
HWASanIO: Detecting C/C++ Intra-object Over�ows
with Memory Shading

Konrad Hohentanner
konrad.hohentanner@aisec.fraunhofer.de

Fraunhofer AISEC

Garching, near Munich, Germany

Florian Kasten
florian.kasten@aisec.fraunhofer.de

Fraunhofer AISEC

Garching, near Munich, Germany

Lukas Auer
lukas.auer@aisec.fraunhofer.de

Fraunhofer AISEC

Garching, near Munich, Germany

Abstract

C/C++ are often used in high-performance areas with criti-

cal security demands, such as operating systems, browsers,

and libraries. One major drawback from a security stand-

point is their susceptibility to memory bugs, which are of-

ten hard to spot during development. A possible solution

is the deployment of a memory safety framework such as

the memory tagging framework Hardware-assisted Address-

Sanitizer (HWASan). The dynamic analysis tool instruments

object allocations and inserts additional check logic to detect

memory violations during runtime. A current limitation of

memory tagging is its inability to detect intra-object mem-

ory violations i.e., over- and under�ows between �elds and

members of structs and classes. This work addresses the

issue by applying the concept of memory shading to mem-

ory tagging. We then present HWASanIO, a HWASan-based

sanitizer implementing the memory shading concept to de-

tect intra-object violations. Our evaluation shows that this

increases the bug detection rate from 85.4% to 100% in the

memory corruptions test cases of the Juliet Test Suite while

maintaining high interoperability with existing C/C++ code.

CCS Concepts: • Software and its engineering → Dy-

namic analysis.

Keywords: memory safety, memory tagging, intra-object

over�ows, sub-object over�ows, dynamic analysis

ACM Reference Format:

Konrad Hohentanner, Florian Kasten, and Lukas Auer. 2023.

HWASanIO: Detecting C/C++ Intra-object Over�ows with Memory

Shading. In Proceedings of the 12th ACM SIGPLAN International

Workshop on the State Of the Art in Program Analysis (SOAP ’23),

June 17, 2023, Orlando, FL, USA. ACM, New York, NY, USA, 7 pages.

h�ps://doi.org/10.1145/3589250.3596139

SOAP ’23, June 17, 2023, Orlando, FL, USA

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0170-2/23/06.

h�ps://doi.org/10.1145/3589250.3596139

1 Introduction

The MITRE 2022 Top 25 Most Dangerous Software Weak-

nesses [5] lists memory errors in memory-unsafe languages,

such as C and C++, among the leading causes for dangerous

exploits. Vulnerabilities based on manual memory handling

such as out-of-bounds write/read and use after free are ranked

at positions 1, 5, and 7.

Sanitizers are dynamic analysis tools that can help to

detect memory bugs during development by adding mem-

ory safety as part of compiler instrumentation. Hardware-

assisted AddressSanitizer (HWASan) is a sanitizer available

in the gcc and clang compilers, which uses memory tagging,

also known as memory coloring, to improve bug detection.

During object allocation, a tag is saved in the upper bits

of pointers and tag memory associated with the object. On

every access the tags are compared, with a mismatch leading

to a runtime error.

One drawback of tagging-based sanitizers is their inability

to detect intra-object violations i.e., over- and under�ows

between struct �elds or classmembers, because the meta-

data layout handles objects as single entities without regard-

ing the sub-objects they may contain.

In this work, we propose memory shading, a novel ap-

proach that splits the tag into color and shade. While the

color part still indicates object boundaries, just like the tag

in prior memory tagging approaches, the shade can now

di�erentiate between �elds and members of the same ob-

ject. This allows the detection of intra-object violations and

thus increases the bug-�nding capabilities of tagging-based

sanitizers, as we demonstrate in our prototype, HWASanIO.

In this paper, we make the following contributions:

• The memory shading concept, a modi�cation of mem-

ory tagging, which expands the detection of temporal

and spatial violations to also include intra-object vio-

lations.

• A full LLVM-based prototype implementation of

HWASanIO that applies this concept to protect heap,

stack, and global objects of C and C++ applications. 1

• A detailed evaluation of HWASanIO and related solu-

tions, speci�cally their e�ectiveness in detecting mem-

ory bugs and their performance overheads.

1Source code: h�ps://github.com/Fraunhofer-AISEC/HWASanIO

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

27

http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-2283-6071
https://orcid.org/0009-0000-1649-3127
https://orcid.org/0000-0001-8967-6063
https://doi.org/10.1145/3589250.3596139
https://doi.org/10.1145/3589250.3596139
https://github.com/Fraunhofer-AISEC/HWASanIO
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3589250.3596139&domain=pdf&date_stamp=2023-06-06

SOAP ’23, June 17, 2023, Orlando, FL, USA Konrad Hohentanner, Florian Kasten, and Lukas Auer

2 Related Work

Compiler-based memory safety in C/C++ is possible through

the use of metadata and runtime checks. This section gives

an overview of available related work approaches and their

respective security guarantees. Here, spatial memory safety

ensures accesses are in-bounds, whereas temporal memory

safety guarantees accesses are only permitted during an

object’s lifetime.

Interleaving guard pages [7, 20] or red-zones [4, 11, 12,

22, 24] between objects allows detection of linear over�ows.

Non-linear spatial violations can still occur for pointer o�-

sets large enough to jump beyond a restricted area into an-

other object. While these approaches can be relatively fast,

they use a lot of additional runtime memory for the added

restricted areas and the necessary shadowing of the appli-

cation memory. They do not support intra-object detection,

which would require insertion of metadata between object

�elds, and therefore break the Application Binary Interface

(ABI).

Approaches with bounds metadata achieve memory safety

by tracking the start and end address of objects. This can

be done on a per-object basis, where pointer arithmetic is

then instrumented to stay within the bounds of the cor-

responding allocations [6, 15, 21, 28], guaranteeing spatial

memory safety. The precision of bounds-tracking solutions

is increased with per-pointer metadata. Fat-pointers store

this information directly inside the pointer [3, 14, 18, 25]

to validate every spatial access. Related solutions such as

Softbound/CETS keep the bounds information separated in

memory and achieve temporal safety with lock and key meta-

data [16, 17, 19, 27]. Since pointers are compared to their start

and end address, the check logic is quite complex. Tracing

sub-object bounds is possible at the cost of an additionally

increased overhead.

Some approaches deduce the object bounds from the

pointer address by allocating objects in a bucketing scheme

[1, 8, 10]. Because the metadata is solely de�ned by the

object size it does not allow di�erentiation inside of aggre-

gate types, and therefore o�ers no detection of intra-object

violations. E�ectiveSan [9] uses additional dynamic type

information to detect spatial violations. This does include

intra-object over�ows, but not between �elds with the same

type, e.g., two char arrays inside a struct.

Memory tagging approaches [13, 23] such as HWASan use

per-pointer tag metadata to achieve a low memory over-

head and reduced overall check complexity compared to

approaches with more complex metadata. At every access,

the tag saved inside the pointer is compared for equality

to the allocation tag stored in separate shadow memory di-

rectly linked to the object memory. Due to the limited tag

size, metadata collisions are possible where a pointer to an

object can access all other objects with the same allocation

tag.

Listing 1. Intra-object over�ow in Juliet CWE 121 stack-

based bu�er over�ow testcase (variable names shortened).

#define STR "0123456789 abcdef0123456789"

struct cV {

char cFirst [16];

void *vSecond;

void *vThird; };

struct cV sCV;

memcpy(sCV.cFirst ,STR ,sizeof(sCV));

Dedicated hardware can be used to lower the runtime

overheads of memory safety approaches. CHERI [26] uses

so-called capabilities, i.e., fat pointers in hardware, to store

bounds information with optional support for sub-bounds

tracking, but requires considerable integration e�ort. ARM

Memory Tagging Extension (MTE) [2] is a hardware-assisted

memory tagging approach introduced as part of ARMv8.5.

Tags are saved directly in hardware, with new instructions

used for tag access. The load and store logic is able to auto-

matically compare these tags, which greatly improves the

performance compared to HWASan. The coarse granularity

of tagging every 16 bytes of memory with only 4 bits of

metadata leads to a higher collision rate between objects.

Since the hardware extension only supports a single tag per

object, no intra-object detection is possible.

In summary, current memory safety solutions only spar-

ingly detect intra-object violations, with no compiler-based

memory tagging solution being able to detect them.

3 Intra-object Memory Violations

An intra-object, or sub-object, memory violation occurs due

to an over- or under�ow between �elds of the same object.

An analysis of the source code used in the SPEC CPU 2017

benchmark, which includes compilers and image processing

applications, shows that only 10% of all used aggregate vari-

ables are bu�ers, and 90% are structs and classes. With

an average of 9 �elds contained in these variables, the poten-

tial for intra-object violations is high. For current memory-

tagging-based sanitizers such as HWASan, a detection is

not possible because objects are seen as one unit during

allocation with no di�erentiation between sub-objects.

Listing 1 shows a code snippet of a memory corruption test

case from the Juliet test suite. Because the sizeof calculation

is based on the whole struct and not the 16 byte bu�er, the

memcpy function is called with a too large size for its target.

This results in an intra-object over�ow and the corruption

of all other data �elds. By carefully overwriting neighboring

variables, it is possible to either manipulate application data

directly or, if the variables contain function or data pointers,

start hijacking attacks.

28

HWASanIO: Detecting C/C++ Intra-object Overflows with Memory Shading SOAP ’23, June 17, 2023, Orlando, FL, USA

'a' aa

0
'b'

TagData

aa

char buffer[2] = ['a','b'];

0 0

aa 00000012345678

Pointer

tag address 0

Figure 1. In memory tagging, tags are saved in pointer and

object metadata to identify legal and illegal accesses.

4 Memory Tagging and HWASan

Memory tagging, or memory coloring, is a mechanism that

can be used to enforce memory safety guarantees in an ap-

plication by adding instructions to track a per-object tag in

both the pointer address and dedicated metadata memory.

Figure 1 shows this fundamental concept. During allocation,

the bu�er variable is assigned a random tag that is di�erent

from the previous and next memory object. The tag is added

across the shadowmemory range corresponding to the mem-

ory address of the bu�er variable, as well as in the upper bits

of the pointer. Every time this pointer is dereferenced, the

two tags are compared to ensure accesses are in-bounds. The

memory tagging implementation of HWASan included in

the LLVM compiler infrastructure uses a �exible granularity,

which refers to the number of bytes tagged with the same tag.

In the default 16-to-1 mapping of HWASan, 16 bytes of ap-

plication memory are associated with one byte of metadata.

To be able to set a byte-precise end address inside this 16

byte range, a granule byte is added at the end of an object’s

metadata to indicate the last legally accessible byte. This

requires special handling in the check logic. The metadata is

saved in dedicated shadow memory mapped in the virtual

address space; its location is derived from the application

memory address. Pointers themselves include the tag in the

8 upper pointer bits, which are unused in virtual addressing

and do not interfere with load and store instructions due to

the ARM Top Byte Ignore (TBI) hardware feature.

From the application’s point of view, the bu�er variable is

used normally during all operations, with the special case of

load and store operations. Here, the compiler instrumenta-

tion adds instructions before each memory access to load the

tag from the shadow memory address linked to the target

address and compare it for equality with the tag stored inside

the pointer. If the tags match, the operation continues nor-

mally. In the case of a mismatch, e.g., dereferencing a pointer

incremented beyond the object’s end address, an exception

is thrown to indicate and prevent the memory violation. Ad-

ditional debugging information, such as the stack frame and

violation type, help to �nd the root cause of the memory

corruption.

Memory tagging also allows the detection of temporal

violations, because the shadow memory metadata of freed

objects is set to a zero tag, invalidating all pointers to the

'w'

color

b

'z'

'x'
'y'

shade
TagData

'z'

b
b

f 0

2fo
o1

bu
f

f2
f1

1 byte 1 byte

struct foo_t {
 char f1;
 char f2[2];
};
char c1 = 'v';
struct foo_t foo1 = {
 .f1 = 'w',
 .f2 = ['x', 'y']
};
char buf[2] = ['z', 'z'];

1
'v' 1 0c1

f 0
2

Figure 2.Memory shading splits the tag into color and shade

to di�erentiate between objects and object �elds.

object. Pointers to the now unallocated objects can therefore

not be dereferenced anymore, preventing violations such as

use after free.

5 Memory Shading

Memory shading expands the idea of memory tagging to

o�er protection against intra-object memory violations.

To achieve this, the metadata design is changed from a

purely color-based approach to a color- and shading-based

approach, where the shade is used to di�erentiate between

object members. Note: The shading concept covers both

structs and classes, and both are protected in our proto-

type. To avoid redundancies we use structs in the following

explanations and examples.

Color. The color is de�ned by the upper half of metadata.

It is used in the same manner as the tag described in Sec-

tion 4. During an object’s allocation, it is set to a random

non-zero value that does not collide with previous and fol-

lowing objects, which is ensured by comparing it with the

color of neighboring metadata and generating new values

until a di�ering value is found. The color is the same across

the entire shadowmemory range corresponding to the object

and is used in all of the object’s load and store checks.

Shade. The remaining bits of metadata are used as the

shade of an object. It is di�erent for neighboring �elds, and

thus allows detection of intra-object under- and over�ows.

For non-struct objects, it is set to zero, because any pointer

to the object can legally access all its allocated memory.

For struct objects, the shade starts at value one and is in-

cremented for every additional non-struct �eld, wrapping

around back to one after it reaches its maximum value. For

layered structs, where a �eld is of a struct type, the shad-

ing algorithm is initiated anew, starting the shade of the �eld

at value one. This keeps the shading layout consistent for

objects with an arbitrary depth.

Example. Figure 2 shows an exemplary runtime memory

layout of two variables on a systemwith thememory shading

concept active. The C struct type foo_t contains a char

29

SOAP ’23, June 17, 2023, Orlando, FL, USA Konrad Hohentanner, Florian Kasten, and Lukas Auer

and a char bu�er �eld. The metadata consists of a shared

tag across the object and individual shades for each of the

�eld variables. Additionally, a char and a bu�er variable are

allocated, which are not of a struct type and therefore have

their shade set to zero, i.e., with no di�erentiation inside

the object. Here, over- and under�ows to other objects are

prevented by the color stored in the metadata.

6 HWASanIO Implementation

The HWASanIO prototype is implemented as an extension

to the HWASan source code available in the LLVM com-

piler framework (version 14), with support for Linux-based

systems running on ARMv8 hardware. The following modi-

�cations are needed to add the support for memory shading

to the HWASan instrumentation pass and its runtime library.

Metadata generation. Metadata in HWASanIO is gener-

ated with 4 bits for both color and shade, as discussed in

Section 5. Here, the interceptors for heap management func-

tions, as well as the stack and globals metadata handling have

been adapted accordingly. Additionally, the metadata gener-

ation was modi�ed to prevent tag collisions for neighboring

objects by comparing against the previous and following

tags in shadow memory. This ensures the detection of linear

over�ows and under�ows.

Shadow Memory Layout. HWASan uses a 16-to-1 map-

ping, where every block of 16 bytes of data is shadowed

by one byte of metadata. Object sizes therefore have to be

increased to multiples of 16 bytes by adding padding bytes.

This approach is not desirable for memory shading, because

structs with additional padding between the �elds would

break the ABI and therefore dynamically linked uninstru-

mented library interfaces. Thus, HWASanIO uses a 1-to-1

mapping without padding. Shadow addresses are derived

by �ipping the Most Signi�cant Bit (MSB) of the user-space

virtual address.

Pointer instrumentation. An important aspect of color

shading is the continuous update of the pointer shade. In

HWASanIO, deriving a pointer to a sub-object sets the shade

according to the targeted �eld. Here, the instrumentation

pass inserts instructions for setting the corresponding shade

whenever a sub-object pointer is created.

Check logic and optimizations. The check logic was

modi�ed to compare both color and shade stored in pointers

and shadow memory, which leads to additional instructions

being added. To reduce this overhead, new compile-time

optimizations are introduced. A pointer �ow analysis traces

allocated objects that are never cast to struct-types and

can therefore use the shorter, color-only, check on memory

accesses. If an object’s origin cannot be safely determined,

the shade-aware check logic is used to avoid false negatives.

This is the case for e.g., memory handling functions that

take void* arguments and are used with both struct and

non-struct arguments. For the SPEC CPU 2017 benchmark,

struct foo_t {
 char f1; };
struct bar_t {
 char b1;
 struct foo_t foo;};
struct bar_t bar = {
 .b1 = 'a',
 .foo = {
 .f1 = 'b' }};

'a'
color

'b'

shade
TagData

1
1

b1

1 byte 1 byte

ba
r

fo
o

a
a

Figure 3. Shade collision in a layered struct.

this analysis safely simpli�ed an average of 51% of checks to

a color-only check.

Granule. HWASan uses a granule byte to mark the end

address of an object on a byte-level granularity as discussed

in Section 4. Because HWASanIO uses a 1-to-1 mapping and

therefore always guarantees byte precision, the feature was

removed without impacts to the memory safety guarantees.

Reporting. The reporting functionality of HWASan was

enhanced to handle intra-object errors. The output contains

the violation type and memory location of the corresponding

variables as well as the usual debugging information such as

stack trace and source code location.

Standard library wrappers. Compared to HWASan, the

HWASanIO source code contains additional standard library

wrappers for common memory handling functions such as

strcpy to check the validity of the start and end of the source

and destination arguments.

7 Security Discussion

In this section, we discuss the cases where HWASanIO is

unable to detect memory violations during runtime, i.e., false

negatives.

Due to the tag length, in some cases tag collisions are

possible. While HWASanIO guarantees that neighboring al-

locations are assigned di�erent colors, two non-neighboring

objects may share a tag with a probability of approximately

7%. In this case, a non-linear access through a pointer to an-

other object with the same tag is possible. This also applies

to shade collisions of non-neighboring �elds.

Collisions can also occur as a result of the algorithm as-

signing the shading values. To keep a consistent shade layout

between all objects of the same struct type, �eld shades

always start with value one and are then incremented. In

the case of nested structs, this may lead to a shade colli-

sion for some layouts thereby preventing the detection of

intra-object violations at either or both ends of a sub-object.

An example is depicted in Figure 3. The struct variable bar

contains a char variable and a struct �eld which consists

of a single char variable. In this case, a neighboring over- or

under�ow between the �elds, indicated by the arrow, cannot

be detected, because the �elds share the same shade.

30

HWASanIO: Detecting C/C++ Intra-object Overflows with Memory Shading SOAP ’23, June 17, 2023, Orlando, FL, USA

Table 1. Juliet Test Suite vulnerability detection ratio.

CWE HWAIO ASan HWASan E�.San Softb.

(# cases) (5364) (5364) (5364) (5364) (3970)

Stack Over�ow 100% 96.7% 82.9% 55.8% 77.7%

Heap Over�ow 100% 94.7% 94.6% 58.0% 73.7%

Buf. Underwr. 100% 100% 81.9% 100% 82.5%

Buf. Overrd. 100% 100% 99.7% 62.1% 96.5%

Buf. Underrd. 100% 100% 75.9% 98.0% 78.4%

Double Free 100% 100% 100% 0% 100%

Use After Free 100% 83.0% 50.9% 5.4% 51.3%

Free Inside Buf. 100% 100% 0% 0% 100%

Overall 100% 97.0% 85.4% 62.3% 78.9%

8 Evaluation

We evaluated both the bug detection capabilities and the

performance and memory overheads of our HWASanIO pro-

totype and approaches from related work. We compared our

results with measurements of the unmodi�ed HWASan [23]

and the sanitizers ASan [22], E�ectiveSan [9], and Softbound/

CETS [16, 17]. They represent viable solutions for sanitiz-

ers using memory tagging, red-zones, dynamic typing, and

bounds-checking, respectively. The tests were executed on an

M2 MacBook Pro 2022 running Debian (Linux 5.19), except

for E�ectiveSan and Softbound/CETS which do not support

ARM and were therefore evaluated on an AMD EPYC 7742

x86_64 system running Debian (Linux 5.10). Performance

and memory overheads were measured with the SPEC CPU

20172 benchmark suite. For the functional evaluation, we

used the Juliet Test Suite3.

8.1 Vulnerability Detection Rate

The Juliet Test Suite is a collection of C/C++ test cases using

Common Weakness Enumerations (CWEs) based on real-

world applications. The test suite contains many temporal

and spatial memory corruptions, which are always provided

as a good version without any memory bugs and a bad ver-

sion containing the memory corruption. Multiple variants

of each test case are provided, where the same vulnerability

exists in di�erent control �ow or data �ow constructs, e.g.,

embedding the memory bug behind an if -condition.

For our evaluation, we removed variants which are di�-

cult to automate because they depend on external or random

input and only occasionally or never create an actual mem-

ory bug at run-time, resulting in a total of 5364 test cases. For

the evaluation of Softbound/CETS, we excluded test cases

that lead to compilation errors, resulting in a total of 3970

cases.

Table 1 lists the results of evaluating HWASanIO and re-

lated solutions with the Juliet Test Suite. None of the ap-

proaches showed crashes in the good variants of the test

cases.

2h�ps://www.spec.org/
3h�ps://samate.nist.gov/SARD/test-suites/112

Importantly, HWASanIO is the only sanitizer with com-

plete detection of all temporal and spatial bugs, and achieves

a 100% vulnerability detection rate. AddressSanitizer (ASan)

also achieves a very high detection rate of 97% and only

misses violations in the intra-object over�ow test cases and

some use after free cases. Here, the Juliet Test Suite does not

contain additional categories which would further di�eren-

tiate the detection rate of HWASanIO from ASan such as

non-linear over�ows or additional variants of intra-object

corruptions. Besides HWASanIO, only E�ectiveSan can de-

tect intra-object over�ows between �elds of di�ering types.

Although Softbound/CETS has the conceptual support for

it, the available implementation is incomplete in this regard.

For HWASan, missing wrappers and an incomplete temporal

bug detection account for most of the non-mitigated bugs.

The dynamic typing used in E�ectiveSan cannot detect many

vulnerabilities in the over�ow categories, because the test

cases use bu�ers of the same type. While the bounds track-

ing used in Softbound/CETS should be able to detect most

bugs, the released source code lacks features and is missing

various wrapper functions.

In summary, HWASanIO is the only sanitizer able to detect

all memory violations in the Juliet Test Suite. The Juliet

Test Suite results therefore con�rm the high bug detection

capabilities of memory shading in practice.

8.2 Performance and Memory Overhead

To measure HWASanIO’s overhead, we used the SPEC CPU

2017 benchmark suite, comparing the performance and mem-

ory consumption of benchmarks compiled with HWASanIO

and other solutions to an uninstrumented baseline of the

benchmarks. We compiled all benchmarks with optimization

level O2 and executed them in single-threaded mode. Out of

the 17 C/C++ rate benchmarks, we had to exclude 502.gcc

and 523.xalancbmk, because of a memory violation detected

by all sanitizers and 526.blender due to unde�ned behavior

detected by HWASanIO and E�ectiveSan.

Softbound/CETS was ported from LLVM 3.9 to LLVM 9

to compile and run SPEC CPU 2017. Not all tests could be

evaluated due to errors in the instrumentation.

Performance. The results of our performance evaluation

are shown in Table 2. The evaluation shows that HWASanIO

achieves an average performance overhead of 242.8%, which

is around 90% slower than HWASan. When looking at the

geometric mean, HWASanIO achieves a 129.1% overhead,

which is close to the 118.9% overhead of HWASan. The

additional overhead is largely due to the runtime of the

511.povray benchmark, where the allocation of large num-

bers of local struct variables slows down the execution

with HWASanIO. In the benchmark, the Ray_In_Bound func-

tion is executed an average of 8.12G1010 times per second

and allocates a struct with 26 �elds every time. For each of

these �elds a call to the shading function of HWASanIO is

31

https://www.spec.org/
https://samate.nist.gov/SARD/test-suites/112

SOAP ’23, June 17, 2023, Orlando, FL, USA Konrad Hohentanner, Florian Kasten, and Lukas Auer

Table 2. Measured performance overhead of memory safety frameworks for SPEC CPU 2017 benchmarks.

Performance Overhead Memory Overhead

Benchmark HWASanIO HWASan ASan E�.San Softb. HWASanIO HWASan ASan E�.San Softb.

500.perlbench 367.8% 302.2% 90.4% 713.7% - 146.8% 26.3% 429.1% 89.1% -

505.mcf 81.8% 83.1% 38.6% 236.8% 584.9% 147.9% 6.6% 47.8% 3.5% 638.0%

508.namd 191.8% 260.9% 73.6% 131.5% 350.8% 110.5% 9.4% 204.9% 117.1% 88.3%

510.parest 185.3% 215.9% 66.8% 551.7% - 154.5% 30.1% 458.5% 84.6% -

511.povray 1607.6% 345.5% 153.6% 1284.7% - 261.2% 115.0% 1018.8% 1499.8% -

519.lbm 82.4% 37.0% 9.2% 131.0% 148.0% 100.1% 7.7% 13.8% 2.3% 1.9%

520.omnetpp 154.9% 88.4% 99.4% 203.6% - 119.3% 27.4% 391.7% 71.6% -

523.xalancbmk 127.3% 104.3% 69.4% 354.7% - 148.2% 31.2% 563.7% 44.0% -

531.deepsjeng 112.7% 127.2% 45.5% 90.9% 510.7% 99.9% 6.5% 1.3% 2.1% 2.2%

538.imagick 223.8% 204.9% 90.1% 195.8% 609.7% 133.2% 7.9% 186.2% 13.6% 106.5%

541.leela 133.0% 103.6% 62.1% 202.8% - 100.2% 41.9% 7784.1% 387.1% -

544.nab 84.5% 128.4% 43.9% 58.1% 243.4% 139.5% 29.0% 274.1% 70.1% 40.7%

557.xz 32.6% 49.4% 19.4% 78.0% - 96.4% 4.4% 32.3% 3.8% -

999.specrand 13.8% 39.5% 95.5% 12.4% 46.1% 154.0% 150.4% 444.5% 164.9% 390.9%

Average 242.8% 149.3% 68.4% 303.3% 356.2% 136.6% 35.3% 846.5% 182.4% 181.2%

Geometric Mean 129.1% 118.9% 56.6% 177.3% 270.5% 131.7% 19.9% 182.0% 38.6% 45.4%

required. A possible optimization to combat this issue is the

preparation of the shading layout for the entire struct dur-

ing instrumentation at the cost of an increased binary size

instead of initializing every �eld individually. When looking

at other benchmarks such as 557.xz, HWASanIO runs faster

than the original HWASan. This can be explained by the

faster metadata access of the 1-to-1 metadata mapping as

well as the simpler non-granule check logic for non-struct

objects (see Section 6).

Memory Overhead. To compare the memory overhead

we measured the peak memory consumption of the instru-

mented benchmarks with the GNU time command and com-

pared the measurements with the non-instrumented base-

lines. Table 2 shows the average memory overheads of the

evaluated approaches.

HWASanIO achieves an average memory overhead of

136.6%, compared to a 35.3% overhead for the original

HWASan. This corresponds to the di�erence in mapping

granularity used, where HWASanIO uses 1 byte of metadata

per application byte and HWASan shadows 16 application

bytes with a single tag byte. Since the 1-to-1 mapping is

needed to conform with the ABI and the 8-bit metadata is

already quite small, a reduction of the memory overhead is

not possible.

Comparison. HWASanIO expands the bug detection ca-

pabilities at the cost of an additional memory and perfor-

mance overhead. From a runtime performance perspective,

the memory shading metadata management does not consid-

erably impact the overall runtime behavior in most cases, ex-

cept for applications that use large amounts of local struct

variables. In comparison, ASan achieves lower runtime over-

heads than HWASanIO, which can be explained by its very

e�cient metadata setup and check logic, but it does not

detect intra-object violations and has a larger memory over-

head. The base version of HWASan has a signi�cantly lower

memory overhead but does not detect as many bugs, making

it a good sanitizer choice for resource-constrained devices.

E�ectiveSan, the only other sanitizer which can detect intra-

object violations between �elds of di�erent types, is slower

than HWASanIO and requires more memory. Softbound/

CETS is outperformed by HWASanIO in both memory and

performance overhead. In summary, the new analysis capa-

bility is achievable with a manageable overhead increase.

9 Conclusion

We proposed the memory shading concept for C/C++ pro-

grams to allow intra-object detection for memory-tagging-

based sanitizers. We implemented the HWASanIO prototype

as an extension to HWASan, providing memory safety by

protecting a program’s heap, stack, and globals against both

spatial and temporal memory corruptions and o�ering e�-

cient intra-object detection. Since HWASanIO’s design does

not a�ect the underlying ABI it achieves a high interop-

erability level supporting existing C/C++ source code. We

implemented a fully functional, LLVM-based HWASanIO

prototype for ARM-based Linux systems which is available

as compiler �ag. In our security evaluation, the HWASanIO

prototype detects more bugs than similar software-based

solutions while maintaining a manageable performance and

memory overhead for dynamic analysis. In summary, the

HWASanIO prototype is a viable dynamic analysis tool to

e�ciently detect memory corruptions in C/C++ programs,

including the previously hard-to-detect intra-object viola-

tions.

32

HWASanIO: Detecting C/C++ Intra-object Overflows with Memory Shading SOAP ’23, June 17, 2023, Orlando, FL, USA

References
[1] Periklis Akritidis, Manuel Costa, Miguel Castro, and Steven Hand.

2009. Baggy Bounds Checking: An E�cient and Backwards-

Compatible Defense against Out-of-Bounds Errors. In Proceedings

of the 18th USENIX Security Symposium (SEC ’09). USENIX Associa-

tion. h�ps://www.usenix.org/conference/usenixsecurity09/technical-

sessions/presentation/baggy-bounds-checking-e�icient-and

[2] ARM Limited. 2019. ARM Architecture Reference Manual – ARMv8-A,

for ARMv8-A architecture pro�le. ARM DDI 0487E.a (ID070919).

[3] Todd M. Austin, Scott E. Breach, and Gurindar S. Sohi. 1994. E�cient

Detection of All Pointer and Array Access Errors. In Proceedings of

the 1994 ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI ’94). ACM, New York, NY, USA, 290–301.

h�ps://doi.org/10.1145/178243.178446

[4] Derek Bruening and Qin Zhao. 2011. Practical Memory Checking with

Dr. Memory. In Proceedings of the 9th Annual IEEE/ACM International

Symposium on Code Generation and Optimization (CGO ’11). IEEE,

Washington, DC, USA, 213–223. h�p://dl.acm.org/citation.cfm?id=

2190025.2190067

[5] MITRE Corporation. 2022. 2022 CWETop 25Most Dangerous Software

Errors. h�ps://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.

html. Accessed: 2023-03-15.

[6] Dinakar Dhurjati and Vikram Adve. 2006. Backwards-Compatible

Array Bounds Checking for C with Very Low Overhead. In Proceedings

of the 28th International Conference on Software Engineering (ICSE ’06).

ACM, New York, NY, USA, 162–171. h�ps://doi.org/10.1145/1134285.

1134309

[7] Dinakar Dhurjati and Vikram Adve. 2006. E�ciently Detecting All

Dangling Pointer Uses in Production Servers. In Proceedings of the 2006

International Conference on Dependable Systems and Networks (DSN

’06). IEEE. h�ps://doi.org/10.1109/DSN.2006.31

[8] Gregory J. Duck and Roland H. C. Yap. 2016. Heap Bounds Protection

with Low Fat Pointers. In Proceedings of the 25th International Con-

ference on Compiler Construction (CC ’16). ACM, New York, NY, USA,

132–142. h�ps://doi.org/10.1145/2892208.2892212

[9] Gregory J. Duck and Roland H. C. Yap. 2018. E�ectiveSan: Type and

Memory Error Detection Using Dynamically Typed C/C++. SIGPLAN

Not. 53, 4 (jun 2018), 181–195. h�ps://doi.org/10.1145/3296979.3192388

[10] Gregory J. Duck, Roland H. C. Yap, and Lorenzo Cavallaro. 2017. Stack

Bounds Protection with Low Fat Pointers. In Proceedings of the 24th

Annual Network and Distributed System Security Symposium (NDSS

’17). Internet Society. h�ps://doi.org/10.14722/ndss.2017.23287

[11] Niranjan Hasabnis, Ashish Misra, and R. Sekar. 2012. Light-Weight

Bounds Checking. In Proceedings of the Tenth International Symposium

on Code Generation and Optimization (CGO ’12). ACM, New York, NY,

USA, 135–144. h�ps://doi.org/10.1145/2259016.2259034

[12] Reed Hastings and Bob Joyce. 1991. Purify: Fast Detection of Memory

Leaks and Access Errors. In Proceedings of the Winter 1992 USENIX

Conference.

[13] Konrad Hohentanner, Philipp Zieris, and Julian Horsch. 2023.

CryptSan: Leveraging ARM Pointer Authentication for Memory Safety

in C/C++. In Proceedings of the 38th ACM/SIGAPP Symposium on Ap-

plied Computing (SAC ’23). Association for Computing Machinery,

New York, NY, USA. h�ps://doi.org/10.1145/3555776.3577635

[14] Trevor Jim, J Gregory Morrisett, Dan Grossman, Michael W Hicks,

James Cheney, and YanlingWang. 2002. Cyclone: A Safe Dialect of C. In

USENIX Annual Technical Conference. USENIX Association, 275–288.

[15] Richard W M Jones and Paul H J Kelly. 1997. Backwards-Compatible

Bounds Checking for Arrays and Pointers in C Programs. In Proceed-

ings of the 3rd International Workshop on Automatic and Algorithmic

Debugging (AADEBUG ’97). Linköping University Electronic Press.

[16] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve

Zdancewic. 2009. SoftBound: Highly Compatible and Complete Spatial

Memory Safety for C. In Proceedings of the 30th ACM SIGPLAN Confer-

ence on Programming Language Design and Implementation (PLDI ’09).

ACM, New York, NY, USA, 245–258. h�ps://doi.org/10.1145/1542476.

1542504

[17] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve

Zdancewic. 2010. CETS: Compiler Enforced Temporal Safety for

C. In Proceedings of the 2010 International Symposium on Memory

Management (ISMM ’10). ACM, New York, NY, USA, 31–40. h�ps:

//doi.org/10.1145/1806651.1806657

[18] George C. Necula, Scott McPeak, and Westley Weimer. 2002. CCured:

Type-safe Retro�tting of Legacy Code. In Proceedings of the 29th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(POPL ’02). ACM, New York, NY, USA, 128–139. h�ps://doi.org/10.

1145/503272.503286

[19] Harish Patil and Charles Fischer. 1997. Low-Cost, Concurrent Check-

ing of Pointer and Array Accesses in C Programs. Software: Practics

and Experience 27, 1 (Jan. 1997).

[20] Bruce Perens. 1999. Electric Fence Malloc Debugger. h�ps://linux.die.

net/man/3/libefence. Accessed: 2023-03-15.

[21] Olatunji Ruwase and Monica S. Lam. 2004. A Practical Dynamic Bu�er

Over�ow Detector. In Proceedings of the 11th Annual Network and

Distributed System Security Symposium (NDSS ’04). Internet Society.

[22] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and

Dmitry Vyukov. 2012. AddressSanitizer: A Fast Address Sanity

Checker. In Proceedings of the 2012 USENIX Annual Technical Con-

ference (ATC ’12). USENIX, Boston, MA, 309–318. h�ps://www.usenix.

org/conference/atc12/technical-sessions/presentation/serebryany

[23] Kostya Serebryany, Evgenii Stepanov, Aleksey Shlyapnikov, Vlad

Tsyrklevich, and Dmitry Vyukov. 2018. Memory Tagging and How

it Improves C/C++ Memory Safety. arXiv:cs.CR/1802.09517 h�ps:

//arxiv.org/abs/1802.09517

[24] Julian Seward and Nicholas Nethercote. 2005. Using Valgrind to De-

tect Unde�ned Value Errors with Bit-Precision. In Proceedings of the

2005 USENIX Annual Technical Conference (ATC) (ATC ’05). USENIX

Association.

[25] Joseph L. Ste�en. 1992. Adding Run-Time Checking to the Portable C

Compiler. Software: Practice and Experience 22, 4 (1992).

[26] Robert N.M. Watson, Jonathan Woodru�, Peter G. Neumann, Si-

mon W. Moore, Jonathan Anderson, David Chisnall, Nirav Dave,

Brooks Davis, Khilan Gudka, Ben Laurie, Steven J. Murdoch, Robert

Norton, Michael Roe, Stacey Son, and Munraj Vadera. 2015. CHERI:

A Hybrid Capability-System Architecture for Scalable Software Com-

partmentalization. In 2015 IEEE Symposium on Security and Privacy.

h�ps://doi.org/10.1109/SP.2015.9

[27] Wei Xu, Daniel C. DuVarney, and R. Sekar. 2004. An E�cient and

Backwards-Compatible Transformation to Ensure Memory Safety of

C Programs. In Proceedings of the 12th ACM SIGSOFT International

Symposium on Foundations of Software Engineering (SIGSOFT ’04/FSE-

12). ACM, New York, NY, USA, 117–126. h�ps://doi.org/10.1145/

1029894.1029913

[28] Yves Younan, Pieter Philippaerts, Lorenzo Cavallaro, R. Sekar, Frank

Piessens, and Wouter Joosen. 2010. PAriCheck: An E�cient Pointer

Arithmetic Checker for C Programs. In Proceedings of the 5th ACM

Symposium on Information, Computer and Communications Security

(ASIACCS ’10). ACM, New York, NY, USA, 145–156. h�ps://doi.org/

10.1145/1755688.1755707

Received 2023-03-10; accepted 2023-04-21

33

https://www.usenix.org/conference/usenixsecurity09/technical-sessions/presentation/baggy-bounds-checking-efficient-and
https://www.usenix.org/conference/usenixsecurity09/technical-sessions/presentation/baggy-bounds-checking-efficient-and
https://doi.org/10.1145/178243.178446
http://dl.acm.org/citation.cfm?id=2190025.2190067
http://dl.acm.org/citation.cfm?id=2190025.2190067
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
https://doi.org/10.1145/1134285.1134309
https://doi.org/10.1145/1134285.1134309
https://doi.org/10.1109/DSN.2006.31
https://doi.org/10.1145/2892208.2892212
https://doi.org/10.1145/3296979.3192388
https://doi.org/10.14722/ndss.2017.23287
https://doi.org/10.1145/2259016.2259034
https://doi.org/10.1145/3555776.3577635
https://doi.org/10.1145/1542476.1542504
https://doi.org/10.1145/1542476.1542504
https://doi.org/10.1145/1806651.1806657
https://doi.org/10.1145/1806651.1806657
https://doi.org/10.1145/503272.503286
https://doi.org/10.1145/503272.503286
https://linux.die.net/man/3/libefence
https://linux.die.net/man/3/libefence
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://arxiv.org/abs/cs.CR/1802.09517
https://arxiv.org/abs/1802.09517
https://arxiv.org/abs/1802.09517
https://doi.org/10.1109/SP.2015.9
https://doi.org/10.1145/1029894.1029913
https://doi.org/10.1145/1029894.1029913
https://doi.org/10.1145/1755688.1755707
https://doi.org/10.1145/1755688.1755707

	Abstract
	1 Introduction
	2 Related Work
	3 Intra-object Memory Violations
	4 Memory Tagging and HWASan
	5 Memory Shading
	6 HWASanIO Implementation
	7 Security Discussion
	8 Evaluation
	8.1 Vulnerability Detection Rate
	8.2 Performance and Memory Overhead

	9 Conclusion
	References

