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Jiang D, Liang J, Noble PW. Hyaluronan as an Immune Regulator in Human Diseases. Physiol Rev 91: 221–264,
2011; doi:10.1152/physrev.00052.2009.—Accumulation and turnover of extracellular matrix components are the
hallmarks of tissue injury. Fragmented hyaluronan stimulates the expression of inflammatory genes by a variety of
immune cells at the injury site. Hyaluronan binds to a number of cell surface proteins on various cell types.
Hyaluronan fragments signal through both Toll-like receptor (TLR) 4 and TLR2 as well as CD44 to stimulate
inflammatory genes in inflammatory cells. Hyaluronan is also present on the cell surface of epithelial cells and
provides protection against tissue damage from the environment by interacting with TLR2 and TLR4. Hyaluronan
and hyaluronan-binding proteins regulate inflammation, tissue injury, and repair through regulating inflammatory
cell recruitment, release of inflammatory cytokines, and cell migration. This review focuses on the role of hyaluronan
as an immune regulator in human diseases.

I. HYALURONAN

Extracellular matrix (ECM) plays an essential role in

organogenesis, growth, function, and many human dis-

eases. Hyaluronan (or hyaluronic acid, HA), a major ECM

component, is a nonsulfated glycosaminoglycan com-

posed of repeating polymeric disaccharides D-glucuronic

acid and N-acetyl-D-glucosamine linked by a glucuronidic

�(1–3) bond (493, 494) (Fig. 1). Hyaluronan forms specific

stable tertiary structures in aqueous solution (400). Dur-

ing the last two decades, significant progress has been

made in understanding the role of HA in both biological

and pathological states, the mechanisms of HA synthesis

and degradation, and the mechanisms of HA regulation of

these biological processes. There are several reviews on

the roles of HA in different fields, such as in angiogenesis

(414), reactive oxygen species (418), cancer (461, 463),

cancer therapeutics (289, 462), chondrocytes (213), lung

injury (324, 468), and immune regulation (171, 452). The

current review briefly summarizes recent advances in

understanding HA biology and focuses on HA as an im-

mune regulator under physiological and pathological con-

ditions.

Hyaluronan is widely distributed from lower organ-

isms such as simple bacteria (257, 259) to complex eu-

karyotes (356). In humans, HA is abundant in the vitreous

of the eye (291), the umbilical cord (493), synovial fluid

(135, 363), heart valves (464), skin (9, 193, 444), and

skeletal tissues (9). HA can be released by many cell types

(244, 460), although mesenchymal cells are believed to be

the predominant source of HA (461). Importantly, almost

all cell types are responsive to HA stimulation by chang-

ing their cell secretory and behavioral properties (187).

HA-stem cell interactions have been particularly explored

in hematopoietic stem cells (15, 206, 322), mesenchymal

stem cells (45, 531, 535), and adult multipotent progenitor

cells, pointing to the idea that HA and its binding proteins

may regulate tissue injury and repair processes through

their interaction with a variety of stem cells.

Hyaluronan has multiple functions, such as space

filling, hydration, lubrication of joints, and provision of a

matrix through which cells can migrate (461). HA is ac-

tively produced during tissue injury, tissue repair, and

wound healing (193, 416). In addition to providing a

framework for ingrowth of blood vessels (414, 416) and

fibroblasts (251, 469), HA also regulates many aspects of

FIG. 1. Hyaluronan is composed of repeating polymeric disaccharides D-glucuronic acid (GlcA) and N-acetyl-D-glucosamine (GlcNAc) linked by
a glucuronidic �(1–3) bond. Three disaccharide GlcA-GlcNAc are shown. [Redrawn from Jiang et al. (187).]
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molecular mechanisms of tissue repair, such as activation

of inflammatory cells to mount an immunological re-

sponse (157, 285, 450) and regulation of behavior of epi-

thelial cells (23, 175, 185, 186, 536) and fibroblasts (17,

165). Elucidation of the role and mechanisms of HA is

crucial in aiding the development of novel therapy for

many diseases.

II. BIOSYNTHESIS OF HYALURONAN

Hyaluronan is synthesized by membrane-bound syn-

thases on the inner surface of the plasma membrane

(355), and the chains are extruded through porelike struc-

tures into the extracellular space (356, 485). There are

three mammalian hyaluronan synthases (HAS1–3) (167,

280, 423, 490). The enzymes use UDP-�-N-acetyl-D-glu-

cosamine and UDP-�-D-glucuronate as substrates (491)

(Fig. 2). Based on their similarities and differences, the

known HAS proteins have been divided into two catego-

ries, designated as class I and class II (75). The strepto-

coccal HASs and eukaryotic HASs are class I family mem-

bers, whereas the HAS from Pasteurella multocida is the

only class II member (75).

A two-site mechanism of hyaluronan synthesis for

class I enzymes has been proposed (357, 358). The reduc-

ing end sugar of the growing HA chain remains covalently

bound to a UDP, and the next sugar to be added from the

second site is transferred as the UDP-sugar onto the

reducing end sugar to displace its terminal UDP. The HA

chain is then in the second site (354, 357, 358, 491). On the

other hand, Pasteurella enzyme adds new sugar residues

at the nonreducing end (76).

The major advance in this field was fueled by the

cloning of HAS from prokaryotes and mammals (77, 78).

DeAngelis et al. (77, 78) reported the molecular cloning

and characterization of the group A Streptococcal gene

encoding the protein HasA, as the S. pyogenes HAS was

later proven to be responsible for HA synthesis (77, 78).

Expression of these genes in either acapsular Streptococ-

cus strains or Enterococcus faecalis conferred the organ-

isms with the ability to synthesize HA and form a capsule,

thus demonstrating that HasA is a bona fide HAS (77, 78).

Subsequent cloning of mouse HAS (166, 420) and human

HAS (409, 485) revealed high homology in their protein

sequences among humans, mice, frogs, and even bacteria

(421, 491). The amino acid sequence of human HAS1

shows significant homology to the hasA gene product of

Streptococcus pyogenes, a glycosaminoglycan synthase

from Xenopus laevis, and a murine HAS (485). Genomic

location and genomic structure of these HASs have been

determined (422). HAS1, HAS2, and HAS3 are located on

different autosomes (422), suggesting that the HAS gene

family may have arisen comparatively early in vertebrate

evolution by sequential duplication of an ancestral HAS

gene.

All the HAS isozymes are highly homologous in their

amino acid sequences and have similar hydropathic fea-

tures, suggesting that they are similarly organized within

the membrane. The membrane topology for the HAS fam-

ily proteins has been proposed (491). Two types of mem-

brane domains are present: transmembrane domains that

span the membrane and membrane-associated domains

that do not go all the way through the membrane. There

are six to eight transmembrane domains and two mem-

brane-associated domains. Over 60% of the whole protein

(including the amino and carboxy termini) are inside the

cell. Only �5% of the protein is exposed to the outside of

the cell (144).

In Xenopus, xhas1 produces HA with a molecular

mass of �40–200 kDa, while the product formed by xhas2

has a molecular mass above 1,000 kDa (219). Expression

of mammalian HASs led to HA biosynthesis in transfected

mammalian cells (168, 421). The HAS1 protein alone is

able to synthesize HA, and different amino acid residues

on the cytoplasmic central loop domain are involved in

transferring N-acetyl-D-glucosamine and D-glucuronic acid

residues. HAS3 synthesizes HA with a smaller molecular

mass than HA synthesized by HAS1 and HAS2 (168).

Furthermore, comparisons of HA secreted into the cul-

ture media by stable HAS transfectants show that HAS1

and HAS3 generated HA with broad size distributions

(molecular masses of 2 � 105 to �2 � 106 Da), whereas

HAS2 generated HA with a broad but extremely large size

(average molecular mass of � 2 � 106 Da) (168). Subse-

quent studies suggested that all three HAS enzymes drive

the biosynthesis and release of high-molecular-mass HA

(1 � 106 Da) (424).

FIG. 2. Class I hyaluronan synthase catalyzes the reaction by adding
N-acetyl-D-glucosamine (GlcNAc) and D-glucuronic acid (GlcA) alterna-
tively to expand HA chain.
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A. HAS1

Human HAS1 gene is located at 19q13.3-q13.4,

whereas mouse Has1 is located at chromosome 17 (422).

Human HAS1 protein shows significant homology with

the hasA gene product of Streptococcus pyogenes, a gly-

cosaminoglycan synthetase (DG42) from Xenopus laevis,

and a murine HAS (421). HAS1 protein is a bona fide

synthase since it alone is able to synthesize HA, and

different amino acid residues on the cytoplasmic central

loop domain are involved in transferring N-acetyl-D-glu-

cosamine and D-glucuronic acid residues, respectively

(518).

HA accumulation and dysregulated expression of

HASs have been demonstrated in many diseases both in

animal studies and in humans. HA deposition is promi-

nent in MRL-Fas(lpr) mice with renal disease and could be

mediated by local synthesis through HAS1 and HAS2. The

enhanced synthesis of HA could be promoted by proin-

flammatory cytokines in vivo (103). Has1 mRNA was ex-

pressed predominantly in bone marrow mesenchymal

progenitor cells derived from patients with myeloma com-

pared with mesenchymal progenitor cells from normal

individuals (45). Bone marrow mesenchymal progenitor

cells from patients with myeloma synthesize more HA

than those from healthy donors, suggesting that myeloma

mesenchymal progenitor cells could be an important

component of the myeloma pathophysiology in vivo by

their increased expression of extracellular matrix compo-

nents relevant to plasma cell growth and survival (45).

Accumulation of HA is a hallmark of rheumatoid arthritis.

In human fibroblast-like synoviocytes, HAS1 expression

can be enhanced by transforming growth factor (TGF)-�

transcription. The TGF-�-induced transcription is medi-

ated by a p38 MEK-dependent, not JNK, pathway. TGF-�

treatment leads to an increase in synthase activity and in

HA production (430).

B. HAS2

Human HAS2 is located on chromosome 8, whereas

mouse HAS2 is on chromosome 15 (422). In an in vitro

transfection assay, Kimata and associates (165) demon-

strated that all three isoforms of HAS exhibited a de novo,

massive formation of a HA matrix in nontransformed rat

3Y1 embryonic fibroblast cells. Hyaluronan and its matrix

can modulate contact inhibition of cell growth and migra-

tion (165). Inhibition of a phosphatidylinositol 3-kinase

pathway resulted in reacquisition of the normal pheno-

type of HAS2 transfectants, suggesting that the intracel-

lular phosphatidylinositol 3-kinase signaling regulates

diminution of contact inhibition induced by formation of

the massive HA matrix (165).

Targeted deletion of HAS2 has been a major devel-

opment in the field, providing in vivo evidence of the

functions of HA (47). There are major abnormalities in

heart and blood vessel development, resulting in an em-

bryonic lethal phenotype (Fig. 3) (46, 47). HAS2-deficient

embryos at embryonic day 9.5 completely lack endocar-

dial cushions (46, 47), consistent with early observations

that a high content of HA is present in normal human

heart valves (464). These defects resemble the features in

naturally occurring versican knockouts (297). These stud-

ies suggest that HA-ECM interactions play a significant

role in cardiac development. Elucidating the role of HAS2

in animal models has been difficult due to the embryonic

lethal phenotype in the HAS2-deficient mice.

HAS2 also plays a role in limb development. Overex-

pression of Has2 in the mesoderm of the chick limb bud

in vivo results in the formation of shortened and severely

malformed limbs that lack one or more skeletal elements.

Skeletal elements in limbs overexpressing Has2 are re-

duced in length, exhibit abnormal morphology, and are

positioned inappropriately (253). In vitro, sustained HA

production in micromass cultures of limb mesenchymal

FIG. 3. Disruption of hyaluronan synthase 2 resulted in the defect in
heart formation. Representative wild-type (A) and Has2�/� (B) embryos
at E9.5. Note the diminished size, the bloodless heart, and distorted
somites of the Has2�/� embryo. E9.5 wild-type (C) and Has2�/� (D)
embryos stained for the endothelial marker PECAM. Note the absence of
an organized vascular network expressing PECAM in the Has2�/� em-
bryo. P, pericardium; OpP, optic placode; OtP, otic placode; first and
secondpharyngeal pouches are numbered. [Adapted from Camenisch et
al. (47), with permission from the American Society for Clinical
Investigation.]
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cells inhibits formation of precartilage condensations and

subsequent chondrogenesis, indicating that proper regu-

lation of HA is essential for formation of the precartilage

condensations that trigger cartilage differentiation (253).

Conditional inactivation of HAS2 showed a role for hya-

luronan in skeletal growth, patterning, chondrocyte mat-

uration, and joint formation in the developing limb (277).

Recently, transcription factors Sp1 and Sp3 have

been identified as principal mediators of HAS2 constitu-

tive transcription. Sp1 and Sp3 bind to three sites imme-

diately upstream of the HAS2 transcription initiation site,

and mutation of the consensus recognition sequences

within these sites ablated their transcriptional response.

In contrast, NF-Y, CCAAT, and NF-�B binding proteins

may not be involved in HAS2 transcription (299). A recent

study showed that transgenic expression of Tbx2, a cen-

tral intermediary of Bmp-Smad signaling, induced Has2

and TGF-�2 expression, facilitating endocardial cushions

formation (408).

C. HAS3

The human HAS3 gene is localized to chromosome

16q22.1 and the mouse Has3 to chromosome 8 (422). The

HAS3 protein is a transmembrane protein. With the use of

green fluorescent protein to tag HASs in keratinocytes,

HAS2 and HAS3 were found to travel through the endo-

plasmic reticulum, Golgi, plasma membrane, and endo-

cytic vesicles, and a distinct enrichment of plasma mem-

brane HAS was observed in cell protrusions (375). The

trafficking of HAS was correlated with its activity, since

inhibition of HA synthesis by substrate UDP-glucuronic

acid starvation using 4-methyl-umbelliferone prevented

HAS access to the plasma membrane (375). Similarly, in

cells transfected with green fluorescent protein-tagged

Has3, the dorsal surface was decorated by up to 150

slender, 3- to 20-�m-long microvillus-like plasma mem-

brane protrusions, which consisted of filamentous actin,

CD44, and lipid raft microdomains, in addition to Has3

(225). Enzymatic activity of HAS was required for the

growth of the microvilli. The microvilli induced by HAS3

gradually withered with the introduction of an inhibitor of

HA synthesis and rapidly retracted by hyaluronidase di-

gestion, whereas they were independent of HA receptors

(225). Keratinocyte growth factor activates keratinocyte

migration and stimulates wound healing. At the same

time, keratinocyte growth factor stimulates epidermal

keratinocytes to accumulate intermediate-sized HA in the

culture medium and within keratinocytes and leads to a

rapid increase of Has2 and Has3 mRNA (201), suggesting

that Has2 and Has3 are the targets of keratinocyte growth

factor in keratinocytes. Enhanced HA synthesis acts as an

effector for the migratory response of keratinocytes in

wound healing, whereas it may delay keratinocyte termi-

nal differentiation (201).

D. Regulation of HAS Expression and Activity

The three hyaluronan synthase genes are located on

different autosomes (422), suggesting the HAS gene fam-

ily may have arisen comparatively early in vertebrate

evolution by sequential duplication of an ancestral HAS

gene (422, 457). Expression patterns of three hyaluronan

synthases during development are distinct spatially and

temporally (457), suggesting that HA may play a different

role during development in different tissues or cell types.

With reports that HAS may synthesize different sizes of

HA (168, 421) and HA size determines HA functions (see

sect. IV), regulation of HAS genes during development,

growth, and pathological states may represent a dynamic

process in which HA modulates an array of cellular func-

tions.

In vitro, the expression of HAS isoforms can be reg-

ulated by growth factors and cytokines. For example,

recombinant tumor necrosis factor (TNF)-� and interfer-

ons stimulate HA production by normal human lung fi-

broblasts (92). Interleukin (IL)-1� and TNF-� induce

HAS2 mRNA in fibroblasts (502). Epidermal growth factor

induces HAS2 expression in rat epidermal keratinocytes

(349). TGF-� activates HAS1, leading to an increase in

HAS activity (430). Conversely, TGF-� suppresses HAS3

mRNA in human fibroblast-like synoviocytes (430). TGF-�

reduces HAS2 mRNA slightly but does not significantly

affect the expression of mRNAs for HAS1 and HAS3 in

mesothelial cells (173). Stimulation of mesothelial cells

with platelet-derived growth factor-BB induces HAS ac-

tivity (145) and upregulation of HAS2 mRNA (173).

Dysregulation of HASs and their activities has been

found during tissue injury (252, 443, 520), consistent with

findings that HA accumulates during a number of injuries.

For example, HAS2 mRNAs are increased in rats after

radiation-induced lung injury (252). Ventilation-induced

low-molecular-mass HA production is dependent on de

novo synthesis of HA through HAS3 by fibroblasts and

plays a role in the inflammatory response of ventilator-

induced lung injury (17). Similarly, epidermal HA is sig-

nificantly increased after epidermal trauma in adult mice

caused by tape stripping (443). The HA response is asso-

ciated with a strong induction of HAS2 and HAS3 mRNA

(443). Increased accumulation of HA and increased HAS

expression have been noticed in autoimmune (103) and

mechanical renal injury (520, 521).

III. HYALURONIC ACID DEGRADATION AND

HYALURONIDASES

A. Hyaluronidases

Hyaluronidases (also called hyaluronoglucosamini-

dases) hydrolyze the hexosaminidic �(1–4) linkages be-
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tween N-acetyl-D-glucosamine and D-glucuronic acid resi-

dues in HA and release HA fragments. Although Strepto-

coccus pneumoniae hyaluronate lyase can hydrolyze HA

to release disaccharide D-glucuronic acid-N-acetyl-D-glu-

cosamine (329), the vertebrate hyaluronidases generate a

various range of HA oligomers (reviewed in Ref. 427).

These enzymes also hydrolyze �(1–4) glycosidic linkages

between N-acetylgalactosamine or N-acetylgalactosamine

sulfate and glucuronic acid in chondroitin, chondroitin

4-sulfate, chondroitin 6-sulfate, and dermatan. Some bac-

teria, such as Staphylococcus aureus, S. pyogenes, and

Clostridium perfringens, produce hyaluronidases as a

means for greater bacterial mobility through the host’s

tissues and as an antigenic disguise that prevents the

recognition of bacteria by phagocytes (223). In humans,

there are six members of a gene family containing hyalu-

ronidases identified thus far: hyaluronidases 1–4, PH-20,

and HYALP1 (426) (Table 1).

The human HYAL1 gene is located on 3p21.3-p21.2

(68), and the mouse gene is on chromosome 9 (66). The

hyaluronidase 1 gene encodes a hyaluronidase found in

the major parenchymal organs such as the liver, kidney,

spleen, and heart. The enzyme is lysosomal and is active

at an acidic pH (66). HYAL1 is also present in human

serum (66) and urine (67). Mutations in the HYAL1 gene

are associated with mucopolysaccharidosis type IX, or

hyaluronidase deficiency (314). There is no increase of

HA in the serum or nonskeletal tissues in Hyal1 defi-

ciency, and it is possible that Hyal3 may compensate in

HA degradation in nonskeletal tissues in Hyal1-deficient

mice (146, 270). Although Hyal1-deficient mice are viable,

fertile, and show no gross abnormalities, these mice do

develop osteoarthritis (270).

HYAL2 is a glycosylphosphatidylinositol-anchored

cell-surface receptor (364) in all mouse tissue types ex-

cept brain. HYAL2 has very low hyaluronidase activity

compared with serum hyaluronidase HYAL1 (364), and

HYAL2 hyaluronidase activity has a pH optimum of below

4 (246). Furthermore, unlike HYAL1, the HYAL2 enzyme

hydrolyzes only HA of high molecular masses, yielding

intermediate-sized HA fragments of �20 kDa (246). How-

ever, recent studies with Hyal2-deficient mice showed

that murine HYAL2 has a physiological activity in vivo,

since Hyal2-deficient mice displayed a significant increase

in plasma hyaluronidase activity and plasma HA (174). In

addition, HYAL2 serves as a receptor for Jaagsiekte sheep

retrovirus (364).

HYAL3 transcripts show strongest expression in tes-

tis and bone marrow but relatively weak expression in

other organs (66). The role of HYAL3 in the degradation of

HA is not clear. A recent study showed that Hyal3 over-

expressed in cultured cells lacks intrinsic hyaluronidase

activity and that Hyal3 may contribute to HA metabolism

by augmenting the activity of Hyal1 (146). Hyal3-deficient

mice showed a subtle change in the alveolar structure and

extracellular matrix thickness in lung tissues at 12–14 mo

of age, although there was no evidence of HA accumula-

tion, suggesting that HYAL3 may not play a major role in

constitutive HA degradation (14).

The testicular enzyme PH-20 (also called HYAL5) is

encoded by the sperm adhesion molecule 1 (SPAM1) gene

(234). This glycosylphosphatidylinositol-anchored en-

TABLE 1. Hyaluronidases

Gene Location* Tissue Localizations Cellular Localizations Enzymatic Condition Reference Nos.

Hyaluronidase 1 3p21.3-p21.2 (h); 9
60.12 cM (m)

Liver, kidney, spleen,
and heart; weakly
expressed in lung,
placenta, and
skeletal muscle; no
expression in adult
brain

Lysosomal, secreted Acidic pH 67, 68

Hyaluronidase 2 3p21.3 (h); 9 60.12
cM (m)

Widely expressed; all
mouse tissue types
except brain

GPI anchored pH optimum of below 4; hydrolyzes
only HA of high molecular mass,
yielding intermediate-sized HA
fragments of �20 kDa;
hyaluronidase activity in vivo

68, 174, 246, 429

Hyaluronidase 3 3p21.3 (h); 9 60.12
cM (m)

Bone marrow, testis,
and kidney

Lysosomal, secreted No hyaluronidase activity in vivo;
may modulate Hyal1 activity

14, 68, 146

Hyaluronidase 4 7q31.3 (h); 6 7.2cM (m) Detected in placenta
and skeletal
muscle

Membrane Weak hyaluronidase activity and
effectively degrades chondroitin
sulfate

68, 200

SPAM1 (PH-20) 7q31.3 (h); 6A3 (m) Testis GPI anchored Neutral pH 68, 120, 192,
210, 212, 373

HYALP1 7q31.3 (h); 6 7.2cM (m) (Pseudogene) 68

HA, hyaluronic acid. For gene locations, h, human; m, mouse. *Hyaluronidases 1, 2, and 3 are clustered on chromosome 3p21.3 in human and
chromosome 9 60.12 cM in mouse, whereas hyaluronidase 4, SPAM1, and HYALP1 are clustered on chromosome 7q31.3 in human and chromosome
6 7.2cM in mouse.

226 JIANG, LIANG, AND NOBLE

Physiol Rev • VOL 91 • JANUARY 2011 • www.prv.org



zyme is located on the human sperm surface and inner

acrosomal membrane. PH-20 hyaluronidase is active at

neutral pH. Mouse PH-20 degrades HA (373) and is in-

volved in the penetration of mouse sperm through the

cumulus mass (210).

Flavonoids, including silybin, apigenin, kaempferol,

luteolin, and condensed tannin, were found to be inhibi-

tors of hyaluronidase (229). Kinetic studies of these in-

hibitors showed that their mode of inhibition was com-

petitive (229). They have been found effective in mice in

vivo (228) and in the inhibition of hyaluronidase activity

(515). They are a useful tool in fertilization research (210).

In addition, apigenin has significant anti-inflammatory ac-

tivity that involves blocking nitric oxide-mediated cyclo-

oxygenase-2 expression and monocyte adherence (243)

or involves in vivo effectively blocking TNF-�-induced

intercellular adhesion molecule (ICAM)-1 upregulation

(339). Sodium cromoglycate and sodium aurothiomalate

are potent inhibitors of hyaluronidases of Naja kaouthia

and Calloselasma rhodostoma venoms, and they can re-

duce the systemic and local tissue damage of Naja

kaouthia and Calloselasma rhodostoma venoms when

injected immediately at the sites of bites (515). Sulfated

oligosaccharides such as verbascose, planteose, and neo-

mycin showed comparable inhibition on all hyaluroni-

dases, thereby possessing much higher activity than that

of the widely accepted hyaluronidase inhibitor apigenin

(384).

B. Pathological

The expression and activity of hyaluronidases have

long been noticed in diseases such as rheumatoid arthritis

(190, 372) and periodontal disease (151). Patients with

advanced scleroderma have decreased serum HYAL-1 ac-

tivity and elevated circulating levels of HA (318). In one

study, six patients with bone or connective tissue abnor-

malities had lower levels of HYAL-1 activity than did

healthy donors (107). Reactive oxygen species accumu-

late at sites of tissue injury and may provide a mechanism

for generating HA fragments in vivo. Reactive oxygen

species degrade extracellular matrix (ECM) components

such as collagen, laminin, and HA in vitro (22). This may

further exaggerate the inflammation state at the sites of

tissue injury because the fragmented HA in turn augments

inflammatory responses. However, HA has the capacity to

absorb reactive oxygen species, playing an active role in

protecting articular tissues by scavenging reactive oxygen

species (390).

Animal studies showed that purified bovine testicular

hyaluronidase significantly reduced mortality and re-

duced “enzymatic” infarct size in gerbils with experimen-

tal cerebrovascular accidents (513). With small numbers

of patients, Maroko and associates found that hyaluroni-

dase intravenously accelerated the reduction of myocar-

dial ischemic injury in patients with acute myocardial

infarction (267) and reduced the frequency of electrocar-

diographic signs of myocardial necrosis (268). However,

the effectiveness of hyaluronidase for patients with acute

myocardial infarction was questionable. In a primate

model that has a minimal collateral blood supply, hyal-

uronidase did not significantly reduce the ultimate infarct

size (359). A multicentered, randomized, blind study from

1978 to 1988 did not find a beneficial effect of hyaluroni-

dase on mortality or infarct size (376).

IV. HYALURONAN AS A SIGNALING MOLECULE

A. Hyaluronan Fragments

Over the last 15 years, we and others have estab-

lished the concept that HA plays different roles depending

on its molecular mass (157, 284, 285, 327, 453, 495). In its

native state, such as in normal synovial fluid, HA generally

exists as a high-molecular-mass polymer, usually in ex-

cess of 1,000 kDa. However, under certain conditions

such as tissue injury and inflammation, HA is more poly-

disperse, with a preponderance of lower-molecular-mass

forms (381).

The fragmentation of HA occurs during many patho-

logical conditions, a possible consequence of dysregu-

lated expression of HASs and HA degradation enzymes

during tissue injury and inflammation (58). Altered ex-

pression of HAS2 and HYAL2 are involved in the turnover

of HA during the early phase of lung injury in irradiated

rats (252). Hyaluronan fragmentation can also be a result

of the release of reactive oxygen species during tissue

injury (3, 54, 302, 338, 418). We recently demonstrated

that extracellular superoxide dismutase inhibits inflam-

mation in response to lung injury by preventing oxidative

fragmentation of HA (113). Extracellular superoxide dis-

mutase directly binds to HA and significantly inhibits

oxidant-induced degradation of HA (113).

We have found that lower-molecular-mass forms of

HA (�500 kDa, many preparations in 100–250 kDa), but

not the native form (�1,000 kDa), induce inflammatory

responses in inflammatory cells (152, 156, 157, 159, 160,

284, 285, 327) (Fig. 4). For example, HA fragments inhibit

human neutrophil elastase-induced airway responses

(401). HA fragments augment steady-state mRNA, protein,

and inhibitory activity of plasminogen activator inhibi-

tor-1 (PAI-1) as well as diminish the baseline levels of

urokinase-type plasminogen activator (uPA) mRNA and

inhibit uPA activity in macrophages (158). HA fragments

induced macrophage metalloelastase mRNA, protein ex-

pression, and enzyme activity in macrophages (160).

These studies suggested that HA fragments may be an

important mechanism regulating macrophage functions

during inflammatory responses.
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It has been shown that oligosaccharides derived

from high-molecular-mass HA have distinct functions

from those of the larger molecular forms of HA (495).

Whereas HA oligomers of 8 –16 disaccharides stimu-

lated angiogenesis in vivo and endothelial proliferation

in vitro, native, high-molecular-mass HA had no effect

(495). Furthermore, the high-molecular-mass HA

(�1,000 kDa) is antiangiogenic, whereas HA fragments

of 3–25 disaccharide units induce angiogenesis (79,

378). The ability of HA oligomers to induce vascular

endothelial cell proliferation is through HA binding

proteins such as CD44 (52, 391, 414, 465) and RHAMM

(256, 391, 414). CD44 provides a cell surface docking

receptor for proteolytically active matrix metallopro-

tease (MMP)-9, and localization of MMP-9 to cell sur-

face is required for its ability to promote angiogenesis

and tumor invasion (519). MMP-9 cleaves latent TGF-�,

enabling TGF-� activation (519). HA oligomers induced

tyrosine phosphorylation of p125FAK, paxillin, and

p42/44 extracellular signal-regulated kinase resulting in

endothelial cell proliferation (256, 416). In addition,

PKC signaling (274, 415, 416) and MMP-9 (274) are also

involved in HA-induced angiogenesis.

Fragmented HA containing 6- to 40-mers enhanced

CD44 cleavage by tumor cells, whereas large polymer HA

failed to enhance CD44 cleavage (433). A 6.9-kDa HA

(36-mers) also promoted tumor cell motility in a CD44-

dependent manner (432, 433). Enhanced expression of

MMP-9 and MMP-13 was induced in lung carcinoma cells

by only small HA fragments containing 6-mers to 40-mers,

but not by HA preparations with molecular weights

greater than 600 kDa (104). Similarly, Termeer et al. (453)

demonstrated that HA oligomers of tetra- and hexasac-

charide size, but not higher molecular mass HA species,

induced the immunophenotypic maturation of human

monocyte-derived dendritic cells (453). Others found that

HA hexamers or smaller were not active. Fragmented HA

(80–800 kDa), but neither purified high-molecular-mass

HA nor HA hexamers, markedly increased monocyte che-

motactic protein-1 (MCP-1) mRNA and protein expres-

sion (23) and ICAM-1 and vascular cell adhesion molecule

(VCAM)-1 steady-state mRNA and cell-surface expression

by murine kidney tubular epithelial cells (332).

B. HA-Inducible Genes

Many studies have shown that HA is biologically

active and is able to stimulate expression of a variety of

genes. Below is the summary of these genes (Table 2).

V. HYALURONAN BINDING PROTEINS

Much of HA exists in ECM in soluble form. HA also

covalently binds to a variety of proteins to influence the

functions of these proteins (460). HA binding proteins

include Toll-like receptors (see sect. X for details), CD44,

RHAMM, TNFIP6, brevican, SHAP, LYVE1, and many oth-

ers (Table 3). Some HA binding proteins are associated

with cell membranes, whereas others are found in the

extracellular matrix. Structurally, the link module (217)

and the B(X7)B motif (where B is arginine or lysine and X
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FIG. 4. Purified hyaluronic acid (HA) frag-
ments but not high-molecular-mass (HMW)-HA in-
duced NF-�B DNA binding activity in MH-S cells.
A: densitometric scanning demonstrating the mo-
lecular masses of HMW-HA (top) and purified HA
fragments (bottom). B: electrophoretic mobility
shift assay of nuclear extracts prepared from MH-S
cell stimulated for 2 h with either serum-free media
(unstim), HMW-HA, HA fragment, or LPS. HA frag-
ments induced NF-�B DNA binding activity.
[Adapted from Noble et al. (327).]
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is any nonacidic amino acid) (511) are thought to consti-

tute the HA-binding region. Goetinck et al. (121) identified

that the sites for interaction with HA are in the tandemly

repeated sequences of link protein and that there are four

potential sites available for that interaction.

Day and Sheehan (74) suggested that HA as a free

polymer in solution exists in a stiffened, highly dynamic

ensemble of chaotically interchanging semiordered

states. Under the organizing influence of proteins, these

states may be coaxed towards a number of families of

ordered and variously shaped structures of similar en-

ergy. When present as a simple polymer, HA is likely to be

a perfect dynamic colonizer of the extracellular space

(74). The specificity of protein-HA interactions, combined

with the repeating nature of the polysaccharide, may

drive the formation of periodic filamentous complexes

that are likely to have significantly different quaternary

organizations depending on the conformation of the

bound sugar and the nature of the stabilizing protein-

protein associations (74). These states may be inter-

changeable depending on the force. Furthermore, Day

and de la Motte (73) proposed that HA cross-linking is

part of a protective mechanism, promoting adhesion of

leukocytes to the HA complexes rather than enabling

contact with inflammation-promoting receptors on the

underlying tissues. Thus leukocytes are maintained in a

nonactivated state by appropriate receptor clustering or

receptor coengagement. Hyaluronan networks serve as

scaffolds to prevent the loss of extracellular matrix com-

ponents during inflammation and to sequester proinflam-

matory mediators (73).

HA regulates an array of the biological and patholog-

ical processes (Fig. 5). The actions of HA are dependent

on its interacting proteins and the locations of HA and

HA-binding proteins. Hyaluronan-CD44 interactions have

long been suggested to be important in leukocyte homing

and recruitment. HA-Toll like receptor interactions enable

TABLE 2. Selected genes induced by HA fragments

Category Gene/Protein Cell Type Reference Nos.

Chemokines CCL3 Macrophages 285
CCL4 Macrophages 285
CXCL2 Macrophages 17, 185
CCL5 Macrophages 285
CCL2 Renal tubular epithelial cells 23, 285
CXCL10 Macrophage 157, 285
CXCL9 Macrophage 157
CXCL1 Endothelial cells 439
CCL5 Macrophages 285
IL-8 Endothelial cells, epithelial cells 273, 445, 481
CXCL1 Macrophages 156, 185

Cytokines IL-12 Macropahges, dendritic cells 152, 453
TNF-� Dendritic cells 453
IL-1� Dendritic cells 453

Growth factors TGF-�2 Monocytes 446
IGF-I Macrophages 326

Transcription factors I�B� Macrophages 327
AP-1 Endothelial cells 79
Rest Monocytes 446

ECM MMP-10 Endothelial cells 445
MMP-13 Monocytes, dendritic cells 104, 446
PAI-1 Macrophages 158
uPA Macrophages 158
MME Macrophages 159
MMP-9 Dendritic cells 104
Collagen VIII Endothelial cells 378

HSPG Syndecan-4 Endothelial cells 445
Others iNOS Hepatocytes, endothelial, Kupffer, and stellate cells 377

Cox2 Renal tubular epithelial cells 434
MDR-1 Lymphocytes 466
Trdn Monocytes 446
Frk Monocytes 446

See text for definitions.

TABLE 3. HA binding proteins with Link domains

Name Link Domain Modules Reference Nos.

CD44 1 Link domain CD44-like module 34, 217, 450
LYVE1 1 Link domain CD44-like module 19, 20
TSG-6 1 Link domain TSG6-like module 197, 217, 262
HARE 1 Link domain TSG6-like module 351
Brevican 2 Link domain CSPGs modules 34
Neurocan 2 Link domain CSPGs modules 34
Versican 2 Link domain CSPGs modules 278
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hyaluronan signaling in inflammatory cells as well as in

other cell types. HA interacts with CD44 and RHAMM

regulating tumor growth and metastasis. HA binds to

HARE and LYVE1 regulating lymphatic endothelial cell

functions. Tissue-specific HA binding proteins such as

brevican and neurocan modulate neuronal development

and brain tumor invasiveness. Hyaluronan and its binding

proteins play a role in the pathogenesis of many human

diseases as well as in numerous experimental conditions.

Therefore, HA binding proteins are integrated parts of HA

biology and pathology.

A. CD44

CD44 is the major cell-surface HA binding protein

(10). CD44 is a widely researched molecule, and it has

been shown to have multiple roles in a variety of biomed-

ical fields. CD44 is a polymorphic type I transmembrane

glycoprotein whose diversity is determined by differential

splicing of at least 10 variable exons encoding a segment

of the extracellular domain and by cell type-specific gly-

cosylation (249). It is widely expressed in almost every

cell type in the human and in the mouse (407). It is

believed to be one of the most abundant cell surface

proteins on macrophages. Although glycosaminoglycan

side chains associated with some CD44 isoforms can bind

a subset of heparin-binding growth factors, cytokines, and

ECM proteins such as fibronectin, most of the functions

ascribed to CD44 thus far can be attributed to its ability to

bind and internalize HA (407). N-glycosylation regulates

CD44 structure by altering both the affinity and avidity of

CD44-HA binding (450). Most cells express the standard

isoform, which is an 85-kDa protein that undergoes post-

translational modification (249).

HA-CD44 interactions play an important role in de-

velopment, inflammation, T-cell recruitment and activa-

tion, and tumor growth and metastasis (249). The CD44

cytoplasmic domain can be phosphorylated when a ligand

binds to transduce signaling. CD44 is also required for

BMP-7 signaling. The cytoplasmic domain of CD44 is

required for BMP-7-induced Smad1 nuclear translocation

(347). Smad1 was found to interact with the cytoplasmic

domain of CD44 as demonstrated with coimmunoprecipi-

tation. The integrity of extracellular HA-cell interactions

is required for BMP-7-mediated Smad1 phosphorylation,

nuclear translocation of Smad1 or Smad4, and SBE4-

luciferase reporter activation, suggesting a functional link

between the BMP signaling cascade and CD44 (347).

When CD44 phosphorylation mutants were trans-

fected into a murine fibroblast line expressing low levels

of endogenous CD44, CD44 phosphorylation mutants

were as efficient as wild-type CD44 in mediating cell

adhesion but were unable to support HA-dependent fibro-

blast migration, demonstrating a control mechanism spe-

cific for CD44-mediated cell motility (345). Work with

transformed cells indicates that these cells use the cell

surface matrix receptor CD44 for migration and invasion

(147, 519). Lung tissue from patients who died from acute

alveolar fibrosis after lung injury reveals CD44-expressing

mesenchymal cells throughout the newly formed fibrotic

tissue. CD44 was found uniformly over the cell surface

and was found densely labeling filopodia and lamellipo-

dia. By blocking the function of CD44 with monoclonal

antibodies, fibroblast invasion into a fibrin matrix was

inhibited (436). Fibroblast CD44 functions as an adhesion

receptor for provisional matrix proteins and is capable of

mediating fibroblast migration and invasion of the wound

provisional matrix, resulting in the formation of fibrotic

tissue (436). Hyaluronan inhibits platelet-derived growth

factor (PDGF)-BB-induced activation of PDGF receptor

and cell motility, while blockage of the binding of HA to

CD44 restored PDGF-receptor activation and motility, in-

dicating that CD44 mediates the inhibiting effect on PDGF

receptor (251). PDGF receptor and CD44 form a complex,

and the inhibitory effect of HA is neutralized by inhibition

of tyrosine phosphatases, suggesting that HA-activated

CD44 modulates PDGF receptor signaling by recruiting

tyrosine phosphatase to the receptor (251).

The role of CD44 was investigated by genetic target-

ing in vivo. Transgenic mice expressing an antisense

CD44 cDNA under the control of the keratin-5 promoter

had defective keratinocyte proliferation, indicating the

role of CD44 in the regulation of keratinocyte prolifera-

tion in response to extracellular stimuli (205). Given the

importance of CD44 as demonstrated in many biological

FIG. 5. Diagram to show the roles of HA-HA binding proteins during
development and disease states.
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and pathological conditions, it was very surprising that

the genetic disruption of CD44 in the mouse did not show

much abnormality (397). Our laboratory has demon-

strated that CD44 is required for the resolution of pulmo-

nary inflammation (449). CD44-deficient mice succumb to

unremitting inflammation following bleomycin-induced

noninfectious lung injury, characterized by impaired

clearance of apoptotic neutrophils, persistent accumula-

tion of HA fragments at the site of tissue injury, and

impaired activation of TGF-�1 (Figs. 6 and 7) (449). The

phenotype was partially reversed by reconstitution with

CD44� cells, thus demonstrating a critical role for this

receptor on leukocytes in resolving lung inflammation.

CD44 deficiency results in enhanced inflammation in E.

coli but not S. pneumoniae-induced pneumonia, suggest-

ing a role for CD44 in limiting the inflammatory response

to E. coli (484). We and others demonstrated that inflam-

mation is more aggravated in CD44-knockout mice than in

wild-type mice (254, 315). We further found that the in-

duction of the negative regulators of TLR signaling IL-1R-

associated kinase-M (215), Toll-interacting protein, and

A20 by intratracheal lipopolysaccharide (LPS) in vivo and

in macrophages in vitro was significantly reduced in

CD44�/� mice, suggesting that CD44 plays a role in pre-

venting exaggerated inflammatory responses to LPS by

promoting the expression of negative regulators of TLR4

signaling (254). Moreover, a recent study demonstrated

that mice exposed to HA prior to LPS were protected

from symptoms of sepsis, suggesting that HA signaling

modifies the host inflammatory response during injury

and infection (307).

In addition, recent studies suggested that CD44 ex-

pression was strongly induced in the infarcted myocar-

dium and was localized on infiltrating leukocytes, wound

myofibroblasts, and vascular cells. Although CD44-defi-

cient mice displayed enhanced inflammation following

myocardial infarction, CD44 deficient infarcts showed de-

creased fibroblast infiltration, reduced collagen deposi-

FIG. 6. Accumulation of HA after
bleomycin treatment. Lung tissue stained
for HA at days 10–14. A: wild-type mice.
B: CD44-deficient mice. [Adapted from
Teder et al. (449).]

FIG. 7. Accumulation of HA after bleomycin
treatment. A: HA content was measured by an
HA-specific enzyme-linked immunosorbant assay
in lungs of wild-type (□) and CD44-deficient mice
(�). B: HA molecular mass (MW) at day 7 in lungs
of saline-treated wild-type mouse (top panel, MW
average 1.44 � 106), bleomycin-treated wild-type
mouse (middle panel, MW average 0.54 � 106),
and bleomycin-treated CD44-deficient mouse (bot-
tom panel, MW averages from left to right 2.10 �

106, 1.41 � 106, 0.16 � 106, and, 0.02 � 106).
[Adapted from Teder et al. (449).]
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tion, and diminished proliferative activity (164). Isolated

primary CD44-deficient cardiac fibroblasts had reduced

proliferation upon stimulation with serum and decreased

collagen synthesis in response to TGF-� compared with

wild-type fibroblasts, suggesting that CD44-mediated in-

teractions are critically involved in infarct healing (164).

After tissue injury, fibroblast migration from the peri-

wound collagenous stroma into the fibrin-laden wound is

critical for granulation tissue formation and subsequent

healing. Fibroblast transmigration or invasive migration

from a collagen matrix into a fibrin matrix required the

presence of fibronectin, several integrins, and CD44 (62).

A recent study suggested that CD44 expression is not a

general requirement for cell migration and gradient sens-

ing; rather, CD44-HA interaction regulates the ability of

the cell to respond to a chemotactic gradient of hyaluro-

nan (471). Expression of CD44 alone is not sufficient to

drive chemotaxis towards HA, as NIH-3T3 fibroblasts

were unable to respond to a HA gradient even when

transfected with high levels of human CD44 (471). For

NIH-3T3 cells to bind exogenous HA, it was necessary to

both increase the level of receptor expression and remove a

HA pericellular matrix (471). CD44 is required for myoblast

migration and differentiation, since primary myoblasts from

CD44-deficient mice displayed attenuated differentiation

and subsequent myotube formation at early times in a dif-

ferentiation-inducing in vitro environment (308). Chemo-

taxis of CD44-deficient myoblasts toward hepatocyte

growth factor and basic fibroblast growth factor was totally

abrogated (308). Very recently, it was demonstrated that

CD44-deficient fibroblasts have fewer stress fibers and focal

adhesion complexes (1). Migration of CD44-deficient fibro-

blasts was increased in velocity, but was directionless (1).

B. RHAMM

RHAMM (for receptor for hyaluronan-mediated mo-

tility expressed protein, also called CD168) binds to bio-

tinylated HA (137, 512). RHAMM is a functional receptor

in many cell types, including endothelial cells (256, 391).

It is believed to be an HA receptor involved in tumor cell

locomotion (137). Transfection experiments in fibroblasts

suggest that RHAMM plays a role in Ras-dependent onco-

genesis (130), but this role has been challenged by others

(153), reflecting the complexity of the interactions be-

tween HA and HABPs in biological and pathological con-

ditions. Nevertheless, RHAMM-HA interactions do play an

important role in tissue injury and repair (522). Upregu-

lation of RHAMM expression in bovine aortic smooth

muscle cells was readily detected in an in vitro injury

model (392). While HA stimulated the random locomotion

of bovine aortic smooth muscle cells, an antibody to

RHAMM that blocks HA binding with this receptor abol-

ished smooth muscle cell migration following injury

(392), suggesting that RHAMM is necessary for the migra-

tion of smooth muscle cells during wound repair.

Increased expression of RHAMM in macrophages af-

ter bleomycin injury in rats has been reported using a

function blocking anti-RHAMM antibody (522). HA-stim-

ulated macrophage chemotaxis was also inhibited by anti-

RHAMM antibody (522). Daily administration of anti-

RHAMM antibody to injured animals resulted in a 40%

decrease in macrophage accumulation, and lung architec-

ture was improved with anti-RHAMM antibody treatment

(522).

Inflammation is more aggravated in CD44-knockout

mice than in wild-type mice (315). Compensation for the

loss of the CD44 gene occurs not because of enhanced

expression of the redundant RHAMM gene, but rather

because the loss of CD44 allows increased accumulation

of the HA substrate, with which both CD44 and RHAMM

engage, thus enabling augmented signaling through

RHAMM (315). RHAMM knockout mice are viable and

show no significant defect, suggesting that RHAMM is not

an absolute requirement for normal development (459).

Rhamm is expressed at high levels in aggressive fibroma-

tosis. When crossed with mice that harbor a targeted

mutation in the tumor suppressor APC gene predisposing

animals to tumors including aggressive fibromatosis tu-

mor, Rhamm deficiency significantly decreased the num-

ber of aggressive fibromatosis tumors formed (459).

Rhamm promotes fibroblast proliferation under condi-

tions of low density (459). Rhamm-deficient fibroblasts

fail to repair wounds in an in vitro wound healing assay

(458). ERK1,2 activation and fibroblast migration/differ-

entiation are also defective during the repair of RHAMM-

deficient excisional skin wounds and result in aberrant

granulation tissue in vivo. These results identify RHAMM

as an essential regulator of CD44-ERK1,2 fibroblast mo-

togenic signaling required for wound repair (458).

C. Brevican

Brevican (also call BEHAB, for brain-enriched hyalu-

ronan binding) is a brain-specific proteoglycan in perineu-

ronal nets. Brevican occurs as secreted and cell-surface,

glycosylphosphatidylinositol-anchored, isoforms (176)

and binds not only to HA (177, 404) but also to chon-

droitin sulfate (510). Studies suggested that brevican in-

creases the invasiveness of glioma cells in vivo (115, 177)

and plays a role in central nervous system fiber tract

development (115). Brevican-deficient mice are viable and

fertile and have a normal life span (43). Extracellular

matrix perineuronal nets formed but appeared to be less

prominent in mutant than in wild-type mice. Brevican-

deficient mice showed significant deficits in the mainte-

nance of hippocampal long-term potentiation or a persis-

tent increase in synaptic strength, but no significant def-
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icits in learning and memory (43). Expression of brevican

was upregulated in response to a stab wound to the adult

rat brain (176).

D. Neurocan

Neurocan is a nervous tissue-specific chondroitin sul-

fate proteoglycan of the aggrecan family that has been

shown to interact with neural cell adhesion molecules

(371) and tenascin (370). Neurocan binds to HA and chon-

droitin sulfate in the brain (80). Through its interactions

with neural cell adhesion and extracellular matrix mole-

cules, neurocan is a potent inhibitor of neuronal and glial

adhesion and neurite outgrowth (266). Neurocan-deficient

mice are viable and fertile and have no obvious deficits in

reproduction and general performance (530). Brain anat-

omy, morphology, and ultrastructure are similar to those

of wild-type mice, indicating that neurocan has a redun-

dant function in the development of the brain (530). The

distribution and function of neurocan and HA are associ-

ated with the remodeling process of brain (369). Hyalu-

ronan is organized into fiberlike structures along migra-

tory pathways in the developing mouse cerebellum. Thus

HA-rich fibers are concentrated at sites where specific

neural precursor cell types migrate, and the anisotropic

orientation of these fibers suggests that they may support

guided neural migration during brain development (18).

Tissue injuries such as brain injury (12, 286) and spinal

cord injury (191) induced neurocan expression. Proteo-

glycan decorin suppresses neurocan and brevican expres-

sion and inflammation and promotes axon growth across

adult rat spinal cord injuries (72).

E. HABP1/C1QBP

HABP1 (for hyaluronan-binding protein 1, also called

C1QBP, for complement component 1, q subcomponent

binding protein) was first purified from the liver (71) and

the brain (70). cDNA cloning confirmed that HABP1 is

identical to complement component 1, q subcomponent

binding protein (C1QBP) (118), and to pre-mRNA splicing

factor SF2 (155, 221). It is �64–68 kDa and binds to HA

(70, 71, 181) as well as mannosylated albumin (226). In

addition to its mitochondrial location, HABP1 is also lo-

calized in the Golgi and completely dispersed throughout

the cell during mitosis. This distinctive distribution pat-

tern of HABP1 during mitosis resembles its ligand HA

(403). Intracellular HA have been shown in dividing cells

(98, 99). Intracellular HA in proliferating cells is probably

the result of using hyperglycemic medium, since a recent

study showed that hyperglycemia induced intracellular

HA production (374).

HABP1 exists as a highly acidic, noncovalently asso-

ciated trimer in equilibrium with a small fraction of a

covalently linked dimer of trimers (182). Structural stud-

ies demonstrated that HABP1 exhibits structural plastic-

ity, which is influenced by the ionic environment under in

vitro conditions near physiological pH (183). Endogenous

HABP1 can be phosphorylated and was coimmunopre-

cipitated with activated extracellular signal-regulated ki-

nases (263). HABP1 is a substrate for extracellular signal-

regulated kinases and is an integral part of the mitogen-

activated protein kinase cascade (263). In addition to HA,

HABP1/C1QBP also binds to the globular heads of com-

plement subcomponent C1q molecules and inhibits C1

activation (118).

HABP1 overexpressing cells showed extensive vacu-

olation and reduced growth rate and underwent apoptosis

in normal rat skin fibroblasts (199, 287). Overexpression

of HABP1 was seen during Leishmania donovani infec-

tion. HABP1 binds with two proteins of promastigotes as

well as amastigotes of L. donovani, suggesting a possible

role for HABP in adhesion during the interaction of pro-

mastigotes and macrophages (367). It is unknown

whether HA is required in this interaction. HABP1 has

been demonstrated to play a role in spermatogenic differ-

entiation. Stage-specific expression of the HABP1 precur-

sor occurred during spermatogenesis in the rat (25). The

sperm surface HABP1 level was correlated with the de-

gree of sperm motility, an important criterion for fertili-

zation (119). The appearance of HABP1 proprotein in the

pachytene spermatocytes and the round spermatids dur-

ing the initial stages of postnatal testis development sug-

gests that this expression may be crucial for spermato-

genesis (455).

F. HARE

HARE (for hyaluronan receptor for endocytosis, also

called stabilin-2 and FEEL-2) was identified in the abun-

dant expression of 175- and �300-kDa HARE species from

sinusoidal endothelial cells of the liver, lymph node, and

spleen (527, 528). The expression of HA receptors Stab2

and LYVE1 depended on the tissue and developmental

stage of liver endothelial cells in mice (328). The human

gene that encodes HARE is on chromosome 12 (526). The

HARE protein features multiple B(X7)B HA-binding mo-

tifs, several fasciclin-like adhesion domains, and 18–20

epidermal growth factor domains (351). HARE protein

binds to HA (138, 282), dermatan sulfate, and chondroitin

sulfates A, C, D, and E, but not to chondroitin, heparin,

heparan sulfate, or keratan sulfate (139, 489).

While HARE/Stab-2 mRNA is confined to the liver

and spleen, HARE/Stab-2 protein expression can be de-

tected in the endothelial sinuses of the liver, lymph nodes,

spleen, and bone marrow and in specialized structures of

the eye, heart, brain, and kidney in mice (100). Cloning

and functional expression of the rat 175-kDa HARE dem-
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onstrated that the recombinant HARE is an authentic

endocytic receptor for HA and was expressed on the cell

surface (529). HARE was substantially colocalized with

clathrin, but not with internalized HA that was delivered

to lysosomes (529). The liver contains two distinct endo-

thelial cell types: vascular and sinusoidal. The anti-HARE

monoclonal antibodies showed diffuse strong staining of

nonneoplastic liver sinusoidal endothelium. No staining

of nonsinusoidal endothelium or the endothelial lining of

the hemangiomas was seen with anti-HARE (87). Antibod-

ies to HARE are not only markers for endothelial cells and

the sinusoidal cells of rat liver, spleen, and lymph nodes,

but also proved a useful tool in studying the functions of

HARE and the physiological significance of HA clearance

(488, 528). HARE mediates systemic clearance of glycos-

aminoglycans from the circulatory and lymphatic systems

via coated pit-mediated uptake. A majority of each HARE

isoform was intracellular, within the endocytic system,

suggesting a transient surface residency typical of an

active endocytic recycling receptor (138).

G. LYVE1

LYVE1 (for lymphatic vessel endothelial hyaluronan

receptor 1, also called CRSBP-1 for cell surface retention

sequence binding protein-1) was cloned as a lymph-spe-

cific HA receptor on the lymph vessel wall in humans (20)

and in mice (360). It is a type I integral membrane glyco-

protein and homolog of CD44, and it contains a link

module and binds both soluble and immobilized HA (20).

Expression of mouse LYVE1 remains restricted to the

lymphatics in homozygous knockout mice lacking a func-

tional gene for CD44 (360). However, LYVE1 is also

present in normal hepatic blood sinusoidal endothelial

cells in mice and humans (303). LYVE1 expression was

also found on the endothelial cells of the lymphatic sinus

and in reticular cells in the lymph nodes. (506). LYVE1 is

expressed in DC-SIGN� macrophages within the chori-

onic villi in the rapidly differentiating placenta (35).

TNF-� promotes LYVE1 internalization from the cell sur-

face to lysosomes leading to its degradation. However, the

internalization of LYVE1 is independent of HA (189).

LYVE1 has been widely used as a lymphatic vessel spe-

cific marker (4, 172, 301, 509). It also offers a prognostic

parameter for head and neck squamous cell carcinomas,

since intratumoral LYVE1� lymphatic vessels were

clearly associated with a higher risk for local relapse as

well as with a poor disease-specific prognosis (279).

LYVE1 is expressed in tissue macrophages. In murine

tumor models and excisional wound healing, LYVE1 ex-

pression occurred in a subset of CD11b�, F4/80� tissue

macrophages (396). DC-SIGN�CD163� macrophages

have been shown to express LYVE-1 (35). LYVE1 is also

implicated in the trafficking of cells within lymphatic

vessels and lymph nodes (170).

LYVE1 plays a role in the transport of HA from tissue

to lymph by uptaking HA via lymphatic endothelial cells

(172, 360). The occurrence of LYVE1-expressing lym-

phatic compartments and the alteration of chemokine

CCL21 expression in the lymphatics may be involved in

defective thymocyte differentiation and migration and

may play a significant role in insulitic and diabetic pro-

cesses (184). Despite the implied importance of this mol-

ecule, LYVE1-deficient mice are grossly normal (112, 163).

One study did not observe obvious alterations in lym-

phatic vessel ultrastructure or function or any apparent

changes in secondary lymphoid tissue structure or cellu-

larity in LYVE1-deficient mice (112). HA homeostasis is

unperturbed in LYVE-deficient mice (112). This suggests

that LYVE1 is not obligatory for normal lymphatic devel-

opment and function and that either compensatory recep-

tors exist or LYVE1 has a more specific role than previously

envisioned (112). However, a second study identified mor-

phological and functional alterations of lymphatic capillary

vessels in certain tissues, marked by constitutively increased

interstitial-lymphatic flow and lack of typical irregularly

shaped lumens in LYVE1-deficient mice (163). LYVE1 is not

required for either entry or migration of dendritic cells

through the afferent lymphatics, and leukocyte populations

are unaltered in LYVE1-deficient mice (112), in line with the

finding that lymphatic adhesion/transmigration is largely me-

diated by ICAM-1 and VCAM-1 rather than LYVE1 (188).

H. SHAP

SHAP (for serum-derived hyaluronan-associated pro-

tein) was originally identified as a serum-derived HA-

associated protein since it covalently binds to HA (162,

516, 517). It was later found that SHAP is identical to

inter-� (globulin) inhibitor (I�I) heavy chain 2 (ITIH2),

which belongs to the inter-�-trypsin inhibitor (ITI) family

of structurally related plasma serine protease inhibitors

involved in extracellular matrix stabilization. The ITI fam-

ily consists of multiple proteins made up of a given com-

bination of polypeptide chains after complex posttransla-

tional maturation. There are four heavy chains and one

light chain of ITI in the human, produced in the liver and

circulating in peripheral blood. Mass spectrometric anal-

yses showed that the COOH-terminal aspartic acid of each

ITI heavy chain was esterified to the C6-hydroxyl group of

an internal N-acetylglucosamine of HA chain (525). The

ITI family proteins usually are organized into bikunin-

chondroitin sulfate-heavy chain(s) complex in which

bikunin links to chondroitin sulfate chain through O-gly-

cosylation, and heavy chains bind to chondroitin sulfate

through ester bonds (37, 294) (Fig. 8). The bikunin pre-

cursor �1-microglobulin, a single-chain plasma glycopro-

tein, is processed to mature �-microglobulin and bikunin

(477). The chondroitin sulfate moiety of bikunin is essen-

tial for presenting ITI heavy chains to HA (533).
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Under both static and flowing conditions, CD44-pos-

itive cells adhered preferentially to the immobilized

SHAP-HA complex rather than to HA. The enhanced ad-

hesion is exclusively mediated by the CD44-HA, but not

by ITI-HA interaction (532). The SHAP-HA complex was

isolated from pathological synovial fluid from human ar-

thritis patients, and the amount of complex correlates

positively with the degree of inflammation (525). Further-

more, SHAP-HA complex levels in rheumatoid arthritis

sera were extremely high compared with control levels,

but in osteoarthritis sera no marked increase was ob-

served compared with controls (208), suggesting that the

SHAP-HA complex plays different roles in rheumatoid

arthritis and in osteroarthritis. Both serum levels of the

SHAP-HA complex and HA in patients with chronic hep-

atitis, liver cirrhosis, and hepatocellular carcinoma were

significantly higher than those of normal individuals, and

these levels correlate with the stages of liver fibrosis.

Thus SHAP-HA complex level is an indicator for the pro-

gression of the stages of liver fibrosis (405). Targeting the

bikunin gene in mice abolished the formation of the

SHAP-HA complex, leading to the absence of matrix in

ovulated oocytes and severe female infertility (534). Res-

toration of the formation of the SHAP-HA complex by

administration of ITI fully rescued the defects (534).

I. TSG-6/TNFIP6

TNF-stimulated gene-6 (TSG-6), also called TNF-�-

induced protein 6 (Tnfip6), contains a Link module bind-

ing to HA (217, 245, 344) and a CUB domain interacting

with fibronetin (230). TSG-6 has been shown to play a key

role in ITI heavy chain transfer (63, 293, 294, 386). As

simplified in Figure 8, TSG-6 is a catalyst and a cofactor of

ITI heavy chain transfer complex (294). TSG-6 transfers

proteins between glycosaminoglycans via a Ser28-medi-

ated covalent catalytic mechanism (387). TSG-6 mediated

ITI heavy chain transfer is dependent on pH (33) and the

presence of Mg2� or Mn2� (294).

TSG-6 expression is upregulated in many cell types in

response to a variety of proinflammatory mediators and

growth factors. TSG-6 is induced by IL-1 and TNF-� (245,

504, 514) and LPS (504). This protein is detected in several

inflammatory disease states such as rheumatoid arthritis

and in the context of inflammation-like processes is often

associated with extracellular matrix remodeling. TSG-6 is

a potent inhibitor of neutrophil migration during acute

inflammation in vivo (503). The recombinant Link module

from human TSG-6 has an inhibitory effect on neutrophil

influx into zymosan A-stimulated murine air pouches,

equivalent to that of a full-length protein, resulting in a

significant reduction in the concentrations of various in-

flammatory mediators in air pouch exudates (117). TSG-6

is upregulated in proliferating vascular smooth muscle in

the rat neointima after injury (514). Tnfip6-overexpressing

cells grew faster than control vascular smooth muscle

cells (514). TSG-6 is a downregulated gene during osteo-

blastic differentiation. TSG-6 inhibits osteoblastic differ-

entiation of human mesenchymal stem cells induced by

osteogenic differentiation medium and BMP-2 (467).

Knockout of Tnfip6 in mice with a BALB/c back-

ground did not change the onset of proteoglycan-induced

arthritis, but progression and severity were significantly

greater in Tnfip6-deficient mice compared with wild-type

BALB/c mice (437). An early and more extensive infiltra-

tion of the synovium with neutrophil leukocytes was the

most prominent histopathological feature of proteogly-

can-induced arthritis in Tnfip6-deficient mice (437). Thus

TSG-6 is a multifunctional anti-inflammatory protein that

is produced at the site of inflammation and can be re-

tained by the HA-rich extracellular matrix. A major effect

FIG. 8. Tumor necrosis factor-stimulated gene-6 (TSG-6) and inter-
�-trypsin inhibitor (ITI) heavy chain transfer. ITI family proteins usually
contain chondroitin sulfate chain, one bikunin, and two heavy chains
(HC1 and HC2) (1). TSG6 (2) as a catalytic factor and cofactor forms
TSG6-HC1 complex (3) and releases bikunin-HC2 (4). Hyaluronan (5)
forms HA-HC1 complex and releases free TSG6 (6). [Modified from
Milner et al. (294), copyright the Biochemical Society.]
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of TSG-6 is the inhibition of the extravasation of polymor-

phonuclear cells (PMN), predominantly neutrophils (503),

into the site of inflammation, most likely via a CD44/HA/

Tnfip6-mediated blocking mechanism (437).

TSG-6 is specifically expressed by expanding cumu-

lus cell-oocyte complexes (110). Cumulus cell-oocyte

complexes fail to expand in Tnfip6-deficient female mice

because of the inability of the cumulus cells to assemble

their HA-rich extracellular matrix, demonstrating that

TSG-6 is a key catalyst in the formation of the cumulus

extracellular matrix and is indispensable for female fer-

tility (111).

VI. HYALURONAN SIGNALING THROUGH

TOLL-LIKE RECEPTORS

Although numerous studies suggest that HA frag-

ments may signal through a CD44-dependent tyrosine

kinase pathway (39, 206, 415), recent studies demon-

strated that HA is able to stimulate chemokine production

in the absence of CD44 (Fig. 9), suggesting that the pres-

ence of CD44 is not required to mediate HA signaling (104,

185, 206). The cumulative interpretation of these data is

that the role of CD44 in regulating HA interactions de-

pends on the cell type.

HA is a component of the cell coat of groups A and C

of Streptococcus (257, 259) and P. multocida (53). The

repeating disaccharide structure of HA has features of

pathogen-associated molecular patterns. Many pathogen-

associated molecular patterns on pathogens utilize Toll-

like receptors to initiate innate immune responses (2,

441). The innate immune system uses TLRs to recognize

microbes and initiate host defense (2, 441). TLR4 has been

unequivocally identified as the transmembrane signaling

protein required for LPS signal transduction in macro-

phages (442). TLR2 is the mediator of macrophage recog-

nition of mycobacteria (472) and gram-positive organisms

(442). Stimulation of chemokine gene expression by HA

fragments was abolished in the MyD88-deficient macro-

phages (185). Chemokine MIP-2 expression was reduced but

remained present in both TLR2- and TLR4-deficient macro-

phages. HA fragment-induced chemokine and cytokine ex-

pression was completely abolished in TLR2�/�TLR4�/�

peritoneal macrophages (Fig. 10) (185). The human HA deg-

radation products purified from the serum of patients with

acute lung injury were of similar molecular mass (peak at

200 kDa) as the in vitro-generated HA degradation products

and stimulated chemokine production in wild-type macro-

phages but not in either TLR2�/�TLR4�/� or MyD88�/�

peritoneal macrophages (185).

HA oligosaccharides induce the maturation of den-

dritic cells via TLR4 (451). HA oligosaccharide treatment

results in distinct phosphorylation of mitogen-activated

protein (MAP) kinases, nuclear translocation of NF-�B,

and TNF-� production (451). Priming of alloimmunity by

HA-activated dendritic cells is dependent on signaling via

TIRAP, a TLR adaptor downstream of TLR2 and TLR4

(454). However, this effect is independent of alternate

TLR adaptors, MyD88, or TRIF (454). We further demon-

strated that HA accumulates during skin transplant rejec-

tion and suggested that fragments of HA can act as innate

immune agonists that activate alloimmunity (454). Injury-

induced, Toll-like receptor-triggered signaling pathways,

such as HA fragments (454) and high-mobility group box

1 protein (368), are involved in establishing innate allo-

immunity and in utilizing adaptor proteins and transcrip-

tion factors that play a crucial role in the host’s defense

against pathogens (232). Horton and colleagues (394) re-

ported similar findings, using a commercial source of HA

fragments, although they suggested a primary role for

TLR2.

Hyaluronan upregulates IL-1R-associated kinase-M, a

negative regulator of TLR signaling, to deactivate human

MyD 88

FIG. 10. HA fragments stimulate chemokine expression through
both TLR4 and TLR2. A: Cxcl-2 mRNA expression by peritoneal
macrophages from wt or MyD88�/� mice treated with 135-kDa HA
fragments (in �g/ml) detected by Northern analysis. B: Ccl4 mRNA
expression by elicited peritoneal macrophages from WT, TLR2�/�,
TLR4�/�, or TLR2�/�TLR4�/� mice treated with 135-kDa HA frag-
ments or LPS (100 ng/ml) in the presence or absence (underlined) of
polymyxin B, detected by Northern analysis. [Adapted from Jiang et
al. (185), with permission from Macmillan Publishers Ltd.]

FIG. 9. HA signaling is independent of the presence of CD44.
Chemokine CXCL2 expression by peritoneal macrophages was not af-
fected by the deficiency of CD44. [Adapted from Jiang et al. (185), with
permission from Macmillan Publishers Ltd.]
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monocytes, as mediated through the engagement with

CD44 and TLR4 (84). Small HA fragments stimulate ex-

pression of MMP2 and IL-8, leading to NF-�B activation,

enhancing the motility of melanoma cells, in part in a

TLR4-dependent manner (481). HA inhibits osteoclast dif-

ferentiation through TLR4 by interfering with macro-

phage colony-stimulating factor (M-CSF) signaling, sug-

gesting a role of HA-TLR interaction in the regulation of

bone metabolism (59).

VII. HYALURONAN AS AN IMMUNE

REGULATOR

A. T Cells

CD44 is expressed on T cells (238). The interaction of

cell-surface HA and CD44 on T cells is manifested by

polarization, spreading, and colocalization of cell-surface

CD44 with a rearranged actin cytoskeleton. Thus cyto-

kines and chemokines present in the vicinities of blood

vessel walls or present intravascularly in tissues where

immune reactions take place can rapidly activate the

CD44 molecules expressed on T cells (8). Naive splenic T

cells did not bind fluoresceinated HA constitutively. HA

binding requires the activation of splenic T cells by a

CD44-specific monoclonal antibody (248). Lesley and col-

leagues (247, 248) suggested that CD44 functions associ-

ated with HA binding involve a regulated process.

T-cell activation is associated with increased surface

levels of CD44. CD44 expression on T cells but not den-

dritic cells plays a critical role in antigen-specific T-cell

responsiveness (86). The activation of CD44 and the abil-

ity to engage in rolling occurs directly through polyclonal

as well as antigen-specific T-cell receptor-initiated signal-

ing, suggesting potential roles for the CD44-HA interac-

tion (83). CD44 activation does not appear to be the result

of overt changes in glycosylation (83).

Leukocytes extravasate from the blood in response

to physiological or pathological demands by means of

complementary ligand interactions between leukocytes

and endothelial cells, via a multistep process. Binding of

CD44 on activated T lymphocytes to endothelial HA me-

diates a primary adhesive interaction under shear stress,

permitting extravasation at sites of inflammation (81, 82).

The integrin �4 (VLA-4), not integrin �L, is used in sec-

ondary adhesion after CD44-mediated primary adhesion

of human and mouse T cells in vitro, and by mouse T cells

in an in vivo model. Thus extravasation of activated T

cells initiated by CD44 binding to HA depends on integrin

�4-mediated firm adhesion, which may explain the fre-

quent association of these adhesion receptors with di-

verse chronic inflammatory processes (411). CD44 and

integrin �4 are physically associated on the cell surface,

and the cytoplasmic portion of CD44 is necessary for this

association. Disruption of the association through dele-

tion of the CD44 cytoplasmic tail concordantly prevents

firm adhesion of integrin �4 on its ligand VCAM-1 under

shear stress, while leaving rolling interactions between

CD44 and HA intact, demonstrating that coanchoring

within CD44 and VLA-4 bimolecular complex between a

primary and secondary adhesion molecule regulates the

ability of a cell to firmly adhere (313).

Skin ��T cells play specialized roles in keratinocyte

proliferation during wound repair. ��T cells are required

for HA deposition in the extracellular matrix and subse-

quent macrophage infiltration into wound sites (175). ��T

cell-derived keratinocyte growth factors induce epithelial

cell production of HA. In turn, HA recruits macrophages

to the site of damage. These results demonstrate a novel

function for skin ��T cells in inflammation and provide a

new perspective on T-cell regulation of ECM molecules

(175).

While lymphocytes from CD44�/� mice preferentially

homed to lymph nodes, their entry into the inflamed

synovial joints was delayed compared with wild-type cells

(428). CD44-deficient lymphocytes from animals with

chronic arthritis expressed markedly reduced levels of

the lymph node homing receptor L-selectin. Downmodu-

lation of L-selectin from CD44�/� cells in an arthritic

condition might be a counterregulatory response, which,

by extending lymphocyte transit time in the circulation at

the expense of lymph node homing, allows CD44-deficient

cells to gain entry to the site of chronic inflammation via

secondary adhesion mechanisms (428).

CD4�CD25� regulatory T cells (Treg) are funda-

mental to the maintenance of peripheral tolerance.

Siegelman and colleagues (105) found that the level of

functionally active, HA-binding form of CD44act is strik-

ingly correlated with superior suppressor activity, sug-

gesting that CD44 is more than a cell surface marker

and plays a role in regulating Treg cell functions. The

expression of other surface markers and Foxp3 are

similar irrespective of HA binding and associated de-

gree of suppressor potency (105). Furthermore, high-

molecular-mass HA enhances human CD4�CD25� reg-

ulatory T-cell functional suppression of responder cell

proliferation, whereas low-molecular-mass HA does not

(36). In addition, high-molecular-mass HA also upregu-

lates the transcription factor FOXP3 on CD4�CD25�

regulatory T cells. These effects are only seen with

activated CD4�CD25� regulatory T cells and are asso-

ciated with the expression of CD44 isomers that more

highly bind high-molecular-mass HA (36).

B. PMN

Both the polarization and the directed migration of

neutrophils are dependent on the expression of CD44 and
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its interaction with HA, which could modulate neutrophil

migration into inflamed tissues (7). TSG-6 inhibits PMN

efflux and neutrophil invasion into the inflammatory site

(437). A recent study suggested that CD44 does not ap-

pear to affect subsequent migration within inflamed tis-

sues, although CD44 mediates neutrophil adhesion and

emigration (207). Endothelial CD44 rather than neutrophil

CD44 mediates neutrophil migration (380). Ligation of

CD44 on neutrophils with anti-CD44 and HA induced IL-6

gene transcription and IL-6 protein secretion. Interferon

�-induced IL-6 production is dependent on CD44 cross-

linking (399). The cross-linking of specific epitopes of the

CD44 molecule can rapidly induce neutrophil apoptosis in

vitro and inhibit neutrophil-dependent renal injury in vivo

(440). Thus physiological ligands of the CD44 molecule

may play an important role in eliminating neutrophils

from sites of inflammation, including inflammatory kidney

disease (440).

C. Macrophages

Ligation of human macrophage surface CD44 by biva-

lent monoclonal antibodies rapidly and profoundly aug-

ments the capacity of macrophages to phagocytose apopto-

tic neutrophils in vitro (480). CD44-deficient mice succumb

to unremitting inflammation following noninfectious lung

injury, characterized by impaired clearance of apoptotic

neutrophils (449). Furthermore, CD44 plays a role in HA

fragment clearance during tissue injury (449). CD44 regu-

lates phagocytosis of apoptotic neutrophil granulocytes, but

not apoptotic lymphocytes, by human macrophages (140).

There are several reports demonstrating that HA frag-

ments can influence dendritic cell maturation. Goldstein

and colleagues (454) showed that 135-kDa fragments of

HA induce dendritic cell maturation and initiate alloim-

munity. Activation of dendritic cells with HA enhances

their ability to stimulate allogeneic and antigen-specific T

cells markedly (86).

Langerhans cells are skin-specific members of the

dendritic cell family and crucial for the initiation of cuta-

neous immune responses. Systemic, local, or topical ad-

ministration of HA blocking peptide prevented hapten-

induced Langerhans cell migration from the epidermis

and inhibited the hapten-induced maturation of Langer-

hans cells in vivo (304). Small HA fragments of tetra- and

hexasaccharide size increase dendritic cell production of

the cytokines IL-1�, TNF-�, and IL-12 as well as their

allostimulatory capacity (453). These small HA fragments

induce dendritic cell maturation independently of CD44

or RHAMM and are dependent on TLR4 (451).

D. Mast Cells

Mast cell granules are a rich source of HA (and other

glycosaminoglycans), and this may account for the strik-

ing concurrence of HA accumulation with a mastocytotic

condition in many tissues undergoing pathological

changes (89). Cultured human mast cells adhere to HA-

coated surfaces (109). Human mast cells expressing the

standard form of CD44, but not the v5, v6, v7, and v8

variants, appear to mediate the attachment of these cells

to HA (109). However, CD44 was not found to be consis-

tently elevated in serum obtained from patients with mas-

tocytosis or individuals experiencing anaphylaxis (109).

The number of mast cells was higher in patients with

sarcoidosis than in controls (91). Sarcoidosis patients had

an increase in bronchoalveolar lavage (BAL) HA com-

pared with controls (91). Mast cell activation and stress

play a role in the pathogenesis of interstitial cystitis (389).

Intravesical sodium hyaluronate has been used to treat

interstitial cystitis due to its possible replenishment of

bladder glycosaminoglycans (198). HA inhibited mast cell

activation and the secretion of proinflammatory media-

tors, providing a mechanism of HA as a therapeutic option

for interstitial cystitis (38).

E. Eosinophils

The infiltration, accumulation, and degranulation of

eosinophils in the lung is a hallmark of active asthma (44).

HA increased GM-CSF, TGF-�, and ICAM-1 expression by

eosinophils, leading to eosinophil survival. HA-eosinophil

interaction may contribute to the regulation of airway

inflammation and airway remodeling (335). HA stimulates

the growth of CD34� progenitor cells into specifically

differentiated, mature eosinophils (134). HA contributes

to long-term eosinophil survival in vivo by enhancing

granulocyte-macrophage colony-stimulating factor (GM-

CSF) production in asthma conditions (95). HA triggers

GM-CSF mRNA stabilization in eosinophils yet engages

differential intracellular pathways and mRNA binding

proteins (95). Recently, Pin1, a cis-trans isomerase, was

identified as an essential component of the ribonucleo-

protein complex responsible for GM-CSF mRNA stabili-

zation, cytokine secretion, and the survival of HA-acti-

vated eosinophils (406).

The expression of CD44 on alveolar eosinophils and

the concentration of soluble CD44 were increased in the

BAL of patients with eosinophilic pneumonia, and the

increase was correlated with the amount of Th2 cytokine

IL-5 in BAL (203). In addition, a high concentration of HA

was observed in the BAL of eosinophilic pneumonia pa-

tients (203). Intraperitoneal administration of anti-CD44

monoclonal antibody prevented both lymphocyte and eo-

sinophil accumulation in the lung, blocked antigen-in-

duced elevation of Th2 cytokines and chemokines

(CCL11, CCL17), and inhibited the increased levels of HA

and leukotriene concentrations in BAL, demonstrating a

critical role for HA-CD44 interaction in the development

of allergic respiratory inflammation (202).
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VIII. HYALURONIC ACID AND

NONLEUKOCYTES

A. Epithelial Cells

Hyaluronan induces MCP-1 expression in renal tubu-

lar epithelial cells (23). HA is synthesized in high-molec-

ular-mass form at the apical pole of human (300) and

murine airway epithelial cells (235). Furthermore, differ-

entiated murine airway epithelial cells synthesize a leu-

kocyte-adhesive hyaluronan matrix in response to endo-

plasmic reticulum stress (235), suggesting that endoplas-

mic reticulum stress would induce the apical synthesis of

hyaluronan, resulting in hyaluronan-rich mucus produc-

tion in airway. High molecular form HA is broken down

by reactive oxygen species to form low-molecular-mass

fragments that signal via RHAMM to stimulate ciliary beat

frequency (265), suggesting a role of HA-RHAMM interac-

tion in airway mucosal host defense.

The transforming effects of hepatocyte growth factor

and �-catenin are dependent on HA-cell interactions. In-

creased expression of HA is sufficient to induce epithelial-

mesenchymal transition and acquisition of transformed

properties in phenotypically normal epithelial cells in

vitro (536). HA plays a central role in the transition of

epithelia to mesenchyme in the embryo and in the acqui-

sition of transformed properties in carcinoma cells (463).

Overexpression of HAS2 on airway epithelial cells under

control of the Clara cell specific CC10 promoter leading to

an increased production of high-molecular-mass HA was

protective against mortality, lung injury, and epithelial

cell apoptosis by maintaining basal level of NF-�B activa-

tion (185).

B. Endothelial Cells

Oligosaccharides of HA enhance the production of

collagens by endothelial cells (378). Early-response gene

signaling is induced by angiogenic oligosaccharides of HA

in endothelial cells, while it is inhibited by high-molecu-

lar-mass HA (79). HA fragments, but not high-molecular-

mass HA, induce inducible nitric oxide synthase (iNOS) in

liver, having the greatest effects on endothelial and

Kupffer cells. Thus HA fragments may be an important

stimulus for NO production in various forms of liver

disease, particularly as a cofactor with inflammatory cy-

tokines (377).

Local cytokine production within inflamed vascular

beds may enhance surface HA expression on endothelial

cells, thereby creating local sites receptive to the

CD44/HA interaction and thus extravasation of inflamma-

tory cells (298). IL-15 induces endothelial HA expression

in vitro and promotes activated T-cell extravasation

through a CD44-dependent pathway in vivo (96). Endog-

enous components of the extracellular matrix HA can

stimulate endothelia to trigger recognition of injury in the

initial stages of the wound defense and repair response

(445). HA-induced proliferation of endothelial cells is

CD44 receptor mediated and is accompanied by early-

response-gene activation (415).

Hyaluronan fragments stimulate endothelial cell dif-

ferentiation. Hyaluronan dodecasaccharides induce cap-

illary endothelial cell sprouting by binding to CD44 and by

the induction of CXCL1/GRO1 (439). HA regulates vascu-

lar endothelial cell barrier function through CD44v10 iso-

form interaction with S1P receptors, S1P receptor trans-

activation, and RhoA/Rac1 signaling to the endothelial

cell cytoskeleton (412). CD44 is an important regulator of

hepatocyte growth factor/c-Met-mediated in vitro and in

vivo barrier enhancement, a process with essential in-

volvement of Tiam1, Rac1, dynamin 2, and cortactin (413).

C. Fibroblasts

Fibroblasts are the main cell type that release HA

(173, 258, 423, 457). Fibroblasts synthesize all three iso-

forms of HASs and release HA upon tissue injury (17, 273)

and the stimulation of inflammatory factors such as IL-1�

and TNF-� (502). On the other hand, HA fragments stim-

ulate fibroblasts to release cytokines and to regulate in-

flammatory responses (258, 273) and facilitate TGF-�-

mediated fibroblast proliferation (290). Furthermore,

upon myofibroblastic differentiation, more HA appeared

in the conditioned medium and became associated with

the cells (180). Moreover, HA modulates TGF-�-depen-

dent myofibroblast differentiation (486, 487).

Hyaluronan-binding proteins regulate fibroblast func-

tions through their interactions with HA. For example,

acute lung injury fibroblast migration and invasion of a

fibrin matrix is mediated by CD44 (436). HA modulates

contact inhibition of cell growth and migration (165).

Rhamm-deficient fibroblasts are defective in CD44-medi-

ated ERK1/2 motogenic signaling, leading to defective

skin wound repair, demonstrating a role of RHAMM in

CD44 signaling and fibroblast migration (458). A recent

study suggested that HA-activated CD44 modulates PDGF

receptor signaling by recruiting tyrosine phosphatases to

the receptor and influencing cell motility (251).

Consistent with the role of CD44 in mediating fibro-

blast invasion and subsequent tissue fibrosis, immunohis-

tochemical analysis of lung tissue from patients who died

from acute alveolar fibrosis after lung injury reveals

CD44-expressing mesenchymal cells throughout newly

formed fibrotic tissue (436). Anti-CD44 antibody blocked

fibroblast migration on the provisional matrix proteins

fibronectin, fibrinogen, and HA (436). Therefore, fibro-

blast CD44 functions as an adhesion receptor for provi-

sional matrix proteins and is capable of mediating fibro-
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blast migration and invasion of the wound provisional

matrix resulting in the formation of fibrotic tissue (436). A

recent study reported that high-molecular-mass HA in-

creased Snail2, leading to fibroblast invasion (64).

D. Smooth Muscle Cells

HA is able to promote smooth muscle cell migration

in various conditions (478, 501). In addition, growth fac-

tors and cytokines regulate HA production in smooth

muscle cells. For example, poly(I:C) or tunicamycin stim-

ulates primary murine airway smooth muscle cells to

synthesize a leukocyte-adhesive hyaluronan matrix (236,

237). PDGF stimulates HA production in vascular smooth

muscle cells (340, 341), while IL-15 inhibits HA production

and smooth muscle cell migration (169). Furthermore, HA

binding proteins regulate smooth muscle cell prolifera-

tion and migration during tissue injury. For example,

RHAMM is necessary for the migration of smooth muscle

cells, and the expression and distribution of this receptor

is tightly regulated following wounding of bovine aortic

smooth muscle cell monolayers (392). HA-induced migra-

tion depends exclusively on RHAMM-mediated phospha-

tidylinositol 3-kinase-dependent Rac activation (125).

IX. HYALURONAN AND STEM CELLS

A. HA and Embryonic Stem Cells

CD44 is expressed in discrete embryonic structures,

and the differentiation process of embryonic stem cells is

accompanied by an induction of CD44 mRNA and protein

(499). HAS2 and RHAMM are differentially expressed dur-

ing all stages of preimplantation human embryos and

human embryonic stem cells (61). RHAMM expression is

significantly downregulated during the differentiation of

human embryonic stem cells, in contrast to HAS2, which

is significantly upregulated. RHAMM knockdown results

in downregulation of several pluripotency markers in hu-

man embryonic stem cells, induction of early extraembry-

onic lineages, loss of cell viability, and changes in the

human embryonic stem cell cycle, highlighting an impor-

tant role for RHAMM in maintenance of human embryonic

stem cell pluripotency, viability, and cell cycle control

(61). HAS2 knockdown results in suppression of human

embryonic stem cell differentiation without affecting hu-

man embryonic stem cell pluripotency, suggesting an in-

trinsic role for HAS2 in the human embryonic stem cell

differentiation process (61). Addition of exogenous HA to

the differentiation medium enhances human embryonic

stem cell differentiation to mesodermal and cardiac lin-

eages (61). During stem cell differentiation, HA (and other

glycosaminoglycans) synthesis was enhanced by 13- and

24-fold, most likely due to increased expression of HAS2

(310).

B. HA and Hematopoietic Stem Cells

The fate of hematopoietic stem cells (HSC) is deter-

mined by microenvironmental niches. Hyaluronan is part

of the extracellular environment in bone marrow. HA not

only provides a physical scaffold or support within the

marrow to facilitate localization and retention of HSCs to

the stem cell niche but moreover, through ligation with its

counter-receptors, is able to directly affect the cellular

functions of HSCs (141).

HA is required for in vitro hematopoiesis, since the

removal of HA with hyaluronidase in long-term bone mar-

row cultures results in reduced production of both pro-

genitor and mature cells (206). HA enhanced hematopoi-

etic activity, committed progenitors, and the total number

of mature bone marrow cells (275). HA synthesized by

primitive hemopoietic cells participates in their lodgment

at the endosteum following transplantation (322). There-

fore, HA is required for the regulation of the hematopoi-

esis-supportive function of bone marrow accessory cells

and participates in hematopoietic niche assembly (275).

CXCL12/SDF-1 is a major chemokine in promoting

HSC homing, migration, and proliferation (233, 288, 398).

HA oligosaccharides enhance CXCL12-dependent chemo-

tactic effects on peripheral blood hematopoietic CD34�

cells (393). HA-CD44 interaction is essential for homing

into the bone marrow and spleen of nonobese diabetic/

severe combined immunodeficient mice and engraftment

by human HSCs (15). Hematopoietic progenitor cells mi-

grating on HA toward a gradient of CXCL12 acquired

spread and polarized morphology with CD44 concentrat-

ing at the pseudopodia at the leading edge. These mor-

phological alterations were not observed when the pro-

genitors were first exposed to monoclonal anti-CD44 an-

tibodies, demonstrating a cross-talk between CD44 and

CXCR4 signaling (15).

Although RHAMM and CD44 are expressed by the mo-

bilized blood hematopoietic progenitor cells, function block-

ing monoclonal antibodies identified RHAMM as a major HA

binding receptor, with a less consistent participation by

CD44. The G-CSF-associated alterations in RHAMM distri-

bution and the RHAMM-dependent motility of hematopoi-

etic progenitor cells suggest a potential role for HA and

RHAMM in the trafficking of hematopoietic progenitor cells

and the possible use of HA as a mobilizing agent in vivo

(350).

C. HA and Mesenchymal Stem Cells

CD44 has long been used as a marker for mesenchy-

mal stem cells (MSC) (535). Later studies demonstrated
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that HA and HA-binding proteins play an active role in the

maintenance and differentiation of MSC. HA improves

human MSC culture growth and promotes chondrogenic

differentiation of human MSC (143, 204). CD44 and HA

help MSC move to the injury area to promote tissue

regeneration (353). HA promotes a CD44-dependent mi-

gration of the MSC (150). CD44�, not CD44�/�, stem cells

injected into mice with acute renal failure migrated to the

injured kidney, where HA expression was increased, to

accelerate morphological or functional recovery (150). Thus

CD44-HA interactions recruit exogenous MSC to injured

renal tissue and enhance renal regeneration (150). MSC

actively migrated to cardiac allografts and contributed to

graft fibrosis and, to a lesser extent, to myocardial regener-

ation (507). MSC, in response to PDGF stimulation, express

high levels of CD44 standard isoform, which facilitates cell

migration through interaction with extracellular HA. Such a

migratory mechanism could be critical for the recruitment

of MSC into wound sites for the proposition of tissue regen-

eration, as well as for the migration of fibroblast progenitors

to allografts in the development of graft fibrosis (531).

An HA-based scaffold has been developed for tissue

regeneration. Cartilage regeneration using mesenchymal

stem cells and a hybrid poly-(lactic-co-glycolic acid)-gel-

atin/chondroitin/hyaluronate hybrid scaffold had better

chondrocyte morphology, integration, continuous sub-

chondral bone, and much thicker newly formed cartilage

(101). HA mixed esters of butyric and retinoic acids drive

cardiac and endothelial fates in term placenta human

mesenchymal stem cells and enhance cardiac repair in

infarcted rat hearts (475). MSC survive well in the HA-

based prototype ligament scaffold, as assessed after 2

days from seeding, and express CD44, a receptor impor-

tant for scaffold interaction, and proteins responsible for

the functional characteristics of the ligaments (65).

X. HYALURONIC ACID-TOLL-LIKE RECEPTOR

INTERACTION IN NONINFECTIOUS

TISSUE INJURY

It is becoming clear that Toll-like receptors not only

play a role in the recognition of pathogens and in the

initiation of immune responses but also have a fundamen-

tal role in noninfectious disease pathogenesis. Recent

studies from Medzhitov and colleagues (365) suggest that

TLRs may have homeostatic functions in the gut epithe-

lium. These investigators demonstrated that the stimula-

tion of TLR by commensal intestinal flora is critical for

protecting against intestinal epithelial injury (365). This

elegant work emphasizes the importance of cross-talk

between factors involved in innate immunity and cytopro-

tection in the maintenance of intestinal epithelial ho-

meostasis. We demonstrated that TLR2�/�TLR4�/� mice

developed a reduced inflammatory response to lung in-

jury, with a decrease in transepithelial neutrophil migra-

tion and reduced expression of MIP-2. However, these

mice had a higher mortality rate when compared with

wild-type mice (Fig. 11A) (185). Inhibition of HA binding

with the peptide in vivo recapitulated the phenotype ob-

served in the TLR2�/�TLR4�/� mice after lung injury,

enhanced lung injury and increased epithelial cell apopto-

sis, and decreased transmigration of neutrophils (185).

After the administration of a high dose of bleomycin,

increasing production of high-molecular-mass HA by

overexpression of HAS2 under direction of the lung-spe-

cific CC10 promoter was protective against mortality,

lung injury, and epithelial cell apoptosis (Fig. 11B) (185).

To investigate the hypothesis that HA and TLR interac-

tions are important in lung injury and repair processes,

we asked if HA on the epithelial cell surface plays a role

in lung injury. Isolated lung alveolar epithelial cells have

increased rates of apoptosis at baseline and exhibit

greater apoptosis in response to bleomycin. The exoge-

nous addition of high-molecular-mass HA is protective

against bleomycin-induced apoptosis (185). We found that

bleomycin induces both NF-�B activation and apoptosis

in primary lung epithelial cells (185). Thus HA regulates

basal NF-�B activation in epithelial cells. NF-�B regulates

apoptosis (241), and HA fragments can activate NF-�B in

macrophages (327, 394). Primary epithelial cells from

FIG. 11. TLR2 and TLR4 double-deficient mice were more suscep-
tible (A), while mice overexpressing HAS2 on epithelial cells were more
resistant, to bleomycin induced lung injury (B). [Adapted from Jiang et
al. (185), with permission from Macmillan Publishers Ltd.]
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TLR2�/�TLR4�/� mice have a significant increase in spon-

taneous apoptosis relative to wild type (185). Further-

more, we made the observation that cell-surface HA is

severely abrogated in TLR2�/�TLR4�/� epithelial cells

(185), although the cause of the loss of HA in these mice

is unclear. Epithelial cell-surface HA promotes basal

NF-�B activation in a TLR-dependent manner, and this

activation has a protective effect against injury (Fig. 12)

(331).

TLR4 plays a protective role in oxidant-mediated

lung injury by maintaining appropriate levels of antiapop-

totic responses in the face of oxidant stress (524). TLR4

also maintains constitutive lung integrity by modulating

oxidant generation, preventing the development of em-

physema (523). On the other hand, TLR4 (and TLR2) have

a deteriorative role during noninfectious tissue injury.

Hemorrhage-induced lung TNF-� production, neutrophil

accumulation, and protein permeability, but not NF-�B

activation, is dependent on a functional TLR4 (21). TLR4-

TLR2 cross-talk activates a positive-feedback signal lead-

ing to alveolar macrophage priming and exaggerated lung

inflammation in response to invading pathogens during

hemorrhage-induced acute lung injury (102). Recently, it

was shown that TLR4 signaling through the MyD88-de-

pendent pathway was required for the full development of

kidney ischemia/reperfusion injury, as both TLR4- and

MyD88-deficient mice were protected against kidney dys-

function, tubular damage, neutrophil and macrophage ac-

cumulation, and expression of proinflammatory cytokines

and chemokines (508). Upregulation of the endogenous

ligands HA, high-mobility group box 1, and biglycan was

seen, providing circumstantial evidence that one or more

of these ligands may be the source of TLR4 activation

(508). The discrepancy on the roles of TLR in tissue injury

may be due to the injury models utilized, the degree of the

injury, and the timing of end points examined.

Although both HA and LPS activate TLR, they pro-

voke different sets of gene expression (446). For example,

cultured cells exposed to HA showed a pattern of gene

induction that mimics the response seen in mouse skin

after sterile injury with an increase in molecules such as

TGF-�2 and matrix metalloproteinase-13. These factors

were not induced by LPS despite the mutual dependence

of both HA and LPS on TLR4, suggesting that TLRs may

play different roles in infectious inflammation and in sterile

inflammation (446). Gallo and associates (446) made an

important observation recently that a unique complex of

TLR4, MD-2, and CD44 recognizes HA in noninfectious in-

flammation, different from the TLR4, MD-2, and CD14 com-

plex that recognizes LPS during infection (Fig. 13). How-

ever, MD-2 is usually associated with lipid recognition and

binding (211, 336, 343). As HA is a pure glycosaminoglycan

and contains no lipid, it is against the involvement of MD-2

in HA-TLR interaction. How MD-2 fits into the HA-TLR in-

teraction and more direct biochemical demonstration of

HA-TLR interaction(s) are to be determined.

A TLR4 polymorphism (Asp299Gly) attenuates recep-

tor signaling and diminishes the inflammatory response to

gram-negative pathogens (337). A recent study found that

the Asp299Gly TLR4 polymorphism is associated with a

decreased risk of atherosclerosis. This finding pointed to

the notion that innate immunity plays a role in atherogen-

esis (209). Similarly, inactivation of the MyD88 pathway

led to a reduction in atherosclerosis through a decrease in

macrophage recruitment to the artery wall that was asso-

ciated with reduced chemokine levels (30). How HA plays

a role in this process is still to be seen.

XI. HYALURONIC ACID AND HYALURONIC

ACID BINDING PROTEINS IN

HUMAN DISEASES

HA accumulation is often associated with dysregulated

expression of HA binding proteins during tissue injury in

many human diseases and in experiment conditions. The

dysregulated expression of HA and HA binding proteins in

human diseases may represent a dynamic part of coordi-

nated regulatory process by which the cellular regulatory

mechanisms and molecular pathways are mounted to com-

bat the disease. In many situations, HA and HA binding

proteins regulate the functions surrounding cells such as

cytokine release, cell migration, and apoptosis. HA and HA

binding proteins may amplify the injury signal to accelerate

host defense, while in other situations, they may protect the

host from further tissue damage. HA and HA binding pro-

teins may play a beneficial or deteriorated role to the host,

depending on the HA size, the location of HA and HA bind-

ing proteins, and the timing of HA accumulation. Further-

more, HA binding proteins also help the host to absolve HA

to alleviate tissue injury (Fig. 14 and Table 4).

FIG. 12. A: TLR2 and TLR4 double-deficient mice displayed lower
basal NK-�B activity. B: epithelial cells from TLR2�/�TLR4�/� mice
expressed reduced cell surface HA. [Adapted from Jiang et al. (185),
with permission from Macmillan Publishers Ltd.]
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XII. LUNG DISEASES

A. Pulmonary Fibrosis

Idiopathic pulmonary fibrosis (IPF) is a fatal disease of

unknown origin with an average survival of 2–3 years from

the time of diagnosis, for which no effective medical thera-

pies currently exist (325). For many patients with IPF, lung

transplantation is the only available and effective treatment

(271). Although there is a familial form of pulmonary fibro-

sis, it is rare and the vast majority of cases are sporadic (26).

Patients suffocate from unremitting deposition of collagen

in the gas exchanging portions of the lung. The molecular

mechanisms of lung injury, inflammation, and fibrosis are

largely unknown. HA levels were higher in the BAL fluid of

patients with IPF than in those of healthy controls (28). The

HA levels were also correlated with the severity of the

disease. Patients with deteriorated conditions had higher

lavage fluid concentrations of HA than those whose disease

was stable (28). Fibroblast clones derived from primary

fibroblast cultures from the lung tissue of patients with

pulmonary fibrosis secreted much greater amounts of HA

and proteoglycan decorin than the clones from normal indi-

viduals (498). HA levels in the BAL fluid of sarcoidosis

patients were significantly higher than in those of controls

(27). The increases were significantly higher in clinically

active than in inactive sarcoidosis (27, 32). The concentra-

tions of HA and fibronectin were higher in patients with

sarcoidosis compared with the healthy nonsmoking controls

(91). We recently reported that serum ITI and matrix hyalu-

ronan promote angiogenesis in fibrotic lung injury (114).

Elevated HA levels have been reported in experimen-

tal pulmonary fibrosis. There was a transient histological

accumulation of HA in the alveolar interstitium, corre-

sponding to increases in HA levels in BAL fluid and lung

tissue extracts in bleomycin-induced alveolitis in rats

FIG. 13. Analogous signaling of HA and LPS. LPS uses TLR4, CD14, and MD2 to transduce its signal, while HA interacts with TLR4, CD44, and
MD2 to elicit its signaling.
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(316, 317). Increased extracellular matrix components,

fibronectin and HA, as well as PMN cells, were detected in

BAL fluid in quartz-exposed rats (90). While HA in lung

tissue and BAL fluid peaked on days 3–7 and then gradu-

ally declined towards normal values on days 21–30, lung

tissue collagen contents increased between days 7 and 30

(149). The mechanism involved in bleomycin-induced in-

creased HA production in rat lung was associated with

growth factors such as PDGF-bb (448) and a decreased

HA binding capacity of alveolar macrophages, which may

account for the impairment of internalization and thereby

degradation of excessive HA during the early phase of

fibrotic lung injury (447).

Although many studies have suggested that HA

plays a causative role in the pathogenesis of pulmonary

fibrosis, it has been difficult to demonstrate this di-

rectly in vivo. One of the challenges is that the disrup-

tion of the HAS2 allele leads to embryonic lethality and

leaves no surviving mice to be subject to injury models.

Conditional knockout HAS2 in specific cell types will

provide excellent models to dissect the role of HA in

biology and pathology.

B. Asthma

HA appears in low concentrations in the BAL fluid of

healthy individuals, while increased amounts have been

reported in the lavage fluid of patients with allergic

asthma (382, 417). Furthermore, HA levels in BAL fluids

were significantly increased in patients with persistent

asthma, compared with patients with intermittent asthma

(479), and were correlated with the pulmonary function of

the patients (41).

One of the reasons for increased HA levels in asthma

is an increase in TGF-� levels, which promote airway

smooth muscle cells to secret glycosaminoglycans such

as HA (31). IL-1� and TNF-� were the most potent stim-

ulators of HA synthesis and, when combined, caused

synergistic increases in HA accumulation in human lung

fibroblasts. Fluticasone inhibited IL-1� and TNF-� in-

duced HA synthesis, and attenuated IL-1� and TNF� stim-

ulated HAS2 mRNA (502). On the other hand, low-molec-

ular-mass HA increased GM-CSF, TGF-�, and ICAM-1 ex-

pression by eosinophils, leading to eosinophil survival.

FIG. 14. Diagram to demonstrate the roles of HA during lung injury and fibrosis. Four alveoli were shown. 1) Epithelial HA-TLR interaction
provides basal NF-�B activation to prevent type II cell apoptosis. 2) During tissue injury, HA accumulates, and low-molecular-mass HA fragments
stimulate macrophages to release chemokines, cytokines, and growth factors. 3) CD44 on macrophages can promote the inflammatory resolution
and HA clearance. 4) Cytokines and growth factors in turn stimulate fibroblasts to produce collagen, fibronectin, and HA, which further worsen
fibrosis.
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HA-eosinophil interaction may contribute to the regula-

tion of airway inflammation and airway remodeling (335).

Fibroblasts from subjects with the most hyperre-

sponsive airways in asthma produced a much greater

amount of total proteoglycans such as HA, perlecan, and

versican than cells from subjects with less hyperrespon-

sive or normal responsive airways (497). Hyaluronan, se-

creted from submucosal gland cells, plays a role in mu-

cosal host defense by retaining lactoperoxidase and pos-

sibly other substances important for first-line host

defense at the apical surface “ready for use” and pro-

tected from ciliary clearance (383).

Aerosol HA administration significantly reduces the

bronchial hyper-reactivity to muscular exercise in asthmat-

ics (348). Such an effect could be attributed to the correction

of the pathological remodeling, one of the main features of

asthma: a correction which could be attributed to the unique

physicochemical properties of this major component of the

loose connective amorphous matrix of the airways, which is

undoubtedly involved in the remodeling process (348). Oth-

ers found that inhaled HA does not significantly protect

against exercise-induced bronchoconstriction in a random-

ized double-blinded placebo-controlled crossover study,

suggesting that HA at the testing dose is not effective as a

prophylaxis for exercise-induced bronchoconstriction in pa-

tients with asthma (227).

C. Chronic Obstructive Pulmonary

Disease/Pulmonary Emphysema

Young chronic obstructive pulmonary disease (COPD)

patients with higher concentrations of HA and fibronectin

in BAL had higher numbers of inflammatory cells in BAL,

and lower numbers in pulmonary function measurements,

than the COPD patients with lower HA levels (419). HA

levels were significantly higher in the sputum from pa-

tients with COPD than in those from controls. The COPD

population appeared to consist of two subpopulations

with either high or moderate HA levels. The subgroup of

patients with high HA levels had lower lung function than

the moderate HA group (419). In addition, neutrophil

influx and levels of IL-8 and the soluble TNF receptors

were significantly higher in patients with high HA levels

than in those with moderate HA levels and controls, indi-

cating a relationship between HA levels, local inflamma-

tion, and severity of disease and suggesting enhanced

degradation of HA in the lungs of patients with COPD

(85). Hyaluronan, chondroitin 4-sulfate, and chondroitin

6-sulfate levels decreased significantly in animals exposed

to ozone for 20 mo when compared with those in control

animals (361). Cigarette smoke exposure leads to en-

hanced deposition of mostly low-molecular-mass HA in

alveolar and bronchial walls by altering the expression of

HA modulating enzymes (42). However, it is uncertain if

the changes of these glycosaminoglycans contribute to

the pathogenesis of emphysema.

Aerosolized low-molecular-mass HA following endo-

toxin administration significantly increased lung inflam-

mation, whereas pretreatment with HA had the opposite

effect (309). Aerosolized HA may be an effective means of

preventing pulmonary emphysema and perhaps other

lung diseases that involve elastic fiber injury (50). Al-

though clinical trials involving nebulized HA are not ex-

pected to yield a measurable treatment effect for at least

several years, it is proposed that the special ability of this

polysaccharide to retain water may increase the elasticity

of lung elastic fibers, producing a relatively rapid im-

provement in pulmonary mechanics (51). Compared with

TABLE 4. HA levels in selected disease states

Organ Pathological Conditions Reference Nos.

Lung Patients with IPF 28
Sarcoidosis patients 27
Patients with allergic asthma 41, 382, 417, 479
COPD patients 85, 419
ARDS patients 133, 222, 269
Bleomycin-induced alveolitis 316, 317

Kidney Glomerulonephritis 323
Lupus nephritis 224, 521
Patients with renal insufficiency 131, 154, 470

Joint Patients with rheumatoid arthritis 94, 122, 264
Experimental arthritic lesions 29, 123

Brain Patients with spinal injury 240
Brain ischemia 482, 483
Brain injury models 5, 6, 16

Heart Atheromatic plaque 342
Myocardial interstitial tissue in heart allografts in rats 132
Experimental atherosclerosis in mice 56

Liver Active hepatitis patients 127, 128, 366
Cirrhosis patients 220, 352, 385
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untreated/smoked controls, aerosolized HA-treated ani-

mals showed statistically significant reductions in mean

linear intercept and elastic fiber breakdown products in

BAL fluid. The aerosolized HA showed preferential bind-

ing to elastic fibers, suggesting that it may protect them

from injury (49). The effect of HA on inflammation ap-

pears to be related to its molecular size, with larger

polysaccharide chains having anti-inflammatory activity

and smaller ones having proinflammatory properties. The

breakdown of inhaled HA into smaller fragments could

possibly induce an inflammatory reaction in the lung that

counteracts any beneficial effect. Consequently, the pro-

posed therapeutic use of HA will require the development

of treatment strategies aimed at minimizing its proinflam-

matory activity (48).

D. Respiratory Distress Syndrome

The HA concentrations in BAL fluid and in serum

from patients with adult respiratory distress syndrome

were much higher than that seen in control patients (133,

222). HA staining can be seen in lung sections of patients

with severe established adult respiratory distress syn-

drome (269). The observed accumulation of HA in the

small airways in adult respiratory distress syndrome may

be expected to immobilize water and thereby contribute

to the interstitial and alveolar edema. The inverse corre-

lation was seen between BAL fluid HA and pulmonary

oxygenation index (133). In addition, HA concentrations

in lung extracts increased with progressively severe re-

spiratory distress syndrome in premature monkeys (195).

Bleomycin and hyperoxia cause an increase in lung HA

(196, 449). We demonstrated that CD44 plays a role in

removing accumulated HA fragments at the site of tissue

injury to resolve lung inflammation (449).

XIII. KIDNEY DISEASES

A. Nephritis

Crescent formation is a major feature of rapidly pro-

gressive glomerulonephritis and is generally associated

with a poor prognosis. Crescents are formed by accumu-

lation of monocyte/macrophages and plasma proteins in

Bowman’s space, by proliferation of parietal epithelial

cells and fibroblasts, and by deposition of the extracellu-

lar matrix. Marked accumulation of hyaluronate was dem-

onstrated in developing and sclerosing crescents, in asso-

ciation with local infiltration of T lymphocytes and mono-

cyte/macrophages, cells known to express CD44 (323).

CD44 is constitutively expressed in the normal kidney and

is dramatically upregulated in rat crescentic antiglomeru-

lar basement membrane disease, suggesting possible

roles for the CD44-HA interaction in leukocyte recruit-

ment, renal fibrosis and tubular cell-matrix and cell-cell

interactions during the induction and progression of cres-

centic glomerulonephritis (194). The expression of CD44,

HA, and osteopontin was upregulated at the early stage of

the crescent formation in patients with crescentic glomer-

ulonephritis, suggesting that cell-matrix interactions me-

diated by the CD44-osteopontin and CD44-HA may play

important roles in the formation and progression of the

crescents (311). Furthermore, the expression of CD44 in

the interstitium correlated with the severity of chronic

glomerular lesions (388). The glomerular and interstitial

CD44 and HA expression correlated with proteinuria, and

the interstitial CD44 and HA expression correlated with

creatinine clearance rate. It is believed that CD44 partic-

ipates in the progression of IgA nephropathy by binding

HA and osteopontin (388). CD44 is expressed de novo by

tubular epithelial cells in areas of tubular injury in kidneys

of kd/kd mice, which develop a spontaneous and chronic

tubulointerstitial renal disease, but not in normal control

kidneys (410). CD44 positive lymphocytes and macro-

phages also infiltrate the kidney in kd/kd mice. HA also

accumulates in kd/kd kidneys in the interstitial space,

particularly in cortical areas of tubular injury. The expres-

sion of osteopontin is enhanced in kd/kd kidneys, predom-

inantly in areas of tubular injury (410).

HA plays a significant role in thromboxane-mediated

immune events in the kidney, where HA stimulates cyclo-

oxygenase-2 expression and subsequent thromboxane A2

production (434). In experimental anti-Thy-1 nephritis,

there was an early glomerular influx of CD44� macro-

phages and de novo CD44 expression by mesangial cells,

suggesting that cell-matrix interactions mediated by the

CD44-HA receptor are involved in mesangial cell prolifer-

ation in rat anti-Thy-1 nephritis (321). Leukocyte infiltra-

tion into tissues in inflammation is a multistep process

involving the sequential engagement of adhesion mole-

cules such as selectins. Synthesized sulfated HA showed

strong inhibitory effects on the binding of P- and L-selec-

tin in vitro and is minimally antigenic. Thus sulfated HA is

considered to be a candidate selectin-blocking agent for

clinical use. Sulfated HA inhibits intraglomerular infiltra-

tion of macrophages and prevents the progression of

experimental crescentic glomerulonephritis (276, 334).

Sulfated HA reduced proteinuria, macrophage infiltration,

and crescent formation in a dose-dependent manner and

reduced urinary protein excretion. Sulfated polysaccha-

rides might be beneficial for the treatment of crescentic

glomerulonephritis (276, 334).

B. Lupus Nephritis

An increased serum concentration of HA was noted

in dermatomyositis patients (224). HA expression was
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increased in the mesangium and in the periglomerular and

tubular distribution in kidney biopsies of patients with

lupus nephritis (521). Lupus nephritis patients showed

increased levels of circulating HA, especially during ac-

tive disease, which correlated with anti-DNA antibody

titers (521). Fibroblasts derived from active lesions of

nephrogenic fibrosing dermopathy synthesize elevated

levels of HA when compared with normal controls (88).

Given that HA plays a pivotal role during inflammatory

responses, influences cellular behavior, and assists in the

recruitment of lymphocytes to sites of injury, it is likely

that HA contributes to the pathogenesis of lupus nephritis

(521).

C. Renal Failure

Serum HA levels were significantly increased in pa-

tients with renal insufficiency and with end-stage renal

failure when compared with the levels measured in

healthy controls. Significant correlations were found be-

tween serum HA and degree of impaired renal function

(131, 154). Hyaluronan levels were significantly greater in

the subgroup with lower glomerular filtration rates, were

associated with an inflammatory state, suggesting im-

paired renal elimination of proinflammatory cytokines,

increased the generation of cytokines in uremia, or had an

adverse effect of inflammation on renal function (346).

Similarly, Turney et al. (470) found that patients with

deteriorated clinical conditions often had greater HA lev-

els, suggesting that HA may be a biochemical marker of

patients whose condition deteriorates despite renal re-

placement therapy. Serum HA is mainly in a high-molec-

ular-mass form (470). In addition, serum HA is raised in

active vasculitis (496).

Serum HA concentrations predict survival in patients

with chronic renal failure on maintenance hemodialysis

(505). Serum HA is an accurate predictor of mortality and

morbidity over an 18-mo period in patients treated by

continuous ambulatory peritoneal dialysis. Large quanti-

ties of HA are excreted in peritoneal dialysate, which in

part represents local HA production (255). Markedly ele-

vated serum HA levels are found in predialysis patients

with malnutrition, inflammation, and atherosclerotic car-

diovascular disease, and that serum HA is a risk predictor

of poor survival in dialysis (425).

HA turnover is cleared rapidly in the circulation by

both the liver and the kidney. Evidence suggests that

high-molecular-size HA chains, which are anti-inflamma-

tory, antiangiogenic, and immunosuppressive, are cleared

by the liver (319). In contrast, intermediate-sized frag-

ments, which are highly angiogenic, inflammatory, and a

stimulus for fibrous deposition, are cleared by the kidney.

The accumulation of HA fragments in renal failure can

account for HA deposition in the dermis and may be a

mechanism for the nephrogenic fibrosing dermopathy

that can accompany these lesions (319).

XIV. ARTHRITIS

Hyaluronan was first isolated from synovial fluid

from patients with rheumatoid arthritis more than 50

years ago (108, 363). The serum HA concentration in

patients with rheumatoid arthritis was significantly

greater than in healthy controls (94, 264). The intrinsic

viscosity of HA in synovial fluid decreases significantly in

mild and severe arthritis compared with that in normal

individuals (216). However, while some studies found that

the serum levels of HA may not correlate with the severity

of the disease (250), others found that serum levels of HA

do correlate with the severity of the disease, with an

objective functional capacity score and with an articular

index based on the total amount of cartilage in involved

joints (122). Amount of serum HA may be a useful mea-

sure of disease activity in patients with rheumatoid arthri-

tis and is a better correlate of clinical disease activity in

patients with rheumatoid arthritis than erythrocyte sedi-

mentation rate or C-reactive protein (93). In an experi-

mental condition, serum HA increased as the arthritic

lesions developed, correlating with the severity of the

disease (29, 123).

HA is susceptible to degradation by excessive reac-

tive oxygen species in rheumatoid arthritis patients and

HA markedly decreased the O2
�, H2O2, and OH·; in pro-

tecting articular tissues from oxidative damage (390).

Degradation of hyaluronate in arthritic synovial tissue

may be inhibited by radical scavengers (395). The hyalu-

ronate-derived low-molecular-mass oligosaccharide spe-

cies and formate (HCOO�) are suggested as novel mark-

ers of reactive oxygen radical activity in the inflamed

rheumatoid joint during exercise-induced hypoxic/reper-

fusion injury (126).

Sodium HA has been used in an intra-articular treat-

ment of arthritis in race horses (11) as well as in patients

with arthritis (218). Sodium hyaluronate and glucocorti-

coid treatments had a significant positive effect according

to the patients’ subjective evaluation (218). In a clinical

trial in Japan, significant improvement in pain symptoms

and inflammation was observed after the 5 injections of

sodium hyaluronate intra-articularly into the knees of 25

patients with rheumatoid arthritis (124). Local therapeu-

tic effects of HA in antigen-induced arthritis in rats are

clearly biphasic, with inhibition of inflammation and car-

tilage damage in the early chronic phase but with promo-

tion of joint swelling, inflammation, and cartilage damage

in the late chronic phase (379).

It has been suggested that HA-binding proteins play a

role in arthritis. CD44 is upregulated on many synovial

cell types in patients with rheumatoid arthritis, and the
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level of CD44 present in synovial tissue is correlated with

the degree of synovial inflammation (142). An anti-CD44

antibody abrogates tissue swelling and leukocyte infiltra-

tion (292). On the other hand, treatment with recombinant

TSG-6 protein had a potent ameliorative effect, mani-

fested by decreases in the disease incidence, arthritis

index, and footpad swelling, significantly reduced levels

of IgG1, IgG2a, and IgG2b antibodies against bovine and

murine type II collagen (295). Compared with wild-type

mice, the progression and severity of proteoglycan-in-

duced arthritis were significantly greater in Tnfip6-defi-

cient mice, with more extensive infiltration of the syno-

vium with neutrophil leukocytes and elevated serum lev-

els of IL-6 and amyloid A (437).

XV. BRAIN INJURY

Significantly elevated HA levels were found in the

cerebrospinal fluid of patients with spinal stenosis, head

injury, and cerebral infarction (240). In addition, HA-

binding proteins were also upregulated during brain in-

jury. CD44 expression was strongly activated in the area

surrounding the injury within 2 days and then persisted

for over 2 mo (431). BEHAB/brevican is upregulated in

response to central nervous system injury (176). Versican

was upregulated in central nervous system injury (13).

The concomitant induction of CD44 and HAS2 mRNA

expression was detected in the microglia, macrophages,

and microvessels of the ischemic brain tissue (482). HA

accumulates after injury and activates microglia and mac-

rophages. Although HA-mediated cytokine release and

mitogen-activated protein kinase signaling in microglia

were lower than from peritoneal macrophages, resident

microglia do respond to extracellular mediators after

brain ischemia (483).

In a rat middle cerebral artery occlusion model, HA

accumulation was seen in stroke-affected areas, and hy-

aluronidase-1, hyaluronidase-2, and CD44 were upregu-

lated after a stroke (5). Increased oligosaccharide HA

production soon after a stroke may be detrimental

through enhancement of the inflammatory response,

while activation of HA-induced cellular signaling path-

ways in neurons and microvessels may impact the remod-

eling process by stimulating angiogenesis and revascular-

ization as well as the survival of susceptible neurons (6).

HA binding to the cultured astrocytes stimulated Rac1 sig-

naling and cytoskeleton-mediated migration. HA binding to

astrocytes stimulated Rac1-dependent protein kinase N-�

kinase activity which, in turn, upregulated the phosphoryla-

tion of the cytoskeletal protein cortactin and attenuated the

ability of cortactin to cross-link F-actin. HA-CD44-induced

astrocyte function may provide important insights into novel

therapeutic treatments for tissue repair following central

nervous system injury (40). HA accumulates in demyeli-

nated lesions from individuals with multiple sclerosis and in

mice with experimental autoimmune encephalomyelitis

(16). The addition of high-molecular-mass HA to oligoden-

drocyte progenitor cultures reversibly inhibits progenitor-

cell maturation, whereas degrading HA in astrocyte-oligo-

dendrocyte progenitor cocultures promotes oligodendro-

cyte maturation. High-molecular-mass hyaluronan may

therefore contribute substantially to remyelination failure by

preventing the maturation of oligodendrocyte progenitors

that are recruited to demyelinating lesions (16).

An HA-based scaffold has been developed for tissue

regeneration (101). When an HA-poly-D-lysine copolymer

hydrogel with an open porous structure was implanted in

brain tissue, macrophages and multinucleated foreign

body giant cells were found at the site of implantation of

the hydrogel, and astrocytes were found between the

hydrogel and the surrounding tissue, demonstrating the

promise of the HA-poly-D-lysine hydrogel as a scaffold

material for the repair of defects in the brain (456). Sim-

ilarly, HA hydrogels modified with laminin created a scaf-

fold that supported cell infiltration and angiogenesis, and

simultaneously inhibited the formation of glial scar (161).

XVI. HEART DISEASES

A role for HA has been implied in the development

and the progression of atherogenesis. HA is expressed in

all aortic layers. The highest concentration of the human

aorta HA was found in the tunica media, exhibiting a

negative concentration gradient from the tunica media to

the atheromatic plaque (342). HA acts as a negative reg-

ulator on the PDGF-induced vascular smooth muscle cell

proliferation and as a positive regulator on the PDGF-

induced vascular smooth muscle cell migration (342). HA

deposits and cyclooxygenase-2 expression are colocal-

ized in the human internal carotid artery (435). In athero-

sclerosis, HA associates with leukocytes and vascular

smooth muscle cells and is involved in vascular remodel-

ing. HAS1 and HAS2 are upregulated in response to pros-

taglandins via Gs-coupled prostaglandin receptors in hu-

man vascular smooth muscle cells (106).

Accumulation of HA in myocardial interstitial tissue

parallels development of transplantation edema in heart

allografts in rats (132). Low-molecular-mass HA increases

the uptake of oxidized low-density lipoprotein into mono-

cytes (438). HA retains low-density lipoprotein by forming

a HA-low-density lipoprotein complex through the mac-

rophage scavenger receptor CD204 (402). CD44 is upregu-

lated in atherosclerotic lesions of apoE-deficient mice.

Low-molecular-mass forms of HA stimulate VCAM-1 ex-

pression and proliferation of cultured primary aortic

smooth muscle cells, whereas high-molecular-mass forms

of HA inhibit smooth muscle cell proliferation. CD44

plays a critical role in the progression of atherosclerosis
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through multiple mechanisms (69). Organization of HA-

and versican-rich pericellular matrices may facilitate mi-

gration and mitosis by diminishing cell surface adhesivity

and affecting cell shape through steric exclusion and the

viscous properties of HA proteoglycan gels (97). Versican

interacts with HA to create expanded viscoelastic pericel-

lular matrices that are required for arterial smooth muscle

cell proliferation and migration (500). Versican is promi-

nent in advanced lesions of atherosclerosis, at the borders

of lipid-filled necrotic cores as well as at the plaque-

thrombus interface, suggesting roles in lipid accumula-

tion, inflammation, and thrombosis (500).

Overproduction of HA in the aorta by targeting

�-smooth muscle actin resulted in thinning of the elastic

lamellae in HAS2 transgenic mice, leading to increased

mechanical stiffness and strength (56). Overproduction of

HA in the genetic background of the ApoE-deficient

mouse strain promoted atherosclerosis development in

the aorta, suggesting that accumulation of HA accelerates

the progression of atherosclerosis (56).

Infarct healing is dependent on an inflammatory re-

action that results in leukocyte infiltration and clearance

in the wound of dead cells and matrix debris. CD44 ex-

pression was markedly induced in the infarcted myocar-

dium and was localized on infiltrating leukocytes, wound

myofibroblasts, and vascular cells (164). CD44�/� mice

showed enhanced inflammation, decreased fibroblast in-

filtration, reduced collagen deposition, and diminished

proliferative activity (164). Isolated CD44�/� cardiac fi-

broblasts had reduced proliferation upon stimulation with

serum and decreased collagen synthesis in response to

TGF-� compared with wild-type fibroblasts. Thus CD44-

mediated interactions are critically involved in infarct

healing in resolution of the postinfarction inflammatory

reaction and in regulating fibroblast function (164).

CD44 is expressed abundantly in the embryonic myo-

cardium. The differentiation process is accompanied by

an induction of CD44 mRNA and protein (499). Synthe-

sized mixed esters of HA with butyric and retinoic acid

primed the expression of cardiogenic genes and elicited a

remarkable increase in cardiomyocyte yield in mouse

embryonic stem cells (474), demonstrating the potential

for chemically modifying the gene program of cardiac

differentiation without the aid of gene transfer (474). The

mixed esters of HA with butyric and retinoic acid en-

hanced the expression of VEGF, VEGF receptor KDR, and

HGF, primed stem cell differentiation into endothelial

cells, and increased the transcription of the cardiac lin-

eage-promoting genes GATA-4 and Nkx-2. 5 (475, 476).

The Asp299Gly TLR4 polymorphism is associated with

a decreased risk of atherosclerosis (209). Similarly, inactiva-

tion of the MyD88 pathway led to a reduction in atheroscle-

rosis through a decrease in macrophage recruitment to the

artery wall that was associated with reduced chemokine

levels (30). These findings pointed to the notion that innate

immunity plays a role in atherogenesis. Whether (or how)

HA plays a role in this process is still to be seen.

XVII. DIABETES

Inflammatory destruction of insulin-producing �-cells in

the pancreatic islets is the hallmark of insulin-dependent

diabetes mellitus. Increased HA levels were seen in dia-

betic patients (320) and in the glomeruli from diabetic rats

(261). Insulin treatment promoted the proliferative re-

sponse of aorta to injury, and this was associated mainly

with increased HA production (57). Increased HA, hyal-

uronidase production, and HA degradation were observed

in the injured aorta of insulin-resistant rats (58). However,

others found a decrease of HA in skin in diabetic patients

(24) or rats with chronic diabetes mellitus (55). This

discrepancy may be due to the measurement of HA during

different stages of the disease, inflammatory status, and

treatment.

Cardiovascular disease contributes to mortality in

type 1 diabetes mellitus. Accumulation of HA was found

around smooth muscle cells in lesions of atherosclerosis

in diabetic patients. Serum HA levels correlate with poor

blood glucose control and diabetic angiopathy and could

be used as a marker of diabetic angiopathy (296). HA and

hyaluronidase were significantly increased in type 1 dia-

betes compared with controls. Plasma HA and hyaluron-

idase correlated in type 1 diabetes. Type 1 diabetes pa-

tients show structural changes of the arterial wall, which

are associated with increased HA metabolism. These data

may lend further support to altered glycosaminoglycan

metabolism in type 1 diabetes as a potential mechanism

involved in accelerated atherogenesis (320). In a porcine

model of atheroscerosis, diabetes was associated with

multiple extracellular matrix changes including an in-

crease in HA staining that has been associated with in-

creased lesion instability, greater atherogenic lipoprotein

retention, and accelerated atherogenesis (281).

In addition, HA binding proteins were also increased

in patients with diabetes or in experimental diabetic ani-

mal models. The occurrence of LYVE1-expressing lym-

phatic compartments and the alteration of CCL21 expres-

sion in the lymphatics may be involved in defective thy-

mocyte differentiation and migration and may play a

significant role in insulitic and diabetic processes (184).

Injection of anti-CD44 monoclonal antibody 1 h before

cell transfer of diabetogenic splenocytes and subse-

quently on alternate days for 4 wk induced considerable

resistance to diabetes in recipient mice, reflected by re-

duced insulitis (492). A similar antidiabetic effect was

observed even when the anti-CD44 monoclonal antibody

administration was initiated at the time of disease onset

(492). Administration of the enzyme hyaluronidase also

induced appreciable resistance to insulin-dependent dia-
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betes mellitus, suggesting that the CD44-HA interaction is

involved in the development of the disease.

HA plays an active role in the development of diabetes.

HA recruits monocytes to the injury area (136). HA produc-

tion in response to a raised glucose environment in diabetes

can contribute to mesangial hypercellularity (260). HA in-

creases vascular smooth muscle cell expression of PAI-1, a

phenomenon that may alter the balance between proteolysis

and its inhibition in vessels of patients with type 2 diabetes,

thereby contributing to the acceleration of macroangiopathy

(272). HA facilitates corneal epithelial wound healing in

diabetic rats, which suggests that one possible mechanism

of its stimulatory effect lies in its binding to a provisional

fibronectin matrix, in both diabetic and nondiabetic rats

(312). A regimen consisting of moist wound healing using

HA-containing dressings may be a useful adjunct to appro-

priate diabetic foot ulcer care (473).

Recently, an HA-insulin complex was developed to

test whether it could be used to treat diabetic patients by

oral administration. Glucose-lowering activity was dem-

onstrated after oral administration of the HA-insulin com-

plex to diabetic rats (178). The HA-insulin complex was

active after oral administration, and the complexed insu-

lin significantly decreased blood glucose concentrations

within 1 h after oral administration in rats (179).

XVIII. LIVER DISEASES

Serum HA levels have long been used as a marker for

liver fibrosis. Serum concentrations of HA were higher in

patients with active hepatitis compared with those of nor-

mal individuals (127, 128, 366). HA is believed to be a better

marker than other markers such as amino-terminal propep-

tide of type III procollagen with regard to the prediction of

development of cirrhosis as well as the prediction of symp-

toms (305, 330). Furthermore, HA levels have a negative

correlation with time of survival, and HA is a sensitive

marker for liver damage in primary biliary cirrhosis (330)

and in patients with compensated hepatitis C virus cirrhosis

(129). Serum HA levels in children with chronic hepatitis B

are a better fibrosis marker than laminin for diagnosing

children with advanced liver fibrosis (242). A modification of

the Child-Pugh classification of liver cirrhosis by inclusion of

HA significantly improves the predictive power of the Child-

Pugh classification in patients with alcoholic cirrhosis (220),

and in patients with compensated hepatitis C virus cirrhosis

(129). Serum HA can also be used as a marker for liver

fibrosis in patients with asymptomatic chronic viral hepatitis

B with portal inflammation, in assessing and monitoring

time trends in liver disease, and in substituting for repeated

biopsies (352). Moreover, HA levels can be used to monitor

the antifibrotic effect of lamivudine in children with chronic

hepatitis B long-term lamivudine treatment (242). The serum

HA level is regarded as a useful predictor for hepatic regen-

eration after hepatectomy (333). In addition, hyaluronidase

levels are elevated after liver injury, and measures of circu-

lating hyaluronidase activity may be used to assess liver

damage (116).

Increased ascitic levels of HA in liver cirrhosis are

found in patients with cirrhosis, suggesting that a simul-

taneous increased synthesis of HA by the peritoneal cells

and a reduction of degradation by liver endothelial cells

occur in patients with cirrhosis with ascites. This event of

increased HA synthesis may be contributory to remodel-

ing and regeneration of the peritoneal lining (231). Hya-

luronan analysis indicated that a certain glycosaminogly-

can level is required in ascites before its appearance in

plasma. The simultaneous increased HA levels in ascitic

fluid do not seem to be derived from systemic circulation.

Correlation analyses for TGF-� and IL-6 indicated a strong

dependence of the production of HA on cytokine levels

and, to a lesser extent, on IL-1� levels, in the ascitic fluid

of cirrhotic patients (385).

Hyaluronan is excreted in humans from the liver and

urine (239). The increased level of circulating endogenous

HA found in patients with alcoholic cirrhosis is caused by a

combination of increased supply to and decreased extrac-

tion from plasma (148). HA turnover occurs systemically

from the lymph and serum as well as locally by the same

cells responsible for its synthesis. Local turnover involves

receptor-mediated uptake and delivery to lysosomes. Some

fraction of the HA bound to CD44 becomes internalized and

delivered to lysosomes, regulated possibly by alternatively

spliced isoforms of CD44, changes in CD44 phosphorylation,

and changes in cytoskeletal binding proteins or the activity

of extracellular proteolytic activity (214).

In an IL-2-induced vascular leak syndrome model,

CD44�/� mice showed a markedly reduced vascular leak

syndrome in the lungs and liver, suggesting that CD44 plays

a key role in endothelial cell injury by cytotoxic lymphocytes

(362). Treatment with HA enhanced the IL-2-induced edema

and lymphocytic infiltration in these organs and caused

marked increase in IL-2-induced lymphokine-activated killer

cell activity, whereas administration of anti-CD44 monoclo-

nal antibodies caused a significant decrease in edema and

lymphokine-activated killer cell activity but similar levels of

lymphocytic infiltration (306). On the other hand, in a Con

A-induced liver injury model, CD44�/� mice showed mark-

edly increased hepatitis and increased production of cyto-

kines such as TNF-�, IL-2, and interferon-�. T cells from

CD44�/� mice were more resistant to activation-induced cell

death when compared with wild-type mice. Activated T cells

use CD44 to undergo apoptosis, and dysregulation in this

pathway could lead to increased pathogenesis in a number

of diseases, including hepatitis (60). Administration of staph-

ylococcal enterotoxin B to CD44�/� mice caused signifi-

cantly enhanced liver damage that correlated with elevated

numbers of T cells, NK cells, NKT cells, and macrophages in

the liver and increased production of TNF-� and interfer-
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on-� compared with wild-type mice (283). These studies

demonstrated a protective role for CD44 during hepatic

injury.

XIX. SUMMARY

Hyaluronan is an important part of the extracellular

matrix that accumulates during inflammation and tissue

injury. Hyaluronan is degraded to smaller species by re-

active oxygen species and possibly by hyaluronidases at

the injury site. Hyaluronan regulates cytokines and other

inflammatory substances and influences inflammatory

cell recruitment and chemotaxis. The actions of hyaluro-

nan are dependent on its interacting proteins and cells.

Hyaluronan binds to an array of proteins to elicit its

biological roles. Hyaluronan-CD44 interactions have long

been suggested to be important in leukocyte homing and

recruitment. The recent demonstration of hyaluronan-Toll

like receptor interactions provides molecular insight into

the mechanisms of hyaluronan signaling in inflammatory

cells as well as in epithelial cells. Hyaluronan and its

binding proteins play a role in the pathogenesis of many

human diseases and in numerous experimental condi-

tions. Therapeutic developments targeting hyaluronan

and its binding proteins are developing. Understanding

the role of hyaluronan and its binding proteins in the

pathobiology of disease will facilitate the development of

novel therapeutics for many critical diseases.
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