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HUYGENS OPERATORS ON PRODUCT MANIFOLDS
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Abstract. Based on two equalities for power series which are equivalent to the Tedone
formulas, the elementary solution to the wave operator on the product ofk Riemannian mani-
folds is represented as a composition, with respect to the time variable, ofk elementary solu-
tions to wave operators on factor manifolds.As a consequence, one has an infinite number of
non-trivial momentary Huygens operators. Forexample, wave operators on the product of an
odd numer of odd dimensional manifolds with constant curvature are revealed to be momen-
tary Huygens operators for an appropriate choice of coefficients of the 0-th order terms.

1. Main results. Let (M, g ) be an oriented, compact or non-compact complete Rie-
mannian manifold of classC∞ without boundary and t be a time variable. We denote the
Laplace-Beltrami operator on(M, g ) by�M . In this article, we suppose that the metricg be
independent oft . Then the Cauchy problem for generalized wave equation

(1)
∂2u

∂t2
−�Mu+ cu = 0 ;

(2) u(p,0) = 0 ,
∂u

∂t
(p,0) = f (p) ,

c being a given constant, has a unique solutionu for long period (−∞ < t < +∞) for every
functionf of classC∞ onM. Let us denote it in the following way:

(3) u(p, t) = 〈G(p, t, ·; c), f 〉 =
∫
M

G(p, t, q; c)f (q)dv(q) , p ∈ M , t ∈ R ,

wheredv is the volume element of(M, g ). G(p, t, ·; c) is a function of classC∞ onM×R
with values in distributions onM, and is an odd function oft . G is said to be theelementary
solution to the Cauchy problem for generalized wave operator

Pc = ∂2

∂t2
−�M + c , wherec is a constant.

Let r be the geodesic distance between two adjacent points ofM. Then,G(p, t, ·; c) has
support in the closed geodesic ball{q ∈ M; r(p, q) ≤ |t|} if |t| is sufficiently small. We say
thatG hasmomentarily a strong lacuna, or thatPc is amomentary Huygens operator, if, for
every pointp ofM, there exists a positive numberT (p) such thatG(p, t, ·; c) has support in
the geodesic sphere{q ∈ M; r(p, q) = |t|} provided that|t| < T (p). If Pc is a momentary
Huygens operator, the dimension ofM is odd and not smaller than 3. This is one of theorems
established by Hadamard [H]. The elementary solution for long period is obtained by iteration
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of that for short period. However, to discuss the strong lacuna for long period, we need some
global considerations in geometry. So, in the present article, we concentrate our study only to
the question for short period.

We will prove the following theorem in Section 4.

THEOREM 1. Given a Riemannian manifold (M, g ), there exists at most one constant
c such that Pc be a momentary Huygens operator. Furthermore, such c is a real number if
exists.

Next, let(M(j), g (j)), j = 1,2, . . . , k, bek Riemannian manifolds. Then the product
spaceM(1)×· · ·×M(k) is also a Riemannian manifold endowed with the metricg (1)+ · · ·+
g (k). We denote a point of the product space byp = (p(1), . . . , p(k)), p(j) ∈ M(j). If we
denote byrj the geodesic distance between two adjacent points inM(j) and byr the geodesic
distance between two adjacent points in the product space, we have the Pythagoras formula:

(4) r(p, q)2 =
k∑
j=1

rj (p
(j), q(j))2 .

The following is the main result of this article. We shall prove it in Section 2.

THEOREM 2. Given k Riemannian manifolds (M(j), g (j)), let G(j)(p(j), t, q(j); c(j))
be the elementary solution to the Cauchy problem for

Pj = ∂2

∂t2
−�M(j) + c(j)

on (M(j), g (j)), 1 ≤ j ≤ k. Suppose that, for every point p(j) ofM(j), there exists a positive
number T (p(j)) such that the first order derivative ∂G(j)(p(j), t, ·; c(j))/∂t has support in
the sphere {q(j) ∈ M(j); rj (p(j), q(j)) = |t|} provided that |t| < T (p(j)) for every j , and
that k be odd. Then the operator

Q = ∂2

∂t2
−

k∑
j=1

�M(j) +
k∑
j=1

c(j)

on the product manifold (M(1) × · · · × M(k), g (1) + · · · + g (k)) is a momentary Huygens
operator. In particular, if P1, . . . , Pk are momentary Huygens operators and if k is odd, Q
is also a momentary Huygens operator.

The Huygens property has been systematically investigated by Günther [G2] for oper-
ators with variable coefficients. To be precise, letP be a second order hyperbolic operator
of metric principal part in aν-dimensional curved space-timeN endowed with a metrich of
signature(+,−, · · · ,−) (ν ≥ 2). Here,P is said to be ofmetric principal part if the second
order part ofP coincides with that of the Laplace-Beltrami operator with respect toh. Given a
real-valued smooth functionϕ and a positive smooth functiona in a neighborhood of a point
in N , we can define a conformal changeh �→ e2ϕh of metric and a gauge transformation
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u �→ au of unknown function onN . So, we have a new operatorP̃ by setting

(5) P̃ u = e−(ν+2)ϕ/2P [e(ν−2)ϕ/2au]/a .
P̃ is said to be theconformal gauge transform of P depending on(ϕ, a) (see Cotton [C]).
Following Günther [G1], we say a hyperbolic operatorP of metric principal part to betrivial if
every pointz of N has a neighborhoodV such that an appropriate conformal gauge transform
P̃ of P in V has an expression

P̃ = ∂2

∂y 2
1

− ∂2

∂y 2
2

− · · · − ∂2

∂y 2
ν

in an appropriate local coordinate system(y1, y2, . . . , yν). The operator on the right hand
side is said to be thed’Alembertian of ν independent variables.

An operator is a momentary Huygens operator if one of its conformal gauge transforms
is. A trivial operator is a momentary Huygens operator ifν = dimN is even andν ≥ 4.
Nishiwada [N] has proposed an important class of non-trivial Huygens operators.

We have the following corollary to Theorem 2 which will be proved in Section 3.

COROLLARY. There exists an infinite number of non-trivial momentary Huygens oper-
ators.

The author expresses his sincere gratitude to Professor Daisuke Fujiwara who informed
him of the preprint of Kannai [K] after the preparation of this work.

2. Proof of Theorem 2. The existence and uniqueness of the solution to the Cauchy
problem (1)–(2) allows us to represent the solution in the following way.

(6) u(·, t) = sin(t
√
A)√

A
f ,

∂u

∂t
(·, t) = cos(t

√
A)f where A = −�M + c .

LEMMA 1. Let G(p, t, q; ∑k
j=1 c

(j)) be the elementary solution to Q on the product
manifold defined in Theorem 2. Then the following hold.

(i) If k is odd and k ≥ 3, we set k = 2h+ 3. Then we have

G

(
p, t, q;

k∑
j=1

c(j)
)

= αk

(
1

t

∂

∂t

)h{
tk−2

∫
· · ·

∫
Sk−1

k∏
j=1

∂G(j)

∂t
(p(j), ωj t, q

(j); c(j))dSω
}
,

(7)

where

1/αk = 2(k+1)/2π(k−1)/2 ,

ω = (ω1, . . . , ωk) is the generic point of the sphere Sk−1 of radius 1 centered at the origin of
Rk and dS is the surface element of Sk−1 induced from the Euclidean metric of Rk.
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(ii) If k is even and k ≥ 2, we set k = 2h+ 2. Then we have

G

(
p, t, q;

k∑
j=1

c(j)
)

= βk

(
1

t

∂

∂t

)h{
tk−1

∫
· · ·

∫
Bk

k∏
j=1

∂G(j)

∂t
(p(j), uj t, q

(j); c(j)) du√
1 − |u|2

}
,

(8)

where
1/βk = (2π)k/2 ,

Bk is the ball of radius 1 centered at the origin of Rk and du = du1 · · · duk.
PROOF OF LEMMA 1. SetAj = −�M(j) + c(j) for 1 ≤ j ≤ k. Then we have

k operatorsA1, . . . , Ak which commute each other. Given a smooth functionf onM =
M(1) × · · · ×M(k), letuf be the solution to the Cauchy problem(1)–(2) forQ. Analogously
to (6), we have

(9) uf (·, t) = sin(t
√
A1 + · · · + Ak)√

A1 + · · · + Ak
f .

We shall prove in Section 6.1 the following two equalities involving arbitrary complex num-
bersa1, . . . , ak, whereh, αk, βk are the same as in(7), (8), respectively. Ifk is odd and
k ≥ 3, then

(10)
sin(t

√
a 2

1 + · · · + a 2
k )√

a 2
1 + · · · + a 2

k

= αk

(
1

t

∂

∂t

)h{
tk−2

∫
· · ·

∫
Sk−1

k∏
j=1

cos(ajωj t)dSω

}
.

If k is even andk ≥ 2, then

(11)
sin(t

√
a 2

1 + · · · + a 2
k )√

a 2
1 + · · · + a 2

k

= βk

(
1

t

∂

∂t

)h{
tk−1

∫
· · ·

∫
Bk

k∏
j=1

cos(ajuj t)
du√

1 − |u|2
}
.

(See also Kannai [K].)(9) and(10) imply, for the odd case,

(12) uf (p, t) = αk

(
1

t

∂

∂t

)h{
tk−2

∫
· · ·

∫
Sk−1

vf (p, t, ω)dSω

}
,

where
vf (·, t, ω) = cos(ω1t

√
A1) · · · cos(ωkt

√
Ak )f .

Therefore, we have(7). Analogously,(11) implies(8) for the even case.
On the right hand side of(7), we first calculate∂G(j)(p(j), s, q(j); c)/∂s and then sub-

stitutes = ωj t . A similar computation is to be done also for(8). q.e.d.

PROOF OFTHEOREM 2. The functionvf introduced in(12) has an expression

vf (p, t, ω) =
∫
M(1)

· · ·
∫
M(k)

f (q)

k∏
j=1

∂G(j)

∂t
(p(j), ωj t, q

(j); c(j))dv1(q
(1)) · · · dvk(q(k)) .



HUYGENS OPERATORS ON PRODUCT MANIFOLDS 145

We fix a pointp of M and a small positive timet . Suppose thatf be smooth and have
support in a geodesic ball of radiusδ centered atq0 and thatr(p, q0) + δ < t . Then we
haver(p, q) < t for every pointq on the support off . Forp, t, q fixed, we defineUj =
{ω ∈ Sk−1; |ωj |t > rj (p

(j), q(j))}, 1 ≤ j ≤ k. From(4), {Uj }kj=1 is an open covering of

Sk−1. So,vf (p, t, ω) vanishes identically onSk−1 by hypothesis on∂G(j)/∂t. This implies
thatuf (p, t) = 0, which is true for every smooth functionf with support in the geodesic
ball {q ∈ M; r(p, q) < t}. Consequently,G(p, t, ·; ∑k

j=1 c
(j)) has support in the geodesic

sphere{q ∈ M; r(p, q) = t}. q.e.d.

REMARK 1. The difference between(10) and(11) is important. To be more precise,
if k ≥ 2, there exists a distribution Φ on Rk with support in Sk−1 such that

(13)
sin

√
a 2

1 + · · · + a 2
k√

a 2
1 + · · · + a 2

k

=
〈
Φ,

k∏
j=1

cos(ajpj )

〉

for arbitrary complex numbers a1, . . . , ak if and only if k is odd.
We shall prove this in Section 6.5. This explains why the d’Alembertian ofk+1 variables

is or is not a Huygens operator according to the parity ofk (see (14), (15) and (16) below).

REMARK 2. (8) or its variant (37) in Section 6.3 may also be useful to discuss the
strong lacuna. In Section 6.4, we shall show this for one of the simplest examples.

3. Fundamental examples of trivial operators. Proof of Corollary. In this paper,
we confine our investigation to an operator of type

Pc = ∂2

∂t2
−�M + c

on a Riemannian manifoldM endowed with a metricg independent oft . The space-time
M×R has a metrich = dt2 − g , andPc is of metric principal part. We denoten = dimM
and suppose thatn ≥ 3 for simplicity.

The following is a particular case of a result established by Günther. We prove it in
Section 5 for the sake of completeness.

LEMMA 2 ([G2, pp. 486–494]). (i) Take a small open subset U of M and a small
open interval I of R. If there exists a smooth function ϕ such that e2ϕh be a flat metric in
U × I, then g is of constant sectional curvature in U .

(ii) If g is of constant sectional curvature σ in U × I , then Pc is trivial in U × I if and
only if c = σ(n− 1)2/4.

There are three fundamental examples of trivial operators.
(1◦) The d’Alembertian ofn+ 1 variables

∂2

∂t2
−

n∑
j=1

∂2

∂p 2
j

, (p, t) ∈ Rn × R ,
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is trivial. It is a Huygens operator if and only ifn is odd and not smaller than 3. The solution
u to the Cauchy problem(1)–(2) is given by classical formulas. The d’Alembert formula for
operator representing the vibration of an infinite string (n = 1) is given as follows:

(14) u(p, t) = 1

2

∫ t

−t
f (p + q)dq , (p, t) ∈ R × R .

We reproduce the Tedone formulas ([T]). Ifn is odd andn ≥ 3, we setn = 2m+ 3. Then,

(15) u(p, t) = αn

(
1

t

∂

∂t

)m{
tn−2

∫
· · ·

∫
Sn−1

f (p + tω)dSω

}
, (p, t) ∈ Rn × R .

If n is even andn ≥ 2, we setn = 2m+ 2. Then,

(16) u(p, t) = βn

(
1

t

∂

∂t

)m{
tn−1

∫
· · ·

∫
|q|<1

f (p + tq)√
1 − |q|2 dq

}
, (p, t) ∈ Rn × R .

Here,αn, βn are the same as in(7), (8), respectively.
(15), (16) are proved by means of the Fourier analysis in most of textbooks. Now, we

can verify them easily from(7), (8), respectively, and(14) becauseRn = R × · · · × R.
(2◦) The operator

P = ∂2

∂t2
−�Sn +

(
n− 1

2

)2

on the unit sphereSn is trivial for any dimensionn, and it is a momentary Huygens operator
if and only if n is odd andn ≥ 3. We can define a local coordinate system in every hemi-
sphere×interval in the following way for anyn odd or even. Letω = (ω0, ω1, . . . , ωn) be
the coordinates inRn+1 of a point ofSn. We set

(17) y0 = sint

ψ
, yj = ωj

ψ
, 1 ≤ j ≤ n ,

where

ψ = ψ(ω, t) = ω0 + cost ,

for example, in the region{(ω, t) ∈ Sn × R;ω0 > 0, |t| < π/2}. Then we have

(18) Pu = ψ−(n+3)/2
(
∂2

∂y 2
0

−
n∑
j=1

∂2

∂y 2
j

)
(ψ(n−1)/2u) .

A background of(18) will be sketched in Section 5.
The solution to the Cauchy problem(1)–(2) is obtained from(18) together with the

Tedone formula(15) or (16). If n is odd andn ≥ 3, we setn = 2m+ 3. Then,

(19) u(p, t) = αn

(
1

sint

∂

∂t

)m{
(sint)n−2

∫
· · ·

∫
Σ(p,t)

f (q)dΣq

}
, p ∈ Sn,0< t < π .

Here we denoteΣ(p, t) = {q ∈ Sn; r(p, q) = t}, which is a sphere of dimensionn − 1 of
the Euclidean radius sint , so we represent every point ofΣ(p, t) by means of a point of the
unit sphereSn−1. dΣ stands for the volume element ofSn−1. The solution in a long period
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is obtained if we extendu of (19) to an odd function oft in the interval(−π, π) and to a
periodic function of period 2π for all t . If n is even andn ≥ 2, we setn = 2m+ 2. Then,

u(p, t) = βn

(
1

sint

∂

∂t

)m ∫
· · ·

∫
Ω(p,t)

f (q)√
2〈p, q〉 − 2 cost

dSq ,

p ∈ Sn , 0< t < π ,

(20)

whereΩ(p, t) = {q ∈ Sn; r(p, q) < t} anddS is the volume element ofSn.
(3◦) The operator

P = ∂2

∂t2
−�Hn −

(
n− 1

2

)2

on the hyperbolic spaceHn with sectional curvature−1 is trivial for any dimensionn, and it
is a Huygens operator if and only ifn is odd andn ≥ 3. We identifyHn with the setRn whose
geodesic distance between two pointsp, q is defined to be the non-negative numberr(p, q)

satisfying coshr(p, q) = p0q0 − 〈p, q〉, where〈p, q〉 = ∑n
j=1pjqj andp0 = √

1 + 〈p,p〉.
In terms of a global coordinate system(p1, . . . , pn) in Hn, we can define(y0, y1, . . . , yn) in
the following way for anyn odd or even.

(21) y0 = sinht

ψ
, yj = pj

ψ
, 1 ≤ j ≤ n ,

where
ψ = ψ(p, t) = p0 + cosht

(see Section 5). Then we have

(22) Pu = ψ−(n+3)/2
(
∂2

∂y 2
0

−
n∑
j=1

∂2

∂y 2
j

)
(ψ(n−1)/2u) .

The solution to the Cauchy problem(1)–(2) is given by the following formulas. Ifn is odd
andn ≥ 3, we setn = 2m+ 3. Then,

(23) u(p, t) = αn

(
1

sinht

∂

∂t

)m{
(sinht)n−2

∫
· · ·

∫
Σ(p,t)

f (q)dΣq

}
, p ∈ Hn, t > 0 ,

whereΣ(p, t) = {q ∈ Hn; r(p, q) = t}. We represent a point ofΣ(p, t) by means of a
point ofSn−1. dΣ is the volume element ofSn−1. If n is even andn ≥ 2, we setn = 2m+ 2.
Then,

(24) u(p, t) = βn

(
1

sinht

∂

∂t

)m ∫
· · ·

∫
Ω(p,t)

f (q)√
2 cosht − 2 coshr(p, q)

dvq , t > 0 ,

whereΩ(p, t) = {q ∈ Hn; r(p, q) < t} anddvq = (1/q0)dq1 · · · dqn.
PROOF OF COROLLARY TO THEOREM 2. Let k be odd andk ≥ 3. For everyj ,

1 ≤ j ≤ k, let (M(j), g (j)), of odd dimensionnj , be either the Euclidean space, sphere or
hyperbolic space. Denoting the sectional curvature ofg (j) byσj , we setc(j) = σj (nj−1)2/4.
Then,Q in Theorem 2 is a momentary Huygens operator. Unless allM(j)’s are Euclidean,
Q is non-trivial because the metricg (1) + · · · + g (k) onM(1) × · · · ×M(k) is not of constant
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sectional curvature. For a fixedk, various choice of sectional curvature of every factor space
gives rise to an infinite number of non-trivial momentary Huygens operators. q.e.d.

4. Proof of Theorem 1.

LEMMA 3. The following equality holds for arbitrary complex numbers c, γ :

(25) G(p, t, q; c + γ ) =
∫ t

0
J0(

√
γ (t2 − s2))

∂

∂s
G(p, s, q; c)ds ,

where J0(z) = ∑∞
m=0(−z2)m/(4mm!2) is the Bessel function of order 0.

PROOF OFLEMMA 3. Power series expansion and term by term integration yield

(26)
sin

√
a2 + b2

√
a2 + b2

=
∫ 1

0
J0(b

√
1 − s2) cos(as)ds .

(25) follows from this and(6). q.e.d.

Denoting byuf (p, t) the solution to the Cauchy problem(1)–(2) for

Pc = ∂2

∂t2
−�M + c ,

we set

(a1) vf (p, t) =
∫ t

0
J0(

√
γ (t2 − s2))

∂

∂s
uf (p, s)ds .

LEMMA 4. Given a non-zero complex number γ , a positive number R and a continu-
ous function φ(s) in 0 ≤ s ≤ R, we set

(a2) ψ(t) =
∫ t

0
J0(

√
γ (t2 − s2))φ(s)ds , 0 ≤ t ≤ R .

Suppose that there exist two more real numbers R1, R2 such that

0< R1 ≤ R2 < R , φ(s) = 0 if R1 ≤ s ≤ R , ψ(t) = 0 if R2 ≤ t ≤ R .

Then, φ(s) is identically equal to zero in the interval 0 ≤ s ≤ R.

PROOF OFLEMMA 4. By the assumption on the support ofφ, we have

ψ(t) =
∫ R1

0
J0(

√
γ (t2 − s2))φ(s)ds if R1 ≤ t ≤ R .

The domain of integration is independent oft , so the right hand side is extended to an entire
function of t . On the other hand, the left hand side vanishes in a non-empty open interval
R2 < t < R by the assumption on the support ofψ. Therefore, we have

∫ R1

0
J0(

√
γ (t2 − s2))φ(s)ds = 0
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identically by the theorem of identity. We operate(t−1∂/∂t)j and multiply byj ! to both sides
to have ∫ R1

0

∞∑
m=0

(−γ /4)mj !
m!(m+ j)! (t

2 − s2)mφ(s)ds = 0 .

Letting j → ∞, we see that the integral ofφ(s) vanishes by the dominated convergence
theorem. We eliminate the term withm = 0 from the integrand, multiply again byj + 1 and
tend to the limit asj → ∞. After repeating this procedure, we sett = 0. Then, we have
successively ∫ R1

0
s2mφ(s)ds = 0 , m = 0,1,2, . . . .

Thereforeφ(s) is orthogonal to every polynomial ofs2 and hence to every continuous function
in the interval 0≤ s ≤ R1. So,φ(s) is identically equal to 0 in the interval 0≤ s ≤ R1 and
hence in 0≤ s ≤ R. q.e.d.

PROOF OF THEOREM 1. Suppose that bothPc andPc+γ be momentary Huygens
operators and thatγ �= 0. Then, for every pointp0 of M, there exists a positive number
T = T (p0) such that the support ofG(p0, t, ·; c) and the support ofG(p0, t, ·; c + γ ) are
both contained in the geodesic sphere{q ∈ M; r(p0, q) = |t|} provided that|t| < T .

Let f be an arbitrary function of classC∞ onM non-vanishing atp0 and with support
contained in a geodesic ball{q ∈ M; r(p0, q) < δ}, where we suppose that 0< δ < T . The
equality(a2) holds for

φ(s) = ∂uf (p
0, s)/∂s , ψ(t) = vf (p

0, t) ,

φ(s) = 0 if δ ≤ s ≤ T andψ(t) = 0 if δ ≤ t ≤ T because bothPc andPc+γ are
supposed to be momentary Huygens operators. Then, we can apply Lemma 4 by setting
R1 = R2 = δ andR = T to conclude thatφ(s) is identically equal to zero on 0≤ s ≤ T . So,
f (p0) = lims↓0φ(s) = 0 contrarily to our assumption. Hence, at least one ofPc andPc+γ is
not a momentary Huygens operator.

Next, remark thatG(p, t, q; c̄) = G(q, t, p; c) for any complex numberc because�M
is symmetric. So, ifPc is a momentary Huygens operator, then so isPc̄. The uniqueness ofc
implies c̄ = c and hencec is a real number. q.e.d

5. Proof of Lemma 2, (18) and (22).

PROOF OF(i). If (s1, . . . , sn) is a local coordinate system inU , g has an expression
g αβdsαdsβ in U . We denotet = s0 andh = dt2−g = hjkds

jdsk. Here and in what follows
in this section, Roman indicesj, k, . . . range from 0 ton, Greek indicesα, β, . . . range from
1 ton and we make use of the summation convention of Einstein.

Define the Christoffel symbols and the curvature tensors ofg andh to be

Γαλβ = (1/2)(∂αg βλ + ∂βg αλ − ∂λg αβ) , Γ̄jrk = (1/2)(∂jhkr + ∂khjr − ∂rhjk) ,

Rαβγ δ = ∂γ Γαβδ − ∂δΓαβγ + g λµ(ΓαλγΓβµδ − ΓαλδΓβµγ ) ,

R̄jkrs = ∂r Γ̄jks − ∂sΓ̄jkr + hpq(Γ̄jpr Γ̄kqs − Γ̄jpsΓ̄kqr) ,
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respectively, where∂j = ∂/∂sj . Sinceh00 = 1, h0α = 0 andhαβ = −g αβ , we can verify that

R̄jkrs = 0 if 0 ∈ {j, k, r, s} and thatR̄αβγ δ = −Rαβγ δ. The curvature tensor̂Rjkrs of e2ϕh is
obtained if we replacehjk by e2ϕhjk. We have (see Eisenhart [E., p. 89])

(27) e−2ϕR̂jkrs − R̄jkrs = hkrajs + hjsakr − hksajr − hjraks + (hjrhks − hjshkr )b ,

where

ajk = eϕ∇̄j ∇̄ke−ϕ = akj , b = hjk(∂j ϕ)(∂kϕ) ,

and∇̄j = ∇̄∂/∂sj is the covariant differentiation with respect toh. To be more precise,

(b1)
a00 = eϕ∂ 2

0 e
−ϕ , a0α = eϕ∂0∂αe

−ϕ , aαβ = eϕ∇α∇βe−ϕ ,
b = (∂0ϕ)

2 − g αβ(∂αϕ)(∂βϕ) ,

where∇α = ∇∂/∂sα is the covariant differentiation with respect tog .
Suppose now thate2ϕh be flat onU × I . Then, R̂jkrs = 0 for all j, k, r, s. Since

R̄0αβγ = 0, we havea0α = 0 for all α. So,e−ϕ is of the form

(28) ψ = e−ϕ = ψ0(t)+ ψ1(s
1, . . . , sn) ,

whereψ0 is independent of(s1, . . . , sn) while ψ1 is independent oft . Next, note that
R̄0α0β = 0 yields (n2 + n)/2 equalitiesaαβ = (a00 − b)g αβ . From these and(28), we
see that there exist two constantsσ, τ such that

(29)
ψ ′′

0 + σψ0 = τ , ∇α∇βψ1 + (σψ1 + τ )g αβ = 0 ,

ψ ′
0

2 + σψ 2
0 − 2τψ0 = g αβ(∂αψ1)(∂βψ1)+ σψ 2

1 + 2τψ1 .

Furthermore, we havēRαβγ δ = −Rαβγ δ. Then it follows that

Rαβγ δ = σ(g αδg βγ − g αγ g βδ) .

Therefore, the sectional curvature ofg is constant and equal toσ .
Note that(29) yields the following equation forψ = e−ϕ.

(b2) P0[ψ(1−n)/2] = −σ
(
n− 1

2

)2

ψ(1−n)/2 ,

whereP0 = ∂2/∂t2 −�M .

PROOF OF(ii). Suppose that there exists a coordinate system(y0, y1, . . . , yn) and a
smooth functiona in U × I such that

(30) Pc[fu] = e2ϕf

{
∂2u

∂(y0)2
− ∂2u

∂(y1)2
− · · · − ∂2u

∂(yn)2

}
,

wheref = ψ(1−n)/2a. This implies first of all thatPcf = 0 andPc[fyp] = 0, that is,

(31) Pcf = 0 , 2hlk(∂l logf )(∂kyp)+ P0y
p = 0 , 0 ≤ p ≤ n .

(30) also implies thatPc[fypyq] = 2εpqe2ϕf , that is,

(32) (∂j y
p)hjk(∂ky

q) = e2ϕεpq , e2ϕhjk = (∂j y
p)εpq(∂ky

q) , 0 ≤ j, k, p, q ≤ n ,
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whereε00 = ε00 = 1, εαα = εαα = −1 andεpq = εpq = 0 for p �= q. (30) holds for anyu
if and only if (31) and (32) hold. We multiplyεpq∂jyq to both sides of thep-th equation of
(31) and then contract. Then, by a repeated use of(32), we have

− 2e2ϕ∂j logf = εpq(∂jy
p)∇̄k(hkl∂lyq)

= ∇̄k{hkl(∂j yp)εpq(∂lyq)} − (1/2)∇̄j {hkl(∂kyp)εpq(∂lyq)}
= ∇̄k(e2ϕhklhjl)− (1/2)∇̄j (e2ϕhklhkl) = (1 − n)e2ϕ∂jϕ .

So,∂j a = 0. Therefore,a is a (positive) constant.Pcf = 0 means nowPc[ψ(1−n)/2] = 0.
This together with(b2) yieldsc = σ(n− 1)2/4.

Conversely, suppose thatc = σ(n − 1)2/4. Let us confine ourselves to the case where
σ = 1,−1 or 0. Then, if moreoverU is small,(U, g ) is isometric to an open subset ofSn,
Hn or of Rn, respectively (see Eisenhart [E, p. 85]).

If σ = 0,U is an open subset ofRn and if (s1, . . . , sn) is a standard coordinate system
of Rn, thenPc (c = 0) is naturally trivial. So,ψ = 1 (ϕ = 0) is a solution to(29) with τ = 0
andyj = sj , 0 ≤ j ≤ n, satisfy (30).

For σ = 0, one of solutions to(29) with τ = 2 is ψ = γ (s), whereγ (s) =∑n
p,q=0 εpqs

psq . Changing letters, we defineyj = xj/γ (x), 0 ≤ j ≤ n. Then we have
the following equality foru with support in the domain{γ (x) > 0} (note thatγ (x)γ (y) = 1).

γ (x)(n+3)/4
n∑

p,q=0

εpq
∂2

∂xp∂xq
[γ (x)(1−n)/4u]

= γ (y)(n+3)/4
n∑

p,q=0

εpq
∂2

∂yp∂yq
[γ (y)(1−n)/4u] .

(33)

This is nothing but the reflection principle in the Minkowski space-timeRn × R.
For the proof of Lemma 2, it remains only to verify(18) and(22).

PROOF OF(18). (ω1, . . . , ωn) in Section 3,(2◦) is a coordinate system in the hemi-
sphereU = {ω0 > 0}. ψ = ω0 + cost is positive inU × (−π/2, π/2) and satisfies(29)
(σ = 1, τ = 0). Let us defineyj ’s to be

yj = −Xj logψ , 0 ≤ j ≤ n ,

whereX0 = ∂/∂t ,Xα = ω0∂/∂ωα (see(17)). Xj ’s commute withPc, and equationsPcf =
0,XjPcf = 0,XjXkPcf = 0 (f = ψ(1−n)/2) reduce to(31), (32). Hence we have(18).

PROOF OF(22). (p1, . . . , pn) in Section 3,(3◦) is a coordinate system valid every-
where in the hyperbolic spaceHn. ψ = p0 + cosht is positive and satisfies(29) (σ =
−1, τ = 0). Let us defineyj ’s to bey0 = ∂(logψ)/∂t, yα = p0∂(logψ)/∂pα (see(21)).
Then we have(31), (32) and(22). q.e.d.

6. Proof of (10), (11) and related remarks. Throughout this section, we denote sim-

ply α =
√
a 2

1 + · · · + a 2
k .
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6.1. Proof of (10), (11). A power series expansion yields

sin(αt)

α
=

∑
Aλ

k∏
j=1

(−a 2
j )

λj

(2λj )! , where Aλ = n! t2n+1

(2n+ 1)!
k∏
j=1

(2λj )!
λj ! .

Here, the summation on the right hand side is extended over all non-negative integers
λ1, . . . , λk andn stands for

∑k
j=1 λj . Then,Aλ splits into a productAλ = A

(1)
λ A

(2)
λ , where

A
(1)
λ = Γ (n+ (k/2))t2n+1

4π(k−1)/2Γ (n+ (3/2))
= αk

(
1

t

∂

∂t

)h
t2n+k−2 ,

A
(2)
λ = 2

Γ (n+ (k/2))

k∏
j=1

Γ

(
λj + 1

2

)
.

A
(2)
λ is equal to an integral over a simplex of dimensionk − 1:

A
(2)
λ = 2

∫
· · ·

∫
sj>0,s1+···+sk=1

k∏
j=1

s
λj−(1/2)
j ds2 · · · dsk .

We rewrite it by settingsj = ω 2
j , 1 ≤ j ≤ k. Since 21−kds2 · · · dsk/√s1 · · · sk is the volume

element ofSk−1 and
∏k
j=1ω

2λj is an even function on the sphere, we have finally

A
(2)
λ =

∫
· · ·

∫
Sk−1

k∏
j=1

ω
2λj
j dSω .

Therefore, we have(10).
For the proof of(11), we proceed analogously to the above.

sin(αt)

α
=

∑
Cλ

k∏
j=1

(−a 2
j )

λj

(2λj )! , where Cλ = n! t2n+1

(2n+ 1)!
k∏
j=1

(2λj )!
λj ! ,

andn = ∑k
j=1 λj as above.Cλ splits asCλ = C

(1)
λ C

(2)
λ :

C
(1)
λ = Γ (n+ (k + 1)/2)t2n+1

2πk/2Γ (n+ (3/2))
= βk

(
1

t

∂

∂t

)h
t2n+k−1,

C
(2)
λ =

√
π

Γ (n+ (k + 1)/2)

k∏
j=1

Γ

(
λj + 1

2

)
.
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We representC(2)λ as an integral over ak-dimensional simplex and rewrite it as an integral
over the ballBk to have

C
(2)
λ =

∫
· · ·

∫
sj>0,s1+···+sk<1

k∏
j=1

s
λj−(1/2)
j

ds1 · · · dsk√
1 − s1 − · · · − sk

=
∫

· · ·
∫
Bk

k∏
j=1

u
2λj
j

du√
1 − |u|2 .

Therefore, we have(11). q.e.d.
6.2. Derivation of (10), (11) from (15), (16). We set

u(p, t) = f (p)
sin(αt)

α
, f (p) = cos(a1p1) · · · cos(akpk), p = (p1, . . . , pk) .

u solves the Cauchy problem(1)–(2) for the d’Alembertian ofk + 1 variables for this initial
valuef because

∑k
j=1 ∂

2f/∂p 2
j = −α2f . So,(15) or (16) holds according to the parity of

k if k ≥ 2. By settingp = 0, we have immediately(10) or (11), respectively.
We have shown that(10) implies(7) (see the proof of Lemma 1),(7) combined with(14)

implies (15) (see Section 3,(1◦)) and that(15) implies (10) as above. Therefore,(7), (10)
and(15) are equivalent. Analogously,(8), (11) and(16) are equivalent.

6.3. Variants of (7), (8). Let us remark that

(34) −1

t

∂

∂t

(
1

aj

∂

∂aj

sin(αt)

α

)
= sin(αt)

α
, 1 ≤ j ≤ k .

In (10) or (11), we make use of this forj = 1, . . . , p, where 1≤ p ≤ k.
If k is odd andk ≥ 3, we have

sin(αt)

α
= αk

(
1

t

∂

∂t

)h+p[
tk−2+p

∫
· · ·

∫
Sk−1

{ p∏
j=1

ωj sin(ajωj t)

aj

}

×
k∏

l=p+1

cos(alωl t)dSω

]
.

(35)

Therefore, we have a variant of(7):

G

(
p, t, q;

k∑
j=1

c(j)
)

= αk

(
1

t

∂

∂t

)h+p

×
[
tk−2+p

∫
· · ·

∫
Sk−1

p∏
j=1

{ωjG(j)(p(j), ωj t, q(j); c(j))}

×
k∏

l=p+1

∂G(l)

∂t
(p(l)ωlt, q

(l); c(l))dSω
]
.

(36)
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Analogously, ifk is even andk ≥ 2, we have a variant of(8):

G

(
p, t, q;

k∑
j=1

c(j)
)

= βk

(
1

t

∂

∂t

)h+p

×
[
tk−1+p

∫
· · ·

∫
Bk

p∏
j=1

{ujG(j)(p(j), uj t, q(j); c(j))}

×
k∏

l=p+1

∂G(l)

∂t
(p(l), ult, q

(l); c(l)) du√
1 − |u|2

]
.

(37)

(36) or (37)may be simpler than(7) or (8), respectively, in some of applications.
6.4. On Remark 2 in Section 2. Set

P1 = ∂2

∂t2
− ∂2

∂p 2
1

, P2 = ∂2

∂t2
− ∂2

∂p 2
2

− ∂2

∂p 2
3

, P3 = ∂2

∂t2
− ∂2

∂p 2
1

− ∂2

∂p 2
2

− ∂2

∂p 2
3

.

P3 is a Huygens operator although neitherP1 norP2 is. To verify this, we assume(14), (16)
for n = 2 and prove(15) for n = 3 with the aid of(37) for k = 2, p = 1.

Let u be the solution to the Cauchy problem(1)–(2) for P3 with initial valuef . From
(14), (16) and(37), it is evaluated atp = o = (0,0,0) as follows.

u(o, t) = 1

4πt

∂

∂t
L(t) ,

where

L(t) = t3

π

∫∫
B2

µ2dλdµ√
1 − λ2 − µ2

∫∫
B2

f (λt, µq2t, µq3t)√
1 − q 2

2 − q 2
3

dq2dq3 .

We restrict the domain of integration with respect toµ to the partµ > 0. For fixedµ, we
change the variables from(λ, q2, q3) to (x1, x2, x3) = (λ, µq2, µq3). Then we have

L(t) = t3

π

∫∫∫
B3
f (tx)dx

∫ √
1−x 2

1√
x 2

2 +x 2
3

2µdµ√
1 − x 2

1 − µ2
√
µ2 − x 2

2 − x 2
3

.

The integral with respect toµ is equal toπ for everyx, so

L(t) = t3
∫∫∫

B3
f (tx)dx and u(o, t) = t

4π

∫∫
S2
f (tω)dSω .

The last equality is precisely(15) atp = o for n = 3.
6.5. On Remark 1 in Section 2. Suppose that(13) holds for aΦ with support in

Sk−1. Since sinα/α is an even function ofaj for everyj , we can replaceΦ by its even part
Φe defined to be

〈Φe, f 〉 =
〈
Φ,2−k ∑

f (ε1p1, ε2p2, . . . , εkpk)

〉
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for every test functionf ∈ C∞(Rk), where the summation is extended over 2k terms with
εj = +1 or −1. Φe has also support inSk−1. Next, we can replace cos(ajpj ) by eiajpj

because sin(ajpj ) is an odd function. So,(13) is rewritten as

(c1)
sinα

α
= 〈Φe, ei〈a,p〉〉 , where 〈a, p〉 =

k∑
j=1

ajpj .

Since sinα/α is invariant by rotationsa �→ Ua (U ∈ SO(k)) and〈Ua, p〉 = 〈a,t Up〉, we
can replaceΦe by its averageΨ overSO(k) defined to be

〈Ψ, f 〉 =
〈
Φe,

∫
SO(k)

f (tUp)dU

〉

for everyf , wheredU is the Haar measure with total mass 1 onSO(k). So,(c1) is rewritten
as

(c2)
sinα

α
= 〈Ψ, ei〈a,p〉〉 .

Now, Ψ has support inSk−1 and is a rotation invariant distribution onRk, that is,
〈Ψ, (d/ds){f (e−sXp)}〉|s=0 = 0 for everyf and every anti-symmetric real matrixX of order
k. Hence there exists a polynomialq of single variable such that

〈Ψ, f 〉 =
∫
Sk−1

{
q

(
r
∂

∂r

)
f (rω)

}∣∣∣∣
r=1

dSω =
{
q

(
r
∂

∂r

) ∫
Sk−1

f (r ω)dSω

}∣∣∣∣
r=1

for everyf . This and(c2) imply

(c3)
sinα

α
=

{
q

(
r
∂

∂r

)∫
Sk−1

eir〈a,ω〉dSω
}∣∣∣∣
r=1

.

By a computation analogous to that in §6.1, we have∫
Sk−1

ei〈a,ω〉dSω = (2π)λ+1α−λJλ(α) = 2πλ+1
∞∑
m=0

(−α2/4)m

m!Γ (m+ λ+ 1)
,

whereλ = (k − 2)/2 andJλ is the Bessel function of orderλ. This and(c3) yield

(c4)
sinα

α
= (2π)λ+1

[
q

(
r
∂

∂r

)
{(rα)−λJλ(rα)}

]
r=1

.

Comparing the coefficients ofα2m in the Taylor expansions of both sides, we obtain a system
of an infinite number of equations

(c5) q(2m) = π(1−k)/2

4

Γ (m+ (k/2))

Γ (m+ (3/2))
for m = 0,1,2, . . . .

(13) holds for aΦ with support inSk−1 if and only if (c5) holds with a polynomialq.
If k is odd,(c5) defines a polynomialq of degree(k − 3)/2. If on the contraryk is even,

there does not exist such a polynomialq because the right hand side of(c5) behaves like a
positive number multiple ofm(k−3)/2 asm → ∞ due to the Stirling formula. q.e.d.
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