtric if it is symmetric under permutations of the shifted parts κi − i.

Let us stress once again that the parts κ1, κ2, . . . of the partition κ go in the
nonincreasing order, κ1 ≥ κ2 ≥ . . . , and all but finitely many of them are 0. The
definition of a shifted symmetric function bases heavily on this order.

The space of shifted-symmetric functions depending on infinitely many vari-
ables is the projective limit Γ of the spaces Γk of shifted symmetric functions
depending on k variables. (In [42], the algebra Γ is denoted by Λ∗. We use a
different notation in order to prevent confusion with the wedge products and the
Hodge bundle below). The limit is taken with respect to the projections Γk+1 → Γk
obtained by setting the last argument equal to 0. All complex-valued shifted sym-
metric functions form an algebra. This algebra was introduced and thoroughly
studied in [30]. The reason for introducing it is that the characters of certain
natural elements in the centers of group algebras of symmetric groups are shifted
symmetric.

Now, we have a naturally defined action on Λ
∞
2 V of any diagonal matrix zk 7→

akz
k, ak 6= 0, with finitely many entries ak with negative indices different from 1.

Indeed, were there infinitely many such coefficients, in order to compute the action
of the corresponding matrix on a basis vector, say v∅, we would have to compute
the product of infinitely many entries. Fortunately, the action on the projectivized
space PΛ

∞
2 V , which is the main subject of our interest, can be extended to the

action of diagonal matrices with infinitely many entries ak with negative indices
different from 1: since we are interested in the action on the projectivized space,
only the ratio of the eigenvalues of the basis eigenvectors matters, and this ratio
is well defined for an arbitrary diagonal matrix.

Indeed, any two basis vectors vκ, vµ ∈ Λ
∞
2 V have a common tail: their decom-

positions are different in the beginning, but coincide after some position, say K.
Hence the ratio of the corresponding eignevalues is just aκ1−1...aκK−K

aµ1−1...aµK−K
. That is, we

must define the action of a diagonal matrix on Λ
∞
2 V in a way that preserves this

ratio of eigenvalues. Thus the result depends only on the eigenvalue of the vacuum
vector v∅, which can be chosen arbitrarily. The most natural normalization is to
choose this eigenvalue to be 1. This yields the following induced action on Λ

∞
2 V
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of a diagonal matrix (ak) on V :

vκ 7→

( ∞∏
i=1

aκi−i

a−i

)
vκ.

The product in the brackets is well defined, since all but finitely many factors
are 1. The action of the torus of diagonal matrices on the projectivized seminifinite
external product of V is just the inductive limit of the actions of the tori TK
consisting of diagonal matrices with diagonal entries ai equal to 1 for i = −(K +
1),−(K + 2), . . . .

Since the action of the infinite dimensional torus
⊕

i∈Z(C∗)i on the projec-
tivized semi-infinite wedge product is well defined, it also defines an action of the
corresponding Lie algebra. The latter action also is diagonal, and a diagonal ma-
trix (αi)i∈Z (with not necessarily nonzero entries) belonging to the Lie algebra acts
on a basis vector vκ by

vκ 7→

 ∞∑
j=1

(ακj−j − α−j)

 vκ.

2.6. Symmetric group representations. In this section, we prove The-
orem 2.1 stating that the generating series H(u; p1, p2, . . . ) for simple Hurwitz
numbers is a solution to the KP hierarchy for each value of the parameter u. This
statement is true for u = 0, since H(0; p1, p2, . . . ) = p1. For general value of u, the
statement follows from the fact that exp(H) is an integral curve of a vector field
in PΛ

∞
2 V tangent to the semi-infinite Grassmannian. This vector field is induced

by a linear transformation V → V , which is diagonal in the standard basis zk.
Namely, this is the transformation zk 7→ (k − 1

2 )2zk.
Let C[SN ] be the N !-dimensional group algebra of the symmetric group. For

each partition κ of N , denote by Cκ ∈ C[SN ] the sum of all permutations in SN
having the cyclic type κ. We will use a special notation C1 for the class C1N of
the unit permutation, which is the unit of the algebra C[SN ], and C2 for the sum
C1N−221 of all transpositions. For any κ, the element Cκ is a central element in
C[SN ]. These elements span the center of C[SN ].

The simple Hurwitz numbers have the following natural interpretation as con-
nection coefficients in symmetric groups. Take the mth power Cm2 of the class C2 ∈
C[SN ] and expand it as a linear combination of the basis classes. Then the coeffi-
cient of Cµ in this expansion is equal to the number of ways to represent a given
permutation of cyclic type µ as a product of m transpositions. In other words,

Cm2 = N !
∑
µ`N

h◦m;µ

Cµ
|Cµ|

,

where |Cµ| is the number of elements in the corresponding conjugacy class.

Example 2.3. For N = 3 and m = 4, we have

C4
2 = 27C1 + 27C3,
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whence
h◦4;31 = h4;31 =

2 · 27
6

= 9.

(Let us explain how the coefficient 27 of the class C1 in the above formula is
obtained. Each of the 27 products of three transpositions in S3 is a transposition.
Taking for the fourth transposition one of the two transpositions different from the
product we obtain 54 cyclic permutations, that is, the element C3, which is the
sum of the two cyclic permutations, taken with multiplicity 27).

It is convenient to interpret the above relation by assigning the monomial
|Cµ|pµ = |Cµ|pµ1pµ2 . . . to the element Cµ. This correspondence provides an iso-
morphism between the center of C[SN ] and the vector space of weighted homoge-
neous polynomials of degree N in the variables p1, p2, . . . . Under this isomorphism,
we have

Cm2 = N !
∑
µ`N

h◦m;µpµ.

Therefore,

eC2u = N !
∞∑
m=0

∑
µ`N

h◦m;µpµ
um

m!
.

In order to compute the action of the element C2 and that of its exponent, we
observe that an element of C[SN ] is central iff it acts as a scalar on any irreducible
representation. In particular, the central elements χµ ∈ C[SN ] which act with the
trace 1 in the irreducible representation Vµ and trivially in all other representations
form yet another basis in the center of C[SN ]. The elements C2 and eC2u, being
central, act diagonally in this basis:

C2 : χµ 7→ f2(µ)χµ, eC2u : χµ 7→ ef2(µ)uχµ,

with f2 given by

f2(µ) =
1
2

∞∑
i=1

(
(µi +

1
2
− i)2 − (

1
2
− i)2

)
.

Under the isomorphism above, the element χµ is taken exactly to the corre-
sponding Schur function by (yet another) its definition. The equivalence of the
two definitions of the Schur function is a standard fact known as the Frobenius
theorem; the proof can be found, for example, in [47]. Expanding the function
H◦(0; p1, . . . ) = ep1 in the basis of Schur polynomials,

ep1 =
∑
µ

sµ(1, 0, 0, . . . )sµ(p),

we obtain finally

H◦(u; p1, p2, . . . ) =
∑
µ

sµ(1, 0, 0, . . . )sµ(p)ef2(µ)u.
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This explicit formula for simple Hurwitz numbers goes back to Burnside. Simi-
larly to formulas in Sec. 1.3 it also can be used for computation of particular simple
Hurwitz numbers. Note that the above isomorphism between the center of C[SN ]
and the space of degree N polynomials in the variables pi takes the multiplication
by C2 to the cut-and-join (or Calogero–Moser) operator A of Sec. 1.3. We con-
clude that the cut-and-join operator is diagonal in the basis of Schur polynomials.
The specific form of the eigenvalue function f2 shows that this diagonal operator
is induced by the diagonal operator zk 7→ (k − 1/2)2zk on the space V of Laurent
polynomials. This proves Theorem 2.1.

2.7. Application: enumeration of maps and hypermaps. Infor-
mally, a map is a graph drawn on a two-dimensional surface in such a way that its
edges do not intersect and self-intersect and its complement is a disjoint union of
discs (faces). Maps are studied by topological graph theory, see e.g. [34]. Enumer-
ation of maps of various kinds is a classical problem, nowadays finding numerous
applications in quantum field theory. In this section we explain how the study of
Hurwitz numbers helps to make enumeration results for maps more precise.

From the point of view of the present paper, the most convenient definition of
a map is that in terms of permutation groups.

Definition 5. Pick a finite set D. Then a map with the set of half-edges D on an
oriented surface is a triple of permutations α, ϕ, σ of D possessing the following
properties:

• α is an involution without fixed points;

• the product ϕασ is the identity permuation.

The group G = 〈α, ϕ, σ〉 of permutations of D generated by the permutations
α, ϕ, σ is called the cartographic group of the map. A map is said to be connected
if its cartographic group acts on the set D transitively.

For a graph drawn on an oriented surface, D is the set of half-edges, or flags,
the permutation α exchanges the ends of each edge, ϕ rotates the half-edges along
the faces in the positive direction, and σ rotates the half-edges around the vertices
in the positive direction. Obviously, α is an involution without fixed points, and it
is easy to check that the product of these three permutations is indeed the identity
permutation. A map is connected iff the underlying surface is.

The number of edges in a map is half the number of elements in D or, which is
the same, the number of cycles in the permutation α. The number of vertices in
a map is the number of cycles in σ, and the degrees of the vertices are the lengths
of the cycles. Similarly, the number of faces is the number of cycles in ϕ, and the
degrees of the faces are the lengths of the cycles.

The notion of hypermap is a generalization of that of map. In the definition
of a hypermap, we get rid of the assumption that α is an involution without fixed
points, thus reestablishing the symmetry between the three permutations.
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It is clear now that enumeration of maps or hypermaps of various kinds can
be reduced to enumeration of triples of permutations possessing certain specific
properties, and enumerative methods described above can be applied.

Denote by R(n,m)
κ the number of rooted connected maps with n edges, m faces,

and the degrees of the vertices given by the partition κ of 2n.
Methods close to those in the proof of Theorem 2.1 give the following statement.

Theorem 2.4 ([16]). The generating series

R(w, z; p1, p2, . . . ) =
∑
n,m≥1

∑
κ`2n

R
(n,m)
κ

2n
pκw

mzn,

(where, for a given partition κ = (κ1, κ2, κ3, . . . ), pκ denotes the monomial pκ =
pκ1pκ2pκ3 . . . ) is a 2-parameter family of solutions to the KP-hierarchy.

The series R in the theorem can be specialized to include only cubic maps —
those whose all vertex degrees are 3. By duality, this is the same as enumerating
rooted triangulations of arbitrary genus. The KP equations then can be reduced
to produce recurrence relations for the number of rooted triangulations.

Denote the number of rooted triangulations of a genus g surface with 2n faces by
T (n, g). Then the recurrence relation has the following form. Introduce notation

S =
{

(n, g) ∈ Z× Z| n ≥ −1, 0 ≤ g ≤ n+ 1
2

}
.

Theorem 2.5 ([16]). We have

T (n, g) =
1

3n+ 2
t(n, g),

where t(n, g) is defined by the quadratic recurrence

t(n, g) =
4(3n+ 2)
n+ 1

(
n(3n− 2)t(n− 2, g − 1) +

∑
t(i, h)t(j, k)

)
,

for (n, g) ∈ S \ {(−1, 0), (0, 0)}, where the summation is carried over (i, h) ∈ S,
(j, k) ∈ S with i+ j = n− 2 and h+ k = g, subject to the initial conditions

t(−1, 0) =
1
2
, t(n, g) = 0 for (n, g) /∈ S.

The recurrence relation of the theorem allowed Bender, Gao and Richmond to
solve a long-standing problem of finding the exact formula for the constant factor
in the leading term in the asymptotics of the number of rooted triangulations, as
the number of triangles tends to infinity.

Theorem 2.6 ([3]). The number of rooted triangulations of a genus g surface
with 2n faces has the asymptotics

T (n, g) ∼ 3× 6(g−1)/2tgn
5(g−1)/2(12

√
3)n as n→∞;
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here the constant tg has the form

tg = 8
[1/5]g[4/5]g−1

Γ( 5g−1
2 )

(
25
96

)
ug,

where [x]k denotes the rising factorial x(x+ 1) . . . (x+ k− 1), and the constant ug
is defined by the initial condition u1 = 1/10 and the quadratic recurrence relation

ug = ug−1 +
g−1∑
h=1

1
R1(g, h)R2(g, h)

uhug−h for g ≥ 2,

where

R1(g, h) =
[1/5]g
[1/5]h

[1/5]g−h, R2(g, h) =
[4/5]g−1

[4/5]h−1
[4/5]g−h−1.

The first few values of the constant tg are

t0 =
2√
π
, t1 =

1
24
, t2 =

7
4320

√
π
.

This constant enters many other asymptotics as well.

3. Intersection theory on moduli spaces of complex
curves

The importance of Hurwitz numbers in modern research is mainly due to their
connections with the geometry of the moduli space of curves. These connections
go back to the work of A. Hurwitz in the end of the 19th century, and found
numerous remarkable instances in the last decade.

3.1. The ELSV formula. Let Mg;n denote the moduli space of stable
genus g complex curves with n pairwise distinct marked points. This is the Delinge–
Mumford compactification [8] of the moduli space Mg;n of stable non-singular
genus g curves with n marked points. The stability condition means that the
group of automorphisms of the curve preserving the marked points is finite. For
smooth curves, this is equivalent to the following numerical restrictions: either
g ≥ 2, or g = 1, n ≥ 1, or g = 0, n ≥ 3. The only singularities of the singular
curves are transversal double self-intersections (nodes), and the marked points are
not allowed to coincide with the nodes. Both Mg;n and Mg;n are smooth complex
orbifolds of dimension 3g − 3 + n.

The natural “forgetting morphism” Mg;n+1 → Mg;n extends to a forgetting
morphism of the compactifications, Mg;n+1 →Mg;n. The composition of forget-
ting morphisms forgets more than one marked point.

To the i th marked point, the line bundle Li over Mg;n is associated; the fiber
of this bundle is the cotangent line to the curve at the point. Let ψi denote the
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first Chern class of Li, ψi = c1(Li) ∈ H2(Mg;n), i = 1, . . . , n. The Hodge bundle Λ
over Mg;n is the pull-back, under the forgetting morphism, of the rank g vector
bundle over Mg;0 whose fiber is the vector space of holomorphic 1-forms over the
curve. (For g = 1, the space Mg;0 must be replaced by Mg;1, and for g = 0, the
Hodge bundle is of rank zero). The characteristic classes of the Hodge bundle are
denoted by c(Λ) = 1 + λ1 + · · ·+ λg, λi ∈ H2i(Mg;n).

A formula due to Ekedahl, Lando, Shapiro, and Vainshtein, now standardly
referred to as the ELSV-formula, expresses simple Hurwitz numbers in terms of
intersection indices of the above characteristic classes over the moduli spaces of
stable curves:

hm;κ =
m!

|Aut(κ)|

n∏
i=1

κκi
i

κi!

∫
Mg;n

c(Λ∨)
(1− κ1ψ1) . . . (1− κnψn)

, (5)

where κ is a partition of K = |κ|, κ = (κ1, . . . , κn), m = 2g − 2 + K + n is the
number of transpositions, and c(Λ∨) = 1 − λ1 + λ2 − · · · ± λg is the total Chern
class of the dual Hodge bundle. This formula, together with a brief description
of the idea of the proof, has been announced in [9] (with an erroneous sign in the
numerator of the integrand). A complete proof was given in [10], and meanwhile
another proof appeared in [21]. A special case of (5), that for κ = 1n, has been
simultaneously and independently discovered in [13].

The formula is understood in the following way: after expanding the denomina-
tor as a power series in the classes ψi, select the monomials of degree dimMg;n =
3g−3+n in the product and integrate them against the fundamental class ofMg;n.
The result will be a rational number.

The ELSV formula generalizes, to higher genera, Hurwitz’s formula (see Theo-
rem 1.2) valid for g = 0. In its own turn, it admits a generalization known as the
Mariño–Vafa formula conjectured in [38] and proved in [37].

In spite of the geometric nature of the ELSV formula, it produces immediate
combinatorial consequences. An example is given by the following result, which
has been conjectured in [17].

Theorem 3.1 ([10]). For given g, n, the number

hm;κ
|Aut(κ)|
m!

n∏
i=1

κi!
κκi
i

is a symmetric polynomial in κi, of degree 3g − 3 + n, with the least monomial
degree being 2g − 3 + n.

Although the statement is purely combinatorial, no direct proof of it is known.
Double Hurwitz numbers demonstrate a similar behavior. Namely, they are piece-
wise polynomial [18, 49].

3.2. Linear Hodge integrals as coefficients of a solution to KP.
The right-hand side of the ELSV formula is a linear combination of the intersection
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numbers of the form

`j;m1,...,mn
=
∫
Mg;n

λjψ
m1
1 . . . ψmn

n .

Expressions of this kind are called linear Hodge integrals, meaning that they include
the Chern classes λj of the Hodge bundle, which enter the monomial linearly. Note
that the data (j;m1, . . . ,mn) determine the genus g uniquely according to the
dimension count 3g− 3 + n = j +m1 + · · ·+mn. Similarly to the case of Hurwitz
numbers, one can organize the linear Hodge integrals in the generating function

L(u; q1, q2, . . . ) =
∑
j,µ

(−1)j`j;m1,...,mn
u2jqm1 . . . qmn

, (6)

known as the enriched Gromov–Witten potential of a point [17].
In a recent paper, M. Kazarian has shown that this generating function can

be easily transformed into a solution of the KP hierarchy. Namely, denote by
G(u; p1, p2, . . . ) the result of the following substitution to the series L:

q0 = p1,

q1 = u2p1 + 2up2 + p3,

q2 = u4p1 + 6u3p2 + 12u2p3 + 10up4 + 3p5,

q3 = u6p1 + 14u5p2 + 61u4p3 + 124u3p4 + 131u2p5 + 70up6 + 15p7,

. . .

Here the polynomials on the right-hand side are given by the recurrence

qk+1 =
∑
m≥1

m(u2pm + 2upm+1 + pm+2)
∂

∂pm
qk.

Theorem 3.2 ([26]). The function G(u; p1, p2, . . . ) is a solution to the KP hier-
archy (identically in u).

The proof of the theorem uses the ELSV formula (5) and the fact that the
generating series for the simple Hurwitz numbers is a solution to KP (Theorem 2.1).
Note that in the present case, the infinitesimal transformation of the space V of
Laurent series corresponding to the solution in question is no longer diagonal.
Instead, it is three-diagonal.

3.3. Witten’s conjecture. The celebrated Witten conjecture [51] concerns
computation of the intersection indices of the ψ-classes over the moduli spaces of
curves. Namely, denote

〈τm1 . . . τmn
〉 =

∫
Mg;n

ψm1
1 . . . ψψn

n ,
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where the genus g can be computed from the dimensional count dim Mg;n =
3g − 3 + n = m1 + · · ·+mn. Collect these intersection indices into the generating
series in infinitely many variables ti,

F (t0, . . . ) =
∑ 〈τm1 . . . τmn

〉
n!

tm1 . . . tmn

=
1
24
t1 +

1
6
t30 +

1
48
t21 +

1
24
t0t2 +

1
6
t30t1 +

1
1152

t4 +
1
72
t31 +

1
12
t0t1t2

+
1
48
t20t3 +

1
6
t30t

2
1 +

1
24
t40t2 +

29
5760

t2t3 +
1

384
t1t4 +

1
1152

t0t5 + . . .

Witten’s conjecture states that
The function F satisfies the KdV hierarchy of partial differential equations. In

particular, its second derivative U = ∂2F/∂t0 is a solution to the KdV equation,

∂U

∂t1
= U

∂U

∂t0
+

1
12
∂3U

∂t30
. (7)

The KdV equation (7) can be considered as a recurrence relation allowing one to
compute the intersection indices of the ψ-classes for arbitrary genus recursively
from their values for g = 0 and g = 1, which are known since Witten’s pioneering
work [51].

Since its appearance in 1991, the conjecture has got several proofs, including
those due to Kontsevich [32], Okounkov and Pandharipande [43], Mirzakhani [40],
Kazarian and Lando [27], Kim and Liu [31].

Witten’s conjecture is an immediate consequence [26] of Theorem 3.2. Indeed,
the solutions of the KdV hierarchy are exactly those solutions of KP that depend
only on variables with odd indices. After setting u = 0 in G, one obtains a power
series in variables p2i−1 with odd indices, which is therefore a solution to the KdV
hierarchy. The coefficients of this series are `0;m1,...,mn

= 〈τm1 . . . τmn
〉. It turns

into F after rescaling p2i+1 = ti/(2i− 1)!!. In contrast to most of the other proofs,
this one guarantees the whole KdV hierarchy for F , while usually one obtains only
the first KdV equation and needs the additional string equation to generate the
hierarchy.

4. Further developments and perspectives

The variety of Hurwitz numbers is not exhausted by simple and double Hurwitz
numbers. Other species include general Hurwitz numbers, enumerating factor-
izations into permutations of arbitrary cyclic type, not necessarily transpositions,
and r-Hurwitz numbers, where transpositions are replaced by certain “completed
r-cycles”. In all cases, Hurwitz numbers remain closely related to the geometry of
moduli spaces, and both are far from being well understood. In this section we
describe briefly possible directions of further research.
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4.1. Completed cycles. The center of the group algebra C[SN ] of the sym-
metric group SN is generated by the classes Cκ(SN ), where κ is a partition of N .
The class Cκ(SN ) is the sum of all permutations with the cyclic type κ. For
example, C1N−221(SN ) is the sum of all transpositions in SN .

It is convenient, however, to introduce certain classes in the centers of group
algebras for all symmetric groups simultaneously. Let κ be a partition. For an
arbitrary integer N , choose |κ| elements out of {1, . . . , N} and consider in C[SN ]
the sum of all permutations of these |κ| elements, of cyclic type κ, all the other
N − |κ| elements being fixed. Denote by C̃κ the element in the center of C[SN ]
which is the sum of all such permutations, for all

(
N
|κ|
)

choices of the |κ| elements

out of N . (If |κ| > N , then C̃κ = 0 ∈ C[SN ]; if |κ| = N , then C̃κ = Cκ(SN )).
For example, the class C̃11 can be understood as the sum of identity permuta-

tions, with a distinguished element in each permutation. In other words, the class
C̃11 is the same as the class NC̃∅ = NC1N (SN ). Similarly, the class C̃12 coincides
with the class N(N−1)

2 C̃∅: there are
(
N
2

)
= N(N−1)

2 ways to pick two elements in
the identity permutation.

The classes C̃κ have the following advantage when compared to the classes
Cκ(SN ): the products of the classes C̃κ can be expressed as universal linear com-
binations of these classes, which are independent of the order N of the symmetric
group. For example, the equation

C̃21C̃12 = C̃21 + 2C̃1121 + C̃1221

is valid in the center of the group algebra C[SN ] of any symmetric group SN , for
arbitrary N .

Universality means that there is a natural inclusion of the center of C[SN ] into
that of C[SN+1] for any N . Tending N to infinity, we obtain a universal center
of the group algebra, which can be identified with the infinite dimensional vector
space freely spanned by the elements C̃κ, for arbitrary partitions κ. This space
also is endowed with an algebra structure.

This algebra is isomorphic to the algebra Γ of shifted symmetric functions de-
fined in Sec. 2.5. As a vector space, the latter algebra is spanned by the functions
fκ indexed by partitions and defined as follows. A central element C̃κ ∈ C[S|µ|]
acts on the irreducible representation Vµ of the symmetric group by multiplication
by a scalar; by definition, we set fκ(µ) to be equal to this scalar. The Frobe-
nius characteristic mapping C̃κ 7→ fκ establishes an isomorphism between the two
algebras.

4.2. r-Hurwitz numbers and generalized Witten’s conjecture.
Simple Hurwitz numbers count decompositions of a given permutation into a prod-
uct of transpositions. It is a natural idea to generalize them by replacing transpo-
sitions by permutations in other specific classes. For example, why not consider
3-cycles C̃3? However, such a straightforward approach fails. Namely, enumerative
formulas for decompositions of a given permutation into a product of 3-cycles lose
elegance, when compared to that for Hurwitz numbers, and their relationship with
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both mathematical physics and geometry is broken. The same is true for r-cycles
for any r ≥ 3. Fortunately, consistency can be restored by replacing r-cycles C̃r
with certain linear combinations of the classes C̃κ, for certain partitions κ.

Definition 6 ([44]). The completed r-cycle Cr is the preimage under the Frobenius
characteristic mapping of the r th power function

(µ1, µ2, . . . ) 7→
1
r

∞∑
i=1

(
(µi − i+

1
2
)r − (

1
2
− i)r

)
.

We have explained the reasons why the r th power function must be of such a
form in Sec. 2.5 (we use a normalization differing from that in [44] by a constant).

Let us give formulas for few first completed cycles among which we know that
the completed 2-cycle simply coincides with the ordinary 2-cycle:

C1 = C̃11

C2 = C̃21

C3 = C̃31 + C̃12 +
1
12
C̃11

C4 = C̃41 + 2C̃1121 +
5
4
C̃21 .

These formulas explain the origin of the term “completed cycle”: the expansion
of a class Cr as a linear combination of the classes C̃κ starts with the class of
the r-cycle C̃r1 , and then terms of smaller order follow. Explicit formulas for the
coefficients on the right of the expressions for all completed cycles can be found
in [44].

Now we can define the generalized Hurwitz numbers.

Definition 7. The simple r-Hurwitz number for an integer m ` N and a parti-
tion µ is the normalized coefficient of C̃µ in them th power of the completed r-cycle,

h(r)◦
m;µ =

|Cµ|
N !

[C̃µ](Cr)m.

The simple r-Hurwitz numbers are collected into the generating function

H(r)◦(u; p1, p2, . . . ) =
∞∑
m=0

∑
µ

h(r)◦
m;µpµ1pµ2 . . .

um

m!
,

and its logarithm H(r)(u; p1, p2, . . . ) = log H(r)◦(u; p1, p2, . . . ) is the generating
function for connected simple r-Hurwitz numbers.

The definition of the r-Hurwitz numbers and explanation in Sec. 2.5 immedi-
ately imply

Theorem 4.1. The function H(r)(u; p1, p2, . . . ) is a one-parameter family of so-
lutions to the KP hierarchy of partial differential equations.
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Indeed, this one-parameter family is induced by the infinitesimal diagonal trans-
formation of the vector space V of Laurent polynomials taking the vector zk

to 1
r (k −

1
2 )rzk, k = . . . ,−2,−1, 0, 1, 2, . . . .

A similar theorem is valid for generating functions defined by any finite linear
combination of completed cycles. In this case the eigenvalues 1

r (k−
1
2 )r are replaced

by an appropriate polynomial in k, which can be arbitrary.
The relationship of r-Hurwitz numbers defined by means of the completed

cycles to the geometry of moduli spaces of (r−1)-spin structures on algebraic curves
is less clear at the moment, and this question is a subject of further investigation.

D. Zvonkine conjectured (private communication) that the simple r-Hurwitz
numbers can be expressed in terms of the geometry of moduli spaces of (r − 1)-
spin structures on algebraic curves by an r-analogue of the ELSV-formula. Such a
formula could lead, at least in principle, to an alternative proof of the generalized
Witten conjecture [51], concerning intersection indices of ψ-classes on the moduli
spaces of so-called r-spin curves. At the moment, only one proof of the conjecture
is known, see [12], and it proceeds in a very different way.

4.3. Geometry of Hurwitz spaces and universal characteristic
classes. The Hurwitz numbers are related to the geometry of moduli spaces of
curves through the geometry of Hurwitz spaces. The latter are moduli spaces of
meromorphic functions on complex curves. Without giving precise definitions, we
just explain the main features of the picture. Each Hurwitz space is fibered over
the corresponding moduli space of curves — the fibration proceeds by forgetting
the function, and this forgetting mapping relates the geometry of the two spaces
in question. In a sense, Hurwitz spaces (and, more generally, spaces of stable
mappings) are more natural than moduli spaces of curves.

Each Hurwitz space is also stratified according to the degeneration of the func-
tions. A stratum is formed by the locus of functions with prescribed singularities.
On the other hand, the action of the multiplicative group C∗ of nonzero com-
plex numbers on the target curve CP 1 is lifted to the Hurwitz spaces. A Hurwitz
number (either simple or a more general one) can be computed as the degree of
the closure of the corresponding stratum with respect to the above action. This
argument votes for the study of the stratification of Hurwitz spaces.

In the simplest case of polynomials, such a study has been carried out in [35].
In [2, 36, 28, 29], a more general case of rational functions is treated. The study
applies methods of global singularity theory started by R. Thom and extended
recently by M. Kazarian to the case of multisingularities (see, e.g. [32]). These
methods produce universal expressions for the locus of prescribed singularities of an
arbitrary generic mapping of two complex manifolds in terms of the characteristic
classes of the mapping. When applied to the Hurwitz spaces, these methods yield
expressions for the loci of functions with prescribed singularities, which lead to
explicit formulas for the corresponding Hurwitz numbers.

The classical Thom approach, as well as its generalization by Kazarian, is
applicable to the case of mappings with isolated singularities only. For spaces of
stable mappings, this requirement proves to be too restrictive, since they inevitably
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contain mappings with nonisolated singularities, namely, those contracting certain
irreducible components of the curve to a single point in the target space. Sample
computations show, however, that main results can be extended to the nonisolated
case as well. The corresponding construction is not elaborated yet in the desired
generality.
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