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Skin Aging

Human skin aging is a complex biological process, not yet fully 
understood. It is the result of two biologically independent pro-
cesses. The first is intrinsic or innate aging, an unpreventable pro-
cess, which affects the skin in the same pattern as it affects all 
internal organs. The second is extrinsic aging, which is the result 
of exposure to external factors, mainly ultraviolet (UV) irradia-
tion, that is also referred to as photoaging.1 Intrinsic skin aging 
is influenced by hormonal changes that occur with age,2 such as 
the gradual decreased production of sex hormones from the mid-
twenties and the diminution of estrogens and progesterone associ-
ated with menopause. It is well established that the deficiency in 
estrogens and androgens results in collagen degradation, dryness, 
loss of elasticity, epidermal atrophy and wrinkling of the skin.3

Even though intrinsic and extrinsic skin aging are distinctive 
processes, they share similarities in molecular mechanisms. For 
example, reactive oxygen species (ROS), arising from oxidative 
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Skin aging is a multifactorial process consisting of two distinct 
and independent mechanisms: intrinsic and extrinsic aging. 
Youthful skin retains its turgor, resilience and pliability, among 
others, due to its high content of water. Daily external injury, in 
addition to the normal process of aging, causes loss of moisture. 
The key molecule involved in skin moisture is hyaluronic acid 
(HA) that has unique capacity in retaining water. There are 
multiple sites for the control of HA synthesis, deposition, 
cell and protein association and degradation, reflecting the 
complexity of HA metabolism. The enzymes that synthesize or 
catabolize HA and HA receptors responsible for many of the 
functions of HA are all multigene families with distinct patterns 
of tissue expression. Understanding the metabolism of HA in 
the different layers of the skin and the interactions of HA with 
other skin components will facilitate the ability to modulate 
skin moisture in a rational manner.

Hyaluronic acid
A key molecule in skin aging

Eleni Papakonstantinou,1 Michael Roth2 and George Karakiulakis1,*

1Department of Pharmacology; School of Medicine; Aristotle University of Thessaloniki; Thessaloniki, Greece; 2Pulmonary Cell Research-Pneumology;  
University Hospital Basel; Basel, Switzerland

Keywords: hyaluronic acid, hyaluronic acid synthases, hyaluronidases, CD44, RHAMM, skin aging

Abbreviations: UV, ultraviolet; ROS, reactive oxygen species; MMP, matrix metalloproteinase; HA, hyaluronic acid;  
GAG, glycosaminoglycan; ECM, extracellular matrix; HAS, hyaluronic acid synthases; HYAL, hyaluronidases;  

CD44, cluster of differentiation 44; RHAMM, receptor for HA-mediated motility; TGF, transforming growth factor

cell metabolism, play a major role in both processes.4 ROS in 
extrinsic or intrinsic skin aging induce the transcription factor 
c-Jun via mitogen-activated protein kinases (MAPK), leading to 
overexpression of matrix metalloproteinase (MMP)-1, MMP-3 
and MMP-9 and prevention of the expression of procollagen-1.5 
Therefore, elevated levels of degraded collagen and reduced col-
lagen synthesis are pathologies occurring in intrinsically aged as 
well as photoaged skin.

Skin aging is also associated with loss of skin moisture. The 
key molecule involved in skin moisture is hyaluronan or hyal-
uronic acid (HA), a glycosaminoglycan (GAG) with a unique 
capacity to bind and retain water molecules.6 HA belongs to the 
extracellular matrix (ECM) molecules. During the past decades 
the constituents of the skin have been well characterized. In the 
beginning, most of the studies focused on the cells that comprise 
the skin layers, such as the epidermis, the dermis and the underly-
ing subcutis. Recently, it is appreciated that ECM molecules that 
lie between cells, in addition to providing a constructive frame-
work, they exert major effects on cellular function. These ECM 
molecules, although they appear amorphous by light microscopy, 
they form a highly organized structure, comprising mainly of 
GAG, proteoglycans, growth factors and structural proteins such 
as collagens. Yet, the predominant component of the skin ECM 
is HA.

Recent reviews have described the involvement of HA with 
respect to its role in angiogenesis,7 reactive oxygen species,8 chon-
drocytes,9 cancer,10,11 lung injury,12,13 immune regulation14,15 and 
skin.16 This review presents in brief recent knowledge in HA biol-
ogy and function and focuses on its involvement in skin aging.

Hyaluronic Acid

Chemistry and physicochemical properties. HA is a non-sul-
phated GAG and is composed of repeating polymeric disaccha-
rides of D-glucuronic acid and N-acetyl-D-glucosamine linked 
by a glucuronidic β (1→3) bond.17,18 In aqueous solutions HA 
forms specific stable tertiary structures.19 Despite the simplicity 
in its composition, without variations in its sugar composition or 
without branching points, HA has a variety of physicochemical 
properties. HA polymers occur in a vast number of configurations 
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enzymes received little attention until recently73,74 because they 
are found at extremely low concentrations and they are difficult 
to purify, characterize and measure their activity, which is high 
but unstable.16 New procedures have now enabled the isolation 
and characterization of HYAL.75,76 HYAL-1 is the major HYAL 
in serum.77 Mutations in the HYAL-1 gene are associated with 
HYAL deficiency and mucopolysaccharidosis type IX.78 HYAL-2 
has very low activity in comparison to plasma HYAL-1 and it 
hydrolyzes specifically HA of high molecular weight, yielding HA 
fragments of approximately 20 kDa, which are further degraded 
to small oligosaccharides by PH-20.79 HYAL-3 is mainly expressed 
in bone marrow and testis,74 but also in other organs, such as the 
human lung.37,38 The role of HYAL-3 in the catabolism of HA is 
not clear and it is suggested that it may contribute to HA degrada-
tion by enhancing the activity of HYAL-1.80

HA can also be degraded non-enzymatically by a free-radical 
mechanism81 in the presence of reducing agents such as ascor-
bic acid, thiols, ferrous, or cuprous ions, a process that requires 
the presence of molecular oxygen. Thus, agents that could delay 
the free-radical-catalyzed degradation of HA may be useful in 
maintaining the integrity of dermal HA and its moisturizing 
properties.16

Hyaluronic Acid Receptors

There is a variety of proteins that bind HA, called hyaladherins, 
which are widely distributed in the ECM, the cell surface, the 
cytoplasm and the nucleus.15 Those that attach HA to the cell 
surface constitute HA receptors. The most prominent among 
these receptors is the transmembrane glycoprotein “cluster of dif-
ferentiation 44” (CD44) that occurs in many isoforms, which are 
the products of a single gene with variable exon expression.82-84 
CD44 is found on virtually all cells, except red blood cells, and 
regulates cell adhesion, migration, lymphocyte activation and 
homing, and cancer metastasis.

The receptor for HA-mediated motility (RHAMM) is 
another major receptor for HA, and it is expressed in various 
isoforms.85-87 RHAMM is a functional receptor in many cell 
types, including endothelial cells88 and in smooth muscle cells 
from human pulmonary arteries37 and airways.38 The interac-
tions of HA with RHAMM control cell growth and migration 
by a complex network of signal transduction events and inter-
actions with the cytoskeleton.89 Transforming growth factor 
(TGF)-β1, which is a potent stimulator of cell motility, elicits 
the synthesis and expression of RHAMM and HA, and thus ini-
tiates locomotion.90

Hyaluronic Acid in Skin

The use of biotinylated HA-binding peptide91 revealed that not 
only cells of mesenchymal origin were capable of synthesizing 
HA and permitted the histolocalization of HA in the dermal 
compartment of skin and the epidermis.26,92-94 This technique 
enabled the visualization of HA in the epidermis, mainly in the 
ECM of the upper spinous and granular layers, whereas in the 
basal layer HA is predominantly intracellular.26

and shapes, depending on their size, salt concentration, pH, and 
associated cations.20 Unlike other GAG, HA is not covalently 
attached to a protein core, but it may form aggregates with pro-
teoglycans.21 HA encompasses a large volume of water giving 
solutions high viscosity, even at low concentrations.13

Tissue and cell distribution of HA. HA is widely distributed, 
from prokaryotic,22,23 to eukaryotic cells.24 In humans, HA is 
most abundant in the skin,25-29 accounting for 50% of the total 
body HA,30 the vitreous of the eye,31 the umbilical cord,17 and 
synovial fluid,32,33 but it is also present in all tissues and fluids of 
the body, such as skeletal tissues,27 heart valves,34 the lung,35-39 the 
aorta,40 the prostate,41 tunica albuginea, corpora cavernosa and 
corpus spongiosum of the penis.42 HA is produced primarily by 
mesenchymal cells but also by other cell types.34-38,43

Biological function of HA. Over the past two decades there 
was considerable evidence presented that unraveled the func-
tional role of HA in molecular mechanisms and indicated the 
potential role of HA for the development of novel therapeutic 
strategies for many diseases.

Functions of HA include the following: hydration, lubrica-
tion of joints, a space filling capacity, and the framework through 
which cells migrate.34 The synthesis of HA increases during tis-
sue injury and wound healing25,44,45 and HA regulates several 
aspects of tissue repair, including activation of inflammatory 
cells to enhance immune response46-48 and the response to injury 
of fibroblasts49,50 and epithelial cells.51-55 HA also provides the 
framework for blood vessel formation7,45 and fibroblast migra-
tion,56,57 that may be involved in tumor progression.58 The cor-
relation of HA levels on the cell surface of cancer cells with the 
aggressiveness of tumors has also been reported.59

The size of HA appears to be of critical importance for its 
various functions described above. HA of high molecular size, 
usually in excess of 1,000 kDa, is present in intact tissues and 
is antiangiogenic and immunosuppressive, whereas smaller poly-
mers of HA are distress signals and potent inducers of inflamma-
tion and angiogenesis.38,46,60-63

Biosynthesis of HA

HA is synthesized by specific enzymes called HA synthases 
(HAS). These are membrane bound enzymes that synthesize HA 
on the inner surface of the plasma membrane64 and then HA 
is extruded through pore-like structures into the extracellular 
space.24,65 There are three mammalian enzymes HAS -1, -2 and 
-3, which exhibit distinct enzymatic properties and synthesize 
HA chains of various length.66-68

Degradation of HA

HA has a dynamic turnover rate. HA has a half-life of 3 to 5 min 
in the blood, less than a day in the skin and 1 to 3 weeks in the car-
tilage.69-71 HA is degraded into fragments of varying size by hyal-
uronidases (HYAL) by hydrolyzing the hexosaminidic β (1–4) 
linkages between N-acetyl-D-glucosamine and D-glucuronic acid 
residues in HA. In humans, six HYAL have been identified so far: 
HYAL-1, -2, -3, -4, PH-20 and HYALP1.72 The family of HYAL 
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Hyaluronidases in the skin. In the skin, it has not been estab-
lished which of the various HYAL controls the turnover of HA 
in the dermis and the epidermis. The elucidation of the biology 
of HYAL in the skin may offer novel pharmacological targets to 
confront age related turnover of HA in skin.

HA receptors in the skin. In the dermis and epidermis HA 
is co-localized with CD44. However, the exact CD44 vari-
ants in the different skin compartments have not yet been elu-
cidated. CD44-HA interactions have been reported to mediate 
the binding of Langerhans cells to HA in the matrix surround-
ing keratinocytes by their CD44-rich surfaces, as they migrate 
through the epidermis.106,107 RHAMM is also expressed in the 
human skin.28,29 The TGF-β1 induced stimulation of fibroblast 
locomotion is mediated via RHAMM,90 while overexpression of 
RHAMM can lead to the transformation of fibroblasts.108

Hyaluronic Acid and Skin Aging

The most dramatic histochemical change observed in senes-
cent skin is the marked disappearance of epidermal HA, while 
HA is still present in the dermis.92 The reasons for this change 
in HA homeostasis with aging is unknown. As mentioned above, 
the synthesis of epidermal HA is influenced by the underlying 
dermis and is under separate controls from the synthesis of der-
mal HA.16,98 Progressive reduction of the size of the HA polymers 
in skin as a result of aging has also been reported.109 Thus, the 
epidermis loses the principle molecule responsible for binding 
and retaining water molecules, resulting in loss of skin moisture. 
In the dermis, the major age-related change is the increasing 
avidity of HA with tissue structures with the concomitant loss of 
HA extractability. This parallels the progressive cross-linking of 
collagen and the steady loss of collagen extractability with age.16 
All of the above age related phenomena contribute to the appar-
ent dehydration, atrophy and loss of elasticity that characterizes 
aged skin.

Premature aging of skin is the result of repeated and extended 
exposure to UV radiation.110,111 Approximately 80% of facial 
skin aging is attributed to UV-exposure.112 UV radiation dam-
age causes initially a mild form of wound healing and is associ-
ated at first with an increase of dermal HA. As little as 5 min 
of UV exposure in nude mice caused enhanced deposition of 
HA, indicating that UV radiation induced skin damage is an 
extremely rapid event.16 The initial redness of the skin follow-
ing exposure to UV radiation may be due to a mild edematous 
reaction induced by the enhanced HA deposition and histamine 
release. Repeated and extensive exposures to UV ultimately 
simulate a typical wound healing response with deposition of 
scarlike type I collagen, rather than the usual types I and III col-
lagen mixture that gives skin resilience and pliability.16

In the skin, photoaging results in abnormal GAG content and 
distribution compared with that found in scars, or in the wound 
healing response, with diminished HA and increased levels of 
chondroitin sulfate proteoglycans.111 In dermal fibroblasts this 
reduction in HA synthesis was attributed to collagen fragments, 
which activate α

v
β

3
-integrins and in turn inhibit Rho kinase sig-

naling and nuclear translocation of phosphoERK, resulting in 

The function of the skin as a barrier is partly attributed to 
the lamellar bodies, thought to be modified lysosomes contain-
ing hydrolytic enzymes. They fuse with the plasma membranes 
of mature keratinocytes and they have the ability to acidify via 
proton pumps and partially convert their polar lipids into neu-
tral lipids. Diffusion of aqueous material through the epidermis is 
blocked by these lipids synthesized by keratinocytes in the stratum 
granulosum. This boundary effect corresponds to the level of HA 
staining. The HA-rich area inferior to this layer may obtain water 
from the moisture-rich dermis, and the water contained therein 
cannot penetrate beyond the lipid-rich stratum granulosum. The 
hydration of the skin critically depends on the HA-bound water 
in the dermis and in the vital area of the epidermis, while main-
tenance of hydration essentially depends on the stratum granulo-
sum. Extensive loss of the stratum granulosum in patients with 
burns may cause serious clinical problems due to dehydration.16

As mentioned above, skin HA accounts for most of 50% of 
total body HA.30 The HA content of the dermis is significantly 
higher than that of the epidermis, while papillary dermis has 
much greater levels of HA than reticular dermis.92 The HA of the 
dermis is in continuity with the lymphatic and vascular systems. 
HA in the dermis regulates water balance, osmotic pressure and 
ion flow and functions as a sieve, excluding certain molecules, 
enhancing the extracellular domain of cell surfaces and stabi-
lizes skin structures by electrostatic interactions.16 Elevated 
levels of HA are synthesized during scar-free fetal tissue repair 
and the prolonged presence of HA assures such scar-free tissue 
repair.95-97 Dermal fibroblasts provide the synthetic machin-
ery for dermal HA and should be the target for pharmacologic 
attempts to enhance skin hydration. Unfortunately, exogenous 
HA is cleared from the dermis and is rapidly degraded.70

Hyaluronic acid synthases in the skin. In the skin, gene 
expression of HAS-1 and HAS-2 in the dermis and epidermis 
is differentially upregulated by TGF-β1, indicating that HAS 
isoforms are independently regulated and that the function of 
HA is different in the dermis and the epidermis.16,98 The mRNA 
expression of HAS-2 and HAS-3 can be stimulated by kerati-
nocyte growth factor, which activates keratinocyte migration 
and stimulates wound healing, leading to the accumulation of 
intermediate-sized HA in the culture medium and within kera-
tinocytes. The migratory response of keratinocytes in wound 
healing is stimulated by increased synthesis of HA.99 HAS-2 
mRNA is also induced by IL-1β and TNFα in fibroblasts100 and 
by epidermal growth factor in rat epidermal keratinocytes.101

Dysregulated expression of HA synthases has been reported 
during tissue injury.102-104 HAS-2 and HAS-3 mRNA are signifi-
cantly increased after skin injury in mice, leading to increased 
epidermal HA.104 In juvenile hyaline fibromatosis, which is a 
rare autosomal recessive disease characterized by deposition of 
hyaline material and multiple skin lesions, there is a significant 
decreased expression of HAS-1 and HAS-3, accounting for the 
reduced synthesis of HA in skin lesions.105 In dermal fibroblasts, 
where the HAS-2 is the predominant isoform, glucocorticoids 
inhibit HAS mRNA almost completely, suggesting a molecular 
basis of the decreased HA in atrophic skin as a result of local 
treatment with glucocorticoids.16
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HAS -2, CD44 and RHAMM.28 Similar results for photopro-
tected skin have also been reported for both genders for HA, 
HAS-2 and CD44.114

Conclusion

The available data suggest that HA homeostasis exhibits a dis-
tinct profile in intrinsic skin aging, which is totally different of 
that in extrinsic skin aging. Additional insight needs to be gained 
in understanding the metabolism of HA in skin layers and the 
interactions of HA with other skin components. Such informa-
tion will facilitate the ability to modulate skin moisture in a 
rational manner and may contribute to the refinement of current 
drugs and the development of novel treatments for skin aging.

Disclosure of Potential Conflicts of Interest
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reduced HAS-2 expression.113 We have recently unraveled some 
of the biochemical changes that may distinguish photoaging and 
natural aging. Using photoexposed and photoprotected human 
skin tissue specimens, obtained from the same patient, we have 
shown a significant increase in the expression of HA of lower 
molecular mass in photoexposed skin, as compared with pho-
toprotected skin. This increase of degraded HA was associated 
with a significant decrease in the expression of HAS-1 and an 
increased expression of HYAL-1, -2 and -3. Furthermore, the 
expression of HA receptors CD44 and RHAMM was signifi-
cantly downregulated in photoexposed, as compared with photo-
protected skin. These findings indicate that photoexposed skin, 
and therefore extrinsic skin aging, is characterized by distinct 
homeostasis of HA.29 We have also assessed photoprotected skin 
tissue specimens from adults and juvenile patients and observed 
that intrinsic skin aging was associated with a significant  
reduction in the content of HA and downregulation of HAS-1, 
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